An approximate, multivariable version of Specht's theorem
In this article we provide generalizations of Specht's theorem which states that two n × n matrices A and B are unitarily equivalent if and only if all traces of words in two non-commuting variables applied to the pairs (A, A*) and (B, B*) coincide. First, we obtain conditions which allow us to...
Saved in:
Published in | Linear & multilinear algebra Vol. 55; no. 2; pp. 159 - 173 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis Group
01.03.2007
|
Subjects | |
Online Access | Get full text |
ISSN | 0308-1087 1563-5139 |
DOI | 10.1080/03081080600693285 |
Cover
Loading…
Abstract | In this article we provide generalizations of Specht's theorem which states that two n × n matrices A and B are unitarily equivalent if and only if all traces of words in two non-commuting variables applied to the pairs (A, A*) and (B, B*) coincide. First, we obtain conditions which allow us to extend this to simultaneous similarity or unitary equivalence of families of operators, and secondly, we show that it suffices to consider a more restricted family of functions when comparing traces. Our results do not require the traces of words in (A, A*) and (B, B*) to coincide, but only to be close. |
---|---|
AbstractList | In this article we provide generalizations of Specht's theorem which states that two n × n matrices A and B are unitarily equivalent if and only if all traces of words in two non-commuting variables applied to the pairs (A, A*) and (B, B*) coincide. First, we obtain conditions which allow us to extend this to simultaneous similarity or unitary equivalence of families of operators, and secondly, we show that it suffices to consider a more restricted family of functions when comparing traces. Our results do not require the traces of words in (A, A*) and (B, B*) to coincide, but only to be close. |
Author | Radjavi, H. Marcoux, L. W. Mastnak, M. |
Author_xml | – sequence: 1 givenname: L. W. surname: Marcoux fullname: Marcoux, L. W. email: LWMarcoux@uwaterloo.ca organization: Department of Pure Mathematics , University of Waterloo – sequence: 2 givenname: M. surname: Mastnak fullname: Mastnak, M. organization: Department of Mathematics , University of British Columbiam – sequence: 3 givenname: H. surname: Radjavi fullname: Radjavi, H. organization: Department of Pure Mathematics , University of Waterloo |
BookMark | eNqF0M1KAzEQAOAgFWyrD-Btb15cnWySTQJeSvEPCh7Uc0jThEZ2N0sSa_v2bqknC3qagZlvmJkJGnWhswhdYrjBIOAWCIh9UgPUklSCnaAxZjUpGSZyhMb7ejk08DM0SekDACgmbIzkrCt038ew9a3O9rpoP5vsNzp6vWxssbEx-dAVwRWvvTXrfJWKvLYh2vYcnTrdJHvxE6fo_eH-bf5ULl4en-ezRWkIrXNpnK6EFoxK46ohN0xUnFQWnJYYqJU15cAxlUw6i52zdCWFWwIjS7oigpMp4oe5JoaUonXK-KzzsFWO2jcKg9ofro4-MEj8S_ZxuDLu_jR3B-M7F2Krv0JsVirrXROii7ozPinyF-f_8iOl8jaTb-EBg4o |
CitedBy_id | crossref_primary_10_1016_j_jfa_2020_108778 crossref_primary_10_1007_s11785_022_01296_7 |
Cites_doi | 10.1016/S0022-1236(03)00072-7 10.2140/pjm.1962.12.1405 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2007 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2007 |
DBID | AAYXX CITATION |
DOI | 10.1080/03081080600693285 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1563-5139 |
EndPage | 173 |
ExternalDocumentID | 10_1080_03081080600693285 169296 |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADIYS ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGCQS AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B GTTXZ H13 HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 YQT ZGOLN ~S~ 07G 1TA AAGDL AAHIA AAIKQ AAKBW AAYXX ABEFU ACAGQ ACGEE ADYSH AEUMN AFFNX AFRVT AGLEN AGROQ AHMOU AIYEW ALCKM AMEWO AMPGV AMVHM AMXXU BCCOT BPLKW C06 CITATION CRFIH DMQIW DWIFK HF~ IVXBP LJTGL NUSFT QCRFL TAQ TFMCV TOXWX UB9 UU8 V3K V4Q |
ID | FETCH-LOGICAL-c346t-cfa28a8549cf2fa2c582732e0fa9104e96470714959fe1ffe4d98fb053b4d3873 |
ISSN | 0308-1087 |
IngestDate | Tue Jul 01 01:40:17 EDT 2025 Thu Apr 24 23:08:46 EDT 2025 Wed Dec 25 09:05:27 EST 2024 Mon May 13 12:09:03 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c346t-cfa28a8549cf2fa2c582732e0fa9104e96470714959fe1ffe4d98fb053b4d3873 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1080_03081080600693285 informaworld_taylorfrancis_310_1080_03081080600693285 crossref_primary_10_1080_03081080600693285 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 3/1/2007 2007-03-00 |
PublicationDateYYYYMMDD | 2007-03-01 |
PublicationDate_xml | – month: 03 year: 2007 text: 3/1/2007 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Linear & multilinear algebra |
PublicationYear | 2007 |
Publisher | Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis Group |
References | CIT0002 Pearcy C (CIT0003) 1962; 12 Drensky V (CIT0001) 2004 Specht W (CIT0004) 1940; 50 |
References_xml | – volume-title: Advanced Courses in Mathematics year: 2004 ident: CIT0001 – ident: CIT0002 doi: 10.1016/S0022-1236(03)00072-7 – volume: 12 start-page: 1405 year: 1962 ident: CIT0003 publication-title: Pacific Journal of Mathematics doi: 10.2140/pjm.1962.12.1405 – volume: 50 start-page: 19 year: 1940 ident: CIT0004 publication-title: Jahresbericht der Deutschen Mathematiker-Vereinigung |
SSID | ssj0004135 |
Score | 1.7111344 |
Snippet | In this article we provide generalizations of Specht's theorem which states that two n × n matrices A and B are unitarily equivalent if and only if all traces... |
SourceID | crossref informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 159 |
SubjectTerms | 2000 Mathematics Subject Classifications: Primary 15A21 Approximation Secondary15A04 Semigroups Specht's theorem Trace |
Title | An approximate, multivariable version of Specht's theorem |
URI | https://www.tandfonline.com/doi/abs/10.1080/03081080600693285 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60XvQgPrG-yEEQ1JQkm6SbY_FBEetBFMVL2Wx2QamptGkRf72zj7zqA_WybJdk02ZmZ2e2832D0AGWqe2ST5u5DrH9gGM7imIHGlh5TLQdrpIxe9dh986_fAgeyrRmhS7J4hZ7_xJX8h-pwhjIVaJk_yDZYlIYgD7IF1qQMLS_knEn1Zzgb08vVJe5U_mBU4h_FSJqqg_DFDDllTMZhbfHBrv4UnVLISKVhD5SDdQMA_1Z1gCJR4Xh7sGiGE7UbnXVOr5vlePjLKXKrPaKwRuaPNOprondqp0ttMvkqhxTpchfzZbIjYkMsR24moIot6GaatfoilcxiK7h-9Z7q6vLlnwy2ybPEZ4mu6GkT8aeLuVTp8ie2bqKhEI3ZzqdnWIeLXgQQDgNtNDpnj3el5hZU3w1_4X5P96Sd312kprPUmO0rfgityto2QQRVkdrxCqa4-kaWuoVDLzjdRR1UquiGydWTTMsoxnWUFhaMw7HltGLDXR3cX572rVNmQybYT_MbCaoRyiBQJ8JD_osIOCTetwRFHxBn0ussYSpRUEkuCsE95OIiBisb-wnmLTxJmqkw5RvIUse4AtMwkQQ3xcMXBXPZSR2OaEhTXDcRE7-IvrMcMjLUiaD_rcCaKKj4pZXTaDy08VO9e32M3VqJXSJmc-X97O3rImCH27B3z5q-y_fawctlstjFzWy0YTvgTOaxftGrz4ATGt8ew |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFH9RPKgHv4342YOJiXG4rd3WHYmRoAInSLgtW2mjUYeRQoh_ve26IaBy4LI0S9_WdX3re2-_93sAl1hD2zWfNnNsahGPYysME1sdlOYxEdg8A2M2W369Qx67XjcPuA1yWKX2oYUhisi-1Vq5dTC6gMTdao4V3fA1zy52qbcKa17oB7p0A7ZbP3mReYFNnFGY0qD4q_nXJWb2pRnW0qn9prYNUTFSAzN5rQxlUmFfcySOyz_KDmzlpiiqmrWzCys83YPN5oTHdbAPYTVFGev4-EWd4jcowx-OlH-tM67QyATbUF8gXcf-WV4NkMmMfD-ATu2-fVe38mILFsPElxYTsUtjqtxFJlzVZh5Vlo3LbREri4JwnbGqk51CLxTcEYKTXkhFonQ4IT1MA3wIpbSf8iNAOgwsMPV7ghIimNrwXIfRxOE09uMeTspgF1MdsZyJXBfEeIucgrB0flbKcD0R-TA0HIs629PvL5JZ7EOYQiW_u0dyLMvgLRDB_97qeEm5C1ivt5uNqPHQejqBDRMw1sC2UyjJzyE_U5aOTM6z5fwNu1PuwQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeDThA9-FucP3MQBLHaNmmXHoc65o8NDw52K22aoKjdsNkY_vXmpd3cpu6wSwklaWmaNC-v3_d5CJ0SkLYDT5s7NrOoJ4gVBLGtD3rmcVmxhRFjNpp-vUXv21670OZkhawS9tAyB0WYbzVM7m4ih4q4K0CsQMEHzC5xmbeIlnxtmsCgJnbzJyyyyK9JDMGUVYY_Nf-6xMSyNAEtHVtuaut5TtXMUApBZfJ22VPxJf-aYjjO_SQbaK0wRHE1HzmbaEGkW2i1MaK4ZtsoqKbYMMcHr_qUuMBGfdjXu2uIt8L93NWGOxJDFvsXdZbhPC7yYwe1arfP13WrSLVgcUJ9ZXEZuSxierPIpavL3GParnGFLSNtT1AB8aoQ6hR4gRSOlIImAZOxnsExTQirkF1USjup2EMYnMCSMD-RjFLJ9XLnOpzFjmCRHyUkLiN72NMhLzjkkA7jPXSGuNLpXimj81GTbg7hmFXZHn99oTKeD5mnKfldPVQDVUbejCbk31vtz9nuBC0_3dTCx7vmwwFayb3FoGo7RCX12RNH2sxR8bEZzN_lVe1u |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approximate%2C+multivariable+version+of+Specht%27s+theorem&rft.jtitle=Linear+%26+multilinear+algebra&rft.au=Marcoux%2C+L.+W.&rft.au=Mastnak%2C+M.&rft.au=Radjavi%2C+H.&rft.date=2007-03-01&rft.issn=0308-1087&rft.eissn=1563-5139&rft.volume=55&rft.issue=2&rft.spage=159&rft.epage=173&rft_id=info:doi/10.1080%2F03081080600693285&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03081080600693285 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-1087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-1087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-1087&client=summon |