Cavitation Simulation with Consideration of the Viscous Effect at Large Liquid Temperature Variation

The phase change due to cavitation is not only driven by the pressure difference between the local pressure and vapor saturated pressure, but also affected by the physical property changes in the case of large liquid temperature variation. The present work simulates cavitation with consideration of...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 31; no. 8; pp. 115 - 118
Main Author 于安 罗先武 季斌 黄仁芳 HIDALGOVictor KIMSongHak
Format Journal Article
LanguageEnglish
Published 01.08.2014
Subjects
Online AccessGet full text
ISSN0256-307X
1741-3540
DOI10.1088/0256-307X/31/8/086401

Cover

Abstract The phase change due to cavitation is not only driven by the pressure difference between the local pressure and vapor saturated pressure, but also affected by the physical property changes in the case of large liquid temperature variation. The present work simulates cavitation with consideration of the viscous effect as well as the local variation of vapor saturated pressure, density, etc. A new cavitation model is developed based on the bubble dynamics, and is applied to analyze the eavitating flow around an NACA0015 hydrofoil at different liquid temperatures from 25℃ to 150℃. The results by the proposed model, such as the pressure distribution along the hydrofoil wall surface, vapor volume fraction, and source term of the mass transfer rate due to cavitation, are compared with the available experimental data and the numerical results by an existing thermodynamic model. It is noted that the numerical results by the proposed cavitation model have a slight discrepancy from the experimental results at room temperature, and the accuracy is better than the existing thermodynamic cavitation model. Thus the proposed cavitation model is acceptable for the simulation of cavitating flows at different liquid temperatures.
AbstractList The phase change due to cavitation is not only driven by the pressure difference between the local pressure and vapor saturated pressure, hut also affected by the physical property changes in the case of large liquid temperature variation. The present work simulates cavitation with consideration of the viscous effect as well as the local variation of vapor saturated pressure, density, etc. A new cavitation model is developed based on the bubble dynamics, and is applied to analyze the cavitating flow around an NACA0015 hydrofoil at different liquid temperatures from 25[degrees]C to 150[degrees]C. The results by the proposed model, such as the pressure distribution along the hydrofoil wall surface, vapor volume fraction, and source term of the mass transfer rate due to cavitation, are compared with the available experimental data and the numerical results by an existing thermodynamic model. It is noted that the numerical results by the proposed cavitation model have a slight discrepancy from the experimental results at room temperature, and the accuracy is better than the existing thermodynamic cavitation model. Thus the proposed cavitation model is acceptable for the simulation of cavitating flows at different liquid temperatures.
The phase change due to cavitation is not only driven by the pressure difference between the local pressure and vapor saturated pressure, but also affected by the physical property changes in the case of large liquid temperature variation. The present work simulates cavitation with consideration of the viscous effect as well as the local variation of vapor saturated pressure, density, etc. A new cavitation model is developed based on the bubble dynamics, and is applied to analyze the eavitating flow around an NACA0015 hydrofoil at different liquid temperatures from 25℃ to 150℃. The results by the proposed model, such as the pressure distribution along the hydrofoil wall surface, vapor volume fraction, and source term of the mass transfer rate due to cavitation, are compared with the available experimental data and the numerical results by an existing thermodynamic model. It is noted that the numerical results by the proposed cavitation model have a slight discrepancy from the experimental results at room temperature, and the accuracy is better than the existing thermodynamic cavitation model. Thus the proposed cavitation model is acceptable for the simulation of cavitating flows at different liquid temperatures.
Author 于安 罗先武 季斌 黄仁芳 HIDALGOVictor KIMSongHak
AuthorAffiliation StateKeyLaboratoryofHydroscienceandEngineering,TsinghuaUniversity,Beijing100084 BeijingKeyLaboratoryofCO2UtilizationandReductionTechnology,TsinghuaUniversity,Beijing100084
Author_xml – sequence: 1
  fullname: 于安 罗先武 季斌 黄仁芳 HIDALGOVictor KIMSongHak
BookMark eNqNkU9PGzEQxS1EJQL0I1SyOHHZxrP-u-KEImgrReIARdwsr9dOXG12E9vbim9fh0Qceiknz1jvZ795c45Oh3FwCH0B8hWIUnNSc1FRIl_mFOalVYIROEEzkAwqyhk5RbN3zRk6T-kXIQAKYIa6hfkdsslhHPBj2Ez9ofwT8hovxiGFzsXD1ehxXjv8HJIdp4TvvHc2Y5Px0sSVw8uwm0KHn9xmuyemWKQmhjf2En3ypk_u8_G8QD_v754W36vlw7cfi9tlZSkTuXK-UW3bEkWpEYITUJ3womvaRjpjDWlq39quzMZ9LWvrOasbJojlTNJaSk8v0PXh3W0cd5NLWW-KW9f3ZnDFswbVSKpYTdkHpDVnjAKHIuUHqY1jStF5vY1hY-KrBqL3C9D7cPU-XE1Bl_ZtAYW7-Yezx6RzNKH_L311pNfjsNqFYfX-rRDQSFHc0b-7TJlM
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2023_123854
crossref_primary_10_1007_s42241_019_0041_1
crossref_primary_10_1142_S0219876218500950
crossref_primary_10_1007_s12206_015_0920_5
crossref_primary_10_1016_j_applthermaleng_2020_115099
crossref_primary_10_3390_app9183696
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119604
crossref_primary_10_1016_S1001_6058_16_60638_8
crossref_primary_10_21595_vp_2018_20396
crossref_primary_10_1016_S1001_6058_16_60813_2
crossref_primary_10_1016_j_tsep_2021_101079
crossref_primary_10_1108_EC_09_2017_0363
crossref_primary_10_1016_j_ijmultiphaseflow_2018_11_014
Cites_doi 10.1088/0256-307X/27/1/016401
10.1016/j.ijhydene.2013.11.025
10.1016/j.oceaneng.2014.05.005
10.1088/0256-307X/29/1/016401
10.1007/s11434-012-5463-x
10.1016/j.ijmultiphaseflow.2012.11.008
10.1016/j.cryogenics.2008.05.007
10.1016/j.icheatmasstransfer.2014.02.005
10.1016/j.ijheatmasstransfer.2013.10.019
10.1115/1.2169808
10.1088/0256-307X/29/7/076401
10.1016/S1001-6058(11)60390-X
10.1088/0256-307X/28/2/026401
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
H8D
L7M
F1W
H96
L.G
DOI 10.1088/0256-307X/31/8/086401
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources

DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Cavitation Simulation with Consideration of the Viscous Effect at Large Liquid Temperature Variation
EISSN 1741-3540
EndPage 118
ExternalDocumentID 10_1088_0256_307X_31_8_086401
661976443
GroupedDBID 02O
042
1JI
1PV
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CEBXE
CJUJL
CQIGP
CRLBU
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FEDTE
HAK
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
LAP
M45
N5L
N9A
NS0
NT-
NT.
P2P
PJBAE
Q02
R4D
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
T37
UCJ
W28
XPP
~02
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
TGP
U1G
U5K
7U5
8FD
AEINN
H8D
L7M
F1W
H96
L.G
ID FETCH-LOGICAL-c346t-ef98bbb0833a665018d6f6d9b97eaca092fbcd4015f272cf5429460c5473277f3
ISSN 0256-307X
IngestDate Thu Sep 04 19:58:57 EDT 2025
Thu Sep 04 23:56:53 EDT 2025
Thu Apr 24 22:55:42 EDT 2025
Tue Jul 01 01:35:23 EDT 2025
Wed Feb 14 10:34:46 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c346t-ef98bbb0833a665018d6f6d9b97eaca092fbcd4015f272cf5429460c5473277f3
Notes The phase change due to cavitation is not only driven by the pressure difference between the local pressure and vapor saturated pressure, but also affected by the physical property changes in the case of large liquid temperature variation. The present work simulates cavitation with consideration of the viscous effect as well as the local variation of vapor saturated pressure, density, etc. A new cavitation model is developed based on the bubble dynamics, and is applied to analyze the eavitating flow around an NACA0015 hydrofoil at different liquid temperatures from 25℃ to 150℃. The results by the proposed model, such as the pressure distribution along the hydrofoil wall surface, vapor volume fraction, and source term of the mass transfer rate due to cavitation, are compared with the available experimental data and the numerical results by an existing thermodynamic model. It is noted that the numerical results by the proposed cavitation model have a slight discrepancy from the experimental results at room temperature, and the accuracy is better than the existing thermodynamic cavitation model. Thus the proposed cavitation model is acceptable for the simulation of cavitating flows at different liquid temperatures.
11-1959/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825443151
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_1897384234
proquest_miscellaneous_1825443151
crossref_primary_10_1088_0256_307X_31_8_086401
crossref_citationtrail_10_1088_0256_307X_31_8_086401
chongqing_primary_661976443
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics letters
PublicationTitleAlternate Chinese Physics Letters
PublicationYear 2014
References 11
13
Ji B (3) 2012; 29
Huang B (12) 2011; 28
Stahl H A (9) 1956; 78
1
2
Luo X (4) 2012; 29
Zhang Y (14) 2010; 27
5
6
7
8
10
References_xml – volume: 27
  start-page: 016401
  issn: 0256-307X
  year: 2010
  ident: 14
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/27/1/016401
– ident: 13
  doi: 10.1016/j.ijhydene.2013.11.025
– ident: 6
  doi: 10.1016/j.oceaneng.2014.05.005
– volume: 29
  start-page: 016401
  issn: 0256-307X
  year: 2012
  ident: 4
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/29/1/016401
– ident: 11
  doi: 10.1007/s11434-012-5463-x
– ident: 5
  doi: 10.1016/j.ijmultiphaseflow.2012.11.008
– ident: 10
  doi: 10.1016/j.cryogenics.2008.05.007
– ident: 1
  doi: 10.1016/j.icheatmasstransfer.2014.02.005
– ident: 2
  doi: 10.1016/j.ijheatmasstransfer.2013.10.019
– volume: 78
  start-page: 1691
  issn: 0021-9223
  year: 1956
  ident: 9
  publication-title: J. Basic. Eng.
– ident: 8
  doi: 10.1115/1.2169808
– volume: 29
  start-page: 076401
  issn: 0256-307X
  year: 2012
  ident: 3
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/29/7/076401
– ident: 7
  doi: 10.1016/S1001-6058(11)60390-X
– volume: 28
  start-page: 026401
  issn: 0256-307X
  year: 2011
  ident: 12
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/28/2/026401
SSID ssj0011811
Score 2.1004994
Snippet The phase change due to cavitation is not only driven by the pressure difference between the local pressure and vapor saturated pressure, but also affected by...
The phase change due to cavitation is not only driven by the pressure difference between the local pressure and vapor saturated pressure, hut also affected by...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115
SubjectTerms Cavitation
Computer simulation
Hydrofoils
Liquids
Mass transfer
Mathematical models
Thermodynamic models
Walls
实验数据
流动模拟
液体温度
热力学模型
空化模型
粘性效应
计算结果
饱和压力
Title Cavitation Simulation with Consideration of the Viscous Effect at Large Liquid Temperature Variation
URI http://lib.cqvip.com/qk/84212X/201408/661976443.html
https://www.proquest.com/docview/1825443151
https://www.proquest.com/docview/1897384234
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiQuiKdYCshI3CJ3N7HzOkLVVUFLW0G2hJMVJw5dqWT7SDjw6xk_4mQFgsIlSqyNo_V8GX8zmQdCr0PmC9UfjcQBZYRVpSTAWgOSJiJMyorOS50o_OEoOlyx93mYTybdOLukFXvlj9_mlfyPVGEM5KqyZP9Bsm5SGIBzkC8cQcJwvJGM94vvtsS292n9zTbiMq7VvhGnY4SKYJ6ur0sV8mpLFhett1SB4GCYX3brysskcGhTY9k7BRt6EFpfyuBMN6y07pBr71znAjlW_qUzIZIuyKfTftgcEEg-dy5WR8cPvF03A6Ksz_qjbMiisFup9UT4zMXB9QoL6JPyZeVmbzEKFRgLUb6lscal_ghZyUh9gn3F7IxmM1buWzVkMoF-UfegInVlDPtcOKdK_-vB0VTjIttHx3yxWi55dpBnt9DtII711_13xyfu4xOQHt1osZ-2T_xKkpkbm1F_Bpf6Iaosx9mm-XoJZGOb3mzv7pqyZPfRPWtr4DcGOA_QRDYP0Z0TI7xHqBrggwf4YAUfvAUfvKkxwAdb-GADH1y0WMMHG_jgEXywg89jtFocZPuHxDbdICVlUUtkDa-pEMDMaRFFqtxjFdVRlYo0hj26mKdBLcoK_nVYB3FQ1qrfGYvmpephDYtZ0ydop9k08inCQoA9H6XBvKhqFrKqiJmsZMr8uGaUFfMp2nXrxi9McRUOfBEYMmN0ili_kry0q6HappxzHTeRJFwJgythcOpzuNTCmKI9d1s_519ueNWLiYNqVd_LikbCanJfeU-AYId__E0a0wRsEvbsBvPsorvDi_Mc7bRXnXwBpLYVLzUEfwJaDpwT
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cavitation+Simulation+with+Consideration+of+the+Viscous+Effect+at+Large+Liquid+Temperature+Variation&rft.jtitle=Chinese+physics+letters&rft.au=Yu%2C+An&rft.au=Luo%2C+Xian-Wu&rft.au=Ji%2C+Bin&rft.au=Huang%2C+Ren-Fang&rft.date=2014-08-01&rft.issn=0256-307X&rft.eissn=1741-3540&rft.volume=31&rft.issue=8&rft.spage=086401&rft.epage=1-086401-4&rft_id=info:doi/10.1088%2F0256-307X%2F31%2F8%2F086401&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84212X%2F84212X.jpg