Effects of Amylose/Amylopectin Ratio and Baking Conditions on Resistant Starch Formation and Glycaemic Indices
The possible improvement of the nutritional properties of starch in barley flour-based bread by using barley genotypes varying in amylose content (3–44%) was evaluated. Breads were made from 70% whole-meal barley flour and 30% white wheat flour. Test breads were baked from waxy barley (WB), ordinary...
Saved in:
Published in | Journal of cereal science Vol. 28; no. 1; pp. 71 - 80 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.07.1998
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0733-5210 1095-9963 |
DOI | 10.1006/jcrs.1997.0173 |
Cover
Loading…
Abstract | The possible improvement of the nutritional properties of starch in barley flour-based bread by using barley genotypes varying in amylose content (3–44%) was evaluated. Breads were made from 70% whole-meal barley flour and 30% white wheat flour. Test breads were baked from waxy barley (WB), ordinary barley (OB), ordinary Glacier barley (OGB) and high-amylose barley (HAB). Each bread was baked either at conventional baking conditions (45 min, 200 °C) or at pumpernickel conditions (20 h, 120 °C). A white wheat bread (WWB) was used as reference. The resistant starch (RS) content and rate of starch hydrolysis were measuredin vitro. The glycaemic index (GI) and the insulinaemic index (II) of the high-amylose breads were determined in healthy subjects. The amount of RS (total starch basis) varied from <1% (WB) to approximately 4% (HAB) in conventionally baked bread, and from about 2% to 10% in the corresponding long-time/low-temperature baked products. The long-time/low-temperature baked HAB displayed a significantly lower rate of starch hydrolysisin vitrocompared with WWB and reduced the incremental blood-glucose response in healthy subjects (GI=71). In contrast, the GI of the conventionally baked HAB was similar to that for WWB. It is concluded that a barley flour-based bread of low GI and high RS content can be obtained by choosing high-amylose barley and appropriate baking conditions. |
---|---|
AbstractList | The possible improvement of the nutritional properties of starch in barley flour-based bread by using barley genotypes varying in amylose content (3–44%) was evaluated. Breads were made from 70% whole-meal barley flour and 30% white wheat flour. Test breads were baked from waxy barley (WB), ordinary barley (OB), ordinary Glacier barley (OGB) and high-amylose barley (HAB). Each bread was baked either at conventional baking conditions (45 min, 200 °C) or at pumpernickel conditions (20 h, 120 °C). A white wheat bread (WWB) was used as reference. The resistant starch (RS) content and rate of starch hydrolysis were measuredin vitro. The glycaemic index (GI) and the insulinaemic index (II) of the high-amylose breads were determined in healthy subjects. The amount of RS (total starch basis) varied from <1% (WB) to approximately 4% (HAB) in conventionally baked bread, and from about 2% to 10% in the corresponding long-time/low-temperature baked products. The long-time/low-temperature baked HAB displayed a significantly lower rate of starch hydrolysisin vitrocompared with WWB and reduced the incremental blood-glucose response in healthy subjects (GI=71). In contrast, the GI of the conventionally baked HAB was similar to that for WWB. It is concluded that a barley flour-based bread of low GI and high RS content can be obtained by choosing high-amylose barley and appropriate baking conditions. The possible improvement of the nutritional properties of starch in barley flour-based bread by using barley genotypes varying in amylose content (3-44%) was evaluated. Breads were made from 70% whole-meal barley flour and 30% white wheat flour. Test breads were baked from waxy barley (WB), ordinary barley (OB), ordinary Glacier barley (OGB) and high-amylose barley (HAB). Each bread was baked either at conventional baking conditions (45 min, 200 degrees C) or at pumpernickel conditions (20 h, 120 degrees C). A white wheat bread (WWB) was used as reference. The resistant starch (RS) content and rate of starch hydrolysis were measured in vitro. The glycaemic index (GI) and the insulinaemic index (II) of the high-amylose breads were determined in healthy subjects. The amount of RS (total starch basis) varied from < 1% (WB) to approximately 4% (HAB) in conventionally baked bread, and from about 2% to 10% in the corresponding long-time/low-temperature baked products. The long-time/low-temperature baked HAB displayed a significantly lower rate of starch hydrolysis in vitro compared with WWB and reduced the incremental blood-glucose response in healthy subjects (GI = 71). In contrast, the GI of the conventionally baked HAB was similar to that for WWB. It is concluded that a barley flour-based bread of low GI and high RS content can be obtained by choosing high-amylose barley and appropriate baking conditions. |
Author | Björck, I. Åkerberg, A. Liljeberg, H. |
Author_xml | – sequence: 1 givenname: A. surname: Åkerberg fullname: Åkerberg, A. – sequence: 2 givenname: H. surname: Liljeberg fullname: Liljeberg, H. – sequence: 3 givenname: I. surname: Björck fullname: Björck, I. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2334088$$DView record in Pascal Francis |
BookMark | eNp1kU1rGzEQhkVIIU7aa886lN7WGVnr_TimJkkDgULSnsVYO2qV7kquRgn431drp5dCQDBo9D4Do-dcnIYYSIiPCpYKoLl8somXqu_bJahWn4iFgn5d9X2jT8UCWq2r9UrBmThnfgKAvpyFCNfOkc0so5NX036MTJeHuitdH-QDZh8lhkF-wd8-_JSbGAZfeqEg5ZnYc8aQ5WPGZH_Jm5imGQkH5nbcW6TJW3lXKEv8XrxzODJ9eK0X4sfN9ffN1-r-2-3d5uq-srpuckWdszXBFrpaq4EQO1Xu7bbRoFYtaNi63tVDt24RyDlAPdTYWGqVatA51Bfi83HuLsU_z8TZTJ4tjSMGis9s6q5RTQ_rEvz0GkS2OLqEwXo2u-QnTHuz0rqGriux-hizKTIncsb6fNgzJ_SjUWBmB2Z2YGYHZnZQsOV_2L_BbwLdEaDyOS-ekmHrKVgafCpCzBD9W-hfr5Cgvw |
CODEN | JCSCDA |
CitedBy_id | crossref_primary_10_1080_10942910802627091 crossref_primary_10_1093_ajcn_69_4_647 crossref_primary_10_1038_sj_ejcn_1601259 crossref_primary_10_1038_s41430_017_0003_z crossref_primary_10_1079_NRR2006118 crossref_primary_10_1016_j_foodchem_2009_03_077 crossref_primary_10_1038_sj_ejcn_1602197 crossref_primary_10_1002_star_201500162 crossref_primary_10_1039_c3fo60505a crossref_primary_10_1039_D3FO00703K crossref_primary_10_1007_s00217_016_2674_4 crossref_primary_10_1080_10408398_2010_491584 crossref_primary_10_1016_j_foodchem_2025_142977 crossref_primary_10_1016_j_foodchem_2010_07_002 crossref_primary_10_3390_ani11072151 crossref_primary_10_1002_mnfr_200500025 crossref_primary_10_3390_foods8070267 crossref_primary_10_1016_j_anifeedsci_2015_07_020 crossref_primary_10_1016_j_lwt_2022_113923 crossref_primary_10_3390_foods14050838 crossref_primary_10_1016_j_anifeedsci_2005_02_025 crossref_primary_10_1016_j_matpr_2020_01_511 crossref_primary_10_3389_fnut_2024_1369950 crossref_primary_10_1007_s10973_006_8209_7 crossref_primary_10_1016_j_anifeedsci_2006_01_014 crossref_primary_10_1016_j_foodchem_2009_01_001 crossref_primary_10_1111_j_1750_3841_2009_01180_x crossref_primary_10_1016_j_jfca_2006_07_005 crossref_primary_10_1155_2010_651063 crossref_primary_10_1039_c1fo10042d crossref_primary_10_3389_fmicb_2020_01664 crossref_primary_10_1016_j_lwt_2021_110885 crossref_primary_10_3233_MNM_160063 crossref_primary_10_1038_s41598_022_15060_6 crossref_primary_10_1016_j_anifeedsci_2010_02_005 crossref_primary_10_1016_j_foodres_2010_06_003 crossref_primary_10_1016_j_fbio_2025_106120 crossref_primary_10_1016_j_jcs_2008_01_003 crossref_primary_10_1016_j_jfoodeng_2017_11_007 crossref_primary_10_1007_s13228_014_0037_9 crossref_primary_10_1016_S0308_8146_00_00235_1 crossref_primary_10_3945_jn_111_146571 crossref_primary_10_3390_foods12122319 crossref_primary_10_1371_journal_pone_0035473 crossref_primary_10_1002_star_201700022 crossref_primary_10_1155_2015_872872 crossref_primary_10_2134_agronj2016_07_0427 crossref_primary_10_1016_j_jcs_2007_05_001 crossref_primary_10_1016_j_foodhyd_2012_02_009 crossref_primary_10_1007_s11483_010_9170_3 crossref_primary_10_1007_s00217_017_2894_2 crossref_primary_10_1007_s00394_011_0272_6 crossref_primary_10_1017_S0007114509993321 crossref_primary_10_1039_D1FO03901F crossref_primary_10_1002_star_201300110 crossref_primary_10_1111_ijfs_13457 crossref_primary_10_1021_acs_jafc_9b06220 crossref_primary_10_1006_jcrs_1999_0266 crossref_primary_10_1016_j_carbpol_2014_09_068 crossref_primary_10_1002_star_202200291 crossref_primary_10_21303_2504_5695_2019_00994 crossref_primary_10_1017_S0007114507772689 crossref_primary_10_3389_fnut_2024_1370086 crossref_primary_10_1007_s11947_011_0688_2 crossref_primary_10_1002_star_201100055 crossref_primary_10_1016_j_tifs_2009_06_005 crossref_primary_10_1016_j_carbpol_2006_01_019 crossref_primary_10_1111_1541_4337_12847 crossref_primary_10_1016_j_ifset_2017_10_005 crossref_primary_10_1016_j_jcs_2017_11_006 crossref_primary_10_3390_foods8090382 crossref_primary_10_3724_SP_J_1005_2010_00170 crossref_primary_10_1002_star_201400254 crossref_primary_10_1108_00070701111140061 crossref_primary_10_1016_j_jcs_2014_01_001 crossref_primary_10_3390_foods10112566 crossref_primary_10_36953_ECJ_27662840 crossref_primary_10_1111_ijfs_16834 crossref_primary_10_4236_as_2013_45B023 crossref_primary_10_1093_jn_nxz067 crossref_primary_10_1007_s00217_009_1085_1 crossref_primary_10_1094_CCHEM_04_17_0070_R crossref_primary_10_1002_star_202100251 crossref_primary_10_1080_10942910601045289 crossref_primary_10_1016_j_foodchem_2005_09_032 crossref_primary_10_1007_s11483_020_09660_w crossref_primary_10_1111_1750_3841_17270 crossref_primary_10_3390_ijms13010929 crossref_primary_10_1016_j_jcs_2012_04_002 crossref_primary_10_1017_S0007114500001094 crossref_primary_10_1079_PNS2002239 crossref_primary_10_3389_fmicb_2019_02574 crossref_primary_10_1111_j_1365_2621_2008_01831_x crossref_primary_10_1016_j_cnd_2020_10_006 crossref_primary_10_1016_j_bcdf_2022_100318 crossref_primary_10_1108_NFS_10_2016_0154 crossref_primary_10_1300_J133v04n02_06 crossref_primary_10_1016_j_jcs_2017_08_022 crossref_primary_10_1093_molbev_mss209 crossref_primary_10_1016_j_carbpol_2008_06_016 crossref_primary_10_1080_87559120801926237 crossref_primary_10_1017_S0043933907001699 crossref_primary_10_1016_j_foodhyd_2015_03_002 crossref_primary_10_1016_j_carbpol_2020_116789 crossref_primary_10_1016_j_jcs_2012_06_005 crossref_primary_10_1007_s11947_011_0772_7 |
ContentType | Journal Article |
Copyright | 1998 Academic Press 1998 INIST-CNRS |
Copyright_xml | – notice: 1998 Academic Press – notice: 1998 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7S9 L.6 |
DOI | 10.1006/jcrs.1997.0173 |
DatabaseName | CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1095-9963 |
EndPage | 80 |
ExternalDocumentID | 2334088 10_1006_jcrs_1997_0173 S0733521097901739 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CBWCG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W K-O KOM LG5 LW8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAB SDF SDG SDP SES SEW SPCBC SSA SSZ T5K WUQ XPP Y6R ZMT ZU3 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7S9 L.6 |
ID | FETCH-LOGICAL-c346t-e8fc4e0b08431deaa81c4e7b630127030bf9f4d857a0eff0a3d4a6ce7116affa3 |
IEDL.DBID | AIKHN |
ISSN | 0733-5210 |
IngestDate | Fri Jul 11 00:58:49 EDT 2025 Mon Jul 21 09:17:29 EDT 2025 Thu Apr 24 23:10:32 EDT 2025 Tue Jul 01 01:44:40 EDT 2025 Fri Feb 23 02:28:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | barley genotypes, amylose/amylopectin ratio, glycaemic index, resistant starch, bread baking Bakery product Monocotyledones Wholemeal Cereal flour Cereal crop Bread Amylose Gramineae Angiospermae Carbohydrate Baking Human Hordeum vulgare Starch Amylopectin Postprandial Nutritive value Starchy product Barley flour Genotype Resistant starch Dietetic product Manufacturing process Spermatophyta Comparative study Glycemia |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c346t-e8fc4e0b08431deaa81c4e7b630127030bf9f4d857a0eff0a3d4a6ce7116affa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 48616905 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_48616905 pascalfrancis_primary_2334088 crossref_citationtrail_10_1006_jcrs_1997_0173 crossref_primary_10_1006_jcrs_1997_0173 elsevier_sciencedirect_doi_10_1006_jcrs_1997_0173 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1998-07-01 |
PublicationDateYYYYMMDD | 1998-07-01 |
PublicationDate_xml | – month: 07 year: 1998 text: 1998-07-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Journal of cereal science |
PublicationYear | 1998 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
SSID | ssj0009009 |
Score | 1.8924936 |
Snippet | The possible improvement of the nutritional properties of starch in barley flour-based bread by using barley genotypes varying in amylose content (3–44%) was... The possible improvement of the nutritional properties of starch in barley flour-based bread by using barley genotypes varying in amylose content (3-44%) was... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 71 |
SubjectTerms | Agronomy. Soil science and plant productions air temperature amylopectin amylose baking barley barley genotypes, amylose/amylopectin ratio, glycaemic index, resistant starch, bread baking Biological and medical sciences blood glucose breads Cereal and baking product industries cultivars duration Feeding. Feeding behavior Food industries Fundamental and applied biological sciences. Psychology Genetics and breeding of economic plants genotype hydrolysis insulin nutritive value protein content Varietal selection. Specialized plant breeding, plant breeding aims Vertebrates: anatomy and physiology, studies on body, several organs or systems wheat flour Yield, quality, earliness, varia |
Title | Effects of Amylose/Amylopectin Ratio and Baking Conditions on Resistant Starch Formation and Glycaemic Indices |
URI | https://dx.doi.org/10.1006/jcrs.1997.0173 https://www.proquest.com/docview/48616905 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTtwwcMTj0gqh0odYWsCHSj2FOLHjJMdl1e3SqhzaInGzJn5IIEhWZDlw4ds7zoMWVXvpKUoyE0ee8czY8wL4mOZlidbYyBhLG5TcqghJcUYlSiVS7hLXHbh9P1eLC_n1MrvcgNmYCxPCKgfZ38v0TloPT-JhNuPl1VX8M7QbJOXDy5x0Wi7KTdhORamItbenZ98W539q7_I-0oPgo4Aw1m7kKr42d21I2MtPwifW6aadJbY0Y75vdfGP1O5U0fwV7A42JJv2v7kHG65-DS__qiz4Buq-KnHLGs-mt7Qpb13cXbvEypr9CARhWFt22rWjYrMm-K4DD7KGXrs22JX1ipExSiuBzcccxw7ny82DwRBVz84IiyTNW7iYf_41W0RDa4XICKlWkSu8kY5XvCADwjrEIqH7vFKic0ULXvnSS1tkOXLnPUdhJSrj8iRR6D2Kd7BVN7XbB2axqiztmkyWljIpED1WZKaRGUJwmcMJROOkajPUHQ_tL250XzFZ6UAEHYigAxEm8OkJftlX3FgLmYw00s94RpM6WItz-IyYT0OkQkiSuBM4HomraaEF7wnWrrlvtSxUcClmB_8x6nt40ecyhjDfD7C1urt3h2TMrKoj2Dx5TI4Glv0N-Wv2xw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOUBVIZ7qFkp9QOKUxlk7TnIsK5YttD1AK_VmTfyQitpk1WwPvfDbmXGSQoX2wilKMk4ij2fmc-bF2IdpUVXgrEusdbhBKZxOAA1nUoHScip85uMPt5NTvThXXy_yiw02G3NhKKxy0P29To_aeriSDrOZLi8v0x_UbhCNj6gKtGmFrB6xxwrFl6Tz4NefOI9K9HEeSJ0Q-Vi5Uej0p73pKF2vOKAHrLNM20vocL5C3-jiH50dDdH8OXs2IEh-2H_kC7bhm5ds66-6gq9Y09ck7ngb-OE1bsk7n8ZjTKts-HdiB4fG8U-xGRWfteS5phXIW7ztO0KVzYojFEU54PMxwzGO-XJ1Z4Fi6vkRjkI985qdzz-fzRbJ0FghsVLpVeLLYJUXtSgRPjgPUGZ4XtRaRke0FHWognJlXoDwIQiQToG2vsgyDSGAfMM2m7bxO4w7qGuHeyabTyuVlQABagRpCEKQLvcwYck4qcYOVcep-cWV6esla0NMMMQEQ0yYsI_39Mu-3sZaymzkkXmwYgwag7Vj9h4w8_4VUykV6tsJ2x-Za1DMyHcCjW9vO6NKTQ7FfPc_3rrPnizOTo7N8dHpt7fsaZ_VSAG_79jm6ubW7yGsWdXv47L9DQE594s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Amylose%2FAmylopectin+Ratio+and+Baking+Conditions+on+Resistant+Starch+Formation+and+Glycaemic+Indices&rft.jtitle=Journal+of+cereal+science&rft.au=%C3%85kerberg%2C+A.&rft.au=Liljeberg%2C+H.&rft.au=Bj%C3%B6rck%2C+I.&rft.date=1998-07-01&rft.pub=Elsevier+Ltd&rft.issn=0733-5210&rft.eissn=1095-9963&rft.volume=28&rft.issue=1&rft.spage=71&rft.epage=80&rft_id=info:doi/10.1006%2Fjcrs.1997.0173&rft.externalDocID=S0733521097901739 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-5210&client=summon |