Investigation on coaxial visual characteristics of molten pool in laser-based directed energy deposition of AISI 316L steel

•Molten pool can be divided into three regions to describe LDED process.•Coaxial visual characteristics can reflect metallurgical behaviors of molten pool.•There is a definite relationship between visual and temperature characteristics.•Visual characteristics can be used to monitor process state and...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials processing technology Vol. 290; p. 116996
Main Authors Tang, Zi-jue, Liu, Wei-wei, Zhu, Li-na, Liu, Zhi-chao, Yan, Zhao-rui, Lin, Dong, Zhang, Zhao, Zhang, Hong-Chao
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.04.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Molten pool can be divided into three regions to describe LDED process.•Coaxial visual characteristics can reflect metallurgical behaviors of molten pool.•There is a definite relationship between visual and temperature characteristics.•Visual characteristics can be used to monitor process state and product qualities. Laser-based directed energy deposition (LDED), an additive manufacturing technique, has received increasing attention from the industry and academia. Unstable reliability and poor repeatability in the production of metal parts are two challenges currently faced by LDED. In-situ monitoring and adaptive control technology based on visual characteristics serves as effective methods to ensure part quality and process stability. Although molten pools directly influence metallurgical behaviors in LDED, their visual characteristics still require further investigation. In this work, a coaxial visual image of a molten pool was captured during the LDED of 316 L material and divided into three regions. Then, the evolutionary behaviors of different regions during single-layer single-track processing, multi-layer one-track stacking, and one-layer multi-track overlapping were analyzed. Additionally, the metallurgical behaviors of the molten pool, including the formation mechanisms of slag characteristics, were explicated. Results showed that molten pool characteristics could be presented and described with visual images reasonably. These characteristics could indicate the state of melting, heat conduction and convection, and overlapping position. Meanwhile, coaxial visual characteristics were closely related to product qualities. This work could enhance the understanding of LDED process mechanisms and improve real-time monitoring capability. The proposed approach for the determination of molten pool characteristics is expected to be applicable to other materials.
AbstractList Laser-based directed energy deposition (LDED), an additive manufacturing technique, has received increasing attention from the industry and academia. Unstable reliability and poor repeatability in the production of metal parts are two challenges currently faced by LDED. In-situ monitoring and adaptive control technology based on visual characteristics serves as effective methods to ensure part quality and process stability. Although molten pools directly influence metallurgical behaviors in LDED, their visual characteristics still require further investigation. In this work, a coaxial visual image of a molten pool was captured during the LDED of 316 L material and divided into three regions. Then, the evolutionary behaviors of different regions during single-layer single-track processing, multi-layer one-track stacking, and one-layer multi-track overlapping were analyzed. Additionally, the metallurgical behaviors of the molten pool, including the formation mechanisms of slag characteristics, were explicated. Results showed that molten pool characteristics could be presented and described with visual images reasonably. These characteristics could indicate the state of melting, heat conduction and convection, and overlapping position. Meanwhile, coaxial visual characteristics were closely related to product qualities. This work could enhance the understanding of LDED process mechanisms and improve real-time monitoring capability. The proposed approach for the determination of molten pool characteristics is expected to be applicable to other materials.
•Molten pool can be divided into three regions to describe LDED process.•Coaxial visual characteristics can reflect metallurgical behaviors of molten pool.•There is a definite relationship between visual and temperature characteristics.•Visual characteristics can be used to monitor process state and product qualities. Laser-based directed energy deposition (LDED), an additive manufacturing technique, has received increasing attention from the industry and academia. Unstable reliability and poor repeatability in the production of metal parts are two challenges currently faced by LDED. In-situ monitoring and adaptive control technology based on visual characteristics serves as effective methods to ensure part quality and process stability. Although molten pools directly influence metallurgical behaviors in LDED, their visual characteristics still require further investigation. In this work, a coaxial visual image of a molten pool was captured during the LDED of 316 L material and divided into three regions. Then, the evolutionary behaviors of different regions during single-layer single-track processing, multi-layer one-track stacking, and one-layer multi-track overlapping were analyzed. Additionally, the metallurgical behaviors of the molten pool, including the formation mechanisms of slag characteristics, were explicated. Results showed that molten pool characteristics could be presented and described with visual images reasonably. These characteristics could indicate the state of melting, heat conduction and convection, and overlapping position. Meanwhile, coaxial visual characteristics were closely related to product qualities. This work could enhance the understanding of LDED process mechanisms and improve real-time monitoring capability. The proposed approach for the determination of molten pool characteristics is expected to be applicable to other materials.
ArticleNumber 116996
Author Tang, Zi-jue
Liu, Wei-wei
Zhang, Hong-Chao
Yan, Zhao-rui
Lin, Dong
Liu, Zhi-chao
Zhang, Zhao
Zhu, Li-na
Author_xml – sequence: 1
  givenname: Zi-jue
  surname: Tang
  fullname: Tang, Zi-jue
  organization: School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
– sequence: 2
  givenname: Wei-wei
  surname: Liu
  fullname: Liu, Wei-wei
  email: ghostliuww@163.com
  organization: School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
– sequence: 3
  givenname: Li-na
  surname: Zhu
  fullname: Zhu, Li-na
  organization: Shenyang SIASUN Robot & Automation Co., Ltd., Shenyang, Liaoning, 110168, China
– sequence: 4
  givenname: Zhi-chao
  surname: Liu
  fullname: Liu, Zhi-chao
  organization: Industrial and Management Systems Engineering, West Virginia University, Morgantown, WV, 26506, USA
– sequence: 5
  givenname: Zhao-rui
  surname: Yan
  fullname: Yan, Zhao-rui
  organization: School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
– sequence: 6
  givenname: Dong
  surname: Lin
  fullname: Lin, Dong
  organization: Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, KS, 66506, USA
– sequence: 7
  givenname: Zhao
  surname: Zhang
  fullname: Zhang, Zhao
  organization: Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
– sequence: 8
  givenname: Hong-Chao
  surname: Zhang
  fullname: Zhang, Hong-Chao
  organization: Department of Industrial Engineering, Texas Tech University, Lubbock, TX, 79409, USA
BookMark eNqNkE1rGzEQhkVJoU7a_yDoeR19rVa6FJKQtAZDDmnPQtbOplrWkiPJpiF_PnI2EMilgWEGxDvPoOcUnYQYACFMyZISKs_H5bi1ZZdiAbdkhNVnKrWWn9CCqo43ouvECVoQzURDKJdf0GnOIyG0I0ot0NMqHCAXf2-LjwHXctH-83bCB5_3dbi_NllXIPmachnHAW_jVCDgXYwT9gFPNkNqNrX3uPcJarjHECDdP-IedjH7GT3gi9XdCnMq1zgXgOkr-jzYKcO313mG_txc_7761axvf66uLtaN40KWZqB6oGQjeqe1E1z1bacAqNVcaNfaQXPKW8kkU7qVGyaJVKoHqqVtO95pxs_Q95lbLT3s62_NGPcp1JOGCU2YFC07pn7MKZdizgkG43x5sVKS9ZOhxByFm9G8CTdH4WYWXgHqHWCX_Namx4-sXs6rUDUcPCSTnYfgYPZp-uj_D3kGJUukDQ
CitedBy_id crossref_primary_10_1016_j_matpr_2024_03_034
crossref_primary_10_1016_j_precisioneng_2025_01_009
crossref_primary_10_3390_coatings13010197
crossref_primary_10_3390_coatings14091131
crossref_primary_10_1016_j_optlastec_2024_111857
crossref_primary_10_1088_1361_6501_ac8f62
crossref_primary_10_1016_j_jmatprotec_2021_117363
crossref_primary_10_1016_j_jmrt_2022_12_172
crossref_primary_10_1016_j_measurement_2025_116992
crossref_primary_10_1016_j_addlet_2022_100084
crossref_primary_10_1016_j_jmapro_2024_12_048
crossref_primary_10_1016_j_addma_2025_104692
crossref_primary_10_3390_ma17225496
crossref_primary_10_1007_s10845_023_02207_z
crossref_primary_10_1016_j_addma_2023_103547
crossref_primary_10_2139_ssrn_4171665
crossref_primary_10_1007_s11661_024_07517_2
crossref_primary_10_1016_j_jmsy_2024_04_013
crossref_primary_10_1080_0951192X_2022_2048422
crossref_primary_10_1016_j_applthermaleng_2024_122564
crossref_primary_10_1016_j_addma_2024_104060
crossref_primary_10_1063_5_0082461
crossref_primary_10_1080_17452759_2022_2120405
crossref_primary_10_1016_j_surfcoat_2022_129085
crossref_primary_10_1016_j_jmatprotec_2025_118725
crossref_primary_10_1109_ACCESS_2025_3537859
Cites_doi 10.1016/j.ijleo.2018.12.071
10.1016/j.optlastec.2018.07.073
10.1016/j.procir.2016.11.217
10.1016/j.jmapro.2019.06.011
10.1016/j.jmatprotec.2017.10.030
10.1016/j.jmatprotec.2011.04.002
10.3901/JME.2019.15.039
10.1016/j.optlaseng.2020.106034
10.1016/j.jmatprotec.2013.10.019
10.1016/j.ijmachtools.2006.02.004
10.1016/j.rcim.2018.08.002
10.1016/j.rcim.2019.05.006
10.1016/j.optlaseng.2017.10.020
10.1016/j.jmatprotec.2013.10.004
10.1016/j.optlastec.2006.09.008
10.1007/s00170-018-03245-1
10.1007/s00170-015-7112-4
10.1007/s00170-020-05569-3
10.1038/s41467-018-07900-9
10.1016/j.jmatprotec.2012.11.015
10.1088/0022-3727/43/44/445501
10.1108/13552540610670744
10.1016/j.jmapro.2017.04.024
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Apr 2021
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 2021
DBID AAYXX
CITATION
7SR
8BQ
8FD
H8D
JG9
L7M
DOI 10.1016/j.jmatprotec.2020.116996
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Aerospace Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Aerospace Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4774
ExternalDocumentID 10_1016_j_jmatprotec_2020_116996
S0924013620304180
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SSM
SST
SSZ
T5K
WUQ
XFK
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
8BQ
8FD
EFKBS
H8D
JG9
L7M
ID FETCH-LOGICAL-c346t-f19f10b4dc99c438d578ee1a9349c5af9313562628956b260688de196a5737923
IEDL.DBID .~1
ISSN 0924-0136
IngestDate Sat Jul 26 00:28:00 EDT 2025
Tue Jul 01 03:59:12 EDT 2025
Thu Apr 24 23:09:12 EDT 2025
Fri Feb 23 02:48:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Visual characteristics
Molten pool
Additive manufacturing
Laser cladding
Directed energy deposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c346t-f19f10b4dc99c438d578ee1a9349c5af9313562628956b260688de196a5737923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2490264522
PQPubID 2045449
ParticipantIDs proquest_journals_2490264522
crossref_citationtrail_10_1016_j_jmatprotec_2020_116996
crossref_primary_10_1016_j_jmatprotec_2020_116996
elsevier_sciencedirect_doi_10_1016_j_jmatprotec_2020_116996
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of materials processing technology
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Huang, Ansari, Asgari, Farshidianfar, Sarker, Khamesee, Toyserkani (bib0045) 2019
Zekovic, Dwivedi, Kovacevic (bib0140) 2007; 47
Li, Xiong, Yin (bib0065) 2019; 56
Zhang, Yu, Gao, Chen, Zeng (bib0145) 2019
Aucott, Dong, Mirihanage, Atwood, Kidess, Gao, Wen, Marsden, Feng, Tong, Connolley, Drakopoulos, Kleijn, Richardson, Browne, Mathiesen, Atkinson (bib0015) 2018; 9
Fabbro (bib0030) 2010; 43
Bunaziv, Frostevarg, Akselsen, Kaplan (bib0025) 2018; 102
Tang, Liu, Wang, Saleheen, Liu, Peng, Zhang, Zhang (bib0100) 2020; 108
Tang, Liu, Zhang, Wang, Zhang (bib0105) 2020; 128
Tang, Liu, Yan, Wang, Zhang (bib0095) 2019; 55
Motta, Demir, Previtali (bib0085) 2018; 22
Onwubolu, Davim, Oliveira, Cardoso (bib0090) 2007; 39
Aiyiti, Zhao, Bingheng, Tang (bib0005) 2017; 12
Wirth, Arpagaus, Wegener (bib0110) 2018; 21
Akbari, Kovacevic (bib0010) 2018; 23
Li, Chen, Zhang, Zhou, Zhang (bib0060) 2014; 214
Gharbi, Peyre, Gorny, Carin, Morville, Le Masson, Carron, Fabbro (bib0035) 2013; 213
Xiong, Pi, Chen (bib0125) 2019; 59
Liu, Li, Ning, Cong, Kim, Jiang, Zhang (bib0075) 2019; 102
Gharbi, Peyre, Gorny, Carin, Morville, Le Masson, Carron, Fabbro (bib0040) 2014; 214
Wirtha, Wegenerb (bib0115) 2018; 22
Kawahito, Matsumoto, Abe, Katayama (bib0050) 2011; 211
Zhao, Guo, Bai, Wang, Han (bib0150) 2019; 181
Xiong, Zhang, Zhang (bib0120) 2015; 80
Bennett, Wolff, Hyatt, Ehmann, Cao (bib0020) 2017; 28
Khanzadeh, Tian, Yadollahi, Doude, Tschopp, Bian (bib0055) 2018; 23
Liu, Tang, Liu, Wang, Zhang (bib0070) 2017; 61
Yan, Liu, Tang, Liu, Zhang, Wang, Zhang (bib0135) 2019; 44
Xu, Ding, Ganguly, Diao, Williams (bib0130) 2018; 252
Meng, Yin, Fang, Guo, Ma, Li (bib0080) 2019; 109
Zekovic (10.1016/j.jmatprotec.2020.116996_bib0140) 2007; 47
Bennett (10.1016/j.jmatprotec.2020.116996_bib0020) 2017; 28
Kawahito (10.1016/j.jmatprotec.2020.116996_bib0050) 2011; 211
Onwubolu (10.1016/j.jmatprotec.2020.116996_bib0090) 2007; 39
Aucott (10.1016/j.jmatprotec.2020.116996_bib0015) 2018; 9
Motta (10.1016/j.jmatprotec.2020.116996_bib0085) 2018; 22
Fabbro (10.1016/j.jmatprotec.2020.116996_bib0030) 2010; 43
Li (10.1016/j.jmatprotec.2020.116996_bib0065) 2019; 56
Zhang (10.1016/j.jmatprotec.2020.116996_bib0145) 2019
Huang (10.1016/j.jmatprotec.2020.116996_bib0045) 2019
Yan (10.1016/j.jmatprotec.2020.116996_bib0135) 2019; 44
Tang (10.1016/j.jmatprotec.2020.116996_bib0095) 2019; 55
Gharbi (10.1016/j.jmatprotec.2020.116996_bib0035) 2013; 213
Liu (10.1016/j.jmatprotec.2020.116996_bib0070) 2017; 61
Zhao (10.1016/j.jmatprotec.2020.116996_bib0150) 2019; 181
Akbari (10.1016/j.jmatprotec.2020.116996_bib0010) 2018; 23
Wirth (10.1016/j.jmatprotec.2020.116996_bib0110) 2018; 21
Xiong (10.1016/j.jmatprotec.2020.116996_bib0125) 2019; 59
Gharbi (10.1016/j.jmatprotec.2020.116996_bib0040) 2014; 214
Khanzadeh (10.1016/j.jmatprotec.2020.116996_bib0055) 2018; 23
Liu (10.1016/j.jmatprotec.2020.116996_bib0075) 2019; 102
Xiong (10.1016/j.jmatprotec.2020.116996_bib0120) 2015; 80
Bunaziv (10.1016/j.jmatprotec.2020.116996_bib0025) 2018; 102
Tang (10.1016/j.jmatprotec.2020.116996_bib0105) 2020; 128
Meng (10.1016/j.jmatprotec.2020.116996_bib0080) 2019; 109
Tang (10.1016/j.jmatprotec.2020.116996_bib0100) 2020; 108
Aiyiti (10.1016/j.jmatprotec.2020.116996_bib0005) 2017; 12
Xu (10.1016/j.jmatprotec.2020.116996_bib0130) 2018; 252
Li (10.1016/j.jmatprotec.2020.116996_bib0060) 2014; 214
Wirtha (10.1016/j.jmatprotec.2020.116996_bib0115) 2018; 22
References_xml – volume: 44
  start-page: 309
  year: 2019
  end-page: 318
  ident: bib0135
  article-title: Effect of thermal characteristics on distortion in laser cladding of AISI 316L
  publication-title: J. Manuf. Process.
– year: 2019
  ident: bib0145
  article-title: Suppressing porosity of a laser keyhole welded Al-6Mg alloy via beam oscillation
  publication-title: J. Mater. Process. Technol.
– volume: 22
  start-page: 307
  year: 2018
  end-page: 319
  ident: bib0115
  article-title: A physical modeling and predictive simulation of the laser cladding process
  publication-title: Addit. Manuf.
– volume: 181
  start-page: 351
  year: 2019
  end-page: 360
  ident: bib0150
  article-title: Quality monitoring in wire-arc additive manufacturing based on cooperative awareness of spectrum and vision
  publication-title: Optik
– volume: 47
  start-page: 112
  year: 2007
  end-page: 123
  ident: bib0140
  article-title: Numerical simulation and experimental investigation of gas–powder flow from radially symmetrical nozzles in laser-based direct metal deposition
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 23
  start-page: 487
  year: 2018
  end-page: 497
  ident: bib0010
  article-title: An investigation on mechanical and microstructural properties of 316LSi parts fabricated by a robotized laser/wire direct metal deposition system
  publication-title: Addit. Manuf.
– volume: 59
  start-page: 326
  year: 2019
  end-page: 334
  ident: bib0125
  article-title: Deposition height detection and feature point extraction in robotic GTA-based additive manufacturing using passive vision sensing
  publication-title: Robot. Comput. Manuf.
– volume: 102
  start-page: 34
  year: 2018
  end-page: 44
  ident: bib0025
  article-title: Process stability during fiber laser-arc hybrid welding of thick steel plates
  publication-title: Opt. Lasers Eng.
– volume: 43
  year: 2010
  ident: bib0030
  article-title: Melt pool and keyhole behaviour analysis for deep penetration laser welding
  publication-title: J. Phys. D Appl. Phys.
– volume: 23
  start-page: 443
  year: 2018
  end-page: 456
  ident: bib0055
  article-title: Dual process monitoring of metal-based additive manufacturing using tensor decomposition of thermal image streams
  publication-title: Addit. Manuf.
– volume: 214
  start-page: 485
  year: 2014
  end-page: 495
  ident: bib0040
  article-title: Influence of a pulsed laser regime on surface finish induced by the direct metal deposition process on a Ti64 alloy
  publication-title: J. Mater. Process. Technol.
– volume: 12
  start-page: 165
  year: 2017
  end-page: 172
  ident: bib0005
  article-title: Investigation of the overlapping parameters of MPAW-based rapid prototyping
  publication-title: Rapid Prototyp. J.
– volume: 80
  start-page: 1767
  year: 2015
  end-page: 1776
  ident: bib0120
  article-title: Forming appearance analysis in multi-layer single-pass GMAW-based additive manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 22
  start-page: 497
  year: 2018
  end-page: 507
  ident: bib0085
  article-title: High-speed imaging and process characterization of coaxial laser metal wire deposition
  publication-title: Addit. Manuf.
– volume: 21
  start-page: 369
  year: 2018
  end-page: 382
  ident: bib0110
  article-title: Analysis of melt pool dynamics in laser cladding and direct metal deposition by automated high-speed camera image evaluation
  publication-title: Addit. Manuf.
– volume: 55
  start-page: 39
  year: 2019
  end-page: 47
  ident: bib0095
  article-title: Study on evolution behavior of geometrical accuracy based on dynamic characteristics of molten pool in laser-based direct energy deposition
  publication-title: J. Mech. Eng.
– volume: 28
  start-page: 550
  year: 2017
  end-page: 557
  ident: bib0020
  article-title: Thermal effect on clad dimension for laser deposited Inconel 718
  publication-title: J. Manuf. Process.
– start-page: 274
  year: 2019
  ident: bib0045
  article-title: Rapid prediction of real-time thermal characteristics, solidification parameters and microstructure in laser directed energy deposition (powder-fed additive manufacturing)
  publication-title: J. Mater. Process. Technol.
– volume: 109
  start-page: 168
  year: 2019
  end-page: 177
  ident: bib0080
  article-title: Dynamic features of plasma plume and molten pool in laser lap welding based on image monitoring and processing techniques
  publication-title: Opt. Laser Technol.
– volume: 102
  start-page: 969
  year: 2019
  end-page: 976
  ident: bib0075
  article-title: Effects of deposition variables on molten pool temperature during laser engineered net shaping of Inconel 718 superalloy
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 214
  start-page: 565
  year: 2014
  end-page: 570
  ident: bib0060
  article-title: Dynamic keyhole profile during high-power deep-penetration laser welding
  publication-title: J. Mater. Process. Technol.
– volume: 9
  start-page: 5414
  year: 2018
  ident: bib0015
  article-title: Revealing internal flow behaviour in arc welding and additive manufacturing of metals
  publication-title: Nat. Commun.
– volume: 128
  year: 2020
  ident: bib0105
  article-title: Real–time prediction of penetration depths of laser surface melting based on coaxial visual monitoring
  publication-title: Opt. Lasers Eng.
– volume: 108
  start-page: 3437
  year: 2020
  end-page: 3463
  ident: bib0100
  article-title: A review on in situ monitoring technology for directed energy deposition of metals
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 39
  start-page: 1130
  year: 2007
  end-page: 1134
  ident: bib0090
  article-title: Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search
  publication-title: Opt. Laser Technol.
– volume: 56
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib0065
  article-title: Molten pool stability of thin-wall parts in robotic GMA-based additive manufacturing with various position depositions
  publication-title: Robot. Comput. Manuf.
– volume: 213
  start-page: 791
  year: 2013
  end-page: 800
  ident: bib0035
  article-title: Influence of various process conditions on surface finishes induced by the direct metal deposition laser technique on a Ti–6Al–4V alloy
  publication-title: J. Mater. Process. Technol.
– volume: 211
  start-page: 1563
  year: 2011
  end-page: 1568
  ident: bib0050
  article-title: Relationship of laser absorption to keyhole behavior in high power fiber laser welding of stainless steel and aluminum alloy
  publication-title: J. Mater. Process. Technol.
– volume: 252
  start-page: 739
  year: 2018
  end-page: 750
  ident: bib0130
  article-title: Oxide accumulation effects on wire + arc layer-by-layer additive manufacture process
  publication-title: J. Mater. Process. Technol.
– volume: 61
  start-page: 235
  year: 2017
  end-page: 240
  ident: bib0070
  article-title: A review on in-situ monitoring and adaptive control technology for laser cladding remanufacturing
  publication-title: Procedia Cirp
– volume: 181
  start-page: 351
  year: 2019
  ident: 10.1016/j.jmatprotec.2020.116996_bib0150
  article-title: Quality monitoring in wire-arc additive manufacturing based on cooperative awareness of spectrum and vision
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.12.071
– volume: 109
  start-page: 168
  year: 2019
  ident: 10.1016/j.jmatprotec.2020.116996_bib0080
  article-title: Dynamic features of plasma plume and molten pool in laser lap welding based on image monitoring and processing techniques
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2018.07.073
– volume: 61
  start-page: 235
  year: 2017
  ident: 10.1016/j.jmatprotec.2020.116996_bib0070
  article-title: A review on in-situ monitoring and adaptive control technology for laser cladding remanufacturing
  publication-title: Procedia Cirp
  doi: 10.1016/j.procir.2016.11.217
– volume: 44
  start-page: 309
  year: 2019
  ident: 10.1016/j.jmatprotec.2020.116996_bib0135
  article-title: Effect of thermal characteristics on distortion in laser cladding of AISI 316L
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2019.06.011
– volume: 252
  start-page: 739
  year: 2018
  ident: 10.1016/j.jmatprotec.2020.116996_bib0130
  article-title: Oxide accumulation effects on wire + arc layer-by-layer additive manufacture process
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2017.10.030
– volume: 211
  start-page: 1563
  year: 2011
  ident: 10.1016/j.jmatprotec.2020.116996_bib0050
  article-title: Relationship of laser absorption to keyhole behavior in high power fiber laser welding of stainless steel and aluminum alloy
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2011.04.002
– volume: 22
  start-page: 307
  year: 2018
  ident: 10.1016/j.jmatprotec.2020.116996_bib0115
  article-title: A physical modeling and predictive simulation of the laser cladding process
  publication-title: Addit. Manuf.
– volume: 55
  start-page: 39
  year: 2019
  ident: 10.1016/j.jmatprotec.2020.116996_bib0095
  article-title: Study on evolution behavior of geometrical accuracy based on dynamic characteristics of molten pool in laser-based direct energy deposition
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2019.15.039
– year: 2019
  ident: 10.1016/j.jmatprotec.2020.116996_bib0145
  article-title: Suppressing porosity of a laser keyhole welded Al-6Mg alloy via beam oscillation
  publication-title: J. Mater. Process. Technol.
– start-page: 274
  year: 2019
  ident: 10.1016/j.jmatprotec.2020.116996_bib0045
  article-title: Rapid prediction of real-time thermal characteristics, solidification parameters and microstructure in laser directed energy deposition (powder-fed additive manufacturing)
  publication-title: J. Mater. Process. Technol.
– volume: 23
  start-page: 443
  year: 2018
  ident: 10.1016/j.jmatprotec.2020.116996_bib0055
  article-title: Dual process monitoring of metal-based additive manufacturing using tensor decomposition of thermal image streams
  publication-title: Addit. Manuf.
– volume: 128
  year: 2020
  ident: 10.1016/j.jmatprotec.2020.116996_bib0105
  article-title: Real–time prediction of penetration depths of laser surface melting based on coaxial visual monitoring
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2020.106034
– volume: 214
  start-page: 565
  year: 2014
  ident: 10.1016/j.jmatprotec.2020.116996_bib0060
  article-title: Dynamic keyhole profile during high-power deep-penetration laser welding
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2013.10.019
– volume: 21
  start-page: 369
  year: 2018
  ident: 10.1016/j.jmatprotec.2020.116996_bib0110
  article-title: Analysis of melt pool dynamics in laser cladding and direct metal deposition by automated high-speed camera image evaluation
  publication-title: Addit. Manuf.
– volume: 47
  start-page: 112
  year: 2007
  ident: 10.1016/j.jmatprotec.2020.116996_bib0140
  article-title: Numerical simulation and experimental investigation of gas–powder flow from radially symmetrical nozzles in laser-based direct metal deposition
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2006.02.004
– volume: 56
  start-page: 1
  year: 2019
  ident: 10.1016/j.jmatprotec.2020.116996_bib0065
  article-title: Molten pool stability of thin-wall parts in robotic GMA-based additive manufacturing with various position depositions
  publication-title: Robot. Comput. Manuf.
  doi: 10.1016/j.rcim.2018.08.002
– volume: 59
  start-page: 326
  year: 2019
  ident: 10.1016/j.jmatprotec.2020.116996_bib0125
  article-title: Deposition height detection and feature point extraction in robotic GTA-based additive manufacturing using passive vision sensing
  publication-title: Robot. Comput. Manuf.
  doi: 10.1016/j.rcim.2019.05.006
– volume: 102
  start-page: 34
  year: 2018
  ident: 10.1016/j.jmatprotec.2020.116996_bib0025
  article-title: Process stability during fiber laser-arc hybrid welding of thick steel plates
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2017.10.020
– volume: 214
  start-page: 485
  year: 2014
  ident: 10.1016/j.jmatprotec.2020.116996_bib0040
  article-title: Influence of a pulsed laser regime on surface finish induced by the direct metal deposition process on a Ti64 alloy
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2013.10.004
– volume: 39
  start-page: 1130
  year: 2007
  ident: 10.1016/j.jmatprotec.2020.116996_bib0090
  article-title: Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2006.09.008
– volume: 102
  start-page: 969
  year: 2019
  ident: 10.1016/j.jmatprotec.2020.116996_bib0075
  article-title: Effects of deposition variables on molten pool temperature during laser engineered net shaping of Inconel 718 superalloy
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-018-03245-1
– volume: 80
  start-page: 1767
  year: 2015
  ident: 10.1016/j.jmatprotec.2020.116996_bib0120
  article-title: Forming appearance analysis in multi-layer single-pass GMAW-based additive manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-015-7112-4
– volume: 108
  start-page: 3437
  year: 2020
  ident: 10.1016/j.jmatprotec.2020.116996_bib0100
  article-title: A review on in situ monitoring technology for directed energy deposition of metals
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-020-05569-3
– volume: 9
  start-page: 5414
  year: 2018
  ident: 10.1016/j.jmatprotec.2020.116996_bib0015
  article-title: Revealing internal flow behaviour in arc welding and additive manufacturing of metals
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07900-9
– volume: 213
  start-page: 791
  year: 2013
  ident: 10.1016/j.jmatprotec.2020.116996_bib0035
  article-title: Influence of various process conditions on surface finishes induced by the direct metal deposition laser technique on a Ti–6Al–4V alloy
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2012.11.015
– volume: 43
  year: 2010
  ident: 10.1016/j.jmatprotec.2020.116996_bib0030
  article-title: Melt pool and keyhole behaviour analysis for deep penetration laser welding
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/43/44/445501
– volume: 22
  start-page: 497
  year: 2018
  ident: 10.1016/j.jmatprotec.2020.116996_bib0085
  article-title: High-speed imaging and process characterization of coaxial laser metal wire deposition
  publication-title: Addit. Manuf.
– volume: 12
  start-page: 165
  year: 2017
  ident: 10.1016/j.jmatprotec.2020.116996_bib0005
  article-title: Investigation of the overlapping parameters of MPAW-based rapid prototyping
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552540610670744
– volume: 28
  start-page: 550
  year: 2017
  ident: 10.1016/j.jmatprotec.2020.116996_bib0020
  article-title: Thermal effect on clad dimension for laser deposited Inconel 718
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2017.04.024
– volume: 23
  start-page: 487
  year: 2018
  ident: 10.1016/j.jmatprotec.2020.116996_bib0010
  article-title: An investigation on mechanical and microstructural properties of 316LSi parts fabricated by a robotized laser/wire direct metal deposition system
  publication-title: Addit. Manuf.
SSID ssj0017088
Score 2.4676163
Snippet •Molten pool can be divided into three regions to describe LDED process.•Coaxial visual characteristics can reflect metallurgical behaviors of molten...
Laser-based directed energy deposition (LDED), an additive manufacturing technique, has received increasing attention from the industry and academia. Unstable...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116996
SubjectTerms Adaptive control
Additive manufacturing
Austenitic stainless steels
Component reliability
Conduction heating
Conductive heat transfer
Deposition
Directed energy deposition
Laser applications
Laser cladding
Melt pools
Metallurgical analysis
Molten pool
Monitoring
Monolayers
Multilayers
Visual characteristics
Title Investigation on coaxial visual characteristics of molten pool in laser-based directed energy deposition of AISI 316L steel
URI https://dx.doi.org/10.1016/j.jmatprotec.2020.116996
https://www.proquest.com/docview/2490264522
Volume 290
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EL3oQn_iosgeva7PdzSbBUymW1tdFhd6WZHcDlZqUPkQQ_O3O5KGteCgIgYSQDWFndmY-8u03hFyA16DOmWCBVIZJP_ZZEgrFIDdZnnAbp8VG2vsH1XuWNwN_sEY69V4YpFVWsb-M6UW0ru40q9lsjofD5qMH0AEVx1r4d4-HiNulDNDLLz-_aR488Irek_gww6crNk_J8XqBqrDUQwCk2ML4oSKU7_87Rf0K1kUG6u6Q7ap0pO3y63bJmsv2yNaCoOA--ViQzcgzCofJ43dwMfo2nM7hZJb1mWme0td8BHUzxV5bdJhRqKbdhGFys7ScG7hwxQ5Bal3N8cKB7f5jnwqu7ih4ihsdkOfu9VOnx6r2CswIqWYs5VHKvURaE0VGitDC4nWOx5GQkfHjNBJcQHWkAJL5KgHco8LQOlixsR8IlB08JOtZnrkjQk2QmlgYJ02YyAhRmAWkYwIvMSpMlT0mQT2j2lTa49gCY6RrktmL_rGFRlvo0hbHhH-PHJf6GyuMuaqNppd8SUOaWGF0o7azrtbzVANIBbCK6vMn_3r5KdlsISmmoP40yPpsMndnUNXMkvPCbc_JRrt_23v4AvLN-Bs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwEA4yH9QH8SdOp-bB17BlSdMWn8ZQNt32ooJvoU1SmMxW3BTBf967NlUnPghCoaX0Sshd7u4jl-8IOQOrQZ4zwUKpDJNBErA0EopBbLI85TbJyoO044ka3Mmr--B-hfTrszBYVul9f-XTS2_t37T9bLafptP2TQegAzKOdXF3j0eA21eRnSpokNXe8How-dxMCDtl-0n8nqGAL-ipyrweIDGsKBEALHbRhagYGfx_j1I__HUZhC63yKbPHmmvGuA2WXH5Dtn4xim4S96_MWcUOYXLFMkbWBl9nc5f4GaWKZppkdHHYgapM8V2W3SaU0io3TPD-GZpNT3w4MpDgtS6uswLBXvDmyEVXI0oGIub7ZG7y4vb_oD5DgvMCKkWLONxxjuptCaOjRSRhfXrHE9iIWMTJFksuIAESQEqC1QK0EdFkXWwaJMgFMg8uE8aeZG7A0JNmJlEGCdNlMoYgZgFsGPCTmpUlCnbJGE9o9p4-nHsgjHTdZ3Zg_7ShUZd6EoXTcI_JZ8qCo4_yJzXStNL5qQhUvxBulXrWfslPdeAUwGvIgH94b9-fkrWBrfjkR4NJ9dHZL2LNTJlJVCLNBbPL-4YkpxFeuKN-ANsqPrM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+on+coaxial+visual+characteristics+of+molten+pool+in+laser-based+directed+energy+deposition+of+AISI+316L+steel&rft.jtitle=Journal+of+materials+processing+technology&rft.au=Tang%2C+Zi-jue&rft.au=Liu%2C+Wei-wei&rft.au=Zhu%2C+Li-na&rft.au=Liu%2C+Zhi-chao&rft.date=2021-04-01&rft.pub=Elsevier+BV&rft.issn=0924-0136&rft.eissn=1873-4774&rft.volume=290&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jmatprotec.2020.116996&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-0136&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-0136&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-0136&client=summon