Non-size increasing graph rewriting for natural language processing

A very large amount of work in Natural Language Processing (NLP) use tree structure as the first class citizen mathematical structures to represent linguistic structures, such as parsed sentences or feature structures. However, some linguistic phenomena do not cope properly with trees; for instance,...

Full description

Saved in:
Bibliographic Details
Published inMathematical structures in computer science Vol. 28; no. 8; pp. 1451 - 1484
Main Authors BONFANTE, GUILLAUME, GUILLAUME, BRUNO
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.09.2018
Cambridge University Press (CUP)
Subjects
Online AccessGet full text
ISSN0960-1295
1469-8072
DOI10.1017/S0960129518000178

Cover

Loading…
Abstract A very large amount of work in Natural Language Processing (NLP) use tree structure as the first class citizen mathematical structures to represent linguistic structures, such as parsed sentences or feature structures. However, some linguistic phenomena do not cope properly with trees; for instance, in the sentence ‘Max decides to leave,’ ‘Max’ is the subject of the both predicates ‘to_decide’ and ‘to_leave’. Tree-based linguistic formalisms generally use some encoding to manage sentences like the previous example. In former papers (Bonfante et al. 2011; Guillaume and Perrier 2012), we discussed the interest to use graphs rather than trees to deal with linguistic structures, and we have shown how Graph Rewriting could be used for their processing, for instance in the transformation of the sentence syntax into its semantics. Our experiments have shown that Graph Rewriting applications to NLP do not require the full computational power of the general Graph Rewriting setting. The most important observation is that all graph vertices in the final structures are in some sense ‘predictable’ from the input data, and so we can consider the framework of Non-size increasing Graph Rewriting. In our previous papers, we have formally described the Graph Rewriting calculus we used and our purpose here is to study the theoretical aspect of termination with respect to this calculus. Given that termination is undecidable in general, we define termination criterions based on weight, we prove the termination of weighted rewriting systems, and we give complexity bounds on derivation lengths for these rewriting systems.
AbstractList A very large amount of work in Natural Language Processing (NLP) use tree structure as the first class citizen mathematical structures to represent linguistic structures, such as parsed sentences or feature structures. However, some linguistic phenomena do not cope properly with trees; for instance, in the sentence ‘Max decides to leave,’ ‘Max’ is the subject of the both predicates ‘to_decide’ and ‘to_leave’. Tree-based linguistic formalisms generally use some encoding to manage sentences like the previous example. In former papers (Bonfante et al. 2011; Guillaume and Perrier 2012), we discussed the interest to use graphs rather than trees to deal with linguistic structures, and we have shown how Graph Rewriting could be used for their processing, for instance in the transformation of the sentence syntax into its semantics. Our experiments have shown that Graph Rewriting applications to NLP do not require the full computational power of the general Graph Rewriting setting. The most important observation is that all graph vertices in the final structures are in some sense ‘predictable’ from the input data, and so we can consider the framework of Non-size increasing Graph Rewriting. In our previous papers, we have formally described the Graph Rewriting calculus we used and our purpose here is to study the theoretical aspect of termination with respect to this calculus. Given that termination is undecidable in general, we define termination criterions based on weight, we prove the termination of weighted rewriting systems, and we give complexity bounds on derivation lengths for these rewriting systems.
A very large amount of work in Natural Language Processing use tree structure as the first class citizen mathematical structures to represent linguistic structures such as parsed sentences or feature structures. However, some linguistic phenomena do not cope properly with trees: for instance, in the sentence "Max decides to leave", "Max" is the subject of the both predicates "to decide" and "to leave". Tree-based linguistic formalisms generally use some encoding to manage sentences like the previous example. In former papers, we discussed the interest to use graphs rather than trees to deal with linguistic structures and we have shown how Graph Rewriting could be used for their processing, for instance in the transformation of the sentence syntax into its semantics. Our experiments have shown that Graph Rewriting applications to Natural Language Processing do not require the full computational power of the general Graph Rewriting setting. The most important observation is that all graph vertices in the final structures are in some sense "predictable" from the input data and so, we can consider the framework of Non-size increasing Graph Rewriting. In our previous papers, we have formally described the Graph Rewriting calculus we used and our purpose here is to study the theoretical aspect of termination with respect to this calculus. In our framework, we show that uniform termination is undecidable and that non-uniform termination is decidable. We define termination techniques based on weight, we prove the termination of weighted rewriting systems and we give complexity bounds on derivation lengths for these rewriting systems.
A very large amount of work in Natural Language Processing (NLP) use tree structure as the first class citizen mathematical structures to represent linguistic structures, such as parsed sentences or feature structures. However, some linguistic phenomena do not cope properly with trees; for instance, in the sentence ‘ Max decides to leave ,’ ‘ Max ’ is the subject of the both predicates ‘ to_decide ’ and ‘ to_leave ’. Tree-based linguistic formalisms generally use some encoding to manage sentences like the previous example. In former papers (Bonfante et al. 2011; Guillaume and Perrier 2012), we discussed the interest to use graphs rather than trees to deal with linguistic structures, and we have shown how Graph Rewriting could be used for their processing, for instance in the transformation of the sentence syntax into its semantics. Our experiments have shown that Graph Rewriting applications to NLP do not require the full computational power of the general Graph Rewriting setting. The most important observation is that all graph vertices in the final structures are in some sense ‘predictable’ from the input data, and so we can consider the framework of Non-size increasing Graph Rewriting. In our previous papers, we have formally described the Graph Rewriting calculus we used and our purpose here is to study the theoretical aspect of termination with respect to this calculus. Given that termination is undecidable in general, we define termination criterions based on weight, we prove the termination of weighted rewriting systems, and we give complexity bounds on derivation lengths for these rewriting systems.
Author GUILLAUME, BRUNO
BONFANTE, GUILLAUME
Author_xml – sequence: 1
  givenname: GUILLAUME
  surname: BONFANTE
  fullname: BONFANTE, GUILLAUME
  email: guillaume.bonfante@loria.fr
  organization: LORIA/INRIA-BP239, 615 Rue du Jardin-Botanique, 54506 Vandoeuvre-lès-Nancy, France Email: guillaume.bonfante@loria.fr and bruno.guillaume@loria.fr
– sequence: 2
  givenname: BRUNO
  surname: GUILLAUME
  fullname: GUILLAUME, BRUNO
  email: guillaume.bonfante@loria.fr
  organization: LORIA/INRIA-BP239, 615 Rue du Jardin-Botanique, 54506 Vandoeuvre-lès-Nancy, France Email: guillaume.bonfante@loria.fr and bruno.guillaume@loria.fr
BackLink https://inria.hal.science/hal-00921038$$DView record in HAL
BookMark eNp1kEFLAzEQhYNUsK3-AG8LnjysJptkkxxLUSsUPajnMF2Tbco2W5NdRX-9WVr0IJ6GefO9x2MmaORbbxA6J_iKYCKun7AqMSkUJxLjJMgjNCasVLnEohih8XDOh_sJmsS4SQglWI3R_KH1eXRfJnO-Cgai83VWB9its2A-guuG3bYh89D1AZqsAV_3UJtsF9rKxIE_RccWmmjODnOKXm5vnueLfPl4dz-fLfOKsrLLLRfcGi6BS8aMBVYCkyAsWEYwp4QXltKyYtxIKdRqxY0oGRVYVookI6NTdLnPXUOjd8FtIXzqFpxezJZ60DBWBcFUvheJvdizqeZbb2KnN20ffKqnC6wEowXjZaLInqpCG2Mw9ieWYD38Vf_5a_LQgwe2q-Bea_Mb_b_rG6U2eeE
Cites_doi 10.1007/978-94-010-2506-5_10
10.3115/1117840.1117847
10.1007/3-540-60618-1_68
10.1111/j.1755-2567.1970.tb00434.x
10.7551/mitpress/3007.001.0001
10.3115/991719.991783
10.3115/1073012.1073045
10.2307/1968867
10.1017/S0959269503001005
10.1007/BFb0052152
10.1142/3303
10.1016/0304-3975(82)90088-3
10.7551/mitpress/2003.001.0001
10.3233/FI-1998-33204
10.1007/978-3-540-87405-8_7
ContentType Journal Article
Copyright Copyright © Cambridge University Press 2018
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © Cambridge University Press 2018
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
1XC
VOOES
DOI 10.1017/S0960129518000178
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection (ProQuest)
ProQuest Central Essentials
ProQuest Central
Technology Collection (ProQuest)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database (subscription)
Engineering Database (subscription)
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

CrossRef

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Non-size increasing graph rewriting
G. Bonfante and B. Guillaume
EISSN 1469-8072
EndPage 1484
ExternalDocumentID oai_HAL_hal_00921038v2
10_1017_S0960129518000178
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
.DC
.FH
09C
09E
0E1
0R~
29M
3V.
4.4
5GY
5VS
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAFUK
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABVKB
ABVZP
ABXAU
ABZCX
ACBMC
ACDLN
ACETC
ACGFS
ACGOD
ACIMK
ACIWK
ACMRT
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADKIL
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
C0O
CAG
CBIIA
CCPQU
CCQAD
CCTKK
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S6-
S6U
SAAAG
T9M
TN5
UT1
WFFJZ
WQ3
WXU
WYP
XJT
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
AAKNA
AAYXX
ABGDZ
ABHFL
ABXHF
ACEJA
ACOZI
AKMAY
AMVHM
ANOYL
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
1XC
AGKLZ
VOOES
ID FETCH-LOGICAL-c346t-f575fe58a5844efa46a48a7faf41053152f336c45e8879bb5e7643708c915fe43
IEDL.DBID BENPR
ISSN 0960-1295
IngestDate Fri May 09 12:04:34 EDT 2025
Fri Jul 25 19:39:14 EDT 2025
Tue Jul 01 02:40:49 EDT 2025
Tue Jan 21 06:25:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://www.cambridge.org/core/terms
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c346t-f575fe58a5844efa46a48a7faf41053152f336c45e8879bb5e7643708c915fe43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8314-8075
OpenAccessLink https://inria.hal.science/hal-00921038
PQID 2097432456
PQPubID 33085
PageCount 34
ParticipantIDs hal_primary_oai_HAL_hal_00921038v2
proquest_journals_2097432456
crossref_primary_10_1017_S0960129518000178
cambridge_journals_10_1017_S0960129518000178
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180900
2018-09-00
20180901
2018-09
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 20180900
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationSubtitle MSCS
PublicationTitle Mathematical structures in computer science
PublicationTitleAlternate Math. Struct. Comp. Sci
PublicationYear 2018
Publisher Cambridge University Press
Cambridge University Press (CUP)
Publisher_xml – name: Cambridge University Press
– name: Cambridge University Press (CUP)
References Schürr (S0960129518000178_ref26) 1997
Jones (S0960129518000178_ref15) 1997
Godard (S0960129518000178_ref9) 2002
S0960129518000178_ref30
Tesnière (S0960129518000178_ref28) 1959
S0960129518000178_ref31
S0960129518000178_ref19
Guillaume (S0960129518000178_ref10) 2012
Pollard (S0960129518000178_ref23) 1994
Uchida (S0960129518000178_ref29) 2006
S0960129518000178_ref8
S0960129518000178_ref7
S0960129518000178_ref11
S0960129518000178_ref6
S0960129518000178_ref12
S0960129518000178_ref5
S0960129518000178_ref13
S0960129518000178_ref14
S0960129518000178_ref4
S0960129518000178_ref3
S0960129518000178_ref2
S0960129518000178_ref1
S0960129518000178_ref18
Plump (S0960129518000178_ref22) 1998; 33
S0960129518000178_ref20
S0960129518000178_ref21
Roche (S0960129518000178_ref24) 1997
Knuth (S0960129518000178_ref17) 1970
S0960129518000178_ref25
S0960129518000178_ref27
Kaplan (S0960129518000178_ref16) 1982
References_xml – ident: S0960129518000178_ref14
– ident: S0960129518000178_ref19
  doi: 10.1007/978-94-010-2506-5_10
– ident: S0960129518000178_ref3
– ident: S0960129518000178_ref5
– ident: S0960129518000178_ref12
– ident: S0960129518000178_ref1
– ident: S0960129518000178_ref2
  doi: 10.3115/1117840.1117847
– start-page: 173
  volume-title: The Mental Representation of Grammatical Relations
  year: 1982
  ident: S0960129518000178_ref16
– ident: S0960129518000178_ref21
  doi: 10.1007/3-540-60618-1_68
– volume-title: UNL: Universal Networking Language
  year: 2006
  ident: S0960129518000178_ref29
– volume-title: Computational Problems in Abstract Algebra
  year: 1970
  ident: S0960129518000178_ref17
– ident: S0960129518000178_ref18
  doi: 10.1111/j.1755-2567.1970.tb00434.x
– volume-title: Finite-State Language Processing
  year: 1997
  ident: S0960129518000178_ref24
  doi: 10.7551/mitpress/3007.001.0001
– start-page: 479
  volume-title: Handbook on Graph Grammars: Foundations
  year: 1997
  ident: S0960129518000178_ref26
– ident: S0960129518000178_ref31
  doi: 10.3115/991719.991783
– ident: S0960129518000178_ref7
  doi: 10.3115/1073012.1073045
– ident: S0960129518000178_ref4
– ident: S0960129518000178_ref20
  doi: 10.2307/1968867
– ident: S0960129518000178_ref11
– ident: S0960129518000178_ref30
  doi: 10.1017/S0959269503001005
– volume-title: Traitement Automatique des Langues Naturelles (TALN '12)
  year: 2012
  ident: S0960129518000178_ref10
– ident: S0960129518000178_ref6
– start-page: 106
  volume-title: ICGT
  year: 2002
  ident: S0960129518000178_ref9
– ident: S0960129518000178_ref27
  doi: 10.1007/BFb0052152
– ident: S0960129518000178_ref25
  doi: 10.1142/3303
– ident: S0960129518000178_ref13
  doi: 10.1016/0304-3975(82)90088-3
– volume-title: Computability and Complexity: From a Programming Perspective
  year: 1997
  ident: S0960129518000178_ref15
  doi: 10.7551/mitpress/2003.001.0001
– volume-title: Head-Driven Phrase Structure Grammar
  year: 1994
  ident: S0960129518000178_ref23
– volume: 33
  start-page: 201
  year: 1998
  ident: S0960129518000178_ref22
  article-title: Termination of graph rewriting is undecidable
  publication-title: Fundamenta Informaticae
  doi: 10.3233/FI-1998-33204
– ident: S0960129518000178_ref8
  doi: 10.1007/978-3-540-87405-8_7
– volume-title: Eléments de syntaxe structurale
  year: 1959
  ident: S0960129518000178_ref28
SSID ssj0013109
Score 2.1056015
Snippet A very large amount of work in Natural Language Processing (NLP) use tree structure as the first class citizen mathematical structures to represent linguistic...
A very large amount of work in Natural Language Processing use tree structure as the first class citizen mathematical structures to represent linguistic...
SourceID hal
proquest
crossref
cambridge
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1451
SubjectTerms Computer Science
Graph theory
Linguistics
Logic in Computer Science
Natural language processing
Semantics
Sentences
Trees (mathematics)
Weight
Title Non-size increasing graph rewriting for natural language processing
URI https://www.cambridge.org/core/product/identifier/S0960129518000178/type/journal_article
https://www.proquest.com/docview/2097432456
https://inria.hal.science/hal-00921038
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_c9uKL3-J0jiI-iYF2Sdv0SebYHKJDxMHeStKluJdublPBv967Nt38gD02SVu4JHe_3F1-B3AZeeMAYbBmqRIBE4l2mVJaMuOJkHtjKZVLd4cfB0F_KO5H_sg63BY2rbLUibmiHk8T8pHjIR2RL6cw3c3sjVHVKIqu2hIaFaihCpZ-FWq33cHT8zqO4BVJHojTGVo2v4xr5qTR2EhtnsxZY-RPdoVfVqrySjmSf1R1bn96e7BjgaPTLmZ6H7ZMdgC7ZVEGx-7RQ-gMphlbTL6MM8kIEZIvwMlpqZ25-SQKI3xGpOrklJ74xdJj6cyKOwPYfwTDXvel02e2UgJLuAiWLEXQlRpfKoQTwpDYlZAqTFVKWZwcbXTKeZAI36BOibT2TUgBO1cmkYcvCn4M1WyamRNwIjdRoeGIBFI8NSdK0pY2iSt02NJamjpcr6QU2_W-iItcsTD-J9Q6XJWCjGcFf8amwRco6tU4Yr7utx9iaiNuKOJy_2jVoVHOxPr_69Vxurn7DLYR8sgiS6wB1eX83ZwjrFjqJlRk765pV9A3kcLHPA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHODCjiirheCCsJTFSZwDQmxVgRIhBFJvwU4d0Uta2gKCj-IbmclCWSRuHGM7TjQee954xs8AO6Hd9hEGa54q4XORaIsrpSU3tghcuy2lsujs8FXkN-7ERctrjcF7dRaG0iqrNTFfqNvdhPbI0UlH5OtSmO6w98jp1iiKrlZXaBRqcWleX9BlGxycn-L47jpO_ez2pMHLWwV44gp_yFMEKKnxpELTKwz9ohJSBalKKePRRXuWuq6fCM_g_Au19kxAwS1LJqGNLwoX-x2HSYQZIc6iyeOz6PpmFLewi6QS9As4WlKviqPmJNVYSGW2zFlq5Fc2h29WcfyBcjJ_mIbc3tXnYKYEquyo0Kx5GDPZAsxWl0Cwck1YhJOom_FB582wTkYIlPYeWE6DzfrmhSiT8BmRMcspRLHHaoeU9YozCli_BHf_IsNlmMi6mVkBFlqJCoyLyCNFLz1RkpYQk1hCB47W0tRg_1NKcTm_BnGRmxbEv4Rag71KkHGv4Ov4q_E2ivqzHTFtN46aMZURFxVxxz87NVivRmL0_ZE2rv5dvQVTjdurZtw8jy7XYBrhliwy1NZhYth_MhsIaYZ6s9QjBvf_rbofPBcCQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-size+increasing+graph+rewriting+for+natural+language+processing&rft.jtitle=Mathematical+structures+in+computer+science&rft.au=Bonfante%2C+Guillaume&rft.au=Bruno%2C+Guillaume&rft.date=2018-09-01&rft.pub=Cambridge+University+Press&rft.issn=0960-1295&rft.eissn=1469-8072&rft.volume=28&rft.issue=8&rft.spage=1451&rft.epage=1484&rft_id=info:doi/10.1017%2FS0960129518000178
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1295&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1295&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1295&client=summon