Classification model selection via bilevel programming

Support vector machines and related classification models require the solution of convex optimization problems that have one or more regularization hyper-parameters. Typically, the hyper-parameters are selected to minimize the cross-validated estimates of the out-of-sample classification error of th...

Full description

Saved in:
Bibliographic Details
Published inOptimization methods & software Vol. 23; no. 4; pp. 475 - 489
Main Authors Kunapuli, G., Bennett, K.P., Hu, Jing, Pang, Jong-Shi
Format Journal Article
LanguageEnglish
Published Taylor & Francis 01.08.2008
Subjects
Online AccessGet full text
ISSN1055-6788
1029-4937
DOI10.1080/10556780802102586

Cover

Loading…
Abstract Support vector machines and related classification models require the solution of convex optimization problems that have one or more regularization hyper-parameters. Typically, the hyper-parameters are selected to minimize the cross-validated estimates of the out-of-sample classification error of the model. This cross-validation optimization problem can be formulated as a bilevel program in which the outer-level objective minimizes the average number of misclassified points across the cross-validation folds, subject to inner-level constraints such that the classification functions for each fold are (exactly or nearly) optimal for the selected hyper-parameters. Feature selection is included in the bilevel program in the form of bound constraints in the weights. The resulting bilevel problem is converted to a mathematical program with linear equilibrium constraints, which is solved using state-of-the-art optimization methods. This approach is significantly more versatile than commonly used grid search procedures, enabling, in particular, the use of models with many hyper-parameters. Numerical results demonstrate the practicality of this approach for model selection in machine learning.
AbstractList Support vector machines and related classification models require the solution of convex optimization problems that have one or more regularization hyper-parameters. Typically, the hyper-parameters are selected to minimize the cross-validated estimates of the out-of-sample classification error of the model. This cross-validation optimization problem can be formulated as a bilevel program in which the outer-level objective minimizes the average number of misclassified points across the cross-validation folds, subject to inner-level constraints such that the classification functions for each fold are (exactly or nearly) optimal for the selected hyper-parameters. Feature selection is included in the bilevel program in the form of bound constraints in the weights. The resulting bilevel problem is converted to a mathematical program with linear equilibrium constraints, which is solved using state-of-the-art optimization methods. This approach is significantly more versatile than commonly used grid search procedures, enabling, in particular, the use of models with many hyper-parameters. Numerical results demonstrate the practicality of this approach for model selection in machine learning.
Author Bennett, K.P.
Hu, Jing
Kunapuli, G.
Pang, Jong-Shi
Author_xml – sequence: 1
  givenname: G.
  surname: Kunapuli
  fullname: Kunapuli, G.
  email: kunapg@rpi.edu
  organization: Department of Mathematical Sciences , Rensselaer Polytechnic Institute
– sequence: 2
  givenname: K.P.
  surname: Bennett
  fullname: Bennett, K.P.
  organization: Department of Mathematical Sciences , Rensselaer Polytechnic Institute
– sequence: 3
  givenname: Jing
  surname: Hu
  fullname: Hu, Jing
  organization: Department of Mathematical Sciences , Rensselaer Polytechnic Institute
– sequence: 4
  givenname: Jong-Shi
  surname: Pang
  fullname: Pang, Jong-Shi
  organization: Department of Industrial and Enterprise Systems Engineering , University of Illinois at Urbana-Champaign
BookMark eNqNj01LAzEQhoNUsK3-AG_9A6v5mmwKXmTxCwpe9Lxks7Mlkt2UJFT7791WTxbR07wzzDPDMyOTIQxIyCWjV4xqes0ogCr1GDmjHLQ6IdMxLAu5FOVknwGKcUGfkVlKb5RSyaSaElV5k5LrnDXZhWHRhxb9IqFHe-i3ziwa53E7TjcxrKPpezesz8lpZ3zCi-86J6_3dy_VY7F6fniqbleFFVLlAktEIVuUANwa2oFGxlFoxqmWFCg0pYElYCPBspYp5KiaprUCG24FgJgT9nXXxpBSxK7eRNebuKsZrffi9ZH4yJQ_GOvywS5H4_x_SDd0IfbmPUTf1tnsfIhdNIN16Ziq80ceyZs_SfH7408l1oNI
CitedBy_id crossref_primary_10_1016_j_cor_2018_05_005
crossref_primary_10_1287_ijoc_2023_0108
crossref_primary_10_1007_s00186_022_00798_6
crossref_primary_10_1080_10556788_2015_1025133
crossref_primary_10_1007_s11063_013_9301_1
crossref_primary_10_1007_s10107_010_0395_1
crossref_primary_10_1109_ACCESS_2022_3212387
crossref_primary_10_1016_j_ejor_2020_12_009
crossref_primary_10_1007_s10589_023_00487_y
crossref_primary_10_12677_AAM_2023_124183
crossref_primary_10_1080_10556788_2012_749876
crossref_primary_10_1109_TSMCB_2009_2015672
crossref_primary_10_1007_s11590_024_02101_4
crossref_primary_10_1007_s13675_015_0041_z
crossref_primary_10_1137_20M1352375
crossref_primary_10_1007_s10898_014_0228_5
crossref_primary_10_3390_math11163518
crossref_primary_10_1002_minf_201100092
crossref_primary_10_1080_02331934_2024_2394612
crossref_primary_10_1016_j_eswa_2021_115017
crossref_primary_10_1287_moor_2021_1164
crossref_primary_10_1007_s10107_021_01766_4
crossref_primary_10_1007_s10898_010_9644_3
crossref_primary_10_1137_20M1371403
crossref_primary_10_1007_s10489_020_02151_y
crossref_primary_10_1137_11082868X
crossref_primary_10_1007_s11750_020_00538_1
crossref_primary_10_1109_TPAMI_2021_3132674
crossref_primary_10_1007_s10107_022_01888_3
crossref_primary_10_1080_02331934_2025_2468412
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2008
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2008
DBID AAYXX
CITATION
DOI 10.1080/10556780802102586
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4937
EndPage 489
ExternalDocumentID 10_1080_10556780802102586
310424
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGCQS
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARCSS
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
07G
1TA
AAGDL
AAHIA
AAIKQ
AAKBW
AAYXX
ACAGQ
ACGEE
ADYSH
AEUMN
AFRVT
AGLEN
AGROQ
AHMOU
AIYEW
ALCKM
AMEWO
AMPGV
AMVHM
AMXXU
BCCOT
BPLKW
C06
CITATION
CRFIH
DMQIW
DWIFK
EJD
HF~
IVXBP
LJTGL
NUSFT
QCRFL
TAQ
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
ID FETCH-LOGICAL-c346t-e7ee34de4552ca0f58e12e38120840505b7a595eb45c1d16e2e6bbdc3eb2c3553
ISSN 1055-6788
IngestDate Tue Jul 01 01:19:32 EDT 2025
Thu Apr 24 22:55:53 EDT 2025
Wed Dec 25 09:04:46 EST 2024
Mon May 13 12:09:11 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c346t-e7ee34de4552ca0f58e12e38120840505b7a595eb45c1d16e2e6bbdc3eb2c3553
PageCount 15
ParticipantIDs crossref_primary_10_1080_10556780802102586
informaworld_taylorfrancis_310_1080_10556780802102586
crossref_citationtrail_10_1080_10556780802102586
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-08-00
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: 2008-08-00
PublicationDecade 2000
PublicationTitle Optimization methods & software
PublicationYear 2008
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
SSID ssj0004146
Score 2.1312997
Snippet Support vector machines and related classification models require the solution of convex optimization problems that have one or more regularization...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 475
SubjectTerms bilevel programming
cross-validation
feature selection
model selection
support vector classification
Title Classification model selection via bilevel programming
URI https://www.tandfonline.com/doi/abs/10.1080/10556780802102586
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbocqEHxKvqUkA5cCpK6nXsZDkiXiuQaKWCQL2s_JgAEgTUDQ_x65nYzmNZQKWXaNeK8_B8Hs_EM_MRsi4ozUzKdIhPiQ5KzEUoKWQhB4kGL-ieUTZA9igZnPCDM3HW7Oja7JJCRfrp1byS_5EqtqFcyyzZD0i2vig24G-ULx5Rwnj8JxlbRssy1sdJ0bLabIwss035__5Sbiic9ffY6uOwrquVytujP1FjXPtUTM8mPbJoGKF6fpBNZOzhXS5vfS71flQ78Tarx-rxw-hX1GDEgqO6l92hqiJ_8_Pw98Xl2MeGfh3qVulHKspcBcfEF4FvYyVRnavdUilVl0TswcNbGpI7ohS_2HLHHzShx13goyXvTMvKl6VjKl6rmf1iLasjDHu-9OnEJT6RaYYeBeuQ6a3Bzp_TJonWp6JVb1htgffpj4mLjBkxYyVuW8bJ8RyZ9V5FsOUgMk-mIF8gn1u1JhdJMg6WwIIlqMESIFgCD5agBZYlcrK3e7w9CD1pRqhjnhQhpAAxN8CFYFrSTPShxwDtMkbRl0d7V6VSbApQXOBE7CXAIFHK6BgU02h8xl9IJ7_J4SsJDN-kWWI0dpIc3x6Vv-AmM4zpRNLUdAmtRmGofUX5ktjkavjm6HfJ97rLrSun8t7JtD20w8J-w8oc4czk6cPisegS8U6X-M1bLX_kub6RmWZurJBO8fcOVtE0LdSaB9Uzd06Ejg
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN6I8MzAhpTiJ7bQjQlQFSqdW6hbFj0gIKIimFeLXc3YcaCl06JjoLvEr9p3z-fsAzhkhmYpD6WMpMUGJKPNTojOf6hQDXi0DJSxAtsNbPXrXZ3234TZ0sEqTQ2cFUYSdq83HbTajS0jcpRV1jA0joklYWJ0vwwpr8NgoGESk83Mu0p0uQnMf7evlX82_HjG1Lk2xlk6sN81NSMqSFjCTp9ooFzX5-YvEcfGqbMGGC0W9q2LsbMOSHuzA-gRB4S5wq5lp0ES2Az2rm-MNrXaOuR4_pp7AeWWMdx3S6wUd96DXvOlet3yntODLiPLc17HWEVWaMhbKlGSsroNQ42IeEkwAMUgSccoaTAvKsPcCrkPNhVAywrxcYsQS7UNl8DrQB-Ap2iAZVxKdUor1whmDUZWpMJQ8JbGqAinbOZGOhtyoYTwngWMrnWmSKlx8u7wVHBzzjMlk5yW53fjICpWSWfMk_8irwOa4RP--6nBBvzNYbXUf2kn7tnN_BGsFAsVACo-hkr-P9AmGObk4tWP5Cx8a728
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BkRAc2BFlzYETUoqb2E57REBVFlUcqNRbFG8SAkpF0wrx9YwdF1oKPfSYaCaJPY49kzy_B3DKCDEqiWSIT4kFSkxZmBFtQqozTHi1rCrhALIt3mzT2w7reGxO38MqbQ1tCqIIN1fbl7unzAgRd-40HRNLiGjrFVbji7DELXG43cFBWj_bIv3mIjQP0b42-qn51yUmlqUJ0tKx5aaxXmiq9h1LoUWZPFcGuajIz18cjnO3ZAPWfCIaXBQjZxMWdHcLVsfoCbeBO8VMiyVy4Qucak7Qd8o59nj4lAUCZ5UhnvU4r1d03IF24_rxshl6nYVQxpTnoU60jqnSlLFIZsSwmq5GGpfyiGD5hymSSDJWZ1pQhrGrch1pLoSSMVblEvOVeBdK3beu3oNA0ToxXEl0yii2C-cLRpVRUSR5RhJVBjLq5lR6EnKrhfGSVj1X6VSXlOHs26VXMHDMMibjsUtz99nDFBol0-Zp_pGXgc1wif-91f6cfiew_HDVSO9vWncHsFLATyye8BBK-ftAH2GOk4tjN5K_AC7U7hM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+model+selection+via+bilevel+programming&rft.jtitle=Optimization+methods+%26+software&rft.au=Kunapuli%2C+G.&rft.au=Bennett%2C+K.P.&rft.au=Hu%2C+Jing&rft.au=Pang%2C+Jong-Shi&rft.date=2008-08-01&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=23&rft.issue=4&rft.spage=475&rft.epage=489&rft_id=info:doi/10.1080%2F10556780802102586&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10556780802102586
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon