Excitation of helium Rydberg states and doubly excited resonances in strong extreme ultraviolet fields: Full-dimensional quantum dynamics using exponentially tempered Gaussian basis sets

Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)]10.1063/1.4772468 are employed in quantitative simulations of helium absorption cross-sections and two-photon excitation yields of doubly excited resonances. Linear...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 139; no. 10; p. 104314
Main Authors Kaprálová-Žďánská, Petra Ruth, Šmydke, Jan, Civiš, Svatopluk
Format Journal Article
LanguageEnglish
Published United States 14.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)]10.1063/1.4772468 are employed in quantitative simulations of helium absorption cross-sections and two-photon excitation yields of doubly excited resonances. Linearly polarized half-infinite and Gaussian laser pulses at wavelengths 38–58 nm and large intensities up to 100 TW/cm2 are considered. The emphasis is laid on convergence of the results with respect to the quality of the Gaussian basis sets (typically limited by a number of partial waves, density, and spatial extent of the basis functions) as well as to the quality of the basis set of field-free states (typically limited by the maximum rotational quantum number and maximum excitation of the lower electron). Particular attention is paid to stability of the results with respect to varying complex scaling parameter. Moreover, the study of the dynamics is preceded by a thorough check of helium energies and oscillator strengths as they are obtained with the exponentially tempered Gaussian basis sets, being also compared with yet unpublished emission wavelengths measured in electric discharge experiments.
AbstractList Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)] are employed in quantitative simulations of helium absorption cross-sections and two-photon excitation yields of doubly excited resonances. Linearly polarized half-infinite and Gaussian laser pulses at wavelengths 38–58 nm and large intensities up to 100 TW/cm{sup 2} are considered. The emphasis is laid on convergence of the results with respect to the quality of the Gaussian basis sets (typically limited by a number of partial waves, density, and spatial extent of the basis functions) as well as to the quality of the basis set of field-free states (typically limited by the maximum rotational quantum number and maximum excitation of the lower electron). Particular attention is paid to stability of the results with respect to varying complex scaling parameter. Moreover, the study of the dynamics is preceded by a thorough check of helium energies and oscillator strengths as they are obtained with the exponentially tempered Gaussian basis sets, being also compared with yet unpublished emission wavelengths measured in electric discharge experiments.
Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)]10.1063/1.4772468 are employed in quantitative simulations of helium absorption cross-sections and two-photon excitation yields of doubly excited resonances. Linearly polarized half-infinite and Gaussian laser pulses at wavelengths 38–58 nm and large intensities up to 100 TW/cm2 are considered. The emphasis is laid on convergence of the results with respect to the quality of the Gaussian basis sets (typically limited by a number of partial waves, density, and spatial extent of the basis functions) as well as to the quality of the basis set of field-free states (typically limited by the maximum rotational quantum number and maximum excitation of the lower electron). Particular attention is paid to stability of the results with respect to varying complex scaling parameter. Moreover, the study of the dynamics is preceded by a thorough check of helium energies and oscillator strengths as they are obtained with the exponentially tempered Gaussian basis sets, being also compared with yet unpublished emission wavelengths measured in electric discharge experiments.
Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)] are employed in quantitative simulations of helium absorption cross-sections and two-photon excitation yields of doubly excited resonances. Linearly polarized half-infinite and Gaussian laser pulses at wavelengths 38-58 nm and large intensities up to 100 TW/cm(2) are considered. The emphasis is laid on convergence of the results with respect to the quality of the Gaussian basis sets (typically limited by a number of partial waves, density, and spatial extent of the basis functions) as well as to the quality of the basis set of field-free states (typically limited by the maximum rotational quantum number and maximum excitation of the lower electron). Particular attention is paid to stability of the results with respect to varying complex scaling parameter. Moreover, the study of the dynamics is preceded by a thorough check of helium energies and oscillator strengths as they are obtained with the exponentially tempered Gaussian basis sets, being also compared with yet unpublished emission wavelengths measured in electric discharge experiments.
Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)] are employed in quantitative simulations of helium absorption cross-sections and two-photon excitation yields of doubly excited resonances. Linearly polarized half-infinite and Gaussian laser pulses at wavelengths 38-58 nm and large intensities up to 100 TW/cm(2) are considered. The emphasis is laid on convergence of the results with respect to the quality of the Gaussian basis sets (typically limited by a number of partial waves, density, and spatial extent of the basis functions) as well as to the quality of the basis set of field-free states (typically limited by the maximum rotational quantum number and maximum excitation of the lower electron). Particular attention is paid to stability of the results with respect to varying complex scaling parameter. Moreover, the study of the dynamics is preceded by a thorough check of helium energies and oscillator strengths as they are obtained with the exponentially tempered Gaussian basis sets, being also compared with yet unpublished emission wavelengths measured in electric discharge experiments.Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)] are employed in quantitative simulations of helium absorption cross-sections and two-photon excitation yields of doubly excited resonances. Linearly polarized half-infinite and Gaussian laser pulses at wavelengths 38-58 nm and large intensities up to 100 TW/cm(2) are considered. The emphasis is laid on convergence of the results with respect to the quality of the Gaussian basis sets (typically limited by a number of partial waves, density, and spatial extent of the basis functions) as well as to the quality of the basis set of field-free states (typically limited by the maximum rotational quantum number and maximum excitation of the lower electron). Particular attention is paid to stability of the results with respect to varying complex scaling parameter. Moreover, the study of the dynamics is preceded by a thorough check of helium energies and oscillator strengths as they are obtained with the exponentially tempered Gaussian basis sets, being also compared with yet unpublished emission wavelengths measured in electric discharge experiments.
Author Šmydke, Jan
Kaprálová-Žďánská, Petra Ruth
Civiš, Svatopluk
Author_xml – sequence: 1
  givenname: Petra Ruth
  surname: Kaprálová-Žďánská
  fullname: Kaprálová-Žďánská, Petra Ruth
– sequence: 2
  givenname: Jan
  surname: Šmydke
  fullname: Šmydke, Jan
– sequence: 3
  givenname: Svatopluk
  surname: Civiš
  fullname: Civiš, Svatopluk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24050351$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22220425$$D View this record in Osti.gov
BookMark eNpt0c9uFSEUBnBiauxtdeELGBI3upgW5jLM4M40_WPSxMToesLAmRbDwC0HGu-r-XRye29dGNmwOD_4cvKdkKMQAxDylrMzzuT6nJ-JgSuhuhdkxdmgml4qdkRWjLW8UZLJY3KC-JMxxvtWvCLHrWAdW3d8RX5f_jIu6-xioHGm9-BdWei3rZ0g3VGsE0Cqg6U2lslvKew4WJoAY9DB1KkL1aUY7uowJ1iAFp-TfnTRQ6azA2_xE70q3jfWLRCwZmlPH4oOuWbZbdCLM0gLuqc_NnW5kJ32NS7DsoFU8651QXQ60EmjQ4qQ8TV5OWuP8OZwn5IfV5ffL26a26_XXy4-3zZmLWRuJmGGQUttgM99z1nXTWKwHNQ0aym15rLrxdC1Rtm5qskwsR4EswIYl3Lq1qfk_f7fiNmNuNvf3JsYApg8tvUw0e7Uh73apPhQAPO4ODTgvQ4QC45ciF6ogSlV6bsDLdMCdtwkt-i0HZ9bqeDjHpgUERPMfwln467xkY-Hxqs9_8c-91k7cP4_L_4Ah_axAQ
CitedBy_id crossref_primary_10_1080_00268976_2019_1601788
crossref_primary_10_1016_j_jqsrt_2013_10_017
crossref_primary_10_1039_D2CP04633D
crossref_primary_10_1021_acs_jpclett_0c01519
crossref_primary_10_1088_1751_8121_ac76f7
crossref_primary_10_1063_1_5098063
crossref_primary_10_1088_1367_2630_17_6_063002
crossref_primary_10_1063_1_4885136
Cites_doi 10.1103/PhysRevA.77.043420
10.1103/PhysRevA.68.043406
10.1002/lapl.200910023
10.1038/nphoton.2008.134
10.1103/PhysRevA.64.033411
10.1103/PhysRevA.69.032707
10.1016/j.adt.2011.11.003
10.1098/rspa.1958.0246
10.1103/PhysRevA.83.023414
10.1103/PhysRevA.78.053408
10.1063/1.464391
10.1016/j.adt.2008.03.003
10.1146/annurev.pc.33.100182.001255
10.1007/978-1-4613-0315-2
10.1103/PhysRevLett.103.063002
10.1103/PhysRevA.49.4473
10.1063/1.4772468
10.1088/0953-4075/30/21/010
10.1088/0953-4075/44/3/035004
10.1103/PhysRevA.80.043412
10.1103/PhysRevA.77.063415
10.1103/PhysRevA.74.052505
10.1063/1.1150041
10.1103/PhysRevA.86.053417
10.1140/epjd/e2005-00334-y
10.1103/PhysRevA.76.053411
10.1088/0953-4075/28/15/010
10.1016/0022-2852(92)90504-H
10.1103/PhysRevLett.78.2100
10.1088/0034-4885/65/10/204
10.1103/PhysRevLett.107.193603
10.1103/PhysRevA.74.063409
10.1103/PhysRevLett.80.3743
10.1088/0034-4885/64/12/205
10.1103/PhysRevA.83.041403
10.1007/978-0-387-26308-3_11
10.1016/S0370-1573(98)00002-7
10.1063/1.1566737
10.1063/1.1904587
10.1103/PhysRevA.79.023403
10.1103/PhysRevLett.105.093903
10.1088/0953-4075/29/22/011
10.1088/0953-4075/33/11/310
10.1007/BF01120130
10.1063/1.466875
10.1063/1.466739
10.1088/0953-4075/26/8/012
10.1088/0953-4075/42/13/134015
10.1086/143271
10.1016/j.pquantelec.2006.09.001
10.1103/PhysRevA.84.053419
10.1088/0953-4075/34/4/304
10.1016/j.physrep.2003.10.001
10.1103/PhysRevA.86.053425
10.1016/j.cplett.2003.11.025
10.1103/PhysRevA.84.033420
10.1103/PhysRevA.85.032516
10.1021/jp034390y
10.1103/PhysRevLett.85.5218
10.1103/PhysRevLett.105.053002
10.1038/nphys1341
10.1021/jp063689o
10.1103/PhysRevA.46.2378
10.1088/0031-8949/2/3/006
10.1103/PhysRevA.49.3712
10.1103/PhysRevA.85.013411
10.1088/0953-4075/31/14/016
10.1063/1.466058
10.1103/PhysRevA.77.043421
10.1088/0953-4075/27/5/008
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
OTOTI
DOI 10.1063/1.4819495
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 22220425
24050351
10_1063_1_4819495
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
AAYXX
ABJGX
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D-I
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P0-
P2P
RIP
RNS
ROL
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
NPM
7X8
0ZJ
AAEUA
ABPTK
AGIHO
ESX
OTOTI
UE8
ZHY
ID FETCH-LOGICAL-c346t-b4c88a6ace1f771055b48d1e9bfa66aa16574852c9df6acbc043840d4e0166b53
ISSN 0021-9606
1089-7690
IngestDate Thu May 18 18:39:53 EDT 2023
Fri Jul 11 10:00:48 EDT 2025
Mon Jul 21 05:48:24 EDT 2025
Tue Jul 01 00:45:02 EDT 2025
Thu Apr 24 23:09:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c346t-b4c88a6ace1f771055b48d1e9bfa66aa16574852c9df6acbc043840d4e0166b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24050351
PQID 1447498099
PQPubID 23479
ParticipantIDs osti_scitechconnect_22220425
proquest_miscellaneous_1447498099
pubmed_primary_24050351
crossref_primary_10_1063_1_4819495
crossref_citationtrail_10_1063_1_4819495
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-14
2013-Sep-14
20130914
PublicationDateYYYYMMDD 2013-09-14
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2013
References (2023062608193849400_c36) 2003; 118
(2023062608193849400_c21) 2004; 390
(2023062608193849400_c13) 2011; 83
(2023062608193849400_c45) 1994; 100
(2023062608193849400_c65) 1958; 248
2023062608193849400_c73
(2023062608193849400_c39) 1990; 77
(2023062608193849400_c30) 2006; 74
(2023062608193849400_c11) 2004; 69
(2023062608193849400_c33) 1998; 80
(2023062608193849400_c67) 2006; 38
(2023062608193849400_c10) 2000; 33
(2023062608193849400_c76) 2008; 94
(2023062608193849400_c17) 2008; 77
(2023062608193849400_c37) 2003; 68
(2023062608193849400_c38) 2013; 138
(2023062608193849400_c5) 2002; 65
(2023062608193849400_c22) 2009; 80
(2023062608193849400_c23) 2005; 123
(2023062608193849400_c32) 2012; 85
(2023062608193849400_c24) 2008; 77
(2023062608193849400_c9) 2001; 64
(2023062608193849400_c52) 1998; 302
(2023062608193849400_c64) 1970; 2
(2023062608193849400_c18) 2007; 76
(2023062608193849400_c31) 2006; 74
(2023062608193849400_c46) 1997; 78
(2023062608193849400_c61) 2006; 110
(2023062608193849400_c58) 2012; 98
(2023062608193849400_c14) 2011; 83
(2023062608193849400_c75) 1997; 30
(2023062608193849400_c27) 2011; 84
(2023062608193849400_c43) 1994; 49
(2023062608193849400_c20) 2012; 85
(2023062608193849400_c72) 2011; 105
2023062608193849400_c56
(2023062608193849400_c6) 2000
(2023062608193849400_c55) 2003; 107
(2023062608193849400_c50) 2011
(2023062608193849400_c19) 2009; 42
(2023062608193849400_c25) 2009; 103
(2023062608193849400_c71) 2011; 84
(2023062608193849400_c60) 2004; 383
(2023062608193849400_c62) 2006; 30
(2023062608193849400_c1) 1967
(2023062608193849400_c69) 2009; 5
(2023062608193849400_c8) 2001; 34
(2023062608193849400_c68) 2011; 107
(2023062608193849400_c42) 1993; 99
(2023062608193849400_c70) 2008; 2
(2023062608193849400_c74) 1992; 46
(2023062608193849400_c53) 1993; 26
(2023062608193849400_c77) 1994; 49
Drake (2023062608193849400_c41) 2006
(2023062608193849400_c51) 1982; 33
(2023062608193849400_c26) 2008; 77
(2023062608193849400_c28) 2012; 86
(2023062608193849400_c47) 1994; 27
(2023062608193849400_c35) 2001; 64
(2023062608193849400_c29) 2009; 79
(2023062608193849400_c40) 2013
(2023062608193849400_c63) 1992; 153
(2023062608193849400_c66) 1930; 72
(2023062608193849400_c12) 2012; 86
(2023062608193849400_c4) 2009; 6
(2023062608193849400_c48) 2011; 44
(2023062608193849400_c59) 1995; 28
(2023062608193849400_c15) 2010; 105
(2023062608193849400_c34) 2000; 85
(2023062608193849400_c57) 1998; 31
(2023062608193849400_c3) 1979
(2023062608193849400_c44) 1994; 100
(2023062608193849400_c49) 1996; 29
(2023062608193849400_c7) 1999; 70
(2023062608193849400_c54) 1993; 98
Becker (2023062608193849400_c2) 1996
(2023062608193849400_c16) 2008; 78
References_xml – volume: 77
  start-page: 043420
  year: 2008
  ident: 2023062608193849400_c24
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.77.043420
– volume-title: The Physics of Free Electron Lasers
  year: 2000
  ident: 2023062608193849400_c6
– volume: 68
  start-page: 043406
  year: 2003
  ident: 2023062608193849400_c37
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.68.043406
– volume-title: NIST Atomic Spectra Database (ver. 5.0)
  year: 2013
  ident: 2023062608193849400_c40
– volume: 6
  start-page: 411
  year: 2009
  ident: 2023062608193849400_c4
  publication-title: Laser. Phys. Lett.
  doi: 10.1002/lapl.200910023
– volume: 2
  start-page: 555
  year: 2008
  ident: 2023062608193849400_c70
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2008.134
– volume: 64
  start-page: 033411
  year: 2001
  ident: 2023062608193849400_c35
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.64.033411
– volume: 69
  start-page: 032707
  year: 2004
  ident: 2023062608193849400_c11
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.69.032707
– volume: 98
  start-page: 120
  year: 2012
  ident: 2023062608193849400_c58
  publication-title: At. Data Nucl. Data Tables
  doi: 10.1016/j.adt.2011.11.003
– volume: 248
  start-page: 309
  year: 1958
  ident: 2023062608193849400_c65
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1958.0246
– volume: 83
  start-page: 023414
  year: 2011
  ident: 2023062608193849400_c14
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.83.023414
– volume: 78
  start-page: 053408
  year: 2008
  ident: 2023062608193849400_c16
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.78.053408
– volume: 98
  start-page: 9610
  year: 1993
  ident: 2023062608193849400_c54
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464391
– volume: 94
  start-page: 903
  year: 2008
  ident: 2023062608193849400_c76
  publication-title: At. Data Nucl. Data Tables
  doi: 10.1016/j.adt.2008.03.003
– volume: 33
  start-page: 223
  year: 1982
  ident: 2023062608193849400_c51
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.33.100182.001255
– volume-title: VUV and Soft X-Ray Photoionization
  year: 1996
  ident: 2023062608193849400_c2
  doi: 10.1007/978-1-4613-0315-2
– volume: 103
  start-page: 063002
  year: 2009
  ident: 2023062608193849400_c25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.063002
– volume: 49
  start-page: 4473
  year: 1994
  ident: 2023062608193849400_c77
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.49.4473
– ident: 2023062608193849400_c56
– volume: 138
  start-page: 024105
  year: 2013
  ident: 2023062608193849400_c38
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4772468
– volume: 30
  start-page: 4663
  year: 1997
  ident: 2023062608193849400_c75
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/30/21/010
– volume: 44
  start-page: 035004
  year: 2011
  ident: 2023062608193849400_c48
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/44/3/035004
– volume: 80
  start-page: 043412
  year: 2009
  ident: 2023062608193849400_c22
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.80.043412
– volume: 77
  start-page: 063415
  year: 2008
  ident: 2023062608193849400_c17
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.77.063415
– ident: 2023062608193849400_c73
  doi: 10.1103/PhysRevA.77.043420
– volume: 74
  start-page: 052505
  year: 2006
  ident: 2023062608193849400_c31
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.74.052505
– volume-title: Photoionization Processes in Gases
  year: 1967
  ident: 2023062608193849400_c1
– volume: 70
  start-page: 3799
  year: 1999
  ident: 2023062608193849400_c7
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1150041
– volume: 86
  start-page: 053417
  year: 2012
  ident: 2023062608193849400_c12
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.053417
– volume: 38
  start-page: 249
  year: 2006
  ident: 2023062608193849400_c67
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2005-00334-y
– volume: 76
  start-page: 053411
  year: 2007
  ident: 2023062608193849400_c18
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.76.053411
– volume: 28
  start-page: 3163
  year: 1995
  ident: 2023062608193849400_c59
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/28/15/010
– volume: 153
  start-page: 701
  year: 1992
  ident: 2023062608193849400_c63
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(92)90504-H
– volume: 78
  start-page: 2100
  year: 1997
  ident: 2023062608193849400_c46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.2100
– volume: 65
  start-page: 1513
  year: 2002
  ident: 2023062608193849400_c5
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/65/10/204
– volume: 107
  start-page: 193603
  year: 2011
  ident: 2023062608193849400_c68
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.193603
– volume: 74
  start-page: 063409
  year: 2006
  ident: 2023062608193849400_c30
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.74.063409
– volume: 80
  start-page: 3743
  year: 1998
  ident: 2023062608193849400_c33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.3743
– volume: 64
  start-page: 1815
  year: 2001
  ident: 2023062608193849400_c9
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/64/12/205
– volume: 83
  start-page: 041403
  year: 2011
  ident: 2023062608193849400_c13
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.83.041403
– volume-title: Springer Handbook of Atomic, Molecular, and Optical Physics, Part B
  year: 2006
  ident: 2023062608193849400_c41
  article-title: High precision calculations for helium
  doi: 10.1007/978-0-387-26308-3_11
– volume: 302
  start-page: 212
  year: 1998
  ident: 2023062608193849400_c52
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(98)00002-7
– volume: 118
  start-page: 8726
  year: 2003
  ident: 2023062608193849400_c36
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1566737
– volume: 123
  start-page: 062207
  year: 2005
  ident: 2023062608193849400_c23
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1904587
– volume: 79
  start-page: 023403
  year: 2009
  ident: 2023062608193849400_c29
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.79.023403
– volume: 105
  start-page: 093903
  year: 2010
  ident: 2023062608193849400_c15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.093903
– volume: 29
  start-page: 5315
  year: 1996
  ident: 2023062608193849400_c49
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/29/22/011
– volume: 33
  start-page: 2101
  year: 2000
  ident: 2023062608193849400_c10
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/33/11/310
– volume: 77
  start-page: 291
  year: 1990
  ident: 2023062608193849400_c39
  publication-title: Theor. Chim. Acta
  doi: 10.1007/BF01120130
– volume: 100
  start-page: 7310
  year: 1994
  ident: 2023062608193849400_c44
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.466875
– volume: 100
  start-page: 8849
  year: 1994
  ident: 2023062608193849400_c45
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.466739
– volume: 26
  start-page: 1445
  year: 1993
  ident: 2023062608193849400_c53
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/26/8/012
– volume-title: Non-Hermitian Quantum Mechanics
  year: 2011
  ident: 2023062608193849400_c50
– volume: 42
  start-page: 134015
  year: 2009
  ident: 2023062608193849400_c19
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/42/13/134015
– volume: 72
  start-page: 133
  year: 1930
  ident: 2023062608193849400_c66
  publication-title: Astrophys. J.
  doi: 10.1086/143271
– volume: 30
  start-page: 75
  year: 2006
  ident: 2023062608193849400_c62
  publication-title: Prog. Quantum Electron.
  doi: 10.1016/j.pquantelec.2006.09.001
– volume: 84
  start-page: 053419
  year: 2011
  ident: 2023062608193849400_c71
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.053419
– volume: 34
  start-page: 545
  year: 2001
  ident: 2023062608193849400_c8
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/34/4/304
– volume: 390
  start-page: 1
  year: 2004
  ident: 2023062608193849400_c21
  publication-title: Physics Reports - Review Section of Physics Letters
  doi: 10.1016/j.physrep.2003.10.001
– volume: 86
  start-page: 053425
  year: 2012
  ident: 2023062608193849400_c28
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.053425
– volume: 383
  start-page: 256
  year: 2004
  ident: 2023062608193849400_c60
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2003.11.025
– volume: 84
  start-page: 033420
  year: 2011
  ident: 2023062608193849400_c27
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.033420
– volume: 85
  start-page: 032516
  year: 2012
  ident: 2023062608193849400_c32
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.85.032516
– volume: 107
  start-page: 7181
  year: 2003
  ident: 2023062608193849400_c55
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp034390y
– volume: 85
  start-page: 5218
  year: 2000
  ident: 2023062608193849400_c34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.5218
– volume: 105
  start-page: 053002
  year: 2011
  ident: 2023062608193849400_c72
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.053002
– volume: 5
  start-page: 693
  year: 2009
  ident: 2023062608193849400_c69
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1341
– volume: 110
  start-page: 12113
  year: 2006
  ident: 2023062608193849400_c61
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp063689o
– volume: 46
  start-page: 2378
  year: 1992
  ident: 2023062608193849400_c74
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.46.2378
– volume: 2
  start-page: 103
  year: 1970
  ident: 2023062608193849400_c64
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/2/3/006
– volume: 49
  start-page: 3712
  year: 1994
  ident: 2023062608193849400_c43
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.49.3712
– volume: 85
  start-page: 013411
  year: 2012
  ident: 2023062608193849400_c20
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.85.013411
– volume: 31
  start-page: 3181
  year: 1998
  ident: 2023062608193849400_c57
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/31/14/016
– volume: 99
  start-page: 4590
  year: 1993
  ident: 2023062608193849400_c42
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.466058
– volume: 77
  start-page: 043421
  year: 2008
  ident: 2023062608193849400_c26
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.77.043421
– volume: 27
  start-page: 887
  year: 1994
  ident: 2023062608193849400_c47
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/27/5/008
– volume-title: Photoabsorption, Photoionization, and Photoelectron Spectroscopy
  year: 1979
  ident: 2023062608193849400_c3
SSID ssj0001724
Score 2.1641862
Snippet Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)]10.1063/1.4772468 are...
Recently optimized exponentially tempered Gaussian basis sets [P. R. Kapralova-Zdanska and J. Smydke, J. Chem. Phys. 138, 024105 (2013)] are employed in...
SourceID osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 104314
SubjectTerms ABSORPTION
ATOMIC AND MOLECULAR PHYSICS
CROSS SECTIONS
DENSITY
ELECTRIC DISCHARGES
EMISSION
EXTREME ULTRAVIOLET RADIATION
GAUSS FUNCTION
HELIUM
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
MULTI-PHOTON PROCESSES
OSCILLATOR STRENGTHS
ROTATIONAL STATES
RYDBERG STATES
SIMULATION
WAVELENGTHS
Title Excitation of helium Rydberg states and doubly excited resonances in strong extreme ultraviolet fields: Full-dimensional quantum dynamics using exponentially tempered Gaussian basis sets
URI https://www.ncbi.nlm.nih.gov/pubmed/24050351
https://www.proquest.com/docview/1447498099
https://www.osti.gov/biblio/22220425
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVGJwQvCMZXYSCDmIQUZWsT20l5K93GhLaBWCftLXIcR1TLkmpJppWfxj_h33BvHLcdKtLgJXJd50M5J_a1fe-5hLxTUg96XAs35oK5jKeeK4NUur7S3JOa6zTEeOejY3Fwyj6f8bO1tV9LXkt1FW-rHyvjSv4HVagDXDFK9h-QnV8UKqAM-MIREIbjrTDeu1atxLax-bJJfeF8myXos-U0oUJGgTkp6jibORqbawxXQfs7N75YGC2C-Yagk8alQqfOqkvZbNejaJPOksZnDlfp3QQzARgVDwzGhNHqwklMRvvSqZtFB309LXJ0QJIZ3BB1rzAXqPNJ1mUTrQmD5qR0Sm30o6xVvIhPayxjZUUMzLLLYrtJTs3Gfj8rrkzB3RrxrY-7ifmVl-em0HoeX0oHPfjt-dh22LuYJa3I6OLDGE2uJs2_zZknV7Iqpll9vrwkgukpBq4JRW178V44cANh8pBu6xV1tus3QkqW472lnryPqkNs5SADVh2ud2wzsKaYSRF6U8j7-Eu0f3p4GI33zsZ3yLoHMxivQ9aHu0eHJ3MzASxHZqI_zHNZ2Svh78wvfcNY6hTQ6f99ItQYROOH5EGLFx0aWj4iazrfIPdGNoHgBrn71cD3mPxcEJUWKTVEpS1RqSEqBaJSQ1TaEpUuiEonOTVEpS1R6RJRqSHqB_onTWlLU2ppShua0hs0pZam1NKUNjSlSNMn5HR_bzw6cNukIa7ymajcmKkwlEIq3U-DANO_xixM-noQp1IIKfuCByzknhokKbSKFW6Fs17CNEx-RMz9p6STwyM8J9QPw8RnMCR6KmUw2MUhF4FGPXLo3LiQXfLeohPZt4iJXbKo8ewQftSPWiC75O286dTIyKxqtIkQRyW-Y_VdoaebqiKw4D0cWrvkjYU-AiRxY0_muqhLmL6zgA1CmOx1yTPDifldwGLn6C3w4hZnvyT3F5_TJulUl7V-BTZ3Fb9u2fsbhN3fZQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excitation+of+helium+Rydberg+states+and+doubly+excited+resonances+in+strong+extreme+ultraviolet+fields%3A+full-dimensional+quantum+dynamics+using+exponentially+tempered+Gaussian+basis+sets&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Kapr%C3%A1lov%C3%A1-%C5%BDd%C3%A1nsk%C3%A1%2C+Petra+Ruth&rft.au=%C5%A0mydke%2C+Jan&rft.au=Civi%C5%A1%2C+Svatopluk&rft.date=2013-09-14&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=139&rft.issue=10&rft.spage=104314&rft_id=info:doi/10.1063%2F1.4819495&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon