Non-size increasing graph rewriting for natural language processing
A very large amount of work in Natural Language Processing (NLP) use tree structure as the first class citizen mathematical structures to represent linguistic structures, such as parsed sentences or feature structures. However, some linguistic phenomena do not cope properly with trees; for instance,...
Saved in:
Published in | Mathematical structures in computer science Vol. 28; no. 8; pp. 1451 - 1484 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.09.2018
Cambridge University Press (CUP) |
Subjects | |
Online Access | Get full text |
ISSN | 0960-1295 1469-8072 |
DOI | 10.1017/S0960129518000178 |
Cover
Loading…
Abstract | A very large amount of work in Natural Language Processing (NLP) use tree structure as the first class citizen mathematical structures to represent linguistic structures, such as parsed sentences or feature structures. However, some linguistic phenomena do not cope properly with trees; for instance, in the sentence ‘Max decides to leave,’ ‘Max’ is the subject of the both predicates ‘to_decide’ and ‘to_leave’. Tree-based linguistic formalisms generally use some encoding to manage sentences like the previous example. In former papers (Bonfante et al. 2011; Guillaume and Perrier 2012), we discussed the interest to use graphs rather than trees to deal with linguistic structures, and we have shown how Graph Rewriting could be used for their processing, for instance in the transformation of the sentence syntax into its semantics. Our experiments have shown that Graph Rewriting applications to NLP do not require the full computational power of the general Graph Rewriting setting. The most important observation is that all graph vertices in the final structures are in some sense ‘predictable’ from the input data, and so we can consider the framework of Non-size increasing Graph Rewriting. In our previous papers, we have formally described the Graph Rewriting calculus we used and our purpose here is to study the theoretical aspect of termination with respect to this calculus. Given that termination is undecidable in general, we define termination criterions based on weight, we prove the termination of weighted rewriting systems, and we give complexity bounds on derivation lengths for these rewriting systems. |
---|---|
AbstractList | A very large amount of work in Natural Language Processing (NLP) use tree structure as the first class citizen mathematical structures to represent linguistic structures, such as parsed sentences or feature structures. However, some linguistic phenomena do not cope properly with trees; for instance, in the sentence ‘Max decides to leave,’ ‘Max’ is the subject of the both predicates ‘to_decide’ and ‘to_leave’. Tree-based linguistic formalisms generally use some encoding to manage sentences like the previous example. In former papers (Bonfante et al. 2011; Guillaume and Perrier 2012), we discussed the interest to use graphs rather than trees to deal with linguistic structures, and we have shown how Graph Rewriting could be used for their processing, for instance in the transformation of the sentence syntax into its semantics. Our experiments have shown that Graph Rewriting applications to NLP do not require the full computational power of the general Graph Rewriting setting. The most important observation is that all graph vertices in the final structures are in some sense ‘predictable’ from the input data, and so we can consider the framework of Non-size increasing Graph Rewriting. In our previous papers, we have formally described the Graph Rewriting calculus we used and our purpose here is to study the theoretical aspect of termination with respect to this calculus. Given that termination is undecidable in general, we define termination criterions based on weight, we prove the termination of weighted rewriting systems, and we give complexity bounds on derivation lengths for these rewriting systems. A very large amount of work in Natural Language Processing use tree structure as the first class citizen mathematical structures to represent linguistic structures such as parsed sentences or feature structures. However, some linguistic phenomena do not cope properly with trees: for instance, in the sentence "Max decides to leave", "Max" is the subject of the both predicates "to decide" and "to leave". Tree-based linguistic formalisms generally use some encoding to manage sentences like the previous example. In former papers, we discussed the interest to use graphs rather than trees to deal with linguistic structures and we have shown how Graph Rewriting could be used for their processing, for instance in the transformation of the sentence syntax into its semantics. Our experiments have shown that Graph Rewriting applications to Natural Language Processing do not require the full computational power of the general Graph Rewriting setting. The most important observation is that all graph vertices in the final structures are in some sense "predictable" from the input data and so, we can consider the framework of Non-size increasing Graph Rewriting. In our previous papers, we have formally described the Graph Rewriting calculus we used and our purpose here is to study the theoretical aspect of termination with respect to this calculus. In our framework, we show that uniform termination is undecidable and that non-uniform termination is decidable. We define termination techniques based on weight, we prove the termination of weighted rewriting systems and we give complexity bounds on derivation lengths for these rewriting systems. A very large amount of work in Natural Language Processing (NLP) use tree structure as the first class citizen mathematical structures to represent linguistic structures, such as parsed sentences or feature structures. However, some linguistic phenomena do not cope properly with trees; for instance, in the sentence ‘ Max decides to leave ,’ ‘ Max ’ is the subject of the both predicates ‘ to_decide ’ and ‘ to_leave ’. Tree-based linguistic formalisms generally use some encoding to manage sentences like the previous example. In former papers (Bonfante et al. 2011; Guillaume and Perrier 2012), we discussed the interest to use graphs rather than trees to deal with linguistic structures, and we have shown how Graph Rewriting could be used for their processing, for instance in the transformation of the sentence syntax into its semantics. Our experiments have shown that Graph Rewriting applications to NLP do not require the full computational power of the general Graph Rewriting setting. The most important observation is that all graph vertices in the final structures are in some sense ‘predictable’ from the input data, and so we can consider the framework of Non-size increasing Graph Rewriting. In our previous papers, we have formally described the Graph Rewriting calculus we used and our purpose here is to study the theoretical aspect of termination with respect to this calculus. Given that termination is undecidable in general, we define termination criterions based on weight, we prove the termination of weighted rewriting systems, and we give complexity bounds on derivation lengths for these rewriting systems. |
Author | GUILLAUME, BRUNO BONFANTE, GUILLAUME |
Author_xml | – sequence: 1 givenname: GUILLAUME surname: BONFANTE fullname: BONFANTE, GUILLAUME email: guillaume.bonfante@loria.fr organization: LORIA/INRIA-BP239, 615 Rue du Jardin-Botanique, 54506 Vandoeuvre-lès-Nancy, France Email: guillaume.bonfante@loria.fr and bruno.guillaume@loria.fr – sequence: 2 givenname: BRUNO surname: GUILLAUME fullname: GUILLAUME, BRUNO email: guillaume.bonfante@loria.fr organization: LORIA/INRIA-BP239, 615 Rue du Jardin-Botanique, 54506 Vandoeuvre-lès-Nancy, France Email: guillaume.bonfante@loria.fr and bruno.guillaume@loria.fr |
BackLink | https://inria.hal.science/hal-00921038$$DView record in HAL |
BookMark | eNp1kEFLAzEQhYNUsK3-AG8LnjysJptkkxxLUSsUPajnMF2Tbco2W5NdRX-9WVr0IJ6GefO9x2MmaORbbxA6J_iKYCKun7AqMSkUJxLjJMgjNCasVLnEohih8XDOh_sJmsS4SQglWI3R_KH1eXRfJnO-Cgai83VWB9its2A-guuG3bYh89D1AZqsAV_3UJtsF9rKxIE_RccWmmjODnOKXm5vnueLfPl4dz-fLfOKsrLLLRfcGi6BS8aMBVYCkyAsWEYwp4QXltKyYtxIKdRqxY0oGRVYVookI6NTdLnPXUOjd8FtIXzqFpxezJZ60DBWBcFUvheJvdizqeZbb2KnN20ffKqnC6wEowXjZaLInqpCG2Mw9ieWYD38Vf_5a_LQgwe2q-Bea_Mb_b_rG6U2eeE |
Cites_doi | 10.1007/978-94-010-2506-5_10 10.3115/1117840.1117847 10.1007/3-540-60618-1_68 10.1111/j.1755-2567.1970.tb00434.x 10.7551/mitpress/3007.001.0001 10.3115/991719.991783 10.3115/1073012.1073045 10.2307/1968867 10.1017/S0959269503001005 10.1007/BFb0052152 10.1142/3303 10.1016/0304-3975(82)90088-3 10.7551/mitpress/2003.001.0001 10.3233/FI-1998-33204 10.1007/978-3-540-87405-8_7 |
ContentType | Journal Article |
Copyright | Copyright © Cambridge University Press 2018 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright © Cambridge University Press 2018 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 1XC VOOES |
DOI | 10.1017/S0960129518000178 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection (ProQuest) ProQuest Central Essentials ProQuest Central Technology Collection (ProQuest) ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database (subscription) Engineering Database (subscription) AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitleAlternate | Non-size increasing graph rewriting G. Bonfante and B. Guillaume |
EISSN | 1469-8072 |
EndPage | 1484 |
ExternalDocumentID | oai_HAL_hal_00921038v2 10_1017_S0960129518000178 |
GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N .DC .FH 09C 09E 0E1 0R~ 29M 3V. 4.4 5GY 5VS 6~7 74X 74Y 7~V 88I 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAFUK AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABBZL ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABVKB ABVZP ABXAU ABZCX ACBMC ACDLN ACETC ACGFS ACGOD ACIMK ACIWK ACMRT ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADKIL ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMTW AENCP AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AFZFC AGABE AGBYD AGJUD AGLWM AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ C0O CAG CBIIA CCPQU CCQAD CCTKK CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD GNUQQ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KCGVB KFECR L6V L98 LHUNA LW7 M-V M0N M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG ROL RR0 S6- S6U SAAAG T9M TN5 UT1 WFFJZ WQ3 WXU WYP XJT ZDLDU ZJOSE ZMEZD ZYDXJ ~V1 AAKNA AAYXX ABGDZ ABHFL ABXHF ACEJA ACOZI AKMAY AMVHM ANOYL CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U 1XC AGKLZ VOOES |
ID | FETCH-LOGICAL-c346t-f575fe58a5844efa46a48a7faf41053152f336c45e8879bb5e7643708c915fe43 |
IEDL.DBID | BENPR |
ISSN | 0960-1295 |
IngestDate | Fri May 09 12:04:34 EDT 2025 Fri Jul 25 19:39:14 EDT 2025 Tue Jul 01 02:40:49 EDT 2025 Tue Jan 21 06:25:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://www.cambridge.org/core/terms Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c346t-f575fe58a5844efa46a48a7faf41053152f336c45e8879bb5e7643708c915fe43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8314-8075 |
OpenAccessLink | https://inria.hal.science/hal-00921038 |
PQID | 2097432456 |
PQPubID | 33085 |
PageCount | 34 |
ParticipantIDs | hal_primary_oai_HAL_hal_00921038v2 proquest_journals_2097432456 crossref_primary_10_1017_S0960129518000178 cambridge_journals_10_1017_S0960129518000178 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180900 2018-09-00 20180901 2018-09 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 20180900 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationSubtitle | MSCS |
PublicationTitle | Mathematical structures in computer science |
PublicationTitleAlternate | Math. Struct. Comp. Sci |
PublicationYear | 2018 |
Publisher | Cambridge University Press Cambridge University Press (CUP) |
Publisher_xml | – name: Cambridge University Press – name: Cambridge University Press (CUP) |
References | Schürr (S0960129518000178_ref26) 1997 Jones (S0960129518000178_ref15) 1997 Godard (S0960129518000178_ref9) 2002 S0960129518000178_ref30 Tesnière (S0960129518000178_ref28) 1959 S0960129518000178_ref31 S0960129518000178_ref19 Guillaume (S0960129518000178_ref10) 2012 Pollard (S0960129518000178_ref23) 1994 Uchida (S0960129518000178_ref29) 2006 S0960129518000178_ref8 S0960129518000178_ref7 S0960129518000178_ref11 S0960129518000178_ref6 S0960129518000178_ref12 S0960129518000178_ref5 S0960129518000178_ref13 S0960129518000178_ref14 S0960129518000178_ref4 S0960129518000178_ref3 S0960129518000178_ref2 S0960129518000178_ref1 S0960129518000178_ref18 Plump (S0960129518000178_ref22) 1998; 33 S0960129518000178_ref20 S0960129518000178_ref21 Roche (S0960129518000178_ref24) 1997 Knuth (S0960129518000178_ref17) 1970 S0960129518000178_ref25 S0960129518000178_ref27 Kaplan (S0960129518000178_ref16) 1982 |
References_xml | – ident: S0960129518000178_ref14 – ident: S0960129518000178_ref19 doi: 10.1007/978-94-010-2506-5_10 – ident: S0960129518000178_ref3 – ident: S0960129518000178_ref5 – ident: S0960129518000178_ref12 – ident: S0960129518000178_ref1 – ident: S0960129518000178_ref2 doi: 10.3115/1117840.1117847 – start-page: 173 volume-title: The Mental Representation of Grammatical Relations year: 1982 ident: S0960129518000178_ref16 – ident: S0960129518000178_ref21 doi: 10.1007/3-540-60618-1_68 – volume-title: UNL: Universal Networking Language year: 2006 ident: S0960129518000178_ref29 – volume-title: Computational Problems in Abstract Algebra year: 1970 ident: S0960129518000178_ref17 – ident: S0960129518000178_ref18 doi: 10.1111/j.1755-2567.1970.tb00434.x – volume-title: Finite-State Language Processing year: 1997 ident: S0960129518000178_ref24 doi: 10.7551/mitpress/3007.001.0001 – start-page: 479 volume-title: Handbook on Graph Grammars: Foundations year: 1997 ident: S0960129518000178_ref26 – ident: S0960129518000178_ref31 doi: 10.3115/991719.991783 – ident: S0960129518000178_ref7 doi: 10.3115/1073012.1073045 – ident: S0960129518000178_ref4 – ident: S0960129518000178_ref20 doi: 10.2307/1968867 – ident: S0960129518000178_ref11 – ident: S0960129518000178_ref30 doi: 10.1017/S0959269503001005 – volume-title: Traitement Automatique des Langues Naturelles (TALN '12) year: 2012 ident: S0960129518000178_ref10 – ident: S0960129518000178_ref6 – start-page: 106 volume-title: ICGT year: 2002 ident: S0960129518000178_ref9 – ident: S0960129518000178_ref27 doi: 10.1007/BFb0052152 – ident: S0960129518000178_ref25 doi: 10.1142/3303 – ident: S0960129518000178_ref13 doi: 10.1016/0304-3975(82)90088-3 – volume-title: Computability and Complexity: From a Programming Perspective year: 1997 ident: S0960129518000178_ref15 doi: 10.7551/mitpress/2003.001.0001 – volume-title: Head-Driven Phrase Structure Grammar year: 1994 ident: S0960129518000178_ref23 – volume: 33 start-page: 201 year: 1998 ident: S0960129518000178_ref22 article-title: Termination of graph rewriting is undecidable publication-title: Fundamenta Informaticae doi: 10.3233/FI-1998-33204 – ident: S0960129518000178_ref8 doi: 10.1007/978-3-540-87405-8_7 – volume-title: Eléments de syntaxe structurale year: 1959 ident: S0960129518000178_ref28 |
SSID | ssj0013109 |
Score | 2.1056015 |
Snippet | A very large amount of work in Natural Language Processing (NLP) use tree structure as the first class citizen mathematical structures to represent linguistic... A very large amount of work in Natural Language Processing use tree structure as the first class citizen mathematical structures to represent linguistic... |
SourceID | hal proquest crossref cambridge |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1451 |
SubjectTerms | Computer Science Graph theory Linguistics Logic in Computer Science Natural language processing Semantics Sentences Trees (mathematics) Weight |
Title | Non-size increasing graph rewriting for natural language processing |
URI | https://www.cambridge.org/core/product/identifier/S0960129518000178/type/journal_article https://www.proquest.com/docview/2097432456 https://inria.hal.science/hal-00921038 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_c9uKL3-J0jiI-iYF2Sdv0SebYHKJDxMHeStKluJdublPBv967Nt38gD02SVu4JHe_3F1-B3AZeeMAYbBmqRIBE4l2mVJaMuOJkHtjKZVLd4cfB0F_KO5H_sg63BY2rbLUibmiHk8T8pHjIR2RL6cw3c3sjVHVKIqu2hIaFaihCpZ-FWq33cHT8zqO4BVJHojTGVo2v4xr5qTR2EhtnsxZY-RPdoVfVqrySjmSf1R1bn96e7BjgaPTLmZ6H7ZMdgC7ZVEGx-7RQ-gMphlbTL6MM8kIEZIvwMlpqZ25-SQKI3xGpOrklJ74xdJj6cyKOwPYfwTDXvel02e2UgJLuAiWLEXQlRpfKoQTwpDYlZAqTFVKWZwcbXTKeZAI36BOibT2TUgBO1cmkYcvCn4M1WyamRNwIjdRoeGIBFI8NSdK0pY2iSt02NJamjpcr6QU2_W-iItcsTD-J9Q6XJWCjGcFf8amwRco6tU4Yr7utx9iaiNuKOJy_2jVoVHOxPr_69Vxurn7DLYR8sgiS6wB1eX83ZwjrFjqJlRk765pV9A3kcLHPA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHODCjiirheCCsJTFSZwDQmxVgRIhBFJvwU4d0Uta2gKCj-IbmclCWSRuHGM7TjQee954xs8AO6Hd9hEGa54q4XORaIsrpSU3tghcuy2lsujs8FXkN-7ERctrjcF7dRaG0iqrNTFfqNvdhPbI0UlH5OtSmO6w98jp1iiKrlZXaBRqcWleX9BlGxycn-L47jpO_ez2pMHLWwV44gp_yFMEKKnxpELTKwz9ohJSBalKKePRRXuWuq6fCM_g_Au19kxAwS1LJqGNLwoX-x2HSYQZIc6iyeOz6PpmFLewi6QS9As4WlKviqPmJNVYSGW2zFlq5Fc2h29WcfyBcjJ_mIbc3tXnYKYEquyo0Kx5GDPZAsxWl0Cwck1YhJOom_FB582wTkYIlPYeWE6DzfrmhSiT8BmRMcspRLHHaoeU9YozCli_BHf_IsNlmMi6mVkBFlqJCoyLyCNFLz1RkpYQk1hCB47W0tRg_1NKcTm_BnGRmxbEv4Rag71KkHGv4Ov4q_E2ivqzHTFtN46aMZURFxVxxz87NVivRmL0_ZE2rv5dvQVTjdurZtw8jy7XYBrhliwy1NZhYth_MhsIaYZ6s9QjBvf_rbofPBcCQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-size+increasing+graph+rewriting+for+natural+language+processing&rft.jtitle=Mathematical+structures+in+computer+science&rft.au=Bonfante%2C+Guillaume&rft.au=Bruno%2C+Guillaume&rft.date=2018-09-01&rft.pub=Cambridge+University+Press&rft.issn=0960-1295&rft.eissn=1469-8072&rft.volume=28&rft.issue=8&rft.spage=1451&rft.epage=1484&rft_id=info:doi/10.1017%2FS0960129518000178 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1295&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1295&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1295&client=summon |