Measurement-induced quantum phases realized in a trapped-ion quantum computer

Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment 1 , 2 . Quantum circuits composed of random unitary gates with interspersed projective measurements represent a minimal model to study the balance between unitary...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 18; no. 7; pp. 760 - 764
Main Authors Noel, Crystal, Niroula, Pradeep, Zhu, Daiwei, Risinger, Andrew, Egan, Laird, Biswas, Debopriyo, Cetina, Marko, Gorshkov, Alexey V., Gullans, Michael J., Huse, David A., Monroe, Christopher
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2022
Nature Publishing Group
Nature Publishing Group (NPG)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment 1 , 2 . Quantum circuits composed of random unitary gates with interspersed projective measurements represent a minimal model to study the balance between unitary dynamics and measurement processes 3 – 5 . As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerant threshold 6 . Here we explore this purification transition with random quantum circuits implemented on a trapped-ion quantum computer. We probe the pure phase, where the system is rapidly projected to a pure state conditioned on the measurement outcomes, and the mixed or coding phase, where the initial state becomes partially encoded into a quantum error correcting codespace that keeps the memory of initial conditions for long times 6 , 7 . We find experimental evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition emerge. Many-body open quantum systems are predicted to undergo a phase transition towards a pure state through frequent projective measurements. The phases separated by this transition have now been observed with random circuits on a trapped-ion computer.
AbstractList Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment 1 , 2 . Quantum circuits composed of random unitary gates with interspersed projective measurements represent a minimal model to study the balance between unitary dynamics and measurement processes 3 – 5 . As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerant threshold 6 . Here we explore this purification transition with random quantum circuits implemented on a trapped-ion quantum computer. We probe the pure phase, where the system is rapidly projected to a pure state conditioned on the measurement outcomes, and the mixed or coding phase, where the initial state becomes partially encoded into a quantum error correcting codespace that keeps the memory of initial conditions for long times 6 , 7 . We find experimental evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition emerge. Many-body open quantum systems are predicted to undergo a phase transition towards a pure state through frequent projective measurements. The phases separated by this transition have now been observed with random circuits on a trapped-ion computer.
Not provided.
Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment1,2. Quantum circuits composed of random unitary gates with interspersed projective measurements represent a minimal model to study the balance between unitary dynamics and measurement processes3–5. As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerant threshold6. Here we explore this purification transition with random quantum circuits implemented on a trapped-ion quantum computer. We probe the pure phase, where the system is rapidly projected to a pure state conditioned on the measurement outcomes, and the mixed or coding phase, where the initial state becomes partially encoded into a quantum error correcting codespace that keeps the memory of initial conditions for long times6,7. We find experimental evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition emerge.Many-body open quantum systems are predicted to undergo a phase transition towards a pure state through frequent projective measurements. The phases separated by this transition have now been observed with random circuits on a trapped-ion computer.
Author Noel, Crystal
Risinger, Andrew
Monroe, Christopher
Biswas, Debopriyo
Cetina, Marko
Niroula, Pradeep
Huse, David A.
Zhu, Daiwei
Egan, Laird
Gorshkov, Alexey V.
Gullans, Michael J.
Author_xml – sequence: 1
  givenname: Crystal
  orcidid: 0000-0002-2977-2747
  surname: Noel
  fullname: Noel, Crystal
  email: crystal.noel@duke.edu
  organization: Joint Quantum Institute, Departments of Physics and Electrical and Computer Engineering, NIST/University of Maryland, Duke Quantum Center and Department of Physics, Duke University, Department of Electrical and Computer Engineering, Duke University
– sequence: 2
  givenname: Pradeep
  surname: Niroula
  fullname: Niroula, Pradeep
  organization: Joint Quantum Institute, Departments of Physics and Electrical and Computer Engineering, NIST/University of Maryland, Joint Center for Quantum Information and Computer, Science, NIST/University of Maryland
– sequence: 3
  givenname: Daiwei
  orcidid: 0000-0003-0019-256X
  surname: Zhu
  fullname: Zhu, Daiwei
  organization: Joint Quantum Institute, Departments of Physics and Electrical and Computer Engineering, NIST/University of Maryland
– sequence: 4
  givenname: Andrew
  surname: Risinger
  fullname: Risinger, Andrew
  organization: Joint Quantum Institute, Departments of Physics and Electrical and Computer Engineering, NIST/University of Maryland
– sequence: 5
  givenname: Laird
  surname: Egan
  fullname: Egan, Laird
  organization: Joint Quantum Institute, Departments of Physics and Electrical and Computer Engineering, NIST/University of Maryland
– sequence: 6
  givenname: Debopriyo
  surname: Biswas
  fullname: Biswas, Debopriyo
  organization: Joint Quantum Institute, Departments of Physics and Electrical and Computer Engineering, NIST/University of Maryland
– sequence: 7
  givenname: Marko
  surname: Cetina
  fullname: Cetina, Marko
  organization: Joint Quantum Institute, Departments of Physics and Electrical and Computer Engineering, NIST/University of Maryland, Duke Quantum Center and Department of Physics, Duke University
– sequence: 8
  givenname: Alexey V.
  orcidid: 0000-0003-0509-3421
  surname: Gorshkov
  fullname: Gorshkov, Alexey V.
  organization: Joint Quantum Institute, Departments of Physics and Electrical and Computer Engineering, NIST/University of Maryland, Joint Center for Quantum Information and Computer, Science, NIST/University of Maryland
– sequence: 9
  givenname: Michael J.
  surname: Gullans
  fullname: Gullans, Michael J.
  organization: Joint Center for Quantum Information and Computer, Science, NIST/University of Maryland
– sequence: 10
  givenname: David A.
  surname: Huse
  fullname: Huse, David A.
  organization: Department of Physics, Princeton University
– sequence: 11
  givenname: Christopher
  surname: Monroe
  fullname: Monroe, Christopher
  organization: Joint Quantum Institute, Departments of Physics and Electrical and Computer Engineering, NIST/University of Maryland, Duke Quantum Center and Department of Physics, Duke University, Department of Electrical and Computer Engineering, Duke University, Joint Center for Quantum Information and Computer, Science, NIST/University of Maryland, IonQ, Inc
BackLink https://www.osti.gov/biblio/1978673$$D View this record in Osti.gov
BookMark eNp9kF1LwzAUhoNMcJv-Aa-KXkfz1aa7lOEXbHij1yFJT13HmnZJeqG_3syKgheDQEJ4nsN73hmauM4BQpeU3FDCy9sgaF5ITBjDhBZ0geUJmlIpcsxESSe_b8nP0CyELSGCFZRP0XoNOgweWnARN64aLFTZftAuDm3Wb3SAkHnQu-Yz_Tcu01n0uu-hwk3nfkHbtf0QwZ-j01rvAlz83HP09nD_unzCq5fH5-XdClsuioirFKS2UghWy5pATYRlYIkxmnMDhlZC6AUFmRtiWcVNYbThueaUFSYnFedzdDXO7UJsVLBNBLuxnXNgo6ILWRbyAF2PUO-7_QAhqm03eJdyKVaUZYJ4OnNUjpT1XQgeapWm6Zi2S4s2O0WJOjSsxoZValh9N6xkUtk_tfdNq_3HcYmPUkiwewf_l-qI9QUviZDP
CitedBy_id crossref_primary_10_1038_s41467_024_46402_9
crossref_primary_10_1103_PhysRevLett_132_140401
crossref_primary_10_1103_PhysRevB_109_064311
crossref_primary_10_1103_PhysRevA_110_L050602
crossref_primary_10_1103_PRXQuantum_5_030311
crossref_primary_10_1103_PhysRevB_109_224313
crossref_primary_10_1134_S1063776123080095
crossref_primary_10_1103_PhysRevA_111_012425
crossref_primary_10_1103_PRXQuantum_5_020347
crossref_primary_10_21468_SciPostPhys_15_3_096
crossref_primary_10_1103_PhysRevB_106_144313
crossref_primary_10_1103_PhysRevLett_130_220404
crossref_primary_10_1103_PhysRevB_110_045135
crossref_primary_10_1103_PhysRevB_109_L060302
crossref_primary_10_1103_PhysRevLett_132_163401
crossref_primary_10_1103_PhysRevLett_130_120402
crossref_primary_10_1103_PRXQuantum_5_010313
crossref_primary_10_1103_PRXQuantum_5_030301
crossref_primary_10_1103_PhysRevB_109_035146
crossref_primary_10_3390_e26030272
crossref_primary_10_1103_PhysRevB_109_024301
crossref_primary_10_1103_PhysRevB_110_094310
crossref_primary_10_1103_PhysRevLett_132_110201
crossref_primary_10_1103_PhysRevB_109_224203
crossref_primary_10_1103_PhysRevResearch_6_033092
crossref_primary_10_1103_PhysRevB_111_024204
crossref_primary_10_1103_PhysRevB_105_L241114
crossref_primary_10_1103_PhysRevB_108_075151
crossref_primary_10_1103_PhysRevB_108_165126
crossref_primary_10_1103_PhysRevB_108_224304
crossref_primary_10_1103_PhysRevLett_129_120604
crossref_primary_10_1103_PhysRevB_110_064323
crossref_primary_10_1063_5_0195187
crossref_primary_10_1103_PhysRevX_12_041002
crossref_primary_10_1103_PhysRevLett_132_240402
crossref_primary_10_1103_PhysRevB_111_075109
crossref_primary_10_1103_PhysRevLett_134_120401
crossref_primary_10_1103_PhysRevB_109_144306
crossref_primary_10_21468_SciPostPhys_14_3_031
crossref_primary_10_1103_PhysRevResearch_4_L022066
crossref_primary_10_1016_j_physrep_2024_04_005
crossref_primary_10_22331_q_2024_01_18_1229
crossref_primary_10_1103_PRXQuantum_4_030333
crossref_primary_10_1103_PhysRevResearch_6_013131
crossref_primary_10_22331_q_2022_12_29_886
crossref_primary_10_1103_PRXQuantum_4_030337
crossref_primary_10_1103_PhysRevB_109_195128
crossref_primary_10_1103_PhysRevA_111_012442
crossref_primary_10_1103_PhysRevLett_130_020801
crossref_primary_10_1103_PhysRevB_109_174307
crossref_primary_10_1103_PhysRevB_108_174308
crossref_primary_10_1007_JHEP02_2025_128
crossref_primary_10_1103_PhysRevB_108_L041103
crossref_primary_10_1103_PhysRevResearch_6_013004
crossref_primary_10_1103_PhysRevE_108_044128
crossref_primary_10_1103_PhysRevResearch_6_013244
crossref_primary_10_1103_PhysRevB_109_L020304
crossref_primary_10_1038_s41467_024_47882_5
crossref_primary_10_1103_PhysRevA_110_022214
crossref_primary_10_1146_annurev_conmatphys_032822_045619
crossref_primary_10_1103_PhysRevLett_132_200402
crossref_primary_10_1103_PRXQuantum_4_040309
crossref_primary_10_1103_PhysRevA_109_032226
crossref_primary_10_1103_PhysRevB_107_L201113
crossref_primary_10_1103_PhysRevB_110_054313
crossref_primary_10_1103_PhysRevX_13_041046
crossref_primary_10_1103_PhysRevB_109_024204
crossref_primary_10_1103_PhysRevX_13_041042
crossref_primary_10_1007_s11082_022_04288_1
crossref_primary_10_1103_PhysRevB_110_094404
crossref_primary_10_1103_PhysRevB_107_224303
crossref_primary_10_1103_PhysRevLett_134_020403
crossref_primary_10_1103_PhysRevLett_133_070401
crossref_primary_10_1038_s41467_023_37902_1
crossref_primary_10_1103_PhysRevB_108_184204
crossref_primary_10_1103_PhysRevB_110_054308
crossref_primary_10_1103_PhysRevLett_132_030401
crossref_primary_10_1103_PhysRevA_111_022427
crossref_primary_10_1088_1367_2630_ada84f
crossref_primary_10_1103_PhysRevB_109_214308
crossref_primary_10_1103_PhysRevResearch_6_043246
crossref_primary_10_1116_5_0148240
crossref_primary_10_1103_PhysRevB_109_214305
crossref_primary_10_1103_PhysRevLett_130_230401
crossref_primary_10_1103_PRXQuantum_3_040314
crossref_primary_10_1103_PhysRevB_108_214308
crossref_primary_10_1038_s41567_023_02162_9
crossref_primary_10_1038_s42005_024_01576_y
crossref_primary_10_1103_PhysRevResearch_6_023081
crossref_primary_10_1038_s41586_023_06505_7
crossref_primary_10_1038_s41567_023_02090_8
crossref_primary_10_1103_PhysRevB_108_214302
crossref_primary_10_1103_PRXQuantum_5_020304
crossref_primary_10_1103_PhysRevB_108_L020306
crossref_primary_10_1103_PhysRevB_111_014312
crossref_primary_10_1103_PhysRevResearch_6_013027
crossref_primary_10_31857_S0044451023080102
crossref_primary_10_1038_s41567_023_02076_6
crossref_primary_10_1038_s41534_023_00701_z
crossref_primary_10_1103_PhysRevB_106_214316
crossref_primary_10_1103_PhysRevLett_132_250401
crossref_primary_10_1103_PhysRevLett_131_200201
crossref_primary_10_21468_SciPostPhys_15_6_250
crossref_primary_10_1103_PhysRevB_107_014308
crossref_primary_10_1103_PhysRevResearch_5_L042031
crossref_primary_10_1103_PhysRevX_13_011043
crossref_primary_10_1103_PhysRevX_13_041028
crossref_primary_10_1103_PhysRevB_108_184302
crossref_primary_10_1103_PhysRevLett_132_110403
crossref_primary_10_1103_PhysRevA_110_062422
crossref_primary_10_1103_PhysRevB_108_054307
crossref_primary_10_1007_s10955_024_03273_0
crossref_primary_10_1103_PRXQuantum_4_040326
crossref_primary_10_1038_s41467_022_34982_3
crossref_primary_10_1103_PhysRevLett_132_010602
crossref_primary_10_1103_PhysRevB_107_214203
crossref_primary_10_21468_SciPostPhysCore_7_3_060
crossref_primary_10_1103_PhysRevB_107_L220201
crossref_primary_10_1103_PhysRevB_109_094302
crossref_primary_10_1103_PhysRevX_14_041012
crossref_primary_10_1103_PhysRevB_111_064308
crossref_primary_10_1103_PhysRevResearch_6_023176
crossref_primary_10_1103_PhysRevB_107_174304
crossref_primary_10_1103_PhysRevB_109_205134
crossref_primary_10_1103_PhysRevLett_131_020401
crossref_primary_10_1038_s42005_023_01181_5
crossref_primary_10_1103_PhysRevB_111_064313
crossref_primary_10_1103_PhysRevX_12_031044
crossref_primary_10_1103_PhysRevLett_133_260603
crossref_primary_10_1103_PhysRevResearch_5_023185
crossref_primary_10_1146_annurev_conmatphys_031720_030658
crossref_primary_10_1103_PhysRevB_106_024304
crossref_primary_10_12693_APhysPolA_144_474
crossref_primary_10_1038_s41467_024_50864_2
crossref_primary_10_1103_PhysRevB_110_L060202
crossref_primary_10_1103_PRXQuantum_5_030329
crossref_primary_10_1103_PhysRevLett_133_070601
crossref_primary_10_1103_PhysRevB_108_L180303
crossref_primary_10_1103_PhysRevB_110_L140301
crossref_primary_10_1103_PhysRevLett_129_200602
crossref_primary_10_1103_PhysRevLett_129_080501
crossref_primary_10_1103_PhysRevB_107_L220204
crossref_primary_10_1103_PhysRevB_108_104203
crossref_primary_10_1103_PhysRevLett_134_010410
crossref_primary_10_1103_PhysRevResearch_6_013313
Cites_doi 10.1103/PhysRevB.100.134306
10.1103/PhysRevLett.125.030505
10.1103/RevModPhys.85.1103
10.1038/s41586-019-1287-z
10.21468/SciPostPhys.12.3.106
10.1126/science.aau4963
10.1038/s41467-020-14489-5
10.1103/PhysRevResearch.3.023200
10.1038/nature09801
10.1103/PRXQuantum.3.010334
10.1103/PhysRevB.101.104301
10.1103/PhysRevB.98.205136
10.1088/1367-2630/aa5e47
10.1103/PhysRevB.101.104302
10.2172/1237003
10.1103/PhysRevA.70.052328
10.1103/PhysRevA.62.062311
10.1017/S0305004100019137
10.1103/RevModPhys.85.1083
10.1103/PhysRevLett.125.070606
10.1038/s41586-021-03928-y
10.1038/s41567-020-01112-z
10.1007/978-3-662-04103-1
10.1103/PhysRevLett.128.150504
10.1007/978-3-540-47620-7
10.1090/psapm/068/2762145
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2022
The Author(s), under exclusive licence to Springer Nature Limited 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2022.
CorporateAuthor Univ. of Maryland, College Park, MD (United States)
CorporateAuthor_xml – name: Univ. of Maryland, College Park, MD (United States)
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
OTOTI
DOI 10.1038/s41567-022-01619-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
OSTI.GOV
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList

ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 764
ExternalDocumentID 1978673
10_1038_s41567_022_01619_7
GrantInformation_xml – fundername: National Science Foundation (NSF)
  funderid: https://doi.org/10.13039/100000001
– fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO)
  funderid: https://doi.org/10.13039/100000183
– fundername: ODNI | Intelligence Advanced Research Projects Activity (IARPA)
  funderid: https://doi.org/10.13039/100011039
– fundername: United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research)
  funderid: https://doi.org/10.13039/100000181
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQGLB
PQUKI
Q9U
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
NYICJ
OTOTI
ID FETCH-LOGICAL-c346t-d247fc7442f7f0ef04c2ec0bba33beb1d44a91e75b0c2d3b6bab35a3126b50d33
IEDL.DBID BENPR
ISSN 1745-2473
IngestDate Mon Jun 12 04:07:16 EDT 2023
Sat Aug 16 22:22:40 EDT 2025
Tue Jul 01 00:25:41 EDT 2025
Thu Apr 24 23:02:30 EDT 2025
Fri Feb 21 02:38:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c346t-d247fc7442f7f0ef04c2ec0bba33beb1d44a91e75b0c2d3b6bab35a3126b50d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Science (SC)
SC0020312
ORCID 0000-0002-2977-2747
0000-0003-0509-3421
0000-0003-0019-256X
0000000229772747
000000030019256X
0000000305093421
PQID 2688786386
PQPubID 27545
PageCount 5
ParticipantIDs osti_scitechconnect_1978673
proquest_journals_2688786386
crossref_citationtrail_10_1038_s41567_022_01619_7
crossref_primary_10_1038_s41567_022_01619_7
springer_journals_10_1038_s41567_022_01619_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Nature physics
PublicationTitleAbbrev Nat. Phys
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Publishing Group (NPG)
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Publishing Group (NPG)
References BaoYChoiSAltmanETheory of the phase transition in random unitary circuits with measurementsPhys. Rev. B202010110430110.1103/PhysRevB.101.1043012020PhRvB.101j4301B
SchrödingerEProbability relations between separated systemsMath. Proc. Camb. Philos. Soc.19363244645210.1017/S03050041000191371936PCPS...32..446S
Carmichael, H. An Open Systems Approach to Quantum Optics (Springer, 1993).
EganLFault-tolerant control of an error-corrected qubitNature202159828128610.1038/s41586-021-03928-y2021Natur.598..281E
BarreiroJTAn open-system quantum simulator with trapped ionsNature201147048649110.1038/nature098012011Natur.470..486B
NappJLa PlacaRLDalzellAMBrandaoFGSLHarrowAWEfficient classical simulation of random shallow 2D quantum circuitsPhys. Rev. X202212021021
MinevZKTo catch and reverse a quantum jump mid-flightNature201957020020410.1038/s41586-019-1287-z2019Natur.570..200M
YangDGrankinASiebererLMVasilyevDVZollerPQuantum non-demolition measurement of a many-body HamiltonianNat. Commun.20201177510.1038/s41467-020-14489-52020NatCo..11..775Y
GullansMJHuseDAScalable probes of measurement-induced criticalityPhys. Rev. Lett.202012507060610.1103/PhysRevLett.125.0706062020PhRvL.125g0606G
AharonovDQuantum to classical phase transition in noisy quantum computersPhys. Rev. A20006206231110.1103/PhysRevA.62.0623112000PhRvA..62f2311A
LiYChenXFisherMPAMeasurement-driven entanglement transition in hybrid quantum circuitsPhys. Rev. B201910013430610.1103/PhysRevB.100.1343062019PhRvB.100m4306L
BrydgesTProbing Rényi entanglement entropy via randomized measurementsScience201936426026310.1126/science.aau49632019Sci...364..260B
Foss-FeigMEntanglement from tensor networks on a trapped-ion QCCD quantum computerPhys. Rev. Lett.202212815050410.1103/PhysRevLett.128.1505042022PhRvL.128o0504F
Gardiner, C. W. & Zoller, P. Quantum Noise (Springer, 2000).
Gottesman, D. The Heisenberg representation of quantum computers. In Proc. XXII International Colloquium on Group Theoretical Methods in Physics 32–43 (International Press, 1998); https://arxiv.org/abs/quant-ph/9807006
LiYChenXFisherMPAQuantum Zeno effect and the many-body entanglement transitionPhys. Rev. B20189820513610.1103/PhysRevB.98.2051362018PhRvB..98t5136L
JianC-MYouY-ZVasseurRLudwigAWWMeasurement-induced criticality in random quantum circuitsPhys. Rev. B202010110430210.1103/PhysRevB.101.1043022020PhRvB.101j4302J
VitaleVSymmetry-resolved dynamical purification in synthetic quantum matterSciPost Phys.202212106439958610.21468/SciPostPhys.12.3.1062022ScPP...12..106V
Maunz, P. L. W. High optical access trap 2.0. Report No. SAND2016-0796R (Sandia National Laboratories, 2016); http://prod.sandia.gov/techlib/access-control.cgi/2016/160796r.pdf
HarocheSNobel lecture: Controlling photons in a box and exploring the quantum to classical boundaryRev. Mod. Phys.2013851083110210.1103/RevModPhys.85.10832013RvMP...85.1083H
LavasaniAAlaviradYBarkeshliMMeasurement-induced topological entanglement transitions in symmetric random quantum circuitsNat. Phys.20211734234710.1038/s41567-020-01112-z
IppolitiMGullansMJGopalakrishnanSHuseDAKhemaniVEntanglement phase transitions in measurement-only dynamicsPhys. Rev. X202111011030
SangSHsiehTHMeasurement-protected quantum phasesPhys. Rev. Res.2021302320010.1103/PhysRevResearch.3.023200
CetinaMControl of transverse motion for quantum gates on individually addressed atomic qubitsPRX Quantum2022301033410.1103/PRXQuantum.3.0103342022PRXQ....3a0334C
GullansMJKrastanovSHuseDAJiangLFlammiaSTQuantum coding with low-depth random circuitsPhys. Rev. X202111031066
SkinnerBRuhmanJNahumAMeasurement-induced phase transitions in the dynamics of entanglementPhys. Rev. X20199031009
MaslovDBasic circuit compilation techniques for an ion-trap quantum machineN. J. Phys.20171902303510.1088/1367-2630/aa5e47
AaronsonSGottesmanDImproved simulation of stabilizer circuitsPhys. Rev. A20047005232810.1103/PhysRevA.70.0523282004PhRvA..70e2328A
GullansMJHuseDADynamical purification phase transition induced by quantum measurementsPhys. Rev. X202010041020
WinelandDJNobel lecture: Superposition, entanglement and raising Schrödinger’s catRev. Mod. Phys.2013851103111410.1103/RevModPhys.85.11032013RvMP...85.1103W
ChoiSBaoYQiX-LAltmanEQuantum error correction in scrambling dynamics and measurement-induced phase transitionPhys. Rev. Lett.2020125030505412616610.1103/PhysRevLett.125.0305052020PhRvL.125c0505C
Gottesman, D. An introduction to quantum error correction and fault-tolerant quantum computation. Quant. Info. Sci. Contr. Math., Proc. Symp. App. Math.68, pp.13–58 (Amer. Math. Soc., Providence, Rhode Island, 2010).
D Maslov (1619_CR32) 2017; 19
ZK Minev (1619_CR17) 2019; 570
MJ Gullans (1619_CR31) 2021; 11
1619_CR11
Y Bao (1619_CR9) 2020; 101
T Brydges (1619_CR13) 2019; 364
M Ippoliti (1619_CR26) 2021; 11
MJ Gullans (1619_CR6) 2020; 10
M Foss-Feig (1619_CR23) 2022; 128
M Cetina (1619_CR27) 2022; 3
J Napp (1619_CR30) 2022; 12
Y Li (1619_CR4) 2018; 98
MJ Gullans (1619_CR12) 2020; 125
A Lavasani (1619_CR28) 2021; 17
S Choi (1619_CR7) 2020; 125
JT Barreiro (1619_CR18) 2011; 470
V Vitale (1619_CR20) 2022; 12
S Aaronson (1619_CR25) 2004; 70
C-M Jian (1619_CR8) 2020; 101
1619_CR1
1619_CR2
1619_CR21
S Sang (1619_CR29) 2021; 3
1619_CR24
D Aharonov (1619_CR10) 2000; 62
L Egan (1619_CR22) 2021; 598
S Haroche (1619_CR16) 2013; 85
DJ Wineland (1619_CR15) 2013; 85
B Skinner (1619_CR3) 2019; 9
Y Li (1619_CR5) 2019; 100
E Schrödinger (1619_CR14) 1936; 32
D Yang (1619_CR19) 2020; 11
References_xml – reference: GullansMJHuseDADynamical purification phase transition induced by quantum measurementsPhys. Rev. X202010041020
– reference: LiYChenXFisherMPAMeasurement-driven entanglement transition in hybrid quantum circuitsPhys. Rev. B201910013430610.1103/PhysRevB.100.1343062019PhRvB.100m4306L
– reference: AaronsonSGottesmanDImproved simulation of stabilizer circuitsPhys. Rev. A20047005232810.1103/PhysRevA.70.0523282004PhRvA..70e2328A
– reference: LiYChenXFisherMPAQuantum Zeno effect and the many-body entanglement transitionPhys. Rev. B20189820513610.1103/PhysRevB.98.2051362018PhRvB..98t5136L
– reference: SkinnerBRuhmanJNahumAMeasurement-induced phase transitions in the dynamics of entanglementPhys. Rev. X20199031009
– reference: Gottesman, D. An introduction to quantum error correction and fault-tolerant quantum computation. Quant. Info. Sci. Contr. Math., Proc. Symp. App. Math.68, pp.13–58 (Amer. Math. Soc., Providence, Rhode Island, 2010).
– reference: BarreiroJTAn open-system quantum simulator with trapped ionsNature201147048649110.1038/nature098012011Natur.470..486B
– reference: JianC-MYouY-ZVasseurRLudwigAWWMeasurement-induced criticality in random quantum circuitsPhys. Rev. B202010110430210.1103/PhysRevB.101.1043022020PhRvB.101j4302J
– reference: AharonovDQuantum to classical phase transition in noisy quantum computersPhys. Rev. A20006206231110.1103/PhysRevA.62.0623112000PhRvA..62f2311A
– reference: LavasaniAAlaviradYBarkeshliMMeasurement-induced topological entanglement transitions in symmetric random quantum circuitsNat. Phys.20211734234710.1038/s41567-020-01112-z
– reference: IppolitiMGullansMJGopalakrishnanSHuseDAKhemaniVEntanglement phase transitions in measurement-only dynamicsPhys. Rev. X202111011030
– reference: NappJLa PlacaRLDalzellAMBrandaoFGSLHarrowAWEfficient classical simulation of random shallow 2D quantum circuitsPhys. Rev. X202212021021
– reference: MinevZKTo catch and reverse a quantum jump mid-flightNature201957020020410.1038/s41586-019-1287-z2019Natur.570..200M
– reference: CetinaMControl of transverse motion for quantum gates on individually addressed atomic qubitsPRX Quantum2022301033410.1103/PRXQuantum.3.0103342022PRXQ....3a0334C
– reference: GullansMJKrastanovSHuseDAJiangLFlammiaSTQuantum coding with low-depth random circuitsPhys. Rev. X202111031066
– reference: Carmichael, H. An Open Systems Approach to Quantum Optics (Springer, 1993).
– reference: EganLFault-tolerant control of an error-corrected qubitNature202159828128610.1038/s41586-021-03928-y2021Natur.598..281E
– reference: SangSHsiehTHMeasurement-protected quantum phasesPhys. Rev. Res.2021302320010.1103/PhysRevResearch.3.023200
– reference: Maunz, P. L. W. High optical access trap 2.0. Report No. SAND2016-0796R (Sandia National Laboratories, 2016); http://prod.sandia.gov/techlib/access-control.cgi/2016/160796r.pdf
– reference: BaoYChoiSAltmanETheory of the phase transition in random unitary circuits with measurementsPhys. Rev. B202010110430110.1103/PhysRevB.101.1043012020PhRvB.101j4301B
– reference: BrydgesTProbing Rényi entanglement entropy via randomized measurementsScience201936426026310.1126/science.aau49632019Sci...364..260B
– reference: WinelandDJNobel lecture: Superposition, entanglement and raising Schrödinger’s catRev. Mod. Phys.2013851103111410.1103/RevModPhys.85.11032013RvMP...85.1103W
– reference: VitaleVSymmetry-resolved dynamical purification in synthetic quantum matterSciPost Phys.202212106439958610.21468/SciPostPhys.12.3.1062022ScPP...12..106V
– reference: ChoiSBaoYQiX-LAltmanEQuantum error correction in scrambling dynamics and measurement-induced phase transitionPhys. Rev. Lett.2020125030505412616610.1103/PhysRevLett.125.0305052020PhRvL.125c0505C
– reference: Gardiner, C. W. & Zoller, P. Quantum Noise (Springer, 2000).
– reference: GullansMJHuseDAScalable probes of measurement-induced criticalityPhys. Rev. Lett.202012507060610.1103/PhysRevLett.125.0706062020PhRvL.125g0606G
– reference: SchrödingerEProbability relations between separated systemsMath. Proc. Camb. Philos. Soc.19363244645210.1017/S03050041000191371936PCPS...32..446S
– reference: YangDGrankinASiebererLMVasilyevDVZollerPQuantum non-demolition measurement of a many-body HamiltonianNat. Commun.20201177510.1038/s41467-020-14489-52020NatCo..11..775Y
– reference: MaslovDBasic circuit compilation techniques for an ion-trap quantum machineN. J. Phys.20171902303510.1088/1367-2630/aa5e47
– reference: HarocheSNobel lecture: Controlling photons in a box and exploring the quantum to classical boundaryRev. Mod. Phys.2013851083110210.1103/RevModPhys.85.10832013RvMP...85.1083H
– reference: Gottesman, D. The Heisenberg representation of quantum computers. In Proc. XXII International Colloquium on Group Theoretical Methods in Physics 32–43 (International Press, 1998); https://arxiv.org/abs/quant-ph/9807006
– reference: Foss-FeigMEntanglement from tensor networks on a trapped-ion QCCD quantum computerPhys. Rev. Lett.202212815050410.1103/PhysRevLett.128.1505042022PhRvL.128o0504F
– volume: 100
  start-page: 134306
  year: 2019
  ident: 1619_CR5
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.134306
– volume: 125
  start-page: 030505
  year: 2020
  ident: 1619_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.030505
– volume: 10
  start-page: 041020
  year: 2020
  ident: 1619_CR6
  publication-title: Phys. Rev. X
– volume: 85
  start-page: 1103
  year: 2013
  ident: 1619_CR15
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.85.1103
– volume: 12
  start-page: 021021
  year: 2022
  ident: 1619_CR30
  publication-title: Phys. Rev. X
– volume: 570
  start-page: 200
  year: 2019
  ident: 1619_CR17
  publication-title: Nature
  doi: 10.1038/s41586-019-1287-z
– volume: 12
  start-page: 106
  year: 2022
  ident: 1619_CR20
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.12.3.106
– volume: 11
  start-page: 031066
  year: 2021
  ident: 1619_CR31
  publication-title: Phys. Rev. X
– volume: 364
  start-page: 260
  year: 2019
  ident: 1619_CR13
  publication-title: Science
  doi: 10.1126/science.aau4963
– volume: 11
  start-page: 775
  year: 2020
  ident: 1619_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14489-5
– volume: 3
  start-page: 023200
  year: 2021
  ident: 1619_CR29
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.023200
– volume: 470
  start-page: 486
  year: 2011
  ident: 1619_CR18
  publication-title: Nature
  doi: 10.1038/nature09801
– ident: 1619_CR24
– volume: 3
  start-page: 010334
  year: 2022
  ident: 1619_CR27
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.3.010334
– volume: 101
  start-page: 104301
  year: 2020
  ident: 1619_CR9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.104301
– volume: 98
  start-page: 205136
  year: 2018
  ident: 1619_CR4
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.205136
– volume: 19
  start-page: 023035
  year: 2017
  ident: 1619_CR32
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/aa5e47
– volume: 101
  start-page: 104302
  year: 2020
  ident: 1619_CR8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.104302
– ident: 1619_CR21
  doi: 10.2172/1237003
– volume: 70
  start-page: 052328
  year: 2004
  ident: 1619_CR25
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.70.052328
– volume: 62
  start-page: 062311
  year: 2000
  ident: 1619_CR10
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.62.062311
– volume: 32
  start-page: 446
  year: 1936
  ident: 1619_CR14
  publication-title: Math. Proc. Camb. Philos. Soc.
  doi: 10.1017/S0305004100019137
– volume: 85
  start-page: 1083
  year: 2013
  ident: 1619_CR16
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.85.1083
– volume: 125
  start-page: 070606
  year: 2020
  ident: 1619_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.070606
– volume: 11
  start-page: 011030
  year: 2021
  ident: 1619_CR26
  publication-title: Phys. Rev. X
– volume: 9
  start-page: 031009
  year: 2019
  ident: 1619_CR3
  publication-title: Phys. Rev. X
– volume: 598
  start-page: 281
  year: 2021
  ident: 1619_CR22
  publication-title: Nature
  doi: 10.1038/s41586-021-03928-y
– volume: 17
  start-page: 342
  year: 2021
  ident: 1619_CR28
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-01112-z
– ident: 1619_CR2
  doi: 10.1007/978-3-662-04103-1
– volume: 128
  start-page: 150504
  year: 2022
  ident: 1619_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.150504
– ident: 1619_CR1
  doi: 10.1007/978-3-540-47620-7
– ident: 1619_CR11
  doi: 10.1090/psapm/068/2762145
SSID ssj0042613
Score 2.71815
Snippet Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment 1 , 2 . Quantum...
Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment1,2. Quantum circuits...
Not provided.
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 760
SubjectTerms 639/766/119/2795
639/766/483/481
Atomic
Circuits
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Critical point
Error correction
Fault tolerance
Initial conditions
Letter
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Phase transitions
Phases
Physics
Physics and Astronomy
Purification
Quantum computers
Quantum computing
Theoretical
Title Measurement-induced quantum phases realized in a trapped-ion quantum computer
URI https://link.springer.com/article/10.1038/s41567-022-01619-7
https://www.proquest.com/docview/2688786386
https://www.osti.gov/biblio/1978673
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-NVki8oH0wUWBVHnjbLJKcEydPE53oEFKrCYHEmxV_aUjQpiR94a_nnDpUTBqvie0o9_m789kHcOosYf481cwhWsYzVKxwRjMbK5IupxLX9QaczfPLW351l92FhFsTyip7m9gZarPUPkd-luakDgVJS_6zXjHfNcrvroYWGjswJBNcUPA1nFzM_1z3ttjHB7g5EpmxlAsMx2ZiLM4aH7oI5qvZPewpmXjjmgZLUrE3sPOfndLOAU0_wn5AjtH5htWf4INdfIbdroJTN19gNttm-xgF2sQyE63WRLj1Y1T_JWfVRAQQH-6f6fn9Iqqi9qmqa2sYceZ1oA5NHg7gdnpx8-uShV4JTCPPW2bo75wWnKdOuNi6mOvU6lipClGRPTacV2ViRaZinRpUuaoUZhUmaa6y2CB-hcFiubCHEFmCDM6UsROq4qU1JbGrojWQQiuFrhhB0pNJ6nCRuO9n8SC7DW0s5Ia0kkgrO9JKMYLvr3PqzTUa744-9tSXBAL8Tbbal_zoViYU8eYCR3DSM0UGhWvkVjxG8KNn1Pb1_7919P5qx7CXdiLiC3RPYNA-re03giGtGsNOMf09huH5dDKZj4PkvQDYJNvS
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5Viyq4ICgglhbIoZzAauJx4uSAEKLdbh_bUyv1ZuKXqFR20yYrBD-K38g4j66K1N56TfyQZr4Zf2OPPQDb3hHnz7hhHtExkaJmubeGuVgTurxOfFsbcHaSTc_E4Xl6vgZ_h7swIa1y8Imto7YLE_bId3hG5pATWrIv1RULVaPC6epQQqODxZH7_YtCtvrzwS7p9wPnk73Tb1PWVxVgBkXWMMuF9EYKwb30sfOxMNyZWOsSUZPnskKUReJkqmPDLepMlxrTEhOe6TS2YQOUXP4jgVgEi8on-4PnD9EIdhcwU0azYH9JJ8Z8pw6BkmQhdz6QrILJWwvhaEEGfYvk_ncu2y53k2fwtOep0dcOWM9hzc03YL3NFzX1C5jNVnuLjMJ6AoiNrpakpuXPqPpBS2MdER29vPhD3y_mURk112VVOcsIBzcNTV9S4iWcPYgMX8Fovpi71xA5IijeFrGXuhSFswWBo6QxkAI5jT4fQzKISZn-2fJQPeNStcfnmKtOtIpEq1rRKjmGjzd9qu7RjntbbwbpK6Ic4d1cExKMTKMSiq8ziWPYGpSievOu1QqMY_g0KGr1--653tw_2nt4PD2dHavjg5OjTXjCW7iE1OAtGDXXS_eWCFCj37Woi-D7Q8P8H2sIFkc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ-QIxpfjIjGE9R90Cdortt2t7sPxiBwAeEuxEjCW91-RRK8W9i9GPnT-OuY7gcXTOSN191-JDO_zvymnXYAPnqHnD9lhnjOHREJ1yTz1hBHNaLL69g3tQEn0_TgVHw7S85W4Ka_CxPSKnub2BhqOzdhj3zEUlwOGaIlHfkuLeJkb_ylvCShglQ4ae3LabQQOXJ__2D4Vn0-3ENdf2JsvP9j94B0FQaI4SKtiWVCeiOFYF566jwVhjlDtS4412jFrBBFHjuZaGqY5TrVheZJwWOW6oTasBmK5n9VYlREB7D6dX968r33AyE24e11zITgPLy7skN5NqpC2CRJyKQPlCsn8p5bHMxxed-jvP-c0jbOb_wCnnesNdppYbYGK272Ep402aOmWofJZLnTSDDIR7jY6HKBSlv8jspf6CirCMnpxfk1fj-fRUVUXxVl6SxBVNw1NF2BiVdw-ihSfA2D2Xzm3kDkkK54m1MvdSFyZ3OESoFjcAzrNPfZEOJeTMp0j5iHWhoXqjlM55lqRatQtKoRrZJD2LrrU7ZPeDzYeiNIXyEBCa_ompBuZGoVY7SdSj6EzV4pqlvslVpCcwjbvaKWv_8_19uHR_sATxHi6vhwerQBz1iDlpAnvAmD-mrh3iEbqvX7DnYR_HxspN8CCVIb2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement-induced+quantum+phases+realized+in+a+trapped-ion+quantum+computer&rft.jtitle=Nature+physics&rft.au=Noel%2C+Crystal&rft.au=Niroula%2C+Pradeep&rft.au=Zhu%2C+Daiwei&rft.au=Risinger%2C+Andrew&rft.date=2022-07-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=18&rft.issue=7&rft.spage=760&rft.epage=764&rft_id=info:doi/10.1038%2Fs41567-022-01619-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon