Excitation of helium Rydberg states and doubly excited resonances in strong extreme ultraviolet fields: Full-dimensional quantum dynamics using exponentially tempered Gaussian basis sets
Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)]10.1063/1.4772468 are employed in quantitative simulations of helium absorption cross-sections and two-photon excitation yields of doubly excited resonances. Linear...
Saved in:
Published in | The Journal of chemical physics Vol. 139; no. 10; p. 104314 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
14.09.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)]10.1063/1.4772468 are employed in quantitative simulations of helium absorption cross-sections and two-photon excitation yields of doubly excited resonances. Linearly polarized half-infinite and Gaussian laser pulses at wavelengths 38–58 nm and large intensities up to 100 TW/cm2 are considered. The emphasis is laid on convergence of the results with respect to the quality of the Gaussian basis sets (typically limited by a number of partial waves, density, and spatial extent of the basis functions) as well as to the quality of the basis set of field-free states (typically limited by the maximum rotational quantum number and maximum excitation of the lower electron). Particular attention is paid to stability of the results with respect to varying complex scaling parameter. Moreover, the study of the dynamics is preceded by a thorough check of helium energies and oscillator strengths as they are obtained with the exponentially tempered Gaussian basis sets, being also compared with yet unpublished emission wavelengths measured in electric discharge experiments. |
---|---|
AbstractList | Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)] are employed in quantitative simulations of helium absorption cross-sections and two-photon excitation yields of doubly excited resonances. Linearly polarized half-infinite and Gaussian laser pulses at wavelengths 38–58 nm and large intensities up to 100 TW/cm{sup 2} are considered. The emphasis is laid on convergence of the results with respect to the quality of the Gaussian basis sets (typically limited by a number of partial waves, density, and spatial extent of the basis functions) as well as to the quality of the basis set of field-free states (typically limited by the maximum rotational quantum number and maximum excitation of the lower electron). Particular attention is paid to stability of the results with respect to varying complex scaling parameter. Moreover, the study of the dynamics is preceded by a thorough check of helium energies and oscillator strengths as they are obtained with the exponentially tempered Gaussian basis sets, being also compared with yet unpublished emission wavelengths measured in electric discharge experiments. Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)]10.1063/1.4772468 are employed in quantitative simulations of helium absorption cross-sections and two-photon excitation yields of doubly excited resonances. Linearly polarized half-infinite and Gaussian laser pulses at wavelengths 38–58 nm and large intensities up to 100 TW/cm2 are considered. The emphasis is laid on convergence of the results with respect to the quality of the Gaussian basis sets (typically limited by a number of partial waves, density, and spatial extent of the basis functions) as well as to the quality of the basis set of field-free states (typically limited by the maximum rotational quantum number and maximum excitation of the lower electron). Particular attention is paid to stability of the results with respect to varying complex scaling parameter. Moreover, the study of the dynamics is preceded by a thorough check of helium energies and oscillator strengths as they are obtained with the exponentially tempered Gaussian basis sets, being also compared with yet unpublished emission wavelengths measured in electric discharge experiments. Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)] are employed in quantitative simulations of helium absorption cross-sections and two-photon excitation yields of doubly excited resonances. Linearly polarized half-infinite and Gaussian laser pulses at wavelengths 38-58 nm and large intensities up to 100 TW/cm(2) are considered. The emphasis is laid on convergence of the results with respect to the quality of the Gaussian basis sets (typically limited by a number of partial waves, density, and spatial extent of the basis functions) as well as to the quality of the basis set of field-free states (typically limited by the maximum rotational quantum number and maximum excitation of the lower electron). Particular attention is paid to stability of the results with respect to varying complex scaling parameter. Moreover, the study of the dynamics is preceded by a thorough check of helium energies and oscillator strengths as they are obtained with the exponentially tempered Gaussian basis sets, being also compared with yet unpublished emission wavelengths measured in electric discharge experiments. Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)] are employed in quantitative simulations of helium absorption cross-sections and two-photon excitation yields of doubly excited resonances. Linearly polarized half-infinite and Gaussian laser pulses at wavelengths 38-58 nm and large intensities up to 100 TW/cm(2) are considered. The emphasis is laid on convergence of the results with respect to the quality of the Gaussian basis sets (typically limited by a number of partial waves, density, and spatial extent of the basis functions) as well as to the quality of the basis set of field-free states (typically limited by the maximum rotational quantum number and maximum excitation of the lower electron). Particular attention is paid to stability of the results with respect to varying complex scaling parameter. Moreover, the study of the dynamics is preceded by a thorough check of helium energies and oscillator strengths as they are obtained with the exponentially tempered Gaussian basis sets, being also compared with yet unpublished emission wavelengths measured in electric discharge experiments.Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)] are employed in quantitative simulations of helium absorption cross-sections and two-photon excitation yields of doubly excited resonances. Linearly polarized half-infinite and Gaussian laser pulses at wavelengths 38-58 nm and large intensities up to 100 TW/cm(2) are considered. The emphasis is laid on convergence of the results with respect to the quality of the Gaussian basis sets (typically limited by a number of partial waves, density, and spatial extent of the basis functions) as well as to the quality of the basis set of field-free states (typically limited by the maximum rotational quantum number and maximum excitation of the lower electron). Particular attention is paid to stability of the results with respect to varying complex scaling parameter. Moreover, the study of the dynamics is preceded by a thorough check of helium energies and oscillator strengths as they are obtained with the exponentially tempered Gaussian basis sets, being also compared with yet unpublished emission wavelengths measured in electric discharge experiments. |
Author | Šmydke, Jan Kaprálová-Žďánská, Petra Ruth Civiš, Svatopluk |
Author_xml | – sequence: 1 givenname: Petra Ruth surname: Kaprálová-Žďánská fullname: Kaprálová-Žďánská, Petra Ruth – sequence: 2 givenname: Jan surname: Šmydke fullname: Šmydke, Jan – sequence: 3 givenname: Svatopluk surname: Civiš fullname: Civiš, Svatopluk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24050351$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/22220425$$D View this record in Osti.gov |
BookMark | eNpt0c9uFSEUBnBiauxtdeELGBI3upgW5jLM4M40_WPSxMToesLAmRbDwC0HGu-r-XRye29dGNmwOD_4cvKdkKMQAxDylrMzzuT6nJ-JgSuhuhdkxdmgml4qdkRWjLW8UZLJY3KC-JMxxvtWvCLHrWAdW3d8RX5f_jIu6-xioHGm9-BdWei3rZ0g3VGsE0Cqg6U2lslvKew4WJoAY9DB1KkL1aUY7uowJ1iAFp-TfnTRQ6azA2_xE70q3jfWLRCwZmlPH4oOuWbZbdCLM0gLuqc_NnW5kJ32NS7DsoFU8651QXQ60EmjQ4qQ8TV5OWuP8OZwn5IfV5ffL26a26_XXy4-3zZmLWRuJmGGQUttgM99z1nXTWKwHNQ0aym15rLrxdC1Rtm5qskwsR4EswIYl3Lq1qfk_f7fiNmNuNvf3JsYApg8tvUw0e7Uh73apPhQAPO4ODTgvQ4QC45ciF6ogSlV6bsDLdMCdtwkt-i0HZ9bqeDjHpgUERPMfwln467xkY-Hxqs9_8c-91k7cP4_L_4Ah_axAQ |
CitedBy_id | crossref_primary_10_1080_00268976_2019_1601788 crossref_primary_10_1016_j_jqsrt_2013_10_017 crossref_primary_10_1039_D2CP04633D crossref_primary_10_1021_acs_jpclett_0c01519 crossref_primary_10_1088_1751_8121_ac76f7 crossref_primary_10_1063_1_5098063 crossref_primary_10_1088_1367_2630_17_6_063002 crossref_primary_10_1063_1_4885136 |
Cites_doi | 10.1103/PhysRevA.77.043420 10.1103/PhysRevA.68.043406 10.1002/lapl.200910023 10.1038/nphoton.2008.134 10.1103/PhysRevA.64.033411 10.1103/PhysRevA.69.032707 10.1016/j.adt.2011.11.003 10.1098/rspa.1958.0246 10.1103/PhysRevA.83.023414 10.1103/PhysRevA.78.053408 10.1063/1.464391 10.1016/j.adt.2008.03.003 10.1146/annurev.pc.33.100182.001255 10.1007/978-1-4613-0315-2 10.1103/PhysRevLett.103.063002 10.1103/PhysRevA.49.4473 10.1063/1.4772468 10.1088/0953-4075/30/21/010 10.1088/0953-4075/44/3/035004 10.1103/PhysRevA.80.043412 10.1103/PhysRevA.77.063415 10.1103/PhysRevA.74.052505 10.1063/1.1150041 10.1103/PhysRevA.86.053417 10.1140/epjd/e2005-00334-y 10.1103/PhysRevA.76.053411 10.1088/0953-4075/28/15/010 10.1016/0022-2852(92)90504-H 10.1103/PhysRevLett.78.2100 10.1088/0034-4885/65/10/204 10.1103/PhysRevLett.107.193603 10.1103/PhysRevA.74.063409 10.1103/PhysRevLett.80.3743 10.1088/0034-4885/64/12/205 10.1103/PhysRevA.83.041403 10.1007/978-0-387-26308-3_11 10.1016/S0370-1573(98)00002-7 10.1063/1.1566737 10.1063/1.1904587 10.1103/PhysRevA.79.023403 10.1103/PhysRevLett.105.093903 10.1088/0953-4075/29/22/011 10.1088/0953-4075/33/11/310 10.1007/BF01120130 10.1063/1.466875 10.1063/1.466739 10.1088/0953-4075/26/8/012 10.1088/0953-4075/42/13/134015 10.1086/143271 10.1016/j.pquantelec.2006.09.001 10.1103/PhysRevA.84.053419 10.1088/0953-4075/34/4/304 10.1016/j.physrep.2003.10.001 10.1103/PhysRevA.86.053425 10.1016/j.cplett.2003.11.025 10.1103/PhysRevA.84.033420 10.1103/PhysRevA.85.032516 10.1021/jp034390y 10.1103/PhysRevLett.85.5218 10.1103/PhysRevLett.105.053002 10.1038/nphys1341 10.1021/jp063689o 10.1103/PhysRevA.46.2378 10.1088/0031-8949/2/3/006 10.1103/PhysRevA.49.3712 10.1103/PhysRevA.85.013411 10.1088/0953-4075/31/14/016 10.1063/1.466058 10.1103/PhysRevA.77.043421 10.1088/0953-4075/27/5/008 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 OTOTI |
DOI | 10.1063/1.4819495 |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 22220425 24050351 10_1063_1_4819495 |
Genre | Journal Article |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAGWI AAPUP AAYIH AAYXX ABJGX ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM ADMLS AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D-I DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P0- P2P RIP RNS ROL RQS TN5 TWZ UPT WH7 YQT YZZ ~02 NPM 7X8 0ZJ AAEUA ABPTK AGIHO ESX OTOTI UE8 ZHY |
ID | FETCH-LOGICAL-c346t-b4c88a6ace1f771055b48d1e9bfa66aa16574852c9df6acbc043840d4e0166b53 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Thu May 18 18:39:53 EDT 2023 Fri Jul 11 10:00:48 EDT 2025 Mon Jul 21 05:48:24 EDT 2025 Tue Jul 01 00:45:02 EDT 2025 Thu Apr 24 23:09:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c346t-b4c88a6ace1f771055b48d1e9bfa66aa16574852c9df6acbc043840d4e0166b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24050351 |
PQID | 1447498099 |
PQPubID | 23479 |
ParticipantIDs | osti_scitechconnect_22220425 proquest_miscellaneous_1447498099 pubmed_primary_24050351 crossref_primary_10_1063_1_4819495 crossref_citationtrail_10_1063_1_4819495 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-14 2013-Sep-14 20130914 |
PublicationDateYYYYMMDD | 2013-09-14 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2013 |
References | (2023062608193849400_c36) 2003; 118 (2023062608193849400_c21) 2004; 390 (2023062608193849400_c13) 2011; 83 (2023062608193849400_c45) 1994; 100 (2023062608193849400_c65) 1958; 248 2023062608193849400_c73 (2023062608193849400_c39) 1990; 77 (2023062608193849400_c30) 2006; 74 (2023062608193849400_c11) 2004; 69 (2023062608193849400_c33) 1998; 80 (2023062608193849400_c67) 2006; 38 (2023062608193849400_c10) 2000; 33 (2023062608193849400_c76) 2008; 94 (2023062608193849400_c17) 2008; 77 (2023062608193849400_c37) 2003; 68 (2023062608193849400_c38) 2013; 138 (2023062608193849400_c5) 2002; 65 (2023062608193849400_c22) 2009; 80 (2023062608193849400_c23) 2005; 123 (2023062608193849400_c32) 2012; 85 (2023062608193849400_c24) 2008; 77 (2023062608193849400_c9) 2001; 64 (2023062608193849400_c52) 1998; 302 (2023062608193849400_c64) 1970; 2 (2023062608193849400_c18) 2007; 76 (2023062608193849400_c31) 2006; 74 (2023062608193849400_c46) 1997; 78 (2023062608193849400_c61) 2006; 110 (2023062608193849400_c58) 2012; 98 (2023062608193849400_c14) 2011; 83 (2023062608193849400_c75) 1997; 30 (2023062608193849400_c27) 2011; 84 (2023062608193849400_c43) 1994; 49 (2023062608193849400_c20) 2012; 85 (2023062608193849400_c72) 2011; 105 2023062608193849400_c56 (2023062608193849400_c6) 2000 (2023062608193849400_c55) 2003; 107 (2023062608193849400_c50) 2011 (2023062608193849400_c19) 2009; 42 (2023062608193849400_c25) 2009; 103 (2023062608193849400_c71) 2011; 84 (2023062608193849400_c60) 2004; 383 (2023062608193849400_c62) 2006; 30 (2023062608193849400_c1) 1967 (2023062608193849400_c69) 2009; 5 (2023062608193849400_c8) 2001; 34 (2023062608193849400_c68) 2011; 107 (2023062608193849400_c42) 1993; 99 (2023062608193849400_c70) 2008; 2 (2023062608193849400_c74) 1992; 46 (2023062608193849400_c53) 1993; 26 (2023062608193849400_c77) 1994; 49 Drake (2023062608193849400_c41) 2006 (2023062608193849400_c51) 1982; 33 (2023062608193849400_c26) 2008; 77 (2023062608193849400_c28) 2012; 86 (2023062608193849400_c47) 1994; 27 (2023062608193849400_c35) 2001; 64 (2023062608193849400_c29) 2009; 79 (2023062608193849400_c40) 2013 (2023062608193849400_c63) 1992; 153 (2023062608193849400_c66) 1930; 72 (2023062608193849400_c12) 2012; 86 (2023062608193849400_c4) 2009; 6 (2023062608193849400_c48) 2011; 44 (2023062608193849400_c59) 1995; 28 (2023062608193849400_c15) 2010; 105 (2023062608193849400_c34) 2000; 85 (2023062608193849400_c57) 1998; 31 (2023062608193849400_c3) 1979 (2023062608193849400_c44) 1994; 100 (2023062608193849400_c49) 1996; 29 (2023062608193849400_c7) 1999; 70 (2023062608193849400_c54) 1993; 98 Becker (2023062608193849400_c2) 1996 (2023062608193849400_c16) 2008; 78 |
References_xml | – volume: 77 start-page: 043420 year: 2008 ident: 2023062608193849400_c24 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.77.043420 – volume-title: The Physics of Free Electron Lasers year: 2000 ident: 2023062608193849400_c6 – volume: 68 start-page: 043406 year: 2003 ident: 2023062608193849400_c37 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.68.043406 – volume-title: NIST Atomic Spectra Database (ver. 5.0) year: 2013 ident: 2023062608193849400_c40 – volume: 6 start-page: 411 year: 2009 ident: 2023062608193849400_c4 publication-title: Laser. Phys. Lett. doi: 10.1002/lapl.200910023 – volume: 2 start-page: 555 year: 2008 ident: 2023062608193849400_c70 publication-title: Nature Photon. doi: 10.1038/nphoton.2008.134 – volume: 64 start-page: 033411 year: 2001 ident: 2023062608193849400_c35 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.64.033411 – volume: 69 start-page: 032707 year: 2004 ident: 2023062608193849400_c11 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.69.032707 – volume: 98 start-page: 120 year: 2012 ident: 2023062608193849400_c58 publication-title: At. Data Nucl. Data Tables doi: 10.1016/j.adt.2011.11.003 – volume: 248 start-page: 309 year: 1958 ident: 2023062608193849400_c65 publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1958.0246 – volume: 83 start-page: 023414 year: 2011 ident: 2023062608193849400_c14 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.83.023414 – volume: 78 start-page: 053408 year: 2008 ident: 2023062608193849400_c16 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.78.053408 – volume: 98 start-page: 9610 year: 1993 ident: 2023062608193849400_c54 publication-title: J. Chem. Phys. doi: 10.1063/1.464391 – volume: 94 start-page: 903 year: 2008 ident: 2023062608193849400_c76 publication-title: At. Data Nucl. Data Tables doi: 10.1016/j.adt.2008.03.003 – volume: 33 start-page: 223 year: 1982 ident: 2023062608193849400_c51 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.33.100182.001255 – volume-title: VUV and Soft X-Ray Photoionization year: 1996 ident: 2023062608193849400_c2 doi: 10.1007/978-1-4613-0315-2 – volume: 103 start-page: 063002 year: 2009 ident: 2023062608193849400_c25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.063002 – volume: 49 start-page: 4473 year: 1994 ident: 2023062608193849400_c77 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.49.4473 – ident: 2023062608193849400_c56 – volume: 138 start-page: 024105 year: 2013 ident: 2023062608193849400_c38 publication-title: J. Chem. Phys. doi: 10.1063/1.4772468 – volume: 30 start-page: 4663 year: 1997 ident: 2023062608193849400_c75 publication-title: J. Phys. B doi: 10.1088/0953-4075/30/21/010 – volume: 44 start-page: 035004 year: 2011 ident: 2023062608193849400_c48 publication-title: J. Phys. B doi: 10.1088/0953-4075/44/3/035004 – volume: 80 start-page: 043412 year: 2009 ident: 2023062608193849400_c22 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.80.043412 – volume: 77 start-page: 063415 year: 2008 ident: 2023062608193849400_c17 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.77.063415 – ident: 2023062608193849400_c73 doi: 10.1103/PhysRevA.77.043420 – volume: 74 start-page: 052505 year: 2006 ident: 2023062608193849400_c31 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.74.052505 – volume-title: Photoionization Processes in Gases year: 1967 ident: 2023062608193849400_c1 – volume: 70 start-page: 3799 year: 1999 ident: 2023062608193849400_c7 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1150041 – volume: 86 start-page: 053417 year: 2012 ident: 2023062608193849400_c12 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.053417 – volume: 38 start-page: 249 year: 2006 ident: 2023062608193849400_c67 publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2005-00334-y – volume: 76 start-page: 053411 year: 2007 ident: 2023062608193849400_c18 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.76.053411 – volume: 28 start-page: 3163 year: 1995 ident: 2023062608193849400_c59 publication-title: J. Phys. B doi: 10.1088/0953-4075/28/15/010 – volume: 153 start-page: 701 year: 1992 ident: 2023062608193849400_c63 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(92)90504-H – volume: 78 start-page: 2100 year: 1997 ident: 2023062608193849400_c46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.2100 – volume: 65 start-page: 1513 year: 2002 ident: 2023062608193849400_c5 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/65/10/204 – volume: 107 start-page: 193603 year: 2011 ident: 2023062608193849400_c68 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.193603 – volume: 74 start-page: 063409 year: 2006 ident: 2023062608193849400_c30 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.74.063409 – volume: 80 start-page: 3743 year: 1998 ident: 2023062608193849400_c33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.3743 – volume: 64 start-page: 1815 year: 2001 ident: 2023062608193849400_c9 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/64/12/205 – volume: 83 start-page: 041403 year: 2011 ident: 2023062608193849400_c13 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.83.041403 – volume-title: Springer Handbook of Atomic, Molecular, and Optical Physics, Part B year: 2006 ident: 2023062608193849400_c41 article-title: High precision calculations for helium doi: 10.1007/978-0-387-26308-3_11 – volume: 302 start-page: 212 year: 1998 ident: 2023062608193849400_c52 publication-title: Phys. Rep. doi: 10.1016/S0370-1573(98)00002-7 – volume: 118 start-page: 8726 year: 2003 ident: 2023062608193849400_c36 publication-title: J. Chem. Phys. doi: 10.1063/1.1566737 – volume: 123 start-page: 062207 year: 2005 ident: 2023062608193849400_c23 publication-title: J. Chem. Phys. doi: 10.1063/1.1904587 – volume: 79 start-page: 023403 year: 2009 ident: 2023062608193849400_c29 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.79.023403 – volume: 105 start-page: 093903 year: 2010 ident: 2023062608193849400_c15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.093903 – volume: 29 start-page: 5315 year: 1996 ident: 2023062608193849400_c49 publication-title: J. Phys. B doi: 10.1088/0953-4075/29/22/011 – volume: 33 start-page: 2101 year: 2000 ident: 2023062608193849400_c10 publication-title: J. Phys. B doi: 10.1088/0953-4075/33/11/310 – volume: 77 start-page: 291 year: 1990 ident: 2023062608193849400_c39 publication-title: Theor. Chim. Acta doi: 10.1007/BF01120130 – volume: 100 start-page: 7310 year: 1994 ident: 2023062608193849400_c44 publication-title: J. Chem. Phys. doi: 10.1063/1.466875 – volume: 100 start-page: 8849 year: 1994 ident: 2023062608193849400_c45 publication-title: J. Chem. Phys. doi: 10.1063/1.466739 – volume: 26 start-page: 1445 year: 1993 ident: 2023062608193849400_c53 publication-title: J. Phys. B doi: 10.1088/0953-4075/26/8/012 – volume-title: Non-Hermitian Quantum Mechanics year: 2011 ident: 2023062608193849400_c50 – volume: 42 start-page: 134015 year: 2009 ident: 2023062608193849400_c19 publication-title: J. Phys. B doi: 10.1088/0953-4075/42/13/134015 – volume: 72 start-page: 133 year: 1930 ident: 2023062608193849400_c66 publication-title: Astrophys. J. doi: 10.1086/143271 – volume: 30 start-page: 75 year: 2006 ident: 2023062608193849400_c62 publication-title: Prog. Quantum Electron. doi: 10.1016/j.pquantelec.2006.09.001 – volume: 84 start-page: 053419 year: 2011 ident: 2023062608193849400_c71 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.053419 – volume: 34 start-page: 545 year: 2001 ident: 2023062608193849400_c8 publication-title: J. Phys. B doi: 10.1088/0953-4075/34/4/304 – volume: 390 start-page: 1 year: 2004 ident: 2023062608193849400_c21 publication-title: Physics Reports - Review Section of Physics Letters doi: 10.1016/j.physrep.2003.10.001 – volume: 86 start-page: 053425 year: 2012 ident: 2023062608193849400_c28 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.053425 – volume: 383 start-page: 256 year: 2004 ident: 2023062608193849400_c60 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2003.11.025 – volume: 84 start-page: 033420 year: 2011 ident: 2023062608193849400_c27 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.033420 – volume: 85 start-page: 032516 year: 2012 ident: 2023062608193849400_c32 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.85.032516 – volume: 107 start-page: 7181 year: 2003 ident: 2023062608193849400_c55 publication-title: J. Phys. Chem. A doi: 10.1021/jp034390y – volume: 85 start-page: 5218 year: 2000 ident: 2023062608193849400_c34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.5218 – volume: 105 start-page: 053002 year: 2011 ident: 2023062608193849400_c72 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.053002 – volume: 5 start-page: 693 year: 2009 ident: 2023062608193849400_c69 publication-title: Nat. Phys. doi: 10.1038/nphys1341 – volume: 110 start-page: 12113 year: 2006 ident: 2023062608193849400_c61 publication-title: J. Phys. Chem. A doi: 10.1021/jp063689o – volume: 46 start-page: 2378 year: 1992 ident: 2023062608193849400_c74 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.46.2378 – volume: 2 start-page: 103 year: 1970 ident: 2023062608193849400_c64 publication-title: Phys. Scr. doi: 10.1088/0031-8949/2/3/006 – volume: 49 start-page: 3712 year: 1994 ident: 2023062608193849400_c43 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.49.3712 – volume: 85 start-page: 013411 year: 2012 ident: 2023062608193849400_c20 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.85.013411 – volume: 31 start-page: 3181 year: 1998 ident: 2023062608193849400_c57 publication-title: J. Phys. B doi: 10.1088/0953-4075/31/14/016 – volume: 99 start-page: 4590 year: 1993 ident: 2023062608193849400_c42 publication-title: J. Chem. Phys. doi: 10.1063/1.466058 – volume: 77 start-page: 043421 year: 2008 ident: 2023062608193849400_c26 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.77.043421 – volume: 27 start-page: 887 year: 1994 ident: 2023062608193849400_c47 publication-title: J. Phys. B doi: 10.1088/0953-4075/27/5/008 – volume-title: Photoabsorption, Photoionization, and Photoelectron Spectroscopy year: 1979 ident: 2023062608193849400_c3 |
SSID | ssj0001724 |
Score | 2.1641862 |
Snippet | Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)]10.1063/1.4772468 are... Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)] are employed in... |
SourceID | osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 104314 |
SubjectTerms | ABSORPTION ATOMIC AND MOLECULAR PHYSICS CROSS SECTIONS DENSITY ELECTRIC DISCHARGES EMISSION EXTREME ULTRAVIOLET RADIATION GAUSS FUNCTION HELIUM INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY MULTI-PHOTON PROCESSES OSCILLATOR STRENGTHS ROTATIONAL STATES RYDBERG STATES SIMULATION WAVELENGTHS |
Title | Excitation of helium Rydberg states and doubly excited resonances in strong extreme ultraviolet fields: Full-dimensional quantum dynamics using exponentially tempered Gaussian basis sets |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24050351 https://www.proquest.com/docview/1447498099 https://www.osti.gov/biblio/22220425 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVGJwQvCMZXYSCDmIQUZWsT20l5K93GhLaBWCftLXIcR1TLkmpJppWfxj_h33BvHLcdKtLgJXJd50M5J_a1fe-5hLxTUg96XAs35oK5jKeeK4NUur7S3JOa6zTEeOejY3Fwyj6f8bO1tV9LXkt1FW-rHyvjSv4HVagDXDFK9h-QnV8UKqAM-MIREIbjrTDeu1atxLax-bJJfeF8myXos-U0oUJGgTkp6jibORqbawxXQfs7N75YGC2C-Yagk8alQqfOqkvZbNejaJPOksZnDlfp3QQzARgVDwzGhNHqwklMRvvSqZtFB309LXJ0QJIZ3BB1rzAXqPNJ1mUTrQmD5qR0Sm30o6xVvIhPayxjZUUMzLLLYrtJTs3Gfj8rrkzB3RrxrY-7ifmVl-em0HoeX0oHPfjt-dh22LuYJa3I6OLDGE2uJs2_zZknV7Iqpll9vrwkgukpBq4JRW178V44cANh8pBu6xV1tus3QkqW472lnryPqkNs5SADVh2ud2wzsKaYSRF6U8j7-Eu0f3p4GI33zsZ3yLoHMxivQ9aHu0eHJ3MzASxHZqI_zHNZ2Svh78wvfcNY6hTQ6f99ItQYROOH5EGLFx0aWj4iazrfIPdGNoHgBrn71cD3mPxcEJUWKTVEpS1RqSEqBaJSQ1TaEpUuiEonOTVEpS1R6RJRqSHqB_onTWlLU2ppShua0hs0pZam1NKUNjSlSNMn5HR_bzw6cNukIa7ymajcmKkwlEIq3U-DANO_xixM-noQp1IIKfuCByzknhokKbSKFW6Fs17CNEx-RMz9p6STwyM8J9QPw8RnMCR6KmUw2MUhF4FGPXLo3LiQXfLeohPZt4iJXbKo8ewQftSPWiC75O286dTIyKxqtIkQRyW-Y_VdoaebqiKw4D0cWrvkjYU-AiRxY0_muqhLmL6zgA1CmOx1yTPDifldwGLn6C3w4hZnvyT3F5_TJulUl7V-BTZ3Fb9u2fsbhN3fZQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excitation+of+helium+Rydberg+states+and+doubly+excited+resonances+in+strong+extreme+ultraviolet+fields%3A+full-dimensional+quantum+dynamics+using+exponentially+tempered+Gaussian+basis+sets&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Kapr%C3%A1lov%C3%A1-%C5%BDd%C3%A1nsk%C3%A1%2C+Petra+Ruth&rft.au=%C5%A0mydke%2C+Jan&rft.au=Civi%C5%A1%2C+Svatopluk&rft.date=2013-09-14&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=139&rft.issue=10&rft.spage=104314&rft_id=info:doi/10.1063%2F1.4819495&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |