Measurement-induced quantum phases realized in a trapped-ion quantum computer
Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment 1 , 2 . Quantum circuits composed of random unitary gates with interspersed projective measurements represent a minimal model to study the balance between unitary...
Saved in:
Published in | Nature physics Vol. 18; no. 7; pp. 760 - 764 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2022
Nature Publishing Group Nature Publishing Group (NPG) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment
1
,
2
. Quantum circuits composed of random unitary gates with interspersed projective measurements represent a minimal model to study the balance between unitary dynamics and measurement processes
3
–
5
. As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerant threshold
6
. Here we explore this purification transition with random quantum circuits implemented on a trapped-ion quantum computer. We probe the pure phase, where the system is rapidly projected to a pure state conditioned on the measurement outcomes, and the mixed or coding phase, where the initial state becomes partially encoded into a quantum error correcting codespace that keeps the memory of initial conditions for long times
6
,
7
. We find experimental evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition emerge.
Many-body open quantum systems are predicted to undergo a phase transition towards a pure state through frequent projective measurements. The phases separated by this transition have now been observed with random circuits on a trapped-ion computer. |
---|---|
AbstractList | Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment
1
,
2
. Quantum circuits composed of random unitary gates with interspersed projective measurements represent a minimal model to study the balance between unitary dynamics and measurement processes
3
–
5
. As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerant threshold
6
. Here we explore this purification transition with random quantum circuits implemented on a trapped-ion quantum computer. We probe the pure phase, where the system is rapidly projected to a pure state conditioned on the measurement outcomes, and the mixed or coding phase, where the initial state becomes partially encoded into a quantum error correcting codespace that keeps the memory of initial conditions for long times
6
,
7
. We find experimental evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition emerge.
Many-body open quantum systems are predicted to undergo a phase transition towards a pure state through frequent projective measurements. The phases separated by this transition have now been observed with random circuits on a trapped-ion computer. Not provided. Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment1,2. Quantum circuits composed of random unitary gates with interspersed projective measurements represent a minimal model to study the balance between unitary dynamics and measurement processes3–5. As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerant threshold6. Here we explore this purification transition with random quantum circuits implemented on a trapped-ion quantum computer. We probe the pure phase, where the system is rapidly projected to a pure state conditioned on the measurement outcomes, and the mixed or coding phase, where the initial state becomes partially encoded into a quantum error correcting codespace that keeps the memory of initial conditions for long times6,7. We find experimental evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition emerge.Many-body open quantum systems are predicted to undergo a phase transition towards a pure state through frequent projective measurements. The phases separated by this transition have now been observed with random circuits on a trapped-ion computer. |
Author | Noel, Crystal Risinger, Andrew Monroe, Christopher Biswas, Debopriyo Cetina, Marko Niroula, Pradeep Huse, David A. Zhu, Daiwei Egan, Laird Gorshkov, Alexey V. Gullans, Michael J. |
Author_xml | – sequence: 1 givenname: Crystal orcidid: 0000-0002-2977-2747 surname: Noel fullname: Noel, Crystal email: crystal.noel@duke.edu organization: Joint Quantum Institute, Departments of Physics and Electrical and Computer Engineering, NIST/University of Maryland, Duke Quantum Center and Department of Physics, Duke University, Department of Electrical and Computer Engineering, Duke University – sequence: 2 givenname: Pradeep surname: Niroula fullname: Niroula, Pradeep organization: Joint Quantum Institute, Departments of Physics and Electrical and Computer Engineering, NIST/University of Maryland, Joint Center for Quantum Information and Computer, Science, NIST/University of Maryland – sequence: 3 givenname: Daiwei orcidid: 0000-0003-0019-256X surname: Zhu fullname: Zhu, Daiwei organization: Joint Quantum Institute, Departments of Physics and Electrical and Computer Engineering, NIST/University of Maryland – sequence: 4 givenname: Andrew surname: Risinger fullname: Risinger, Andrew organization: Joint Quantum Institute, Departments of Physics and Electrical and Computer Engineering, NIST/University of Maryland – sequence: 5 givenname: Laird surname: Egan fullname: Egan, Laird organization: Joint Quantum Institute, Departments of Physics and Electrical and Computer Engineering, NIST/University of Maryland – sequence: 6 givenname: Debopriyo surname: Biswas fullname: Biswas, Debopriyo organization: Joint Quantum Institute, Departments of Physics and Electrical and Computer Engineering, NIST/University of Maryland – sequence: 7 givenname: Marko surname: Cetina fullname: Cetina, Marko organization: Joint Quantum Institute, Departments of Physics and Electrical and Computer Engineering, NIST/University of Maryland, Duke Quantum Center and Department of Physics, Duke University – sequence: 8 givenname: Alexey V. orcidid: 0000-0003-0509-3421 surname: Gorshkov fullname: Gorshkov, Alexey V. organization: Joint Quantum Institute, Departments of Physics and Electrical and Computer Engineering, NIST/University of Maryland, Joint Center for Quantum Information and Computer, Science, NIST/University of Maryland – sequence: 9 givenname: Michael J. surname: Gullans fullname: Gullans, Michael J. organization: Joint Center for Quantum Information and Computer, Science, NIST/University of Maryland – sequence: 10 givenname: David A. surname: Huse fullname: Huse, David A. organization: Department of Physics, Princeton University – sequence: 11 givenname: Christopher surname: Monroe fullname: Monroe, Christopher organization: Joint Quantum Institute, Departments of Physics and Electrical and Computer Engineering, NIST/University of Maryland, Duke Quantum Center and Department of Physics, Duke University, Department of Electrical and Computer Engineering, Duke University, Joint Center for Quantum Information and Computer, Science, NIST/University of Maryland, IonQ, Inc |
BackLink | https://www.osti.gov/biblio/1978673$$D View this record in Osti.gov |
BookMark | eNp9kF1LwzAUhoNMcJv-Aa-KXkfz1aa7lOEXbHij1yFJT13HmnZJeqG_3syKgheDQEJ4nsN73hmauM4BQpeU3FDCy9sgaF5ITBjDhBZ0geUJmlIpcsxESSe_b8nP0CyELSGCFZRP0XoNOgweWnARN64aLFTZftAuDm3Wb3SAkHnQu-Yz_Tcu01n0uu-hwk3nfkHbtf0QwZ-j01rvAlz83HP09nD_unzCq5fH5-XdClsuioirFKS2UghWy5pATYRlYIkxmnMDhlZC6AUFmRtiWcVNYbThueaUFSYnFedzdDXO7UJsVLBNBLuxnXNgo6ILWRbyAF2PUO-7_QAhqm03eJdyKVaUZYJ4OnNUjpT1XQgeapWm6Zi2S4s2O0WJOjSsxoZValh9N6xkUtk_tfdNq_3HcYmPUkiwewf_l-qI9QUviZDP |
CitedBy_id | crossref_primary_10_1038_s41467_024_46402_9 crossref_primary_10_1103_PhysRevLett_132_140401 crossref_primary_10_1103_PhysRevB_109_064311 crossref_primary_10_1103_PhysRevA_110_L050602 crossref_primary_10_1103_PRXQuantum_5_030311 crossref_primary_10_1103_PhysRevB_109_224313 crossref_primary_10_1134_S1063776123080095 crossref_primary_10_1103_PhysRevA_111_012425 crossref_primary_10_1103_PRXQuantum_5_020347 crossref_primary_10_21468_SciPostPhys_15_3_096 crossref_primary_10_1103_PhysRevB_106_144313 crossref_primary_10_1103_PhysRevLett_130_220404 crossref_primary_10_1103_PhysRevB_110_045135 crossref_primary_10_1103_PhysRevB_109_L060302 crossref_primary_10_1103_PhysRevLett_132_163401 crossref_primary_10_1103_PhysRevLett_130_120402 crossref_primary_10_1103_PRXQuantum_5_010313 crossref_primary_10_1103_PRXQuantum_5_030301 crossref_primary_10_1103_PhysRevB_109_035146 crossref_primary_10_3390_e26030272 crossref_primary_10_1103_PhysRevB_109_024301 crossref_primary_10_1103_PhysRevB_110_094310 crossref_primary_10_1103_PhysRevLett_132_110201 crossref_primary_10_1103_PhysRevB_109_224203 crossref_primary_10_1103_PhysRevResearch_6_033092 crossref_primary_10_1103_PhysRevB_111_024204 crossref_primary_10_1103_PhysRevB_105_L241114 crossref_primary_10_1103_PhysRevB_108_075151 crossref_primary_10_1103_PhysRevB_108_165126 crossref_primary_10_1103_PhysRevB_108_224304 crossref_primary_10_1103_PhysRevLett_129_120604 crossref_primary_10_1103_PhysRevB_110_064323 crossref_primary_10_1063_5_0195187 crossref_primary_10_1103_PhysRevX_12_041002 crossref_primary_10_1103_PhysRevLett_132_240402 crossref_primary_10_1103_PhysRevB_111_075109 crossref_primary_10_1103_PhysRevLett_134_120401 crossref_primary_10_1103_PhysRevB_109_144306 crossref_primary_10_21468_SciPostPhys_14_3_031 crossref_primary_10_1103_PhysRevResearch_4_L022066 crossref_primary_10_1016_j_physrep_2024_04_005 crossref_primary_10_22331_q_2024_01_18_1229 crossref_primary_10_1103_PRXQuantum_4_030333 crossref_primary_10_1103_PhysRevResearch_6_013131 crossref_primary_10_22331_q_2022_12_29_886 crossref_primary_10_1103_PRXQuantum_4_030337 crossref_primary_10_1103_PhysRevB_109_195128 crossref_primary_10_1103_PhysRevA_111_012442 crossref_primary_10_1103_PhysRevLett_130_020801 crossref_primary_10_1103_PhysRevB_109_174307 crossref_primary_10_1103_PhysRevB_108_174308 crossref_primary_10_1007_JHEP02_2025_128 crossref_primary_10_1103_PhysRevB_108_L041103 crossref_primary_10_1103_PhysRevResearch_6_013004 crossref_primary_10_1103_PhysRevE_108_044128 crossref_primary_10_1103_PhysRevResearch_6_013244 crossref_primary_10_1103_PhysRevB_109_L020304 crossref_primary_10_1038_s41467_024_47882_5 crossref_primary_10_1103_PhysRevA_110_022214 crossref_primary_10_1146_annurev_conmatphys_032822_045619 crossref_primary_10_1103_PhysRevLett_132_200402 crossref_primary_10_1103_PRXQuantum_4_040309 crossref_primary_10_1103_PhysRevA_109_032226 crossref_primary_10_1103_PhysRevB_107_L201113 crossref_primary_10_1103_PhysRevB_110_054313 crossref_primary_10_1103_PhysRevX_13_041046 crossref_primary_10_1103_PhysRevB_109_024204 crossref_primary_10_1103_PhysRevX_13_041042 crossref_primary_10_1007_s11082_022_04288_1 crossref_primary_10_1103_PhysRevB_110_094404 crossref_primary_10_1103_PhysRevB_107_224303 crossref_primary_10_1103_PhysRevLett_134_020403 crossref_primary_10_1103_PhysRevLett_133_070401 crossref_primary_10_1038_s41467_023_37902_1 crossref_primary_10_1103_PhysRevB_108_184204 crossref_primary_10_1103_PhysRevB_110_054308 crossref_primary_10_1103_PhysRevLett_132_030401 crossref_primary_10_1103_PhysRevA_111_022427 crossref_primary_10_1088_1367_2630_ada84f crossref_primary_10_1103_PhysRevB_109_214308 crossref_primary_10_1103_PhysRevResearch_6_043246 crossref_primary_10_1116_5_0148240 crossref_primary_10_1103_PhysRevB_109_214305 crossref_primary_10_1103_PhysRevLett_130_230401 crossref_primary_10_1103_PRXQuantum_3_040314 crossref_primary_10_1103_PhysRevB_108_214308 crossref_primary_10_1038_s41567_023_02162_9 crossref_primary_10_1038_s42005_024_01576_y crossref_primary_10_1103_PhysRevResearch_6_023081 crossref_primary_10_1038_s41586_023_06505_7 crossref_primary_10_1038_s41567_023_02090_8 crossref_primary_10_1103_PhysRevB_108_214302 crossref_primary_10_1103_PRXQuantum_5_020304 crossref_primary_10_1103_PhysRevB_108_L020306 crossref_primary_10_1103_PhysRevB_111_014312 crossref_primary_10_1103_PhysRevResearch_6_013027 crossref_primary_10_31857_S0044451023080102 crossref_primary_10_1038_s41567_023_02076_6 crossref_primary_10_1038_s41534_023_00701_z crossref_primary_10_1103_PhysRevB_106_214316 crossref_primary_10_1103_PhysRevLett_132_250401 crossref_primary_10_1103_PhysRevLett_131_200201 crossref_primary_10_21468_SciPostPhys_15_6_250 crossref_primary_10_1103_PhysRevB_107_014308 crossref_primary_10_1103_PhysRevResearch_5_L042031 crossref_primary_10_1103_PhysRevX_13_011043 crossref_primary_10_1103_PhysRevX_13_041028 crossref_primary_10_1103_PhysRevB_108_184302 crossref_primary_10_1103_PhysRevLett_132_110403 crossref_primary_10_1103_PhysRevA_110_062422 crossref_primary_10_1103_PhysRevB_108_054307 crossref_primary_10_1007_s10955_024_03273_0 crossref_primary_10_1103_PRXQuantum_4_040326 crossref_primary_10_1038_s41467_022_34982_3 crossref_primary_10_1103_PhysRevLett_132_010602 crossref_primary_10_1103_PhysRevB_107_214203 crossref_primary_10_21468_SciPostPhysCore_7_3_060 crossref_primary_10_1103_PhysRevB_107_L220201 crossref_primary_10_1103_PhysRevB_109_094302 crossref_primary_10_1103_PhysRevX_14_041012 crossref_primary_10_1103_PhysRevB_111_064308 crossref_primary_10_1103_PhysRevResearch_6_023176 crossref_primary_10_1103_PhysRevB_107_174304 crossref_primary_10_1103_PhysRevB_109_205134 crossref_primary_10_1103_PhysRevLett_131_020401 crossref_primary_10_1038_s42005_023_01181_5 crossref_primary_10_1103_PhysRevB_111_064313 crossref_primary_10_1103_PhysRevX_12_031044 crossref_primary_10_1103_PhysRevLett_133_260603 crossref_primary_10_1103_PhysRevResearch_5_023185 crossref_primary_10_1146_annurev_conmatphys_031720_030658 crossref_primary_10_1103_PhysRevB_106_024304 crossref_primary_10_12693_APhysPolA_144_474 crossref_primary_10_1038_s41467_024_50864_2 crossref_primary_10_1103_PhysRevB_110_L060202 crossref_primary_10_1103_PRXQuantum_5_030329 crossref_primary_10_1103_PhysRevLett_133_070601 crossref_primary_10_1103_PhysRevB_108_L180303 crossref_primary_10_1103_PhysRevB_110_L140301 crossref_primary_10_1103_PhysRevLett_129_200602 crossref_primary_10_1103_PhysRevLett_129_080501 crossref_primary_10_1103_PhysRevB_107_L220204 crossref_primary_10_1103_PhysRevB_108_104203 crossref_primary_10_1103_PhysRevLett_134_010410 crossref_primary_10_1103_PhysRevResearch_6_013313 |
Cites_doi | 10.1103/PhysRevB.100.134306 10.1103/PhysRevLett.125.030505 10.1103/RevModPhys.85.1103 10.1038/s41586-019-1287-z 10.21468/SciPostPhys.12.3.106 10.1126/science.aau4963 10.1038/s41467-020-14489-5 10.1103/PhysRevResearch.3.023200 10.1038/nature09801 10.1103/PRXQuantum.3.010334 10.1103/PhysRevB.101.104301 10.1103/PhysRevB.98.205136 10.1088/1367-2630/aa5e47 10.1103/PhysRevB.101.104302 10.2172/1237003 10.1103/PhysRevA.70.052328 10.1103/PhysRevA.62.062311 10.1017/S0305004100019137 10.1103/RevModPhys.85.1083 10.1103/PhysRevLett.125.070606 10.1038/s41586-021-03928-y 10.1038/s41567-020-01112-z 10.1007/978-3-662-04103-1 10.1103/PhysRevLett.128.150504 10.1007/978-3-540-47620-7 10.1090/psapm/068/2762145 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2022 The Author(s), under exclusive licence to Springer Nature Limited 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022. |
CorporateAuthor | Univ. of Maryland, College Park, MD (United States) |
CorporateAuthor_xml | – name: Univ. of Maryland, College Park, MD (United States) |
DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U OTOTI |
DOI | 10.1038/s41567-022-01619-7 |
DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic OSTI.GOV |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-2481 |
EndPage | 764 |
ExternalDocumentID | 1978673 10_1038_s41567_022_01619_7 |
GrantInformation_xml | – fundername: National Science Foundation (NSF) funderid: https://doi.org/10.13039/100000001 – fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO) funderid: https://doi.org/10.13039/100000183 – fundername: ODNI | Intelligence Advanced Research Projects Activity (IARPA) funderid: https://doi.org/10.13039/100011039 – fundername: United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research) funderid: https://doi.org/10.13039/100000181 |
GroupedDBID | 0R~ 123 29M 39C 3V. 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQGLB PQUKI Q9U AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AHGBK AJDOV NYICJ OTOTI |
ID | FETCH-LOGICAL-c346t-d247fc7442f7f0ef04c2ec0bba33beb1d44a91e75b0c2d3b6bab35a3126b50d33 |
IEDL.DBID | BENPR |
ISSN | 1745-2473 |
IngestDate | Mon Jun 12 04:07:16 EDT 2023 Sat Aug 16 22:22:40 EDT 2025 Tue Jul 01 00:25:41 EDT 2025 Thu Apr 24 23:02:30 EDT 2025 Fri Feb 21 02:38:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c346t-d247fc7442f7f0ef04c2ec0bba33beb1d44a91e75b0c2d3b6bab35a3126b50d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Science (SC) SC0020312 |
ORCID | 0000-0002-2977-2747 0000-0003-0509-3421 0000-0003-0019-256X 0000000229772747 000000030019256X 0000000305093421 |
PQID | 2688786386 |
PQPubID | 27545 |
PageCount | 5 |
ParticipantIDs | osti_scitechconnect_1978673 proquest_journals_2688786386 crossref_citationtrail_10_1038_s41567_022_01619_7 crossref_primary_10_1038_s41567_022_01619_7 springer_journals_10_1038_s41567_022_01619_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nat. Phys |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Publishing Group (NPG) |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Publishing Group (NPG) |
References | BaoYChoiSAltmanETheory of the phase transition in random unitary circuits with measurementsPhys. Rev. B202010110430110.1103/PhysRevB.101.1043012020PhRvB.101j4301B SchrödingerEProbability relations between separated systemsMath. Proc. Camb. Philos. Soc.19363244645210.1017/S03050041000191371936PCPS...32..446S Carmichael, H. An Open Systems Approach to Quantum Optics (Springer, 1993). EganLFault-tolerant control of an error-corrected qubitNature202159828128610.1038/s41586-021-03928-y2021Natur.598..281E BarreiroJTAn open-system quantum simulator with trapped ionsNature201147048649110.1038/nature098012011Natur.470..486B NappJLa PlacaRLDalzellAMBrandaoFGSLHarrowAWEfficient classical simulation of random shallow 2D quantum circuitsPhys. Rev. X202212021021 MinevZKTo catch and reverse a quantum jump mid-flightNature201957020020410.1038/s41586-019-1287-z2019Natur.570..200M YangDGrankinASiebererLMVasilyevDVZollerPQuantum non-demolition measurement of a many-body HamiltonianNat. Commun.20201177510.1038/s41467-020-14489-52020NatCo..11..775Y GullansMJHuseDAScalable probes of measurement-induced criticalityPhys. Rev. Lett.202012507060610.1103/PhysRevLett.125.0706062020PhRvL.125g0606G AharonovDQuantum to classical phase transition in noisy quantum computersPhys. Rev. A20006206231110.1103/PhysRevA.62.0623112000PhRvA..62f2311A LiYChenXFisherMPAMeasurement-driven entanglement transition in hybrid quantum circuitsPhys. Rev. B201910013430610.1103/PhysRevB.100.1343062019PhRvB.100m4306L BrydgesTProbing Rényi entanglement entropy via randomized measurementsScience201936426026310.1126/science.aau49632019Sci...364..260B Foss-FeigMEntanglement from tensor networks on a trapped-ion QCCD quantum computerPhys. Rev. Lett.202212815050410.1103/PhysRevLett.128.1505042022PhRvL.128o0504F Gardiner, C. W. & Zoller, P. Quantum Noise (Springer, 2000). Gottesman, D. The Heisenberg representation of quantum computers. In Proc. XXII International Colloquium on Group Theoretical Methods in Physics 32–43 (International Press, 1998); https://arxiv.org/abs/quant-ph/9807006 LiYChenXFisherMPAQuantum Zeno effect and the many-body entanglement transitionPhys. Rev. B20189820513610.1103/PhysRevB.98.2051362018PhRvB..98t5136L JianC-MYouY-ZVasseurRLudwigAWWMeasurement-induced criticality in random quantum circuitsPhys. Rev. B202010110430210.1103/PhysRevB.101.1043022020PhRvB.101j4302J VitaleVSymmetry-resolved dynamical purification in synthetic quantum matterSciPost Phys.202212106439958610.21468/SciPostPhys.12.3.1062022ScPP...12..106V Maunz, P. L. W. High optical access trap 2.0. Report No. SAND2016-0796R (Sandia National Laboratories, 2016); http://prod.sandia.gov/techlib/access-control.cgi/2016/160796r.pdf HarocheSNobel lecture: Controlling photons in a box and exploring the quantum to classical boundaryRev. Mod. Phys.2013851083110210.1103/RevModPhys.85.10832013RvMP...85.1083H LavasaniAAlaviradYBarkeshliMMeasurement-induced topological entanglement transitions in symmetric random quantum circuitsNat. Phys.20211734234710.1038/s41567-020-01112-z IppolitiMGullansMJGopalakrishnanSHuseDAKhemaniVEntanglement phase transitions in measurement-only dynamicsPhys. Rev. X202111011030 SangSHsiehTHMeasurement-protected quantum phasesPhys. Rev. Res.2021302320010.1103/PhysRevResearch.3.023200 CetinaMControl of transverse motion for quantum gates on individually addressed atomic qubitsPRX Quantum2022301033410.1103/PRXQuantum.3.0103342022PRXQ....3a0334C GullansMJKrastanovSHuseDAJiangLFlammiaSTQuantum coding with low-depth random circuitsPhys. Rev. X202111031066 SkinnerBRuhmanJNahumAMeasurement-induced phase transitions in the dynamics of entanglementPhys. Rev. X20199031009 MaslovDBasic circuit compilation techniques for an ion-trap quantum machineN. J. Phys.20171902303510.1088/1367-2630/aa5e47 AaronsonSGottesmanDImproved simulation of stabilizer circuitsPhys. Rev. A20047005232810.1103/PhysRevA.70.0523282004PhRvA..70e2328A GullansMJHuseDADynamical purification phase transition induced by quantum measurementsPhys. Rev. X202010041020 WinelandDJNobel lecture: Superposition, entanglement and raising Schrödinger’s catRev. Mod. Phys.2013851103111410.1103/RevModPhys.85.11032013RvMP...85.1103W ChoiSBaoYQiX-LAltmanEQuantum error correction in scrambling dynamics and measurement-induced phase transitionPhys. Rev. Lett.2020125030505412616610.1103/PhysRevLett.125.0305052020PhRvL.125c0505C Gottesman, D. An introduction to quantum error correction and fault-tolerant quantum computation. Quant. Info. Sci. Contr. Math., Proc. Symp. App. Math.68, pp.13–58 (Amer. Math. Soc., Providence, Rhode Island, 2010). D Maslov (1619_CR32) 2017; 19 ZK Minev (1619_CR17) 2019; 570 MJ Gullans (1619_CR31) 2021; 11 1619_CR11 Y Bao (1619_CR9) 2020; 101 T Brydges (1619_CR13) 2019; 364 M Ippoliti (1619_CR26) 2021; 11 MJ Gullans (1619_CR6) 2020; 10 M Foss-Feig (1619_CR23) 2022; 128 M Cetina (1619_CR27) 2022; 3 J Napp (1619_CR30) 2022; 12 Y Li (1619_CR4) 2018; 98 MJ Gullans (1619_CR12) 2020; 125 A Lavasani (1619_CR28) 2021; 17 S Choi (1619_CR7) 2020; 125 JT Barreiro (1619_CR18) 2011; 470 V Vitale (1619_CR20) 2022; 12 S Aaronson (1619_CR25) 2004; 70 C-M Jian (1619_CR8) 2020; 101 1619_CR1 1619_CR2 1619_CR21 S Sang (1619_CR29) 2021; 3 1619_CR24 D Aharonov (1619_CR10) 2000; 62 L Egan (1619_CR22) 2021; 598 S Haroche (1619_CR16) 2013; 85 DJ Wineland (1619_CR15) 2013; 85 B Skinner (1619_CR3) 2019; 9 Y Li (1619_CR5) 2019; 100 E Schrödinger (1619_CR14) 1936; 32 D Yang (1619_CR19) 2020; 11 |
References_xml | – reference: GullansMJHuseDADynamical purification phase transition induced by quantum measurementsPhys. Rev. X202010041020 – reference: LiYChenXFisherMPAMeasurement-driven entanglement transition in hybrid quantum circuitsPhys. Rev. B201910013430610.1103/PhysRevB.100.1343062019PhRvB.100m4306L – reference: AaronsonSGottesmanDImproved simulation of stabilizer circuitsPhys. Rev. A20047005232810.1103/PhysRevA.70.0523282004PhRvA..70e2328A – reference: LiYChenXFisherMPAQuantum Zeno effect and the many-body entanglement transitionPhys. Rev. B20189820513610.1103/PhysRevB.98.2051362018PhRvB..98t5136L – reference: SkinnerBRuhmanJNahumAMeasurement-induced phase transitions in the dynamics of entanglementPhys. Rev. X20199031009 – reference: Gottesman, D. An introduction to quantum error correction and fault-tolerant quantum computation. Quant. Info. Sci. Contr. Math., Proc. Symp. App. Math.68, pp.13–58 (Amer. Math. Soc., Providence, Rhode Island, 2010). – reference: BarreiroJTAn open-system quantum simulator with trapped ionsNature201147048649110.1038/nature098012011Natur.470..486B – reference: JianC-MYouY-ZVasseurRLudwigAWWMeasurement-induced criticality in random quantum circuitsPhys. Rev. B202010110430210.1103/PhysRevB.101.1043022020PhRvB.101j4302J – reference: AharonovDQuantum to classical phase transition in noisy quantum computersPhys. Rev. A20006206231110.1103/PhysRevA.62.0623112000PhRvA..62f2311A – reference: LavasaniAAlaviradYBarkeshliMMeasurement-induced topological entanglement transitions in symmetric random quantum circuitsNat. Phys.20211734234710.1038/s41567-020-01112-z – reference: IppolitiMGullansMJGopalakrishnanSHuseDAKhemaniVEntanglement phase transitions in measurement-only dynamicsPhys. Rev. X202111011030 – reference: NappJLa PlacaRLDalzellAMBrandaoFGSLHarrowAWEfficient classical simulation of random shallow 2D quantum circuitsPhys. Rev. X202212021021 – reference: MinevZKTo catch and reverse a quantum jump mid-flightNature201957020020410.1038/s41586-019-1287-z2019Natur.570..200M – reference: CetinaMControl of transverse motion for quantum gates on individually addressed atomic qubitsPRX Quantum2022301033410.1103/PRXQuantum.3.0103342022PRXQ....3a0334C – reference: GullansMJKrastanovSHuseDAJiangLFlammiaSTQuantum coding with low-depth random circuitsPhys. Rev. X202111031066 – reference: Carmichael, H. An Open Systems Approach to Quantum Optics (Springer, 1993). – reference: EganLFault-tolerant control of an error-corrected qubitNature202159828128610.1038/s41586-021-03928-y2021Natur.598..281E – reference: SangSHsiehTHMeasurement-protected quantum phasesPhys. Rev. Res.2021302320010.1103/PhysRevResearch.3.023200 – reference: Maunz, P. L. W. High optical access trap 2.0. Report No. SAND2016-0796R (Sandia National Laboratories, 2016); http://prod.sandia.gov/techlib/access-control.cgi/2016/160796r.pdf – reference: BaoYChoiSAltmanETheory of the phase transition in random unitary circuits with measurementsPhys. Rev. B202010110430110.1103/PhysRevB.101.1043012020PhRvB.101j4301B – reference: BrydgesTProbing Rényi entanglement entropy via randomized measurementsScience201936426026310.1126/science.aau49632019Sci...364..260B – reference: WinelandDJNobel lecture: Superposition, entanglement and raising Schrödinger’s catRev. Mod. Phys.2013851103111410.1103/RevModPhys.85.11032013RvMP...85.1103W – reference: VitaleVSymmetry-resolved dynamical purification in synthetic quantum matterSciPost Phys.202212106439958610.21468/SciPostPhys.12.3.1062022ScPP...12..106V – reference: ChoiSBaoYQiX-LAltmanEQuantum error correction in scrambling dynamics and measurement-induced phase transitionPhys. Rev. Lett.2020125030505412616610.1103/PhysRevLett.125.0305052020PhRvL.125c0505C – reference: Gardiner, C. W. & Zoller, P. Quantum Noise (Springer, 2000). – reference: GullansMJHuseDAScalable probes of measurement-induced criticalityPhys. Rev. Lett.202012507060610.1103/PhysRevLett.125.0706062020PhRvL.125g0606G – reference: SchrödingerEProbability relations between separated systemsMath. Proc. Camb. Philos. Soc.19363244645210.1017/S03050041000191371936PCPS...32..446S – reference: YangDGrankinASiebererLMVasilyevDVZollerPQuantum non-demolition measurement of a many-body HamiltonianNat. Commun.20201177510.1038/s41467-020-14489-52020NatCo..11..775Y – reference: MaslovDBasic circuit compilation techniques for an ion-trap quantum machineN. J. Phys.20171902303510.1088/1367-2630/aa5e47 – reference: HarocheSNobel lecture: Controlling photons in a box and exploring the quantum to classical boundaryRev. Mod. Phys.2013851083110210.1103/RevModPhys.85.10832013RvMP...85.1083H – reference: Gottesman, D. The Heisenberg representation of quantum computers. In Proc. XXII International Colloquium on Group Theoretical Methods in Physics 32–43 (International Press, 1998); https://arxiv.org/abs/quant-ph/9807006 – reference: Foss-FeigMEntanglement from tensor networks on a trapped-ion QCCD quantum computerPhys. Rev. Lett.202212815050410.1103/PhysRevLett.128.1505042022PhRvL.128o0504F – volume: 100 start-page: 134306 year: 2019 ident: 1619_CR5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.134306 – volume: 125 start-page: 030505 year: 2020 ident: 1619_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.030505 – volume: 10 start-page: 041020 year: 2020 ident: 1619_CR6 publication-title: Phys. Rev. X – volume: 85 start-page: 1103 year: 2013 ident: 1619_CR15 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.1103 – volume: 12 start-page: 021021 year: 2022 ident: 1619_CR30 publication-title: Phys. Rev. X – volume: 570 start-page: 200 year: 2019 ident: 1619_CR17 publication-title: Nature doi: 10.1038/s41586-019-1287-z – volume: 12 start-page: 106 year: 2022 ident: 1619_CR20 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.12.3.106 – volume: 11 start-page: 031066 year: 2021 ident: 1619_CR31 publication-title: Phys. Rev. X – volume: 364 start-page: 260 year: 2019 ident: 1619_CR13 publication-title: Science doi: 10.1126/science.aau4963 – volume: 11 start-page: 775 year: 2020 ident: 1619_CR19 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14489-5 – volume: 3 start-page: 023200 year: 2021 ident: 1619_CR29 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.023200 – volume: 470 start-page: 486 year: 2011 ident: 1619_CR18 publication-title: Nature doi: 10.1038/nature09801 – ident: 1619_CR24 – volume: 3 start-page: 010334 year: 2022 ident: 1619_CR27 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.3.010334 – volume: 101 start-page: 104301 year: 2020 ident: 1619_CR9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.104301 – volume: 98 start-page: 205136 year: 2018 ident: 1619_CR4 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.205136 – volume: 19 start-page: 023035 year: 2017 ident: 1619_CR32 publication-title: N. J. Phys. doi: 10.1088/1367-2630/aa5e47 – volume: 101 start-page: 104302 year: 2020 ident: 1619_CR8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.104302 – ident: 1619_CR21 doi: 10.2172/1237003 – volume: 70 start-page: 052328 year: 2004 ident: 1619_CR25 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.70.052328 – volume: 62 start-page: 062311 year: 2000 ident: 1619_CR10 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.62.062311 – volume: 32 start-page: 446 year: 1936 ident: 1619_CR14 publication-title: Math. Proc. Camb. Philos. Soc. doi: 10.1017/S0305004100019137 – volume: 85 start-page: 1083 year: 2013 ident: 1619_CR16 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.1083 – volume: 125 start-page: 070606 year: 2020 ident: 1619_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.070606 – volume: 11 start-page: 011030 year: 2021 ident: 1619_CR26 publication-title: Phys. Rev. X – volume: 9 start-page: 031009 year: 2019 ident: 1619_CR3 publication-title: Phys. Rev. X – volume: 598 start-page: 281 year: 2021 ident: 1619_CR22 publication-title: Nature doi: 10.1038/s41586-021-03928-y – volume: 17 start-page: 342 year: 2021 ident: 1619_CR28 publication-title: Nat. Phys. doi: 10.1038/s41567-020-01112-z – ident: 1619_CR2 doi: 10.1007/978-3-662-04103-1 – volume: 128 start-page: 150504 year: 2022 ident: 1619_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.150504 – ident: 1619_CR1 doi: 10.1007/978-3-540-47620-7 – ident: 1619_CR11 doi: 10.1090/psapm/068/2762145 |
SSID | ssj0042613 |
Score | 2.71815 |
Snippet | Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment
1
,
2
. Quantum... Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment1,2. Quantum circuits... Not provided. |
SourceID | osti proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 760 |
SubjectTerms | 639/766/119/2795 639/766/483/481 Atomic Circuits Classical and Continuum Physics Complex Systems Condensed Matter Physics Critical point Error correction Fault tolerance Initial conditions Letter Mathematical and Computational Physics Molecular Optical and Plasma Physics Phase transitions Phases Physics Physics and Astronomy Purification Quantum computers Quantum computing Theoretical |
Title | Measurement-induced quantum phases realized in a trapped-ion quantum computer |
URI | https://link.springer.com/article/10.1038/s41567-022-01619-7 https://www.proquest.com/docview/2688786386 https://www.osti.gov/biblio/1978673 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-NVki8oH0wUWBVHnjbLJKcEydPE53oEFKrCYHEmxV_aUjQpiR94a_nnDpUTBqvie0o9_m789kHcOosYf481cwhWsYzVKxwRjMbK5IupxLX9QaczfPLW351l92FhFsTyip7m9gZarPUPkd-luakDgVJS_6zXjHfNcrvroYWGjswJBNcUPA1nFzM_1z3ttjHB7g5EpmxlAsMx2ZiLM4aH7oI5qvZPewpmXjjmgZLUrE3sPOfndLOAU0_wn5AjtH5htWf4INdfIbdroJTN19gNttm-xgF2sQyE63WRLj1Y1T_JWfVRAQQH-6f6fn9Iqqi9qmqa2sYceZ1oA5NHg7gdnpx8-uShV4JTCPPW2bo75wWnKdOuNi6mOvU6lipClGRPTacV2ViRaZinRpUuaoUZhUmaa6y2CB-hcFiubCHEFmCDM6UsROq4qU1JbGrojWQQiuFrhhB0pNJ6nCRuO9n8SC7DW0s5Ia0kkgrO9JKMYLvr3PqzTUa744-9tSXBAL8Tbbal_zoViYU8eYCR3DSM0UGhWvkVjxG8KNn1Pb1_7919P5qx7CXdiLiC3RPYNA-re03giGtGsNOMf09huH5dDKZj4PkvQDYJNvS |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5Viyq4ICgglhbIoZzAauJx4uSAEKLdbh_bUyv1ZuKXqFR20yYrBD-K38g4j66K1N56TfyQZr4Zf2OPPQDb3hHnz7hhHtExkaJmubeGuVgTurxOfFsbcHaSTc_E4Xl6vgZ_h7swIa1y8Imto7YLE_bId3hG5pATWrIv1RULVaPC6epQQqODxZH7_YtCtvrzwS7p9wPnk73Tb1PWVxVgBkXWMMuF9EYKwb30sfOxMNyZWOsSUZPnskKUReJkqmPDLepMlxrTEhOe6TS2YQOUXP4jgVgEi8on-4PnD9EIdhcwU0azYH9JJ8Z8pw6BkmQhdz6QrILJWwvhaEEGfYvk_ncu2y53k2fwtOep0dcOWM9hzc03YL3NFzX1C5jNVnuLjMJ6AoiNrpakpuXPqPpBS2MdER29vPhD3y_mURk112VVOcsIBzcNTV9S4iWcPYgMX8Fovpi71xA5IijeFrGXuhSFswWBo6QxkAI5jT4fQzKISZn-2fJQPeNStcfnmKtOtIpEq1rRKjmGjzd9qu7RjntbbwbpK6Ic4d1cExKMTKMSiq8ziWPYGpSievOu1QqMY_g0KGr1--653tw_2nt4PD2dHavjg5OjTXjCW7iE1OAtGDXXS_eWCFCj37Woi-D7Q8P8H2sIFkc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ-QIxpfjIjGE9R90Cdortt2t7sPxiBwAeEuxEjCW91-RRK8W9i9GPnT-OuY7gcXTOSN191-JDO_zvymnXYAPnqHnD9lhnjOHREJ1yTz1hBHNaLL69g3tQEn0_TgVHw7S85W4Ka_CxPSKnub2BhqOzdhj3zEUlwOGaIlHfkuLeJkb_ylvCShglQ4ae3LabQQOXJ__2D4Vn0-3ENdf2JsvP9j94B0FQaI4SKtiWVCeiOFYF566jwVhjlDtS4412jFrBBFHjuZaGqY5TrVheZJwWOW6oTasBmK5n9VYlREB7D6dX968r33AyE24e11zITgPLy7skN5NqpC2CRJyKQPlCsn8p5bHMxxed-jvP-c0jbOb_wCnnesNdppYbYGK272Ep402aOmWofJZLnTSDDIR7jY6HKBSlv8jspf6CirCMnpxfk1fj-fRUVUXxVl6SxBVNw1NF2BiVdw-ihSfA2D2Xzm3kDkkK54m1MvdSFyZ3OESoFjcAzrNPfZEOJeTMp0j5iHWhoXqjlM55lqRatQtKoRrZJD2LrrU7ZPeDzYeiNIXyEBCa_ompBuZGoVY7SdSj6EzV4pqlvslVpCcwjbvaKWv_8_19uHR_sATxHi6vhwerQBz1iDlpAnvAmD-mrh3iEbqvX7DnYR_HxspN8CCVIb2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement-induced+quantum+phases+realized+in+a+trapped-ion+quantum+computer&rft.jtitle=Nature+physics&rft.au=Noel%2C+Crystal&rft.au=Niroula%2C+Pradeep&rft.au=Zhu%2C+Daiwei&rft.au=Risinger%2C+Andrew&rft.date=2022-07-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=18&rft.issue=7&rft.spage=760&rft.epage=764&rft_id=info:doi/10.1038%2Fs41567-022-01619-7&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |