Generating black holes in 4D Einstein-Gauss-Bonnet gravity

In recent times there is a surge of interest in constructing Einstein-Gauss-Bonnet (EGB) gravity, in the limit D → 4, of the D-dimensional EGB gravity. Interestingly, the static spherically symmetric solutions in the various proposed D → 4 regularized EGB gravities coincide, and incidentally some ot...

Full description

Saved in:
Bibliographic Details
Published inClassical and quantum gravity Vol. 37; no. 24; pp. 245008 - 245023
Main Authors Ghosh, Sushant G, Kumar, Rahul
Format Journal Article
LanguageEnglish
Published IOP Publishing 17.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent times there is a surge of interest in constructing Einstein-Gauss-Bonnet (EGB) gravity, in the limit D → 4, of the D-dimensional EGB gravity. Interestingly, the static spherically symmetric solutions in the various proposed D → 4 regularized EGB gravities coincide, and incidentally some other theories also admit the same solution. We prove a theorem that characterizes a large family of nonstatic or radiating spherically symmetric solutions to the 4D EGB gravity, representing, in general, spherically symmetric type II fluid. An extension of the theorem, given without proof as being similar to the original theorem, generates static spherically symmetric black hole solutions of the theory. It not only enables us to identify available known black hole solutions as particular cases but also to generate several new solutions of the 4D EGB gravity.
AbstractList In recent times there is a surge of interest in constructing Einstein-Gauss-Bonnet (EGB) gravity, in the limit D → 4, of the D-dimensional EGB gravity. Interestingly, the static spherically symmetric solutions in the various proposed D → 4 regularized EGB gravities coincide, and incidentally some other theories also admit the same solution. We prove a theorem that characterizes a large family of nonstatic or radiating spherically symmetric solutions to the 4D EGB gravity, representing, in general, spherically symmetric type II fluid. An extension of the theorem, given without proof as being similar to the original theorem, generates static spherically symmetric black hole solutions of the theory. It not only enables us to identify available known black hole solutions as particular cases but also to generate several new solutions of the 4D EGB gravity.
In recent times there is a surge of interest in constructing Einstein–Gauss–Bonnet (EGB) gravity, in the limit D → 4, of the D -dimensional EGB gravity. Interestingly, the static spherically symmetric solutions in the various proposed D → 4 regularized EGB gravities coincide, and incidentally some other theories also admit the same solution. We prove a theorem that characterizes a large family of nonstatic or radiating spherically symmetric solutions to the 4 D EGB gravity, representing, in general, spherically symmetric type II fluid. An extension of the theorem, given without proof as being similar to the original theorem, generates static spherically symmetric black hole solutions of the theory. It not only enables us to identify available known black hole solutions as particular cases but also to generate several new solutions of the 4 D EGB gravity.
Author Kumar, Rahul
Ghosh, Sushant G
Author_xml – sequence: 1
  givenname: Sushant G
  orcidid: 0000-0002-0835-3690
  surname: Ghosh
  fullname: Ghosh, Sushant G
  email: sghosh2@jmi.ac.in, sgghosh@gmail.com
  organization: University of KwaZulu-Natal Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Private Bag 54001, Durban 4000, South Africa
– sequence: 2
  givenname: Rahul
  surname: Kumar
  fullname: Kumar, Rahul
  email: rahul.phy3@gmail.com
  organization: Jamia Millia Islamia Centre for Theoretical Physics, New Delhi 110 025, India
BookMark eNp9z01LAzEQgOEgFWyrd4_7A1ybSdY0601rrULBi56XfMzW1DUpSSr033dLxYOgp8CQd5hnRAY-eCTkEug1UCknwAWUgks2UdoAr07I8Gc0IEPKRFXWXMIZGaW0phRAAhuS2wV6jCo7vyp0p8xH8R46TIXzRfVQzJ1PGZ0vF2qbUnkfvMdcrKL6cnl3Tk5b1SW8-H7H5O1x_jp7Kpcvi-fZ3bI0vBK5VKwVllVWTzVMW2s4tiAp1kJLpmpD-ytvsK6Npdoi1spIaJnVVgClCIh8TOhxr4khpYhts4nuU8VdA7Q52JsDtDlAm6O9T8SvxLjcI4PPUbnuv_DqGLqwadZhG30v-_v7HrMRbmU
CODEN CQGRDG
CitedBy_id crossref_primary_10_1016_j_dark_2021_100877
crossref_primary_10_1140_epjc_s10052_024_12597_w
crossref_primary_10_1016_j_cjph_2024_04_038
crossref_primary_10_1016_j_dark_2021_100792
crossref_primary_10_1140_epjc_s10052_024_13354_9
crossref_primary_10_3390_universe10040152
crossref_primary_10_1016_j_physletb_2022_137591
crossref_primary_10_1140_epjc_s10052_021_09400_5
crossref_primary_10_1016_j_dark_2024_101642
crossref_primary_10_1140_epjc_s10052_025_13970_z
crossref_primary_10_1088_1674_1137_ad2a4d
crossref_primary_10_1016_j_aop_2023_169491
crossref_primary_10_1016_j_nuclphysb_2024_116753
crossref_primary_10_1103_PhysRevD_106_024023
crossref_primary_10_1002_andp_202400114
crossref_primary_10_1140_epjc_s10052_022_10766_3
crossref_primary_10_1103_PhysRevD_103_064002
crossref_primary_10_1002_prop_202300052
crossref_primary_10_1007_s12043_022_02458_0
crossref_primary_10_1142_S0219887823501402
crossref_primary_10_1103_PhysRevD_106_044024
crossref_primary_10_3390_math11061408
crossref_primary_10_1016_j_dark_2024_101535
crossref_primary_10_1103_PhysRevD_104_044029
crossref_primary_10_1016_j_physletb_2022_137020
crossref_primary_10_1088_1361_6382_ac500a
crossref_primary_10_1016_j_nuclphysb_2023_116089
crossref_primary_10_1016_j_dark_2024_101493
crossref_primary_10_1038_s41598_024_62645_4
crossref_primary_10_1016_j_physletb_2021_136517
crossref_primary_10_1140_epjc_s10052_021_09585_9
crossref_primary_10_1209_0295_5075_133_50006
crossref_primary_10_3390_universe8040232
crossref_primary_10_1140_epjc_s10052_022_10123_4
crossref_primary_10_1140_epjc_s10052_022_11024_2
crossref_primary_10_1142_S0219887822501092
crossref_primary_10_1016_j_nuclphysb_2022_115688
crossref_primary_10_1142_S0218271823500165
crossref_primary_10_1140_epjp_s13360_025_06037_1
crossref_primary_10_1016_j_cjph_2023_04_016
crossref_primary_10_1142_S0217732324500767
crossref_primary_10_3847_1538_4357_ac912c
crossref_primary_10_1088_1572_9494_ad9c41
crossref_primary_10_1140_epjc_s10052_021_09692_7
crossref_primary_10_1016_j_dark_2023_101220
crossref_primary_10_3390_universe8040244
crossref_primary_10_1140_epjc_s10052_021_09510_0
crossref_primary_10_1140_epjc_s10052_023_12185_4
crossref_primary_10_1140_epjc_s10052_025_13932_5
crossref_primary_10_1088_1361_6382_ad28f8
crossref_primary_10_1140_epjc_s10052_021_08923_1
crossref_primary_10_1016_j_cjph_2022_01_008
crossref_primary_10_1016_j_aop_2022_168863
crossref_primary_10_1007_s10773_023_05409_6
crossref_primary_10_1142_S0218271822500663
crossref_primary_10_1140_epjp_s13360_023_03772_1
crossref_primary_10_1142_S0219887824500117
crossref_primary_10_1016_j_dark_2024_101757
crossref_primary_10_1142_S0217751X23500355
crossref_primary_10_1007_s10509_025_04412_z
crossref_primary_10_1002_andp_202100308
crossref_primary_10_1140_epjp_s13360_022_02495_z
crossref_primary_10_1016_j_physletb_2022_136997
crossref_primary_10_1016_j_dark_2024_101793
crossref_primary_10_1007_s10714_023_03159_8
crossref_primary_10_3390_sym14030545
crossref_primary_10_1140_epjc_s10052_024_12876_6
crossref_primary_10_1007_s10714_022_02902_x
crossref_primary_10_1016_j_physletb_2022_137329
crossref_primary_10_1142_S0217751X22502062
Cites_doi 10.1103/physrevlett.34.905
10.1103/physrevd.55.2110
10.1103/physrevd.102.024025
10.1088/1475-7516/2020/07/053
10.1016/0550-3213(87)90465-2
10.1103/physrevd.77.047504
10.1103/physrevd.97.104050
10.1088/0264-9381/23/14/006
10.1023/a:1018871522880
10.1007/jhep07(2020)027
10.1103/physrevd.88.024006
10.12942/lrr-2004-3
10.1016/Phys.Lett.B.2011.704:5-9
10.1140/epjc/s10052-020-8200-7
10.1007/bf01645859
10.1016/s0370-2693(96)01521-3
10.1063/1.1665613
10.1016/j.physletb.2020.135468
10.1016/j.dark.2020.100687
10.1088/1475-7516/2020/07/013
10.1103/physrevlett.63.341
10.1103/physrevd.53.4327
10.1103/physrevd.100.124029
10.1103/physrevd.63.041503
10.1088/1475-7516/2020/09/030
10.1016/0550-3213(86)90268-3
10.1063/1.1666069
10.1007/s10714-007-0511-6
10.1088/0264-9381/10/7/015
10.1103/physrevlett.106.151104
10.1103/physrevlett.14.57
10.1103/physrevlett.55.2656
10.1088/1572-9494/aba242
10.1023/a:1018819521971
10.1088/1361-6382/aaaead
10.1103/physrevlett.26.331
10.1103/physrevd.73.064018
10.1103/physrev.164.1776
10.1103/PhysRevD.101.104018
10.1016/j.physletb.2020.135717
10.1002/andp.19163550905
10.3390/universe6080103
10.1016/0370-2693(95)01519-1
10.1209/0295-5075/130/10004
10.1016/j.physletb.2009.06.019
10.1016/j.aop.2019.168025
10.1140/epjc/s10052-020-8164-7
10.1007/jhep04(2010)082
10.1007/bf03173260
10.1016/j.dark.2020.100730
10.1103/physrevd.101.084038
10.1016/S0370-2693(01)01057-7
10.1103/physrevlett.124.081301
10.1007/bf01877517
10.1016/j.physletb.2020.135657
10.2307/1968467
10.1023/b:gerg.0000022582.28223.a0
10.1016/0370-2693(86)90681-7
10.1142/s0218271820500650
10.1088/0264-9381/20/21/003
10.1103/physrevd.70.104010
10.1023/a:1018862910233
10.1103/physrevd.47.5259
10.1016/j.physletb.2014.04.044
ContentType Journal Article
Copyright 2020 IOP Publishing Ltd
Copyright_xml – notice: 2020 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-6382/abc134
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
DocumentTitleAlternate Generating black holes in 4D Einstein-Gauss-Bonnet gravity
EISSN 1361-6382
ExternalDocumentID 10_1088_1361_6382_abc134
cqgabc134
GroupedDBID -DZ
-~X
1JI
29B
4.4
5B3
5GY
5PX
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
UCJ
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c346t-a2f6d24db7b17fdc3ef180e96b82a9c01365e99cd0bdee9ac81f2dbd6100e1ee3
IEDL.DBID IOP
ISSN 0264-9381
IngestDate Thu Apr 24 23:01:30 EDT 2025
Tue Jul 01 00:32:34 EDT 2025
Wed Aug 21 03:33:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c346t-a2f6d24db7b17fdc3ef180e96b82a9c01365e99cd0bdee9ac81f2dbd6100e1ee3
Notes CQG-107099.R2
ORCID 0000-0002-0835-3690
PageCount 16
ParticipantIDs iop_journals_10_1088_1361_6382_abc134
crossref_primary_10_1088_1361_6382_abc134
crossref_citationtrail_10_1088_1361_6382_abc134
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-17
PublicationDateYYYYMMDD 2020-12-17
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-17
  day: 17
PublicationDecade 2020
PublicationTitle Classical and quantum gravity
PublicationTitleAbbrev CQG
PublicationTitleAlternate Class. Quantum Grav
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Mignemi (cqgabc134bib22a) 1993; 47
Wei (cqgabc134bib27) 2020
Wang (cqgabc134bib66) 1999; 31
Hawking (cqgabc134bib7) 1973
Kumar (cqgabc134bib31) 2020
Vaidya (cqgabc134bib6a) 1951; 33
Parentani (cqgabc134bib11) 2001; 63
Singh (cqgabc134bib42) 2020
Konoplya (cqgabc134bib35) 2020
Hegde (cqgabc134bib43) 2020
Alexeev (cqgabc134bib22b) 1997; 55
Fernandes (cqgabc134bib25) 2020; 805
Gallo (cqgabc134bib5) 2004; 36
Ghosh (cqgabc134bib14) 2008; 40
Singh (cqgabc134bib22i) 2020; 412
Lovelock (cqgabc134bib24) 1972; 13
Hennigar (cqgabc134bib52) 2020
Hennigar (cqgabc134bib63) 2020; 808
Bento (cqgabc134bib18b) 1996; 368
Fernandes (cqgabc134bib41) 2020; 102
Ghosh (cqgabc134bib30) 2020
Zhang (cqgabc134bib36) 2020; 6
Konoplya (cqgabc134bib47) 2020; 101
Lanczos (cqgabc134bib17) 1938; 39
Ghosh (cqgabc134bib22g) 2018; 97
Robinson (cqgabc134bib3e) 1975; 34
Kumar (cqgabc134bib32) 2020
Gurses (cqgabc134bib54) 2020; 80
Cai (cqgabc134bib65b) 2014; 733
Dadhich (cqgabc134bib68) 2001; 518
Kobayashi (cqgabc134bib57) 2020; 2020
Carter (cqgabc134bib3c) 1971; 26
Kanti (cqgabc134bib22c) 1997; 392
Kleihaus (cqgabc134bib22e) 2011; 106
Islam (cqgabc134bib37) 2020; 2020
Ai (cqgabc134bib51) 2020; 72
Nojiri (cqgabc134bib61) 2020; 130
Hu (cqgabc134bib12) 2004; 7
Kehagias (cqgabc134bib64) 2009; 678
Ghosh (cqgabc134bib22f) 2011; 704
Israel (cqgabc134bib3b) 1968; 8
Singh (cqgabc134bib26) 2020; 30
Hawking (cqgabc134bib3d) 1972; 25
Heydari-Fard (cqgabc134bib38) 2020
Kumar (cqgabc134bib28) 2020; 2020
Kothawala (cqgabc134bib13) 2004; 70
Wei (cqgabc134bib46) 2020; 101
Dominguez (cqgabc134bib15) 2006; 73
Mahapatra (cqgabc134bib55) 2020
Husain (cqgabc134bib69) 1996; 53
Guo (cqgabc134bib34) 2020; 80
Mann (cqgabc134bib62) 1993; 10
Casalino (cqgabc134bib48) 2020
Hosseini Mansoori (cqgabc134bib45) 2020
Eslam Panah (cqgabc134bib44) 2020
Ghosh (cqgabc134bib22d) 2008; 77
Arrechea (cqgabc134bib59) 2020
Boulware (cqgabc134bib19) 1985; 55
Ma (cqgabc134bib58) 2020
Hansraj (cqgabc134bib22j) 2019; 100
Joshi (cqgabc134bib9) 1993
Cognola (cqgabc134bib50) 2013; 88
Reissner (cqgabc134bib2) 1916; 355
Penrose (cqgabc134bib71a) 1969; 1
Shu (cqgabc134bib53) 2020
Cai (cqgabc134bib65a) 2010
Penrose (cqgabc134bib71b) 1980
Salgado (cqgabc134bib4) 2003; 20
Vaidya (cqgabc134bib6b) 1999; 31
Kumar (cqgabc134bib40) 2020
Barriola (cqgabc134bib67) 1989; 63
Israel (cqgabc134bib3a) 1967; 164
Gross (cqgabc134bib18a) 1987; 291
Doneva (cqgabc134bib33) 2020
Schwarzschild (cqgabc134bib1) 1916; 1916
Ghosh (cqgabc134bib29) 2020; 30
Tomozawa (cqgabc134bib49) 2011
Lovelock (cqgabc134bib16) 1971; 12
Wiltshire (cqgabc134bib21) 1986; 169
Penrose (cqgabc134bib10) 1965; 14
Ghosh (cqgabc134bib22h) 2018; 35
Lü (cqgabc134bib56) 2020; 809
Aoki (cqgabc134bib60) 2020
Nielsen (cqgabc134bib70) 2006; 23
Herrera (cqgabc134bib8) 1998; 30
Wheeler (cqgabc134bib20) 1986; 268
Jin (cqgabc134bib39) 2020; 29
Glavan (cqgabc134bib23) 2020; 124
References_xml – volume: 34
  start-page: 905
  year: 1975
  ident: cqgabc134bib3e
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.34.905
– volume: 55
  start-page: 2110
  year: 1997
  ident: cqgabc134bib22b
  publication-title: Phys. Rev. D
  doi: 10.1103/physrevd.55.2110
– volume: 102
  year: 2020
  ident: cqgabc134bib41
  publication-title: Phys. Rev. D
  doi: 10.1103/physrevd.102.024025
– year: 1973
  ident: cqgabc134bib7
– volume: 2020
  start-page: 053
  year: 2020
  ident: cqgabc134bib28
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2020/07/053
– year: 2020
  ident: cqgabc134bib35
– volume: 291
  start-page: 41
  year: 1987
  ident: cqgabc134bib18a
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(87)90465-2
– volume: 77
  year: 2008
  ident: cqgabc134bib22d
  publication-title: Phys. Rev. D
  doi: 10.1103/physrevd.77.047504
– volume: 97
  year: 2018
  ident: cqgabc134bib22g
  publication-title: Phys. Rev. D
  doi: 10.1103/physrevd.97.104050
– volume: 23
  start-page: 4637
  year: 2006
  ident: cqgabc134bib70
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/23/14/006
– volume: 31
  start-page: 119
  year: 1999
  ident: cqgabc134bib6b
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1023/a:1018871522880
– year: 2020
  ident: cqgabc134bib32
– year: 2020
  ident: cqgabc134bib52
  publication-title: J. High Energy Phys.
  doi: 10.1007/jhep07(2020)027
– year: 2020
  ident: cqgabc134bib55
– year: 2020
  ident: cqgabc134bib33
– volume: 88
  year: 2013
  ident: cqgabc134bib50
  publication-title: Phys. Rev. D
  doi: 10.1103/physrevd.88.024006
– volume: 7
  start-page: 3
  year: 2004
  ident: cqgabc134bib12
  publication-title: Living Rev. Relativ.
  doi: 10.12942/lrr-2004-3
– year: 2020
  ident: cqgabc134bib27
– volume: 704
  start-page: 5
  year: 2011
  ident: cqgabc134bib22f
  publication-title: Phys. Lett. B
  doi: 10.1016/Phys.Lett.B.2011.704:5-9
– volume: 80
  start-page: 647
  year: 2020
  ident: cqgabc134bib54
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-8200-7
– volume: 8
  start-page: 245
  year: 1968
  ident: cqgabc134bib3b
  publication-title: Commun. Math. Phys.
  doi: 10.1007/bf01645859
– volume: 392
  start-page: 30
  year: 1997
  ident: cqgabc134bib22c
  publication-title: Phys. Lett. B
  doi: 10.1016/s0370-2693(96)01521-3
– volume: 12
  start-page: 498
  year: 1971
  ident: cqgabc134bib16
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1665613
– year: 2020
  ident: cqgabc134bib59
– volume: 805
  year: 2020
  ident: cqgabc134bib25
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2020.135468
– volume: 30
  year: 2020
  ident: cqgabc134bib29
  publication-title: Phys. Dark Univ.
  doi: 10.1016/j.dark.2020.100687
– volume: 2020
  start-page: 013
  year: 2020
  ident: cqgabc134bib57
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2020/07/013
– volume: 63
  start-page: 341
  year: 1989
  ident: cqgabc134bib67
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.63.341
– volume: 53
  start-page: 1759
  year: 1996
  ident: cqgabc134bib69
  publication-title: Phys. Rev. D
  doi: 10.1103/physrevd.53.4327
– volume: 100
  year: 2019
  ident: cqgabc134bib22j
  publication-title: Phys. Rev. D
  doi: 10.1103/physrevd.100.124029
– volume: 63
  year: 2001
  ident: cqgabc134bib11
  publication-title: Phys. Rev. D
  doi: 10.1103/physrevd.63.041503
– year: 2020
  ident: cqgabc134bib40
– volume: 2020
  start-page: 030
  year: 2020
  ident: cqgabc134bib37
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2020/09/030
– year: 2011
  ident: cqgabc134bib49
– year: 2020
  ident: cqgabc134bib60
– volume: 268
  start-page: 737
  year: 1986
  ident: cqgabc134bib20
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(86)90268-3
– year: 2020
  ident: cqgabc134bib30
– volume: 13
  start-page: 874
  year: 1972
  ident: cqgabc134bib24
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1666069
– volume: 40
  start-page: 9
  year: 2008
  ident: cqgabc134bib14
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1007/s10714-007-0511-6
– year: 2020
  ident: cqgabc134bib43
– volume: 10
  start-page: 1405
  year: 1993
  ident: cqgabc134bib62
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/10/7/015
– volume: 106
  year: 2011
  ident: cqgabc134bib22e
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.106.151104
– volume: 14
  start-page: 57
  year: 1965
  ident: cqgabc134bib10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.14.57
– volume: 55
  start-page: 2656
  year: 1985
  ident: cqgabc134bib19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.55.2656
– volume: 72
  year: 2020
  ident: cqgabc134bib51
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/1572-9494/aba242
– volume: 31
  start-page: 107
  year: 1999
  ident: cqgabc134bib66
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1023/a:1018819521971
– volume: 35
  year: 2018
  ident: cqgabc134bib22h
  publication-title: Class. Quantum Grav.
  doi: 10.1088/1361-6382/aaaead
– volume: 26
  start-page: 331
  year: 1971
  ident: cqgabc134bib3c
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.26.331
– volume: 73
  year: 2006
  ident: cqgabc134bib15
  publication-title: Phys. Rev. D
  doi: 10.1103/physrevd.73.064018
– volume: 164
  start-page: 1776
  year: 1967
  ident: cqgabc134bib3a
  publication-title: Phys. Rev.
  doi: 10.1103/physrev.164.1776
– volume: 101
  year: 2020
  ident: cqgabc134bib46
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.104018
– volume: 809
  year: 2020
  ident: cqgabc134bib56
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2020.135717
– volume: 355
  start-page: 106
  year: 1916
  ident: cqgabc134bib2
  publication-title: Ann. Phys., NY
  doi: 10.1002/andp.19163550905
– volume: 6
  start-page: 103
  year: 2020
  ident: cqgabc134bib36
  publication-title: Universe
  doi: 10.3390/universe6080103
– volume: 368
  start-page: 198
  year: 1996
  ident: cqgabc134bib18b
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(95)01519-1
– volume: 130
  start-page: 10004
  year: 2020
  ident: cqgabc134bib61
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/130/10004
– volume: 678
  start-page: 123
  year: 2009
  ident: cqgabc134bib64
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2009.06.019
– volume: 412
  year: 2020
  ident: cqgabc134bib22i
  publication-title: Ann. Phys., NY
  doi: 10.1016/j.aop.2019.168025
– volume: 80
  start-page: 588
  year: 2020
  ident: cqgabc134bib34
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-8164-7
– year: 2010
  ident: cqgabc134bib65a
  publication-title: J. High Energy Phys.
  doi: 10.1007/jhep04(2010)082
– volume: 33
  start-page: 264
  year: 1951
  ident: cqgabc134bib6a
  publication-title: Proc. Indian Acad. Sci. A
  doi: 10.1007/bf03173260
– volume: 30
  year: 2020
  ident: cqgabc134bib26
  publication-title: Phys. Dark Univ.
  doi: 10.1016/j.dark.2020.100730
– year: 1980
  ident: cqgabc134bib71b
– year: 2020
  ident: cqgabc134bib58
– volume: 1
  start-page: 252
  year: 1969
  ident: cqgabc134bib71a
  publication-title: Riv. Nuovo Cimento
– year: 2020
  ident: cqgabc134bib44
– volume: 101
  year: 2020
  ident: cqgabc134bib47
  publication-title: Phys. Rev. D
  doi: 10.1103/physrevd.101.084038
– year: 2020
  ident: cqgabc134bib38
– volume: 518
  start-page: 1
  year: 2001
  ident: cqgabc134bib68
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(01)01057-7
– year: 2020
  ident: cqgabc134bib31
– year: 1993
  ident: cqgabc134bib9
  article-title: Global Aspects in Gravitation and Cosmology
– volume: 124
  year: 2020
  ident: cqgabc134bib23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.124.081301
– volume: 25
  start-page: 152
  year: 1972
  ident: cqgabc134bib3d
  publication-title: Commun. Math. Phys.
  doi: 10.1007/bf01877517
– year: 2020
  ident: cqgabc134bib42
– volume: 808
  year: 2020
  ident: cqgabc134bib63
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2020.135657
– year: 2020
  ident: cqgabc134bib45
– volume: 39
  start-page: 842
  year: 1938
  ident: cqgabc134bib17
  publication-title: Ann. Math.
  doi: 10.2307/1968467
– volume: 36
  start-page: 1463
  year: 2004
  ident: cqgabc134bib5
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1023/b:gerg.0000022582.28223.a0
– volume: 169
  start-page: 36
  year: 1986
  ident: cqgabc134bib21
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(86)90681-7
– volume: 29
  start-page: 2050065
  year: 2020
  ident: cqgabc134bib39
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/s0218271820500650
– year: 2020
  ident: cqgabc134bib48
– volume: 20
  start-page: 4551
  year: 2003
  ident: cqgabc134bib4
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/20/21/003
– volume: 1916
  start-page: 189
  year: 1916
  ident: cqgabc134bib1
  publication-title: Sitzungsber. Preuss. Akad. Wiss. Berl.
– volume: 70
  year: 2004
  ident: cqgabc134bib13
  publication-title: Phys. Rev. D
  doi: 10.1103/physrevd.70.104010
– volume: 30
  start-page: 445
  year: 1998
  ident: cqgabc134bib8
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1023/a:1018862910233
– volume: 47
  start-page: 5259
  year: 1993
  ident: cqgabc134bib22a
  publication-title: Phys. Rev. D
  doi: 10.1103/physrevd.47.5259
– year: 2020
  ident: cqgabc134bib53
– volume: 733
  start-page: 183
  year: 2014
  ident: cqgabc134bib65b
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2014.04.044
SSID ssj0011812
Score 2.6190727
Snippet In recent times there is a surge of interest in constructing Einstein-Gauss-Bonnet (EGB) gravity, in the limit D → 4, of the D-dimensional EGB gravity....
In recent times there is a surge of interest in constructing Einstein–Gauss–Bonnet (EGB) gravity, in the limit D → 4, of the D -dimensional EGB gravity....
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 245008
SubjectTerms EGB gravity
generating black hole
spherical symmetric solutions
type II fluid
Title Generating black holes in 4D Einstein-Gauss-Bonnet gravity
URI https://iopscience.iop.org/article/10.1088/1361-6382/abc134
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKERIMPAqI8lIGGBjcxrHr2DDxaClIBQYqdUCK4kekCpRWJF349dhxGgEChNgynBPrk53v7Lv7DoCj0HAGFZRAww8YGr7WMBZM2xi8j6U55YqifdvgjvaH5HbUGdXAWVULM5mWv_6WeXRCwQ7CMiGOtRGmCJplE7RjIREmC2ARM0pt-4Kb-4cqhGCpy12wEMgNL5Uxyu_e8ImTFsx3P1BMbw08zSfnMkueW7NctOTbF93Gf85-HayWrqd37kw3QE2nDbAyqHRbswZYKhJCZbYJTp0etU2K9oS95PNsI93MG6ceufK6Y-NV6nEKr-NZlsELmy2Te7aVkXHqt8Cw13287MOyzwKUmNAcxkFCVUCUCAUKEyWxThDzNaeCBTGXVtWtozmXyhdKax5LhpJACWU8L18jrfE2qKeTVO_YCnDWiXFoK-w5kUzGWIbKODWUKjuGN0F7jnQkSxFy2wvjJSqC4YxFFp_I4hM5fJrgpBoxdQIcv9geG9ijchdmP9rt_tFuDywH9niNAojCfVDPX2f6wPgguTgs1to7jZ_RFQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZoEQgGHgVEeWaAgcFNHCeOw8ajpQVaOlCpW4gfkSpQWpF04ddjJ24FCBASW4azk3xy8p19d98BcBIoziCMeFDxA4aKryWMGZU6Bu9grna5rGjf1u2R9sC7HfpD0-e0qIUZT8yvv6EuS6HgEkKTEEdthAmCatm4dsw4wp49EUkFLPqYYC2e33noz8MImr7KQxYPhoqbTJzyu1k-8VJF3fsDzbTWwdPsAcvskufGNGcN_vZFu_Efb7AB1owLal2U5ptgQaY1sNqd67dmNbBUJIbybAucl7rUOjnaYvqwz9INdTNrlFretdUcKe9SjlJ4E0-zDF7qrJnc0i2NlHO_DQat5uNVG5p-C5Bjj-QwdhMiXE-wgKEgERzLBFFHhoRRNw65VnfzZRhy4TAhZRhzihJXMKE8MEciKfEOqKbjVO7qSnDqxzjQlfahxymPMQ-Ecm4IEXpMWAf2DO2IGzFy3RPjJSqC4pRGGqNIYxSVGNXB2XzEpBTi-MX2VEEfma8x-9Fu7492x2C5f92K7ju9u32w4uodN3IhCg5ANX-dykPlluTsqFh673r31nk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+black+holes+in+4D+Einstein-Gauss-Bonnet+gravity&rft.jtitle=Classical+and+quantum+gravity&rft.au=Ghosh%2C+Sushant+G&rft.au=Kumar%2C+Rahul&rft.date=2020-12-17&rft.pub=IOP+Publishing&rft.issn=0264-9381&rft.eissn=1361-6382&rft.volume=37&rft.issue=24&rft_id=info:doi/10.1088%2F1361-6382%2Fabc134&rft.externalDocID=cqgabc134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-9381&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-9381&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-9381&client=summon