An approximate, multivariable version of Specht's theorem

In this article we provide generalizations of Specht's theorem which states that two n × n matrices A and B are unitarily equivalent if and only if all traces of words in two non-commuting variables applied to the pairs (A, A*) and (B, B*) coincide. First, we obtain conditions which allow us to...

Full description

Saved in:
Bibliographic Details
Published inLinear & multilinear algebra Vol. 55; no. 2; pp. 159 - 173
Main Authors Marcoux, L. W., Mastnak, M., Radjavi, H.
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 01.03.2007
Subjects
Online AccessGet full text
ISSN0308-1087
1563-5139
DOI10.1080/03081080600693285

Cover

Loading…
Abstract In this article we provide generalizations of Specht's theorem which states that two n × n matrices A and B are unitarily equivalent if and only if all traces of words in two non-commuting variables applied to the pairs (A, A*) and (B, B*) coincide. First, we obtain conditions which allow us to extend this to simultaneous similarity or unitary equivalence of families of operators, and secondly, we show that it suffices to consider a more restricted family of functions when comparing traces. Our results do not require the traces of words in (A, A*) and (B, B*) to coincide, but only to be close.
AbstractList In this article we provide generalizations of Specht's theorem which states that two n × n matrices A and B are unitarily equivalent if and only if all traces of words in two non-commuting variables applied to the pairs (A, A*) and (B, B*) coincide. First, we obtain conditions which allow us to extend this to simultaneous similarity or unitary equivalence of families of operators, and secondly, we show that it suffices to consider a more restricted family of functions when comparing traces. Our results do not require the traces of words in (A, A*) and (B, B*) to coincide, but only to be close.
Author Radjavi, H.
Marcoux, L. W.
Mastnak, M.
Author_xml – sequence: 1
  givenname: L. W.
  surname: Marcoux
  fullname: Marcoux, L. W.
  email: LWMarcoux@uwaterloo.ca
  organization: Department of Pure Mathematics , University of Waterloo
– sequence: 2
  givenname: M.
  surname: Mastnak
  fullname: Mastnak, M.
  organization: Department of Mathematics , University of British Columbiam
– sequence: 3
  givenname: H.
  surname: Radjavi
  fullname: Radjavi, H.
  organization: Department of Pure Mathematics , University of Waterloo
BookMark eNqF0M1KAzEQAOAgFWyrD-Btb15cnWySTQJeSvEPCh7Uc0jThEZ2N0sSa_v2bqknC3qagZlvmJkJGnWhswhdYrjBIOAWCIh9UgPUklSCnaAxZjUpGSZyhMb7ejk08DM0SekDACgmbIzkrCt038ew9a3O9rpoP5vsNzp6vWxssbEx-dAVwRWvvTXrfJWKvLYh2vYcnTrdJHvxE6fo_eH-bf5ULl4en-ezRWkIrXNpnK6EFoxK46ohN0xUnFQWnJYYqJU15cAxlUw6i52zdCWFWwIjS7oigpMp4oe5JoaUonXK-KzzsFWO2jcKg9ofro4-MEj8S_ZxuDLu_jR3B-M7F2Krv0JsVirrXROii7ozPinyF-f_8iOl8jaTb-EBg4o
CitedBy_id crossref_primary_10_1016_j_jfa_2020_108778
crossref_primary_10_1007_s11785_022_01296_7
Cites_doi 10.1016/S0022-1236(03)00072-7
10.2140/pjm.1962.12.1405
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2007
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2007
DBID AAYXX
CITATION
DOI 10.1080/03081080600693285
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1563-5139
EndPage 173
ExternalDocumentID 10_1080_03081080600693285
169296
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADIYS
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGCQS
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
~S~
07G
1TA
AAGDL
AAHIA
AAIKQ
AAKBW
AAYXX
ABEFU
ACAGQ
ACGEE
ADYSH
AEUMN
AFFNX
AFRVT
AGLEN
AGROQ
AHMOU
AIYEW
ALCKM
AMEWO
AMPGV
AMVHM
AMXXU
BCCOT
BPLKW
C06
CITATION
CRFIH
DMQIW
DWIFK
HF~
IVXBP
LJTGL
NUSFT
QCRFL
TAQ
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
ID FETCH-LOGICAL-c346t-cfa28a8549cf2fa2c582732e0fa9104e96470714959fe1ffe4d98fb053b4d3873
ISSN 0308-1087
IngestDate Tue Jul 01 01:40:17 EDT 2025
Thu Apr 24 23:08:46 EDT 2025
Wed Dec 25 09:05:27 EST 2024
Mon May 13 12:09:03 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c346t-cfa28a8549cf2fa2c582732e0fa9104e96470714959fe1ffe4d98fb053b4d3873
PageCount 15
ParticipantIDs crossref_citationtrail_10_1080_03081080600693285
informaworld_taylorfrancis_310_1080_03081080600693285
crossref_primary_10_1080_03081080600693285
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 3/1/2007
2007-03-00
PublicationDateYYYYMMDD 2007-03-01
PublicationDate_xml – month: 03
  year: 2007
  text: 3/1/2007
  day: 01
PublicationDecade 2000
PublicationTitle Linear & multilinear algebra
PublicationYear 2007
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References CIT0002
Pearcy C (CIT0003) 1962; 12
Drensky V (CIT0001) 2004
Specht W (CIT0004) 1940; 50
References_xml – volume-title: Advanced Courses in Mathematics
  year: 2004
  ident: CIT0001
– ident: CIT0002
  doi: 10.1016/S0022-1236(03)00072-7
– volume: 12
  start-page: 1405
  year: 1962
  ident: CIT0003
  publication-title: Pacific Journal of Mathematics
  doi: 10.2140/pjm.1962.12.1405
– volume: 50
  start-page: 19
  year: 1940
  ident: CIT0004
  publication-title: Jahresbericht der Deutschen Mathematiker-Vereinigung
SSID ssj0004135
Score 1.7111344
Snippet In this article we provide generalizations of Specht's theorem which states that two n × n matrices A and B are unitarily equivalent if and only if all traces...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 159
SubjectTerms 2000 Mathematics Subject Classifications: Primary 15A21
Approximation
Secondary15A04
Semigroups
Specht's theorem
Trace
Title An approximate, multivariable version of Specht's theorem
URI https://www.tandfonline.com/doi/abs/10.1080/03081080600693285
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60XvQgPrG-yEEQ1JQkm6SbY_FBEetBFMVL2Wx2QamptGkRf72zj7zqA_WybJdk02ZmZ2e2832D0AGWqe2ST5u5DrH9gGM7imIHGlh5TLQdrpIxe9dh986_fAgeyrRmhS7J4hZ7_xJX8h-pwhjIVaJk_yDZYlIYgD7IF1qQMLS_knEn1Zzgb08vVJe5U_mBU4h_FSJqqg_DFDDllTMZhbfHBrv4UnVLISKVhD5SDdQMA_1Z1gCJR4Xh7sGiGE7UbnXVOr5vlePjLKXKrPaKwRuaPNOprondqp0ttMvkqhxTpchfzZbIjYkMsR24moIot6GaatfoilcxiK7h-9Z7q6vLlnwy2ybPEZ4mu6GkT8aeLuVTp8ie2bqKhEI3ZzqdnWIeLXgQQDgNtNDpnj3el5hZU3w1_4X5P96Sd312kprPUmO0rfgityto2QQRVkdrxCqa4-kaWuoVDLzjdRR1UquiGydWTTMsoxnWUFhaMw7HltGLDXR3cX572rVNmQybYT_MbCaoRyiBQJ8JD_osIOCTetwRFHxBn0ussYSpRUEkuCsE95OIiBisb-wnmLTxJmqkw5RvIUse4AtMwkQQ3xcMXBXPZSR2OaEhTXDcRE7-IvrMcMjLUiaD_rcCaKKj4pZXTaDy08VO9e32M3VqJXSJmc-X97O3rImCH27B3z5q-y_fawctlstjFzWy0YTvgTOaxftGrz4ATGt8ew
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFH9RPKgHv4342YOJiXG4rd3WHYmRoAInSLgtW2mjUYeRQoh_ve26IaBy4LI0S9_WdX3re2-_93sAl1hD2zWfNnNsahGPYysME1sdlOYxEdg8A2M2W369Qx67XjcPuA1yWKX2oYUhisi-1Vq5dTC6gMTdao4V3fA1zy52qbcKa17oB7p0A7ZbP3mReYFNnFGY0qD4q_nXJWb2pRnW0qn9prYNUTFSAzN5rQxlUmFfcySOyz_KDmzlpiiqmrWzCys83YPN5oTHdbAPYTVFGev4-EWd4jcowx-OlH-tM67QyATbUF8gXcf-WV4NkMmMfD-ATu2-fVe38mILFsPElxYTsUtjqtxFJlzVZh5Vlo3LbREri4JwnbGqk51CLxTcEYKTXkhFonQ4IT1MA3wIpbSf8iNAOgwsMPV7ghIimNrwXIfRxOE09uMeTspgF1MdsZyJXBfEeIucgrB0flbKcD0R-TA0HIs629PvL5JZ7EOYQiW_u0dyLMvgLRDB_97qeEm5C1ivt5uNqPHQejqBDRMw1sC2UyjJzyE_U5aOTM6z5fwNu1PuwQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeDThA9-FucP3MQBLHaNmmXHoc65o8NDw52K22aoKjdsNkY_vXmpd3cpu6wSwklaWmaNC-v3_d5CJ0SkLYDT5s7NrOoJ4gVBLGtD3rmcVmxhRFjNpp-vUXv21670OZkhawS9tAyB0WYbzVM7m4ih4q4K0CsQMEHzC5xmbeIlnxtmsCgJnbzJyyyyK9JDMGUVYY_Nf-6xMSyNAEtHVtuaut5TtXMUApBZfJ22VPxJf-aYjjO_SQbaK0wRHE1HzmbaEGkW2i1MaK4ZtsoqKbYMMcHr_qUuMBGfdjXu2uIt8L93NWGOxJDFvsXdZbhPC7yYwe1arfP13WrSLVgcUJ9ZXEZuSxierPIpavL3GParnGFLSNtT1AB8aoQ6hR4gRSOlIImAZOxnsExTQirkF1USjup2EMYnMCSMD-RjFLJ9XLnOpzFjmCRHyUkLiN72NMhLzjkkA7jPXSGuNLpXimj81GTbg7hmFXZHn99oTKeD5mnKfldPVQDVUbejCbk31vtz9nuBC0_3dTCx7vmwwFayb3FoGo7RCX12RNH2sxR8bEZzN_lVe1u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approximate%2C+multivariable+version+of+Specht%27s+theorem&rft.jtitle=Linear+%26+multilinear+algebra&rft.au=Marcoux%2C+L.+W.&rft.au=Mastnak%2C+M.&rft.au=Radjavi%2C+H.&rft.date=2007-03-01&rft.issn=0308-1087&rft.eissn=1563-5139&rft.volume=55&rft.issue=2&rft.spage=159&rft.epage=173&rft_id=info:doi/10.1080%2F03081080600693285&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03081080600693285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-1087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-1087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-1087&client=summon