Projected increase in global runoff dominated by land surface changes
Increases in atmospheric CO 2 concentration affect continental runoff through radiative and physiological forcing. However, how climate and land surface changes, and their interactions in particular, regulate changes in global runoff remains largely unresolved. Here we develop an attribution framewo...
Saved in:
Published in | Nature climate change Vol. 13; no. 5; pp. 442 - 449 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2023
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Increases in atmospheric CO
2
concentration affect continental runoff through radiative and physiological forcing. However, how climate and land surface changes, and their interactions in particular, regulate changes in global runoff remains largely unresolved. Here we develop an attribution framework that integrates top-down empirical and bottom-up modelling approaches to show that land surface changes account for 73–81% of projected global runoff increases. This arises from synergistic effects of physiological responses of vegetation to rising CO
2
concentration and responses of land surface—for example, vegetation cover and soil moisture—to radiatively driven climate change. Although climate change strongly affects regional runoff changes, it plays a minor role (19–27%) in the global runoff increase, due to cancellation of positive and negative contributions from different regions. Our findings highlight the importance of accurate model representation of land surface processes for reliable projections of global runoff to support sustainable management of water resources.
Global runoff is subject to multiple influences with high uncertainties in its projections. The authors show that global runoff is expected to increase mainly due to vegetation and soil moisture responses to rising CO
2
and radiative forcing, rather than through direct effects of climate change. |
---|---|
AbstractList | Not provided. Increases in atmospheric CO2 concentration affect continental runoff through radiative and physiological forcing. However, how climate and land surface changes, and their interactions in particular, regulate changes in global runoff remains largely unresolved. Here we develop an attribution framework that integrates top-down empirical and bottom-up modelling approaches to show that land surface changes account for 73–81% of projected global runoff increases. This arises from synergistic effects of physiological responses of vegetation to rising CO2 concentration and responses of land surface—for example, vegetation cover and soil moisture—to radiatively driven climate change. Although climate change strongly affects regional runoff changes, it plays a minor role (19–27%) in the global runoff increase, due to cancellation of positive and negative contributions from different regions. Our findings highlight the importance of accurate model representation of land surface processes for reliable projections of global runoff to support sustainable management of water resources.Global runoff is subject to multiple influences with high uncertainties in its projections. The authors show that global runoff is expected to increase mainly due to vegetation and soil moisture responses to rising CO2 and radiative forcing, rather than through direct effects of climate change. Increases in atmospheric CO 2 concentration affect continental runoff through radiative and physiological forcing. However, how climate and land surface changes, and their interactions in particular, regulate changes in global runoff remains largely unresolved. Here we develop an attribution framework that integrates top-down empirical and bottom-up modelling approaches to show that land surface changes account for 73–81% of projected global runoff increases. This arises from synergistic effects of physiological responses of vegetation to rising CO 2 concentration and responses of land surface—for example, vegetation cover and soil moisture—to radiatively driven climate change. Although climate change strongly affects regional runoff changes, it plays a minor role (19–27%) in the global runoff increase, due to cancellation of positive and negative contributions from different regions. Our findings highlight the importance of accurate model representation of land surface processes for reliable projections of global runoff to support sustainable management of water resources. Global runoff is subject to multiple influences with high uncertainties in its projections. The authors show that global runoff is expected to increase mainly due to vegetation and soil moisture responses to rising CO 2 and radiative forcing, rather than through direct effects of climate change. |
Author | Zhang, Yao Zhou, Sha Lintner, Benjamin R. Findell, Kirsten L. Yu, Bofu |
Author_xml | – sequence: 1 givenname: Sha orcidid: 0000-0001-7161-5959 surname: Zhou fullname: Zhou, Sha email: shazhou21@bnu.edu.cn organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University – sequence: 2 givenname: Bofu orcidid: 0000-0001-7266-4197 surname: Yu fullname: Yu, Bofu organization: School of Engineering and Built Environment, Griffith University – sequence: 3 givenname: Benjamin R. orcidid: 0000-0002-9694-5337 surname: Lintner fullname: Lintner, Benjamin R. organization: Department of Environmental Sciences, Rutgers, The State University of New Jersey – sequence: 4 givenname: Kirsten L. orcidid: 0000-0002-1207-1637 surname: Findell fullname: Findell, Kirsten L. organization: NOAA/Geophysical Fluid Dynamics Laboratory – sequence: 5 givenname: Yao orcidid: 0000-0002-7468-2409 surname: Zhang fullname: Zhang, Yao email: zhangyao@pku.edu.cn organization: Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Institute of Carbon Neutrality, Peking University |
BackLink | https://www.osti.gov/biblio/2424345$$D View this record in Osti.gov |
BookMark | eNp9kE9LAzEQxYMoWGu_gKdFz6vJJptNjlLqHyjoQcFbyM4m7ZZtUpPdQ7-9qSsKHhoYMgy_95h5F-jUeWcQuiL4lmAq7iIjZSlyXNAcE17KXJygCanSiFdSnP724uMczWLc4PQqwimXE7R4DX5joDdN1joIRkeTmmzV-Vp3WRictzZr_LZ1-sDU-6zTrsniEKwGk8Fau5WJl-jM6i6a2c8_Re8Pi7f5U758eXye3y9zoIz3OTSmYaykwDiXlpoGQ2lrSyTD0oKxkjAKnJR1maoCDMwQayteEEh8rekUXY--PvatitD2BtbgnUsXqIIVjCb3KboZoV3wn4OJvdr4Ibi0lyoEIVUlJGeJEiMFwccYjFXJTfetd33QbacIVodw1RiuSuGq73CVSNLin3QX2q0O--MiOopiglNm4W-rI6ovamOOAw |
CitedBy_id | crossref_primary_10_1016_j_atmosres_2024_107895 crossref_primary_10_1038_s44221_024_00361_z crossref_primary_10_1016_j_isci_2024_111623 crossref_primary_10_1016_j_agee_2024_109356 crossref_primary_10_1038_s41612_025_00913_4 crossref_primary_10_1016_j_ecolind_2024_113069 crossref_primary_10_1016_j_envres_2024_118730 crossref_primary_10_1007_s00382_023_07046_5 crossref_primary_10_1016_j_catena_2024_108261 crossref_primary_10_1007_s11430_023_1206_4 crossref_primary_10_1016_j_jhydrol_2024_131730 crossref_primary_10_3390_rs15163922 crossref_primary_10_1016_j_ejrh_2023_101630 crossref_primary_10_1016_j_ejrh_2024_102024 crossref_primary_10_1016_j_jhydrol_2024_131472 crossref_primary_10_1016_j_scitotenv_2024_172804 crossref_primary_10_1002_hyp_15072 crossref_primary_10_1038_s44221_023_00128_y crossref_primary_10_1126_sciadv_adp3964 crossref_primary_10_1038_s41467_024_53879_x crossref_primary_10_1016_j_catena_2024_108124 crossref_primary_10_3390_f15060930 crossref_primary_10_1016_j_geomorph_2024_109233 crossref_primary_10_1111_gcb_70035 crossref_primary_10_1016_j_jhydrol_2024_131825 crossref_primary_10_1016_j_atmosres_2024_107662 crossref_primary_10_1016_j_watres_2024_122279 crossref_primary_10_1016_j_ejrh_2024_101963 crossref_primary_10_1016_j_ejrh_2025_102239 crossref_primary_10_1360_SSTe_2023_0053 crossref_primary_10_1016_j_jclepro_2024_142396 crossref_primary_10_3390_land13111961 crossref_primary_10_1016_j_ejrh_2024_102159 crossref_primary_10_1038_s43247_025_02145_z crossref_primary_10_1007_s11269_024_04083_5 crossref_primary_10_1038_s41598_024_55176_5 crossref_primary_10_1016_j_scitotenv_2023_166329 crossref_primary_10_1038_s41598_024_81754_8 crossref_primary_10_3390_w16060867 crossref_primary_10_1016_j_jhydrol_2024_132374 crossref_primary_10_5194_hess_28_4989_2024 crossref_primary_10_2166_wcc_2023_568 crossref_primary_10_5194_hess_28_2179_2024 crossref_primary_10_1111_nph_20184 crossref_primary_10_1007_s11442_024_2249_4 crossref_primary_10_1002_eco_2587 crossref_primary_10_1016_j_agrformet_2024_110258 crossref_primary_10_1073_pnas_2410881122 |
Cites_doi | 10.1111/nyas.14337 10.1016/j.agrformet.2019.05.001 10.1002/2016GL071921 10.1029/2000WR900325 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 10.1029/2018GL079901 10.1073/pnas.1720712115 10.1038/s41467-020-18992-7 10.1016/j.earscirev.2020.103451 10.1038/s41558-020-00945-z 10.1038/nature11575 10.5194/hess-24-2921-2020 10.1038/nclimate3240 10.1038/ncomms6918 10.1111/1752-1688.12538 10.1038/nclimate2617 10.1002/2015GL063511 10.1038/s41559-019-0838-x 10.1038/nature04504 10.1038/s41558-018-0361-0 10.1002/2017WR021215 10.1029/2007WR006135 10.1038/42924 10.1002/2016WR019046 10.1002/2015WR017031 10.1029/2021EF002457 10.1038/s41558-021-01007-8 10.1038/nclimate3046 10.1038/nclimate3004 10.1029/2010WR009287 10.1073/pnas.0707213104 10.1029/2010WR009826 10.1038/s41558-019-0602-x 10.1038/s43017-021-00144-0 10.1002/2015GL066952 10.1038/s41467-022-33473-9 10.5194/hess-21-3953-2017 10.1038/s41561-022-00935-0 10.1038/s41561-019-0480-x 10.1038/s41558-018-0144-7 10.1038/nclimate1690 10.5194/hess-18-1575-2014 10.1029/2003WR002710 10.5194/gmd-9-1937-2016 10.1073/pnas.0913000107 10.1038/nature06045 10.1111/gcb.16397 10.1029/2022EF002814 10.1002/2013GL058324 10.1038/nclimate2837 10.5281/zenodo.7733618 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
CorporateAuthor | US Department of Energy (USDOE), Washington, DC (United States). Program for Climate Model Diagnosis |
CorporateAuthor_xml | – name: US Department of Energy (USDOE), Washington, DC (United States). Program for Climate Model Diagnosis |
DBID | AAYXX CITATION 3V. 7ST 7TG 7TN 7XB 88I 8AF 8FK ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 H97 HCIFZ KL. L.G M2P PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI Q9U SOI OTOTI |
DOI | 10.1038/s41558-023-01659-8 |
DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) STEM Database ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Environment Abstracts OSTI.GOV |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1758-6798 |
EndPage | 449 |
ExternalDocumentID | 2424345 10_1038_s41558_023_01659_8 |
GroupedDBID | 0R~ 39C 3V. 4.4 53G 5BI 70F 88I 8AF 8FE 8FH AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABJNI ABLJU ABUWG ACBWK ACGFS ACGOD ACHQT ADBBV AENEX AEUYN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHDO AGHTU AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BHPHI BKKNO BKSAR BPHCQ CCPQU D1K DWQXO EBS EDH EE. EJD EXGXG FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ K6- M2P NNMJJ O9- ODYON PCBAR PQQKQ PROAC RNT RNTTT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION NFIDA PHGZM PHGZT 7ST 7TG 7TN 7XB 8FK C1K F1W H96 H97 KL. L.G PKEHL PQEST PQUKI Q9U SOI AADEA AAEXX ABEEJ ABVXF ADZGE AGEZK OTOTI |
ID | FETCH-LOGICAL-c346t-cded4453c4669f3ed0c5fbf19409fcef9143c615b515b7c0c4e1ff7621c69fba3 |
IEDL.DBID | BENPR |
ISSN | 1758-678X |
IngestDate | Mon Aug 12 05:47:29 EDT 2024 Sat Aug 23 12:51:36 EDT 2025 Tue Jul 01 03:01:36 EDT 2025 Thu Apr 24 23:10:58 EDT 2025 Fri Feb 21 02:38:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c346t-cded4453c4669f3ed0c5fbf19409fcef9143c615b515b7c0c4e1ff7621c69fba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE |
ORCID | 0000-0002-9694-5337 0000-0002-1207-1637 0000-0002-7468-2409 0000-0001-7161-5959 0000-0001-7266-4197 0000000296945337 0000000212071637 0000000171615959 0000000172664197 0000000274682409 |
PQID | 2811778964 |
PQPubID | 1056412 |
PageCount | 8 |
ParticipantIDs | osti_scitechconnect_2424345 proquest_journals_2811778964 crossref_citationtrail_10_1038_s41558_023_01659_8 crossref_primary_10_1038_s41558_023_01659_8 springer_journals_10_1038_s41558_023_01659_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Nature climate change |
PublicationTitleAbbrev | Nat. Clim. Chang |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Zhou (CR29) 2016; 52 Zhou (CR23) 2021; 11 Gedney (CR10) 2006; 439 Bintanja, Andry (CR5) 2017; 7 Hrachowitz, Clark (CR24) 2017; 21 Roderick, Sun, Lim, Farquhar (CR28) 2014; 18 Zhou (CR19) 2022; 10 Zhu (CR7) 2016; 6 Lian (CR34) 2021; 2 Betts (CR11) 2007; 448 Huang (CR32) 2019; 3 Berg, McColl (CR37) 2021; 11 Cui (CR18) 2020; 11 Eyring (CR31) 2016; 9 Betts, Cox, Lee, Woodward (CR14) 1997; 387 Padrón, Gudmundsson, Greve, Seneviratne (CR6) 2017; 53 Hoek van Dijke (CR26) 2022; 15 Fischer, Knutti (CR4) 2015; 5 CR44 CR43 CR42 Roderick, Farquhar (CR49) 2011; 47 Allan (CR1) 2020; 1472 Mankin, Seager, Smerdon, Cook, Williams (CR9) 2019; 12 Zhang, Dawes, Walker (CR50) 2001; 37 Yang, Yang (CR27) 2011; 47 Piao (CR15) 2007; 104 Xu, Liu, Scanlon, Zhang, Pan (CR45) 2013; 40 Zhou (CR40) 2022; 13 Priestley, Taylor (CR41) 1972; 100 Kooperman (CR17) 2018; 8 Zhang (CR46) 2004; 40 CR54 Roderick, Greve, Farquhar (CR33) 2015; 51 Sheffield, Wood, Roderick (CR35) 2012; 491 Scheff, Coats, Laguë (CR39) 2022; 10 Yang, Roderick, Zhang, McVicar, Donohue (CR22) 2019; 9 Huang, Yu, Guan, Wang, Guo (CR38) 2016; 6 Cao, Bala, Caldeira, Nemani, Ban-Weiss (CR20) 2010; 107 Yang (CR36) 2020; 24 Zhang, Yang, Yang, Jayawardena (CR51) 2016; 43 Sterling, Ducharne, Polcher (CR21) 2013; 3 Zhou (CR25) 2015; 6 Milly, Dunne (CR2) 2016; 6 Ning (CR53) 2019; 275 Milly, Dunne (CR3) 2017; 53 Gan, Liu, Sun (CR52) 2021; 212 Lemordant, Gentine, Swann, Cook, Scheff (CR12) 2018; 115 Berg, Sheffield, Milly (CR8) 2017; 44 Fowler, Kooperman, Randerson, Pritchard (CR13) 2019; 9 Zhan (CR16) 2022; 28 Kooperman (CR30) 2018; 45 Yang, Yang, Lei, Sun (CR47) 2008; 44 Zhou, Yu, Huang, Wang (CR48) 2015; 42 MD Fowler (1659_CR13) 2019; 9 SM Sterling (1659_CR21) 2013; 3 J Huang (1659_CR38) 2016; 6 PCD Milly (1659_CR2) 2016; 6 M Huang (1659_CR32) 2019; 3 X Xu (1659_CR45) 2013; 40 V Eyring (1659_CR31) 2016; 9 J Sheffield (1659_CR35) 2012; 491 L Lemordant (1659_CR12) 2018; 115 N Gedney (1659_CR10) 2006; 439 S Zhang (1659_CR51) 2016; 43 1659_CR54 Z Zhu (1659_CR7) 2016; 6 JS Mankin (1659_CR9) 2019; 12 AJ Hoek van Dijke (1659_CR26) 2022; 15 G Zhou (1659_CR25) 2015; 6 A Berg (1659_CR37) 2021; 11 L Cao (1659_CR20) 2010; 107 L Zhang (1659_CR46) 2004; 40 GJ Kooperman (1659_CR17) 2018; 8 PCD Milly (1659_CR3) 2017; 53 RS Padrón (1659_CR6) 2017; 53 S Zhou (1659_CR23) 2021; 11 A Berg (1659_CR8) 2017; 44 1659_CR42 ML Roderick (1659_CR33) 2015; 51 1659_CR44 RP Allan (1659_CR1) 2020; 1472 1659_CR43 T Ning (1659_CR53) 2019; 275 H Yang (1659_CR27) 2011; 47 RA Betts (1659_CR14) 1997; 387 M Roderick (1659_CR28) 2014; 18 G Gan (1659_CR52) 2021; 212 ML Roderick (1659_CR49) 2011; 47 M Hrachowitz (1659_CR24) 2017; 21 GJ Kooperman (1659_CR30) 2018; 45 S Zhou (1659_CR48) 2015; 42 S Zhou (1659_CR19) 2022; 10 L Zhang (1659_CR50) 2001; 37 Y Yang (1659_CR22) 2019; 9 J Cui (1659_CR18) 2020; 11 RA Betts (1659_CR11) 2007; 448 C Zhan (1659_CR16) 2022; 28 S Zhou (1659_CR29) 2016; 52 R Bintanja (1659_CR5) 2017; 7 X Lian (1659_CR34) 2021; 2 J Scheff (1659_CR39) 2022; 10 Y Yang (1659_CR36) 2020; 24 S Piao (1659_CR15) 2007; 104 EM Fischer (1659_CR4) 2015; 5 H Yang (1659_CR47) 2008; 44 S Zhou (1659_CR40) 2022; 13 CHB Priestley (1659_CR41) 1972; 100 |
References_xml | – volume: 1472 start-page: 49 year: 2020 end-page: 75 ident: CR1 article-title: Advances in understanding large‐scale responses of the water cycle to climate change publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.14337 – volume: 275 start-page: 59 year: 2019 end-page: 68 ident: CR53 article-title: Interaction of vegetation, climate and topography on evapotranspiration modelling at different time scales within the Budyko framework publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2019.05.001 – volume: 44 start-page: 236 year: 2017 end-page: 244 ident: CR8 article-title: Divergent surface and total soil moisture projections under global warming publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL071921 – volume: 37 start-page: 701 year: 2001 end-page: 708 ident: CR50 article-title: Response of mean annual evapotranspiration to vegetation changes at catchment scale publication-title: Water Resour. Res. doi: 10.1029/2000WR900325 – volume: 100 start-page: 81 year: 1972 end-page: 92 ident: CR41 article-title: On the assessment of surface heat flux and evaporation using large-scale parameters publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 – volume: 45 start-page: 12457 year: 2018 end-page: 12466 ident: CR30 article-title: Plant physiological responses to rising CO modify simulated daily runoff intensity with implications for global-scale flood risk assessment publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL079901 – volume: 115 start-page: 4093 year: 2018 end-page: 4098 ident: CR12 article-title: Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1720712115 – volume: 11 year: 2020 ident: CR18 article-title: Vegetation forcing modulates global land monsoon and water resources in a CO -enriched climate publication-title: Nat. Commun. doi: 10.1038/s41467-020-18992-7 – volume: 212 start-page: 103451 year: 2021 ident: CR52 article-title: Understanding interactions among climate, water, and vegetation with the Budyko framework publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2020.103451 – volume: 11 start-page: 38 year: 2021 end-page: 44 ident: CR23 article-title: Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands publication-title: Nat. Clim. Change doi: 10.1038/s41558-020-00945-z – volume: 491 start-page: 435 year: 2012 end-page: 438 ident: CR35 article-title: Little change in global drought over the past 60 years publication-title: Nature doi: 10.1038/nature11575 – ident: CR54 – volume: 24 start-page: 2921 year: 2020 end-page: 2930 ident: CR36 article-title: Comparing Palmer Drought Severity Index drought assessments using the traditional offline approach with direct climate model outputs publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-24-2921-2020 – volume: 7 start-page: 263 year: 2017 end-page: 267 ident: CR5 article-title: Towards a rain-dominated Arctic publication-title: Nat. Clim. Change doi: 10.1038/nclimate3240 – ident: CR42 – volume: 6 year: 2015 ident: CR25 article-title: Global pattern for the effect of climate and land cover on water yield publication-title: Nat. Commun. doi: 10.1038/ncomms6918 – volume: 53 start-page: 822 year: 2017 end-page: 838 ident: CR3 article-title: A hydrologic drying bias in water-resource impact analyses of anthropogenic climate change publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/1752-1688.12538 – volume: 5 start-page: 560 year: 2015 end-page: 564 ident: CR4 article-title: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes publication-title: Nat. Clim. Change doi: 10.1038/nclimate2617 – volume: 42 start-page: 1781 year: 2015 end-page: 1790 ident: CR48 article-title: The complementary relationship and generation of the Budyko functions publication-title: Geophys. Res. Lett. doi: 10.1002/2015GL063511 – volume: 3 start-page: 772 year: 2019 end-page: 779 ident: CR32 article-title: Air temperature optima of vegetation productivity across global biomes publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-019-0838-x – volume: 439 start-page: 835 year: 2006 end-page: 838 ident: CR10 article-title: Detection of a direct carbon dioxide effect in continental river runoff records publication-title: Nature doi: 10.1038/nature04504 – volume: 9 start-page: 44–48 year: 2019 ident: CR22 article-title: Hydrologic implications of vegetation response to elevated CO in climate projections publication-title: Nat. Clim. Change doi: 10.1038/s41558-018-0361-0 – volume: 53 start-page: 9659 year: 2017 end-page: 9678 ident: CR6 article-title: Large-scale controls of the surface water balance over land: insights from a systematic review and meta-analysis publication-title: Water Resour. Res. doi: 10.1002/2017WR021215 – volume: 44 start-page: W03410 year: 2008 ident: CR47 article-title: New analytical derivation of the mean annual water–energy balance equation publication-title: Water Resour. Res. doi: 10.1029/2007WR006135 – volume: 387 start-page: 796 year: 1997 end-page: 799 ident: CR14 article-title: Contrasting physiological and structural vegetation feedbacks in climate change simulations publication-title: Nature doi: 10.1038/42924 – volume: 52 start-page: 7163 year: 2016 end-page: 7177 ident: CR29 article-title: A new method to partition climate and catchment effect on the mean annual runoff based on the Budyko complementary relationship publication-title: Water Resour. Res. doi: 10.1002/2016WR019046 – volume: 51 start-page: 5450 year: 2015 end-page: 5463 ident: CR33 article-title: On the assessment of aridity with changes in atmospheric CO publication-title: Water Resour. Res. doi: 10.1002/2015WR017031 – volume: 10 start-page: e2021EF002457 year: 2022 ident: CR19 article-title: Large divergence in tropical hydrological projections caused by model spread in vegetation responses to elevated CO publication-title: Earth’s Future doi: 10.1029/2021EF002457 – volume: 11 start-page: 331 year: 2021 end-page: 337 ident: CR37 article-title: No projected global drylands expansion under greenhouse warming publication-title: Nat. Clim. Change doi: 10.1038/s41558-021-01007-8 – ident: CR43 – volume: 6 start-page: 946 year: 2016 end-page: 949 ident: CR2 article-title: Potential evapotranspiration and continental drying publication-title: Nat. Clim. Change doi: 10.1038/nclimate3046 – volume: 6 start-page: 791 year: 2016 end-page: 795 ident: CR7 article-title: Greening of the Earth and its drivers publication-title: Nat. Clim. Change doi: 10.1038/nclimate3004 – volume: 47 start-page: W07526 year: 2011 ident: CR27 article-title: Derivation of climate elasticity of runoff to assess the effects of climate change on annual runoff publication-title: Water Resour. Res. doi: 10.1029/2010WR009287 – volume: 104 start-page: 15242 year: 2007 end-page: 15247 ident: CR15 article-title: Changes in climate and land use have a larger direct impact than rising CO on global river runoff trends publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0707213104 – volume: 47 start-page: W00G07 year: 2011 ident: CR49 article-title: A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties publication-title: Water Resour. Res. doi: 10.1029/2010WR009826 – volume: 9 start-page: 873 year: 2019 end-page: 879 ident: CR13 article-title: The effect of plant physiological responses to rising CO on global streamflow publication-title: Nat. Clim. Change doi: 10.1038/s41558-019-0602-x – volume: 2 start-page: 232 year: 2021 end-page: 250 ident: CR34 article-title: Multifaceted characteristics of dryland aridity changes in a warming world publication-title: Nat. Rev. Earth Environ. doi: 10.1038/s43017-021-00144-0 – volume: 43 start-page: 1140 year: 2016 end-page: 1148 ident: CR51 article-title: Quantifying the effect of vegetation change on the regional water balance within the Budyko framework publication-title: Geophys. Res. Lett. doi: 10.1002/2015GL066952 – ident: CR44 – volume: 13 year: 2022 ident: CR40 article-title: Diminishing seasonality of subtropical water availability in a warmer world dominated by soil moisture–atmosphere feedbacks publication-title: Nat. Commun. doi: 10.1038/s41467-022-33473-9 – volume: 21 start-page: 3953 year: 2017 end-page: 3973 ident: CR24 article-title: The complementary merits of competing modelling philosophies in hydrology publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-3953-2017 – volume: 15 start-page: 363 year: 2022 end-page: 368 ident: CR26 article-title: Shifts in regional water availability due to global tree restoration publication-title: Nat. Geosci. doi: 10.1038/s41561-022-00935-0 – volume: 12 start-page: 983 year: 2019 end-page: 988 ident: CR9 article-title: Mid-latitude freshwater availability reduced by projected vegetation responses to climate change publication-title: Nat. Geosci. doi: 10.1038/s41561-019-0480-x – volume: 8 start-page: 434 year: 2018 end-page: 440 ident: CR17 article-title: Forest response to rising CO drives zonally asymmetric rainfall change over tropical land publication-title: Nat. Clim. Change doi: 10.1038/s41558-018-0144-7 – volume: 3 start-page: 385 year: 2013 end-page: 390 ident: CR21 article-title: The impact of global land-cover change on the terrestrial water cycle publication-title: Nat. Clim. Change doi: 10.1038/nclimate1690 – volume: 18 start-page: 1575 year: 2014 end-page: 1589 ident: CR28 article-title: A general framework for understanding the response of the water cycle to global warming over land and ocean publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-18-1575-2014 – volume: 40 start-page: W02502 year: 2004 ident: CR46 article-title: A rational function approach for estimating mean annual evapotranspiration publication-title: Water Resour. Res. doi: 10.1029/2003WR002710 – volume: 9 start-page: 1937 year: 2016 end-page: 1958 ident: CR31 article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-1937-2016 – volume: 107 start-page: 9513 year: 2010 end-page: 9518 ident: CR20 article-title: Importance of carbon dioxide physiological forcing to future climate change publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0913000107 – volume: 448 start-page: 1037 year: 2007 end-page: 1041 ident: CR11 article-title: Projected increase in continental runoff due to plant responses to increasing carbon dioxide publication-title: Nature doi: 10.1038/nature06045 – volume: 28 start-page: 7313 year: 2022 end-page: 7326 ident: CR16 article-title: Emergence of the physiological effects of elevated CO on land–atmosphere exchange of carbon and water publication-title: Glob. Change Biol. doi: 10.1111/gcb.16397 – volume: 10 start-page: e2022EF002814 year: 2022 ident: CR39 article-title: Why do the global warming responses of land‐surface models and climatic dryness metrics disagree? publication-title: Earth’s Future doi: 10.1029/2022EF002814 – volume: 40 start-page: 6123 year: 2013 end-page: 6129 ident: CR45 article-title: Local and global factors controlling water–energy balances within the Budyko framework publication-title: Geophys. Res. Lett. doi: 10.1002/2013GL058324 – volume: 6 start-page: 166 year: 2016 end-page: 171 ident: CR38 article-title: Accelerated dryland expansion under climate change publication-title: Nat. Clim. Change doi: 10.1038/nclimate2837 – volume: 10 start-page: e2021EF002457 year: 2022 ident: 1659_CR19 publication-title: Earth’s Future doi: 10.1029/2021EF002457 – volume: 491 start-page: 435 year: 2012 ident: 1659_CR35 publication-title: Nature doi: 10.1038/nature11575 – volume: 47 start-page: W07526 year: 2011 ident: 1659_CR27 publication-title: Water Resour. Res. doi: 10.1029/2010WR009287 – volume: 40 start-page: W02502 year: 2004 ident: 1659_CR46 publication-title: Water Resour. Res. doi: 10.1029/2003WR002710 – volume: 3 start-page: 772 year: 2019 ident: 1659_CR32 publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-019-0838-x – volume: 15 start-page: 363 year: 2022 ident: 1659_CR26 publication-title: Nat. Geosci. doi: 10.1038/s41561-022-00935-0 – volume: 11 year: 2020 ident: 1659_CR18 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18992-7 – volume: 11 start-page: 331 year: 2021 ident: 1659_CR37 publication-title: Nat. Clim. Change doi: 10.1038/s41558-021-01007-8 – ident: 1659_CR42 – volume: 28 start-page: 7313 year: 2022 ident: 1659_CR16 publication-title: Glob. Change Biol. doi: 10.1111/gcb.16397 – volume: 37 start-page: 701 year: 2001 ident: 1659_CR50 publication-title: Water Resour. Res. doi: 10.1029/2000WR900325 – volume: 45 start-page: 12457 year: 2018 ident: 1659_CR30 publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL079901 – volume: 12 start-page: 983 year: 2019 ident: 1659_CR9 publication-title: Nat. Geosci. doi: 10.1038/s41561-019-0480-x – volume: 53 start-page: 822 year: 2017 ident: 1659_CR3 publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/1752-1688.12538 – volume: 42 start-page: 1781 year: 2015 ident: 1659_CR48 publication-title: Geophys. Res. Lett. doi: 10.1002/2015GL063511 – volume: 9 start-page: 873 year: 2019 ident: 1659_CR13 publication-title: Nat. Clim. Change doi: 10.1038/s41558-019-0602-x – volume: 51 start-page: 5450 year: 2015 ident: 1659_CR33 publication-title: Water Resour. Res. doi: 10.1002/2015WR017031 – volume: 1472 start-page: 49 year: 2020 ident: 1659_CR1 publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.14337 – volume: 439 start-page: 835 year: 2006 ident: 1659_CR10 publication-title: Nature doi: 10.1038/nature04504 – ident: 1659_CR43 – volume: 9 start-page: 44–48 year: 2019 ident: 1659_CR22 publication-title: Nat. Clim. Change doi: 10.1038/s41558-018-0361-0 – volume: 52 start-page: 7163 year: 2016 ident: 1659_CR29 publication-title: Water Resour. Res. doi: 10.1002/2016WR019046 – volume: 47 start-page: W00G07 year: 2011 ident: 1659_CR49 publication-title: Water Resour. Res. doi: 10.1029/2010WR009826 – volume: 6 year: 2015 ident: 1659_CR25 publication-title: Nat. Commun. doi: 10.1038/ncomms6918 – volume: 8 start-page: 434 year: 2018 ident: 1659_CR17 publication-title: Nat. Clim. Change doi: 10.1038/s41558-018-0144-7 – volume: 104 start-page: 15242 year: 2007 ident: 1659_CR15 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0707213104 – volume: 24 start-page: 2921 year: 2020 ident: 1659_CR36 publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-24-2921-2020 – volume: 6 start-page: 946 year: 2016 ident: 1659_CR2 publication-title: Nat. Clim. Change doi: 10.1038/nclimate3046 – volume: 7 start-page: 263 year: 2017 ident: 1659_CR5 publication-title: Nat. Clim. Change doi: 10.1038/nclimate3240 – volume: 6 start-page: 166 year: 2016 ident: 1659_CR38 publication-title: Nat. Clim. Change doi: 10.1038/nclimate2837 – volume: 107 start-page: 9513 year: 2010 ident: 1659_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0913000107 – volume: 115 start-page: 4093 year: 2018 ident: 1659_CR12 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1720712115 – volume: 212 start-page: 103451 year: 2021 ident: 1659_CR52 publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2020.103451 – volume: 44 start-page: W03410 year: 2008 ident: 1659_CR47 publication-title: Water Resour. Res. doi: 10.1029/2007WR006135 – ident: 1659_CR54 doi: 10.5281/zenodo.7733618 – volume: 40 start-page: 6123 year: 2013 ident: 1659_CR45 publication-title: Geophys. Res. Lett. doi: 10.1002/2013GL058324 – volume: 9 start-page: 1937 year: 2016 ident: 1659_CR31 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-1937-2016 – volume: 11 start-page: 38 year: 2021 ident: 1659_CR23 publication-title: Nat. Clim. Change doi: 10.1038/s41558-020-00945-z – volume: 21 start-page: 3953 year: 2017 ident: 1659_CR24 publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-3953-2017 – volume: 3 start-page: 385 year: 2013 ident: 1659_CR21 publication-title: Nat. Clim. Change doi: 10.1038/nclimate1690 – ident: 1659_CR44 – volume: 2 start-page: 232 year: 2021 ident: 1659_CR34 publication-title: Nat. Rev. Earth Environ. doi: 10.1038/s43017-021-00144-0 – volume: 44 start-page: 236 year: 2017 ident: 1659_CR8 publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL071921 – volume: 18 start-page: 1575 year: 2014 ident: 1659_CR28 publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-18-1575-2014 – volume: 275 start-page: 59 year: 2019 ident: 1659_CR53 publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2019.05.001 – volume: 6 start-page: 791 year: 2016 ident: 1659_CR7 publication-title: Nat. Clim. Change doi: 10.1038/nclimate3004 – volume: 43 start-page: 1140 year: 2016 ident: 1659_CR51 publication-title: Geophys. Res. Lett. doi: 10.1002/2015GL066952 – volume: 448 start-page: 1037 year: 2007 ident: 1659_CR11 publication-title: Nature doi: 10.1038/nature06045 – volume: 5 start-page: 560 year: 2015 ident: 1659_CR4 publication-title: Nat. Clim. Change doi: 10.1038/nclimate2617 – volume: 387 start-page: 796 year: 1997 ident: 1659_CR14 publication-title: Nature doi: 10.1038/42924 – volume: 53 start-page: 9659 year: 2017 ident: 1659_CR6 publication-title: Water Resour. Res. doi: 10.1002/2017WR021215 – volume: 10 start-page: e2022EF002814 year: 2022 ident: 1659_CR39 publication-title: Earth’s Future doi: 10.1029/2022EF002814 – volume: 13 year: 2022 ident: 1659_CR40 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33473-9 – volume: 100 start-page: 81 year: 1972 ident: 1659_CR41 publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 |
SSID | ssj0000716369 |
Score | 2.6230083 |
Snippet | Increases in atmospheric CO
2
concentration affect continental runoff through radiative and physiological forcing. However, how climate and land surface... Increases in atmospheric CO2 concentration affect continental runoff through radiative and physiological forcing. However, how climate and land surface... Not provided. |
SourceID | osti proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 442 |
SubjectTerms | 704/106/694 704/242 Carbon dioxide Carbon dioxide concentration Climate Change Climate Change/Climate Change Impacts Climate effects Earth and Environmental Science Environment Environmental Law/Policy/Ecojustice Environmental Sciences & Ecology Meteorology & Atmospheric Sciences Moisture effects Physiological effects Physiological responses Physiology Plant cover Radiative forcing Runoff Runoff increase Soil moisture Sustainability management Synergistic effect Vegetation Vegetation cover Water management Water resources Water resources management |
Title | Projected increase in global runoff dominated by land surface changes |
URI | https://link.springer.com/article/10.1038/s41558-023-01659-8 https://www.proquest.com/docview/2811778964 https://www.osti.gov/biblio/2424345 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA86X3wRP7F-kQfxRcPaJu3SJ9GxMQRFxMHeQpMmIEg71-3B_967NtuYoG8NTVq4S-5-d7kPQq51kuZJnloW6bzHhNOOZdKEzMWRA_XvEmswwfn5JR2NxdMkmXiHW-3DKpcysRHURWXQR96NMSOyJ7NU3E-_GHaNwttV30Jjm-yACJZgfO08Dl5e31ZeFlCgKW_62oGalAwk88RnzoRcdmvUppKB2mKY1ZMxuaGdOhWcsg3k-euytNFBw32y58EjfWi5fUC2bHlIgmfAvdWscY_TG9r__AAQ2oyOyOC1dbTYgn6UiA9rCw-0rQJCZ4uyco4WFYbD4Bz9TTHQkdaLmcuNpW1WcH1MxsPBe3_EfOMEZrhI58wUthAi4Uakaea4LUKTABeiDIw5Z6zLACQZgDIawIzumdAIGzkHYjEyMF_n_IR0yqq0p4RaG2axg6VSCLD9Qi3zKM7R7ip45EQvINGSYMr4quLY3OJTNbfbXKqWyAqIrBoiKxmQ29WaaVtT49_Z58gHBYgAy9oajP8xc4VpLVwkAblYskf501er9V4JyN2SZevXf__r7P-vnZPduNksGO94QTrz2cJeAiaZ6yu_8X4AwAHcaQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5dBeKgpUTaGtD5QLtUhiJ-scqqqFRUthV6gCaW9u7NgSEkroZlcVf4rf2Jk8QFSCG7dEsZNoZuxvZjwPgB2TpHmSp45HJh9y6Y3nmbIh93HkEf594iwlOE-m6fhC_pwlsxW47XNhKKyy3xObjbqoLPnI92PKiByqLJXfrv9w6hpFp6t9C41WLE7czV802eqvx4fI389xfDQ6PxjzrqsAt0KmC24LV0iZCCvTNPPCFaFN8BfRmA8zb53PUIOwiPMGkd4MbWili7zHPSOyON7kAt_7AlalQFNmAKs_RtOzX3deHQTsVDR99BCWFUckmHWZOqFQ-zWht-IIk5yyiDKuHqDhoMJV_UDT_e9wtsG8ozV43Smr7HsrXW9gxZXrEExQz67mjTue7bKDq0tUepu7DRidtY4dV7DLkvTR2uEFa6uOsPmyrLxnRUXhNzTG3DAKrGT1cu5z61ibhVxvwsWzkPQtDMqqdO-AORdmscepSkq0NUOj8ijOyc4rROTlMICoJ5i2XRVzaqZxpZvTdKF0S2SNRNYNkbUKYO9uznVbw-PJ0VvEB40aCJXRtRRvZBea0miETALY7tmju9Ve63vZDOBLz7L7x49_6_3Tb_sEL8fnk1N9ejw92YJXcSM4FGu5DYPFfOk-oD60MB87IWTw-7nl_h8Zfhqr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7SDZReStMHdZKmOrS9tGJtS7blQwlpskvSNMtSGtibaskSBIKdrncp-Wv9dZ3xIyGF5pabjSXbzIz0zYzmAfDOJGmRFKnjkSkyLr3xPFc25D6OPMK_T5ylBOezWXp8Lr8uksUG_BlyYSisctgT2426rC35yMcxZURmKk_l2PdhEfOj6f7VL04dpOikdWin0YnIqbv-jeZb8_nkCHn9Po6nkx-Hx7zvMMCtkOmK29KVUibCyjTNvXBlaBP8XTTsw9xb53PUJixivkHUN5kNrXSR97h_RBbHm0Lgex_BZoZWUTiCzS-T2fz7jYcHwTsVbU89hGjFERUWfdZOKNS4ISRXHCGTU0ZRztUdZBzVuMLvaL3_HNS2-Dd9Bk97xZUddJK2BRuueg7BGerc9bJ1zbMP7PDyAhXg9u4FTOadk8eV7KIi3bRxeMG6CiRsua5q71lZUygOjTHXjIIsWbNe-sI61mUkNy_h_EFI-gpGVV2518CcC_PY41QlJVHYqCKKC7L5ShF5mQUQDQTTtq9oTo01LnV7si6U7oiskci6JbJWAXy8mXPV1fO4d_QO8UGjNkIldS3FHtmVppQaIZMAdgf26H7lN_pWTgP4NLDs9vH_v7V9_9vewmOUd_3tZHa6A0_iVm4o7HIXRqvl2r1B1Whl9noZZPDzocX-L0bIHuA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Projected+increase+in+global+runoff+dominated+by+land+surface+changes&rft.jtitle=Nature+climate+change&rft.au=Zhou%2C+Sha&rft.au=Yu%2C+Bofu&rft.au=Lintner%2C+Benjamin+R&rft.au=Findell%2C+Kirsten+L&rft.date=2023-05-01&rft.pub=Nature+Publishing+Group&rft.issn=1758-678X&rft.eissn=1758-6798&rft.volume=13&rft.issue=5&rft.spage=442&rft.epage=449&rft_id=info:doi/10.1038%2Fs41558-023-01659-8&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-678X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-678X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-678X&client=summon |