Generating black holes in 4D Einstein-Gauss-Bonnet gravity
In recent times there is a surge of interest in constructing Einstein-Gauss-Bonnet (EGB) gravity, in the limit D → 4, of the D-dimensional EGB gravity. Interestingly, the static spherically symmetric solutions in the various proposed D → 4 regularized EGB gravities coincide, and incidentally some ot...
Saved in:
Published in | Classical and quantum gravity Vol. 37; no. 24; pp. 245008 - 245023 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
17.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent times there is a surge of interest in constructing Einstein-Gauss-Bonnet (EGB) gravity, in the limit D → 4, of the D-dimensional EGB gravity. Interestingly, the static spherically symmetric solutions in the various proposed D → 4 regularized EGB gravities coincide, and incidentally some other theories also admit the same solution. We prove a theorem that characterizes a large family of nonstatic or radiating spherically symmetric solutions to the 4D EGB gravity, representing, in general, spherically symmetric type II fluid. An extension of the theorem, given without proof as being similar to the original theorem, generates static spherically symmetric black hole solutions of the theory. It not only enables us to identify available known black hole solutions as particular cases but also to generate several new solutions of the 4D EGB gravity. |
---|---|
AbstractList | In recent times there is a surge of interest in constructing Einstein-Gauss-Bonnet (EGB) gravity, in the limit D → 4, of the D-dimensional EGB gravity. Interestingly, the static spherically symmetric solutions in the various proposed D → 4 regularized EGB gravities coincide, and incidentally some other theories also admit the same solution. We prove a theorem that characterizes a large family of nonstatic or radiating spherically symmetric solutions to the 4D EGB gravity, representing, in general, spherically symmetric type II fluid. An extension of the theorem, given without proof as being similar to the original theorem, generates static spherically symmetric black hole solutions of the theory. It not only enables us to identify available known black hole solutions as particular cases but also to generate several new solutions of the 4D EGB gravity. In recent times there is a surge of interest in constructing Einstein–Gauss–Bonnet (EGB) gravity, in the limit D → 4, of the D -dimensional EGB gravity. Interestingly, the static spherically symmetric solutions in the various proposed D → 4 regularized EGB gravities coincide, and incidentally some other theories also admit the same solution. We prove a theorem that characterizes a large family of nonstatic or radiating spherically symmetric solutions to the 4 D EGB gravity, representing, in general, spherically symmetric type II fluid. An extension of the theorem, given without proof as being similar to the original theorem, generates static spherically symmetric black hole solutions of the theory. It not only enables us to identify available known black hole solutions as particular cases but also to generate several new solutions of the 4 D EGB gravity. |
Author | Kumar, Rahul Ghosh, Sushant G |
Author_xml | – sequence: 1 givenname: Sushant G orcidid: 0000-0002-0835-3690 surname: Ghosh fullname: Ghosh, Sushant G email: sghosh2@jmi.ac.in, sgghosh@gmail.com organization: University of KwaZulu-Natal Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Private Bag 54001, Durban 4000, South Africa – sequence: 2 givenname: Rahul surname: Kumar fullname: Kumar, Rahul email: rahul.phy3@gmail.com organization: Jamia Millia Islamia Centre for Theoretical Physics, New Delhi 110 025, India |
BookMark | eNp9z01LAzEQgOEgFWyrd4_7A1ybSdY0601rrULBi56XfMzW1DUpSSr033dLxYOgp8CQd5hnRAY-eCTkEug1UCknwAWUgks2UdoAr07I8Gc0IEPKRFXWXMIZGaW0phRAAhuS2wV6jCo7vyp0p8xH8R46TIXzRfVQzJ1PGZ0vF2qbUnkfvMdcrKL6cnl3Tk5b1SW8-H7H5O1x_jp7Kpcvi-fZ3bI0vBK5VKwVllVWTzVMW2s4tiAp1kJLpmpD-ytvsK6Npdoi1spIaJnVVgClCIh8TOhxr4khpYhts4nuU8VdA7Q52JsDtDlAm6O9T8SvxLjcI4PPUbnuv_DqGLqwadZhG30v-_v7HrMRbmU |
CODEN | CQGRDG |
CitedBy_id | crossref_primary_10_1016_j_dark_2021_100877 crossref_primary_10_1140_epjc_s10052_024_12597_w crossref_primary_10_1016_j_cjph_2024_04_038 crossref_primary_10_1016_j_dark_2021_100792 crossref_primary_10_1140_epjc_s10052_024_13354_9 crossref_primary_10_3390_universe10040152 crossref_primary_10_1016_j_physletb_2022_137591 crossref_primary_10_1140_epjc_s10052_021_09400_5 crossref_primary_10_1016_j_dark_2024_101642 crossref_primary_10_1140_epjc_s10052_025_13970_z crossref_primary_10_1088_1674_1137_ad2a4d crossref_primary_10_1016_j_aop_2023_169491 crossref_primary_10_1016_j_nuclphysb_2024_116753 crossref_primary_10_1103_PhysRevD_106_024023 crossref_primary_10_1002_andp_202400114 crossref_primary_10_1140_epjc_s10052_022_10766_3 crossref_primary_10_1103_PhysRevD_103_064002 crossref_primary_10_1002_prop_202300052 crossref_primary_10_1007_s12043_022_02458_0 crossref_primary_10_1142_S0219887823501402 crossref_primary_10_1103_PhysRevD_106_044024 crossref_primary_10_3390_math11061408 crossref_primary_10_1016_j_dark_2024_101535 crossref_primary_10_1103_PhysRevD_104_044029 crossref_primary_10_1016_j_physletb_2022_137020 crossref_primary_10_1088_1361_6382_ac500a crossref_primary_10_1016_j_nuclphysb_2023_116089 crossref_primary_10_1016_j_dark_2024_101493 crossref_primary_10_1038_s41598_024_62645_4 crossref_primary_10_1016_j_physletb_2021_136517 crossref_primary_10_1140_epjc_s10052_021_09585_9 crossref_primary_10_1209_0295_5075_133_50006 crossref_primary_10_3390_universe8040232 crossref_primary_10_1140_epjc_s10052_022_10123_4 crossref_primary_10_1140_epjc_s10052_022_11024_2 crossref_primary_10_1142_S0219887822501092 crossref_primary_10_1016_j_nuclphysb_2022_115688 crossref_primary_10_1142_S0218271823500165 crossref_primary_10_1140_epjp_s13360_025_06037_1 crossref_primary_10_1016_j_cjph_2023_04_016 crossref_primary_10_1142_S0217732324500767 crossref_primary_10_3847_1538_4357_ac912c crossref_primary_10_1088_1572_9494_ad9c41 crossref_primary_10_1140_epjc_s10052_021_09692_7 crossref_primary_10_1016_j_dark_2023_101220 crossref_primary_10_3390_universe8040244 crossref_primary_10_1140_epjc_s10052_021_09510_0 crossref_primary_10_1140_epjc_s10052_023_12185_4 crossref_primary_10_1140_epjc_s10052_025_13932_5 crossref_primary_10_1088_1361_6382_ad28f8 crossref_primary_10_1140_epjc_s10052_021_08923_1 crossref_primary_10_1016_j_cjph_2022_01_008 crossref_primary_10_1016_j_aop_2022_168863 crossref_primary_10_1007_s10773_023_05409_6 crossref_primary_10_1142_S0218271822500663 crossref_primary_10_1140_epjp_s13360_023_03772_1 crossref_primary_10_1142_S0219887824500117 crossref_primary_10_1016_j_dark_2024_101757 crossref_primary_10_1142_S0217751X23500355 crossref_primary_10_1007_s10509_025_04412_z crossref_primary_10_1002_andp_202100308 crossref_primary_10_1140_epjp_s13360_022_02495_z crossref_primary_10_1016_j_physletb_2022_136997 crossref_primary_10_1016_j_dark_2024_101793 crossref_primary_10_1007_s10714_023_03159_8 crossref_primary_10_3390_sym14030545 crossref_primary_10_1140_epjc_s10052_024_12876_6 crossref_primary_10_1007_s10714_022_02902_x crossref_primary_10_1016_j_physletb_2022_137329 crossref_primary_10_1142_S0217751X22502062 |
Cites_doi | 10.1103/physrevlett.34.905 10.1103/physrevd.55.2110 10.1103/physrevd.102.024025 10.1088/1475-7516/2020/07/053 10.1016/0550-3213(87)90465-2 10.1103/physrevd.77.047504 10.1103/physrevd.97.104050 10.1088/0264-9381/23/14/006 10.1023/a:1018871522880 10.1007/jhep07(2020)027 10.1103/physrevd.88.024006 10.12942/lrr-2004-3 10.1016/Phys.Lett.B.2011.704:5-9 10.1140/epjc/s10052-020-8200-7 10.1007/bf01645859 10.1016/s0370-2693(96)01521-3 10.1063/1.1665613 10.1016/j.physletb.2020.135468 10.1016/j.dark.2020.100687 10.1088/1475-7516/2020/07/013 10.1103/physrevlett.63.341 10.1103/physrevd.53.4327 10.1103/physrevd.100.124029 10.1103/physrevd.63.041503 10.1088/1475-7516/2020/09/030 10.1016/0550-3213(86)90268-3 10.1063/1.1666069 10.1007/s10714-007-0511-6 10.1088/0264-9381/10/7/015 10.1103/physrevlett.106.151104 10.1103/physrevlett.14.57 10.1103/physrevlett.55.2656 10.1088/1572-9494/aba242 10.1023/a:1018819521971 10.1088/1361-6382/aaaead 10.1103/physrevlett.26.331 10.1103/physrevd.73.064018 10.1103/physrev.164.1776 10.1103/PhysRevD.101.104018 10.1016/j.physletb.2020.135717 10.1002/andp.19163550905 10.3390/universe6080103 10.1016/0370-2693(95)01519-1 10.1209/0295-5075/130/10004 10.1016/j.physletb.2009.06.019 10.1016/j.aop.2019.168025 10.1140/epjc/s10052-020-8164-7 10.1007/jhep04(2010)082 10.1007/bf03173260 10.1016/j.dark.2020.100730 10.1103/physrevd.101.084038 10.1016/S0370-2693(01)01057-7 10.1103/physrevlett.124.081301 10.1007/bf01877517 10.1016/j.physletb.2020.135657 10.2307/1968467 10.1023/b:gerg.0000022582.28223.a0 10.1016/0370-2693(86)90681-7 10.1142/s0218271820500650 10.1088/0264-9381/20/21/003 10.1103/physrevd.70.104010 10.1023/a:1018862910233 10.1103/physrevd.47.5259 10.1016/j.physletb.2014.04.044 |
ContentType | Journal Article |
Copyright | 2020 IOP Publishing Ltd |
Copyright_xml | – notice: 2020 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6382/abc134 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Physics |
DocumentTitleAlternate | Generating black holes in 4D Einstein-Gauss-Bonnet gravity |
EISSN | 1361-6382 |
ExternalDocumentID | 10_1088_1361_6382_abc134 cqgabc134 |
GroupedDBID | -DZ -~X 1JI 29B 4.4 5B3 5GY 5PX 5VS 5ZH 6J9 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 UCJ W28 XPP ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c346t-a2f6d24db7b17fdc3ef180e96b82a9c01365e99cd0bdee9ac81f2dbd6100e1ee3 |
IEDL.DBID | IOP |
ISSN | 0264-9381 |
IngestDate | Thu Apr 24 23:01:30 EDT 2025 Tue Jul 01 00:32:34 EDT 2025 Wed Aug 21 03:33:30 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c346t-a2f6d24db7b17fdc3ef180e96b82a9c01365e99cd0bdee9ac81f2dbd6100e1ee3 |
Notes | CQG-107099.R2 |
ORCID | 0000-0002-0835-3690 |
PageCount | 16 |
ParticipantIDs | iop_journals_10_1088_1361_6382_abc134 crossref_primary_10_1088_1361_6382_abc134 crossref_citationtrail_10_1088_1361_6382_abc134 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-17 |
PublicationDateYYYYMMDD | 2020-12-17 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-17 day: 17 |
PublicationDecade | 2020 |
PublicationTitle | Classical and quantum gravity |
PublicationTitleAbbrev | CQG |
PublicationTitleAlternate | Class. Quantum Grav |
PublicationYear | 2020 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Mignemi (cqgabc134bib22a) 1993; 47 Wei (cqgabc134bib27) 2020 Wang (cqgabc134bib66) 1999; 31 Hawking (cqgabc134bib7) 1973 Kumar (cqgabc134bib31) 2020 Vaidya (cqgabc134bib6a) 1951; 33 Parentani (cqgabc134bib11) 2001; 63 Singh (cqgabc134bib42) 2020 Konoplya (cqgabc134bib35) 2020 Hegde (cqgabc134bib43) 2020 Alexeev (cqgabc134bib22b) 1997; 55 Fernandes (cqgabc134bib25) 2020; 805 Gallo (cqgabc134bib5) 2004; 36 Ghosh (cqgabc134bib14) 2008; 40 Singh (cqgabc134bib22i) 2020; 412 Lovelock (cqgabc134bib24) 1972; 13 Hennigar (cqgabc134bib52) 2020 Hennigar (cqgabc134bib63) 2020; 808 Bento (cqgabc134bib18b) 1996; 368 Fernandes (cqgabc134bib41) 2020; 102 Ghosh (cqgabc134bib30) 2020 Zhang (cqgabc134bib36) 2020; 6 Konoplya (cqgabc134bib47) 2020; 101 Lanczos (cqgabc134bib17) 1938; 39 Ghosh (cqgabc134bib22g) 2018; 97 Robinson (cqgabc134bib3e) 1975; 34 Kumar (cqgabc134bib32) 2020 Gurses (cqgabc134bib54) 2020; 80 Cai (cqgabc134bib65b) 2014; 733 Dadhich (cqgabc134bib68) 2001; 518 Kobayashi (cqgabc134bib57) 2020; 2020 Carter (cqgabc134bib3c) 1971; 26 Kanti (cqgabc134bib22c) 1997; 392 Kleihaus (cqgabc134bib22e) 2011; 106 Islam (cqgabc134bib37) 2020; 2020 Ai (cqgabc134bib51) 2020; 72 Nojiri (cqgabc134bib61) 2020; 130 Hu (cqgabc134bib12) 2004; 7 Kehagias (cqgabc134bib64) 2009; 678 Ghosh (cqgabc134bib22f) 2011; 704 Israel (cqgabc134bib3b) 1968; 8 Singh (cqgabc134bib26) 2020; 30 Hawking (cqgabc134bib3d) 1972; 25 Heydari-Fard (cqgabc134bib38) 2020 Kumar (cqgabc134bib28) 2020; 2020 Kothawala (cqgabc134bib13) 2004; 70 Wei (cqgabc134bib46) 2020; 101 Dominguez (cqgabc134bib15) 2006; 73 Mahapatra (cqgabc134bib55) 2020 Husain (cqgabc134bib69) 1996; 53 Guo (cqgabc134bib34) 2020; 80 Mann (cqgabc134bib62) 1993; 10 Casalino (cqgabc134bib48) 2020 Hosseini Mansoori (cqgabc134bib45) 2020 Eslam Panah (cqgabc134bib44) 2020 Ghosh (cqgabc134bib22d) 2008; 77 Arrechea (cqgabc134bib59) 2020 Boulware (cqgabc134bib19) 1985; 55 Ma (cqgabc134bib58) 2020 Hansraj (cqgabc134bib22j) 2019; 100 Joshi (cqgabc134bib9) 1993 Cognola (cqgabc134bib50) 2013; 88 Reissner (cqgabc134bib2) 1916; 355 Penrose (cqgabc134bib71a) 1969; 1 Shu (cqgabc134bib53) 2020 Cai (cqgabc134bib65a) 2010 Penrose (cqgabc134bib71b) 1980 Salgado (cqgabc134bib4) 2003; 20 Vaidya (cqgabc134bib6b) 1999; 31 Kumar (cqgabc134bib40) 2020 Barriola (cqgabc134bib67) 1989; 63 Israel (cqgabc134bib3a) 1967; 164 Gross (cqgabc134bib18a) 1987; 291 Doneva (cqgabc134bib33) 2020 Schwarzschild (cqgabc134bib1) 1916; 1916 Ghosh (cqgabc134bib29) 2020; 30 Tomozawa (cqgabc134bib49) 2011 Lovelock (cqgabc134bib16) 1971; 12 Wiltshire (cqgabc134bib21) 1986; 169 Penrose (cqgabc134bib10) 1965; 14 Ghosh (cqgabc134bib22h) 2018; 35 Lü (cqgabc134bib56) 2020; 809 Aoki (cqgabc134bib60) 2020 Nielsen (cqgabc134bib70) 2006; 23 Herrera (cqgabc134bib8) 1998; 30 Wheeler (cqgabc134bib20) 1986; 268 Jin (cqgabc134bib39) 2020; 29 Glavan (cqgabc134bib23) 2020; 124 |
References_xml | – volume: 34 start-page: 905 year: 1975 ident: cqgabc134bib3e publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.34.905 – volume: 55 start-page: 2110 year: 1997 ident: cqgabc134bib22b publication-title: Phys. Rev. D doi: 10.1103/physrevd.55.2110 – volume: 102 year: 2020 ident: cqgabc134bib41 publication-title: Phys. Rev. D doi: 10.1103/physrevd.102.024025 – year: 1973 ident: cqgabc134bib7 – volume: 2020 start-page: 053 year: 2020 ident: cqgabc134bib28 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2020/07/053 – year: 2020 ident: cqgabc134bib35 – volume: 291 start-page: 41 year: 1987 ident: cqgabc134bib18a publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(87)90465-2 – volume: 77 year: 2008 ident: cqgabc134bib22d publication-title: Phys. Rev. D doi: 10.1103/physrevd.77.047504 – volume: 97 year: 2018 ident: cqgabc134bib22g publication-title: Phys. Rev. D doi: 10.1103/physrevd.97.104050 – volume: 23 start-page: 4637 year: 2006 ident: cqgabc134bib70 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/23/14/006 – volume: 31 start-page: 119 year: 1999 ident: cqgabc134bib6b publication-title: Gen. Relativ. Gravit. doi: 10.1023/a:1018871522880 – year: 2020 ident: cqgabc134bib32 – year: 2020 ident: cqgabc134bib52 publication-title: J. High Energy Phys. doi: 10.1007/jhep07(2020)027 – year: 2020 ident: cqgabc134bib55 – year: 2020 ident: cqgabc134bib33 – volume: 88 year: 2013 ident: cqgabc134bib50 publication-title: Phys. Rev. D doi: 10.1103/physrevd.88.024006 – volume: 7 start-page: 3 year: 2004 ident: cqgabc134bib12 publication-title: Living Rev. Relativ. doi: 10.12942/lrr-2004-3 – year: 2020 ident: cqgabc134bib27 – volume: 704 start-page: 5 year: 2011 ident: cqgabc134bib22f publication-title: Phys. Lett. B doi: 10.1016/Phys.Lett.B.2011.704:5-9 – volume: 80 start-page: 647 year: 2020 ident: cqgabc134bib54 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-8200-7 – volume: 8 start-page: 245 year: 1968 ident: cqgabc134bib3b publication-title: Commun. Math. Phys. doi: 10.1007/bf01645859 – volume: 392 start-page: 30 year: 1997 ident: cqgabc134bib22c publication-title: Phys. Lett. B doi: 10.1016/s0370-2693(96)01521-3 – volume: 12 start-page: 498 year: 1971 ident: cqgabc134bib16 publication-title: J. Math. Phys. doi: 10.1063/1.1665613 – year: 2020 ident: cqgabc134bib59 – volume: 805 year: 2020 ident: cqgabc134bib25 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2020.135468 – volume: 30 year: 2020 ident: cqgabc134bib29 publication-title: Phys. Dark Univ. doi: 10.1016/j.dark.2020.100687 – volume: 2020 start-page: 013 year: 2020 ident: cqgabc134bib57 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2020/07/013 – volume: 63 start-page: 341 year: 1989 ident: cqgabc134bib67 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.63.341 – volume: 53 start-page: 1759 year: 1996 ident: cqgabc134bib69 publication-title: Phys. Rev. D doi: 10.1103/physrevd.53.4327 – volume: 100 year: 2019 ident: cqgabc134bib22j publication-title: Phys. Rev. D doi: 10.1103/physrevd.100.124029 – volume: 63 year: 2001 ident: cqgabc134bib11 publication-title: Phys. Rev. D doi: 10.1103/physrevd.63.041503 – year: 2020 ident: cqgabc134bib40 – volume: 2020 start-page: 030 year: 2020 ident: cqgabc134bib37 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2020/09/030 – year: 2011 ident: cqgabc134bib49 – year: 2020 ident: cqgabc134bib60 – volume: 268 start-page: 737 year: 1986 ident: cqgabc134bib20 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(86)90268-3 – year: 2020 ident: cqgabc134bib30 – volume: 13 start-page: 874 year: 1972 ident: cqgabc134bib24 publication-title: J. Math. Phys. doi: 10.1063/1.1666069 – volume: 40 start-page: 9 year: 2008 ident: cqgabc134bib14 publication-title: Gen. Relativ. Gravit. doi: 10.1007/s10714-007-0511-6 – year: 2020 ident: cqgabc134bib43 – volume: 10 start-page: 1405 year: 1993 ident: cqgabc134bib62 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/10/7/015 – volume: 106 year: 2011 ident: cqgabc134bib22e publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.106.151104 – volume: 14 start-page: 57 year: 1965 ident: cqgabc134bib10 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.14.57 – volume: 55 start-page: 2656 year: 1985 ident: cqgabc134bib19 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.55.2656 – volume: 72 year: 2020 ident: cqgabc134bib51 publication-title: Commun. Theor. Phys. doi: 10.1088/1572-9494/aba242 – volume: 31 start-page: 107 year: 1999 ident: cqgabc134bib66 publication-title: Gen. Relativ. Gravit. doi: 10.1023/a:1018819521971 – volume: 35 year: 2018 ident: cqgabc134bib22h publication-title: Class. Quantum Grav. doi: 10.1088/1361-6382/aaaead – volume: 26 start-page: 331 year: 1971 ident: cqgabc134bib3c publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.26.331 – volume: 73 year: 2006 ident: cqgabc134bib15 publication-title: Phys. Rev. D doi: 10.1103/physrevd.73.064018 – volume: 164 start-page: 1776 year: 1967 ident: cqgabc134bib3a publication-title: Phys. Rev. doi: 10.1103/physrev.164.1776 – volume: 101 year: 2020 ident: cqgabc134bib46 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.104018 – volume: 809 year: 2020 ident: cqgabc134bib56 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2020.135717 – volume: 355 start-page: 106 year: 1916 ident: cqgabc134bib2 publication-title: Ann. Phys., NY doi: 10.1002/andp.19163550905 – volume: 6 start-page: 103 year: 2020 ident: cqgabc134bib36 publication-title: Universe doi: 10.3390/universe6080103 – volume: 368 start-page: 198 year: 1996 ident: cqgabc134bib18b publication-title: Phys. Lett. B doi: 10.1016/0370-2693(95)01519-1 – volume: 130 start-page: 10004 year: 2020 ident: cqgabc134bib61 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/130/10004 – volume: 678 start-page: 123 year: 2009 ident: cqgabc134bib64 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2009.06.019 – volume: 412 year: 2020 ident: cqgabc134bib22i publication-title: Ann. Phys., NY doi: 10.1016/j.aop.2019.168025 – volume: 80 start-page: 588 year: 2020 ident: cqgabc134bib34 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-8164-7 – year: 2010 ident: cqgabc134bib65a publication-title: J. High Energy Phys. doi: 10.1007/jhep04(2010)082 – volume: 33 start-page: 264 year: 1951 ident: cqgabc134bib6a publication-title: Proc. Indian Acad. Sci. A doi: 10.1007/bf03173260 – volume: 30 year: 2020 ident: cqgabc134bib26 publication-title: Phys. Dark Univ. doi: 10.1016/j.dark.2020.100730 – year: 1980 ident: cqgabc134bib71b – year: 2020 ident: cqgabc134bib58 – volume: 1 start-page: 252 year: 1969 ident: cqgabc134bib71a publication-title: Riv. Nuovo Cimento – year: 2020 ident: cqgabc134bib44 – volume: 101 year: 2020 ident: cqgabc134bib47 publication-title: Phys. Rev. D doi: 10.1103/physrevd.101.084038 – year: 2020 ident: cqgabc134bib38 – volume: 518 start-page: 1 year: 2001 ident: cqgabc134bib68 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(01)01057-7 – year: 2020 ident: cqgabc134bib31 – year: 1993 ident: cqgabc134bib9 article-title: Global Aspects in Gravitation and Cosmology – volume: 124 year: 2020 ident: cqgabc134bib23 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.124.081301 – volume: 25 start-page: 152 year: 1972 ident: cqgabc134bib3d publication-title: Commun. Math. Phys. doi: 10.1007/bf01877517 – year: 2020 ident: cqgabc134bib42 – volume: 808 year: 2020 ident: cqgabc134bib63 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2020.135657 – year: 2020 ident: cqgabc134bib45 – volume: 39 start-page: 842 year: 1938 ident: cqgabc134bib17 publication-title: Ann. Math. doi: 10.2307/1968467 – volume: 36 start-page: 1463 year: 2004 ident: cqgabc134bib5 publication-title: Gen. Relativ. Gravit. doi: 10.1023/b:gerg.0000022582.28223.a0 – volume: 169 start-page: 36 year: 1986 ident: cqgabc134bib21 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(86)90681-7 – volume: 29 start-page: 2050065 year: 2020 ident: cqgabc134bib39 publication-title: Int. J. Mod. Phys. D doi: 10.1142/s0218271820500650 – year: 2020 ident: cqgabc134bib48 – volume: 20 start-page: 4551 year: 2003 ident: cqgabc134bib4 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/20/21/003 – volume: 1916 start-page: 189 year: 1916 ident: cqgabc134bib1 publication-title: Sitzungsber. Preuss. Akad. Wiss. Berl. – volume: 70 year: 2004 ident: cqgabc134bib13 publication-title: Phys. Rev. D doi: 10.1103/physrevd.70.104010 – volume: 30 start-page: 445 year: 1998 ident: cqgabc134bib8 publication-title: Gen. Relativ. Gravit. doi: 10.1023/a:1018862910233 – volume: 47 start-page: 5259 year: 1993 ident: cqgabc134bib22a publication-title: Phys. Rev. D doi: 10.1103/physrevd.47.5259 – year: 2020 ident: cqgabc134bib53 – volume: 733 start-page: 183 year: 2014 ident: cqgabc134bib65b publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2014.04.044 |
SSID | ssj0011812 |
Score | 2.6190727 |
Snippet | In recent times there is a surge of interest in constructing Einstein-Gauss-Bonnet (EGB) gravity, in the limit D → 4, of the D-dimensional EGB gravity.... In recent times there is a surge of interest in constructing Einstein–Gauss–Bonnet (EGB) gravity, in the limit D → 4, of the D -dimensional EGB gravity.... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 245008 |
SubjectTerms | EGB gravity generating black hole spherical symmetric solutions type II fluid |
Title | Generating black holes in 4D Einstein-Gauss-Bonnet gravity |
URI | https://iopscience.iop.org/article/10.1088/1361-6382/abc134 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKERIMPAqI8lIGGBjcxrHr2DDxaClIBQYqdUCK4kekCpRWJF349dhxGgEChNgynBPrk53v7Lv7DoCj0HAGFZRAww8YGr7WMBZM2xi8j6U55YqifdvgjvaH5HbUGdXAWVULM5mWv_6WeXRCwQ7CMiGOtRGmCJplE7RjIREmC2ARM0pt-4Kb-4cqhGCpy12wEMgNL5Uxyu_e8ImTFsx3P1BMbw08zSfnMkueW7NctOTbF93Gf85-HayWrqd37kw3QE2nDbAyqHRbswZYKhJCZbYJTp0etU2K9oS95PNsI93MG6ceufK6Y-NV6nEKr-NZlsELmy2Te7aVkXHqt8Cw13287MOyzwKUmNAcxkFCVUCUCAUKEyWxThDzNaeCBTGXVtWtozmXyhdKax5LhpJACWU8L18jrfE2qKeTVO_YCnDWiXFoK-w5kUzGWIbKODWUKjuGN0F7jnQkSxFy2wvjJSqC4YxFFp_I4hM5fJrgpBoxdQIcv9geG9ijchdmP9rt_tFuDywH9niNAojCfVDPX2f6wPgguTgs1to7jZ_RFQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZoEQgGHgVEeWaAgcFNHCeOw8ajpQVaOlCpW4gfkSpQWpF04ddjJ24FCBASW4azk3xy8p19d98BcBIoziCMeFDxA4aKryWMGZU6Bu9grna5rGjf1u2R9sC7HfpD0-e0qIUZT8yvv6EuS6HgEkKTEEdthAmCatm4dsw4wp49EUkFLPqYYC2e33noz8MImr7KQxYPhoqbTJzyu1k-8VJF3fsDzbTWwdPsAcvskufGNGcN_vZFu_Efb7AB1owLal2U5ptgQaY1sNqd67dmNbBUJIbybAucl7rUOjnaYvqwz9INdTNrlFretdUcKe9SjlJ4E0-zDF7qrJnc0i2NlHO_DQat5uNVG5p-C5Bjj-QwdhMiXE-wgKEgERzLBFFHhoRRNw65VnfzZRhy4TAhZRhzihJXMKE8MEciKfEOqKbjVO7qSnDqxzjQlfahxymPMQ-Ecm4IEXpMWAf2DO2IGzFy3RPjJSqC4pRGGqNIYxSVGNXB2XzEpBTi-MX2VEEfma8x-9Fu7492x2C5f92K7ju9u32w4uodN3IhCg5ANX-dykPlluTsqFh673r31nk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+black+holes+in+4D+Einstein-Gauss-Bonnet+gravity&rft.jtitle=Classical+and+quantum+gravity&rft.au=Ghosh%2C+Sushant+G&rft.au=Kumar%2C+Rahul&rft.date=2020-12-17&rft.pub=IOP+Publishing&rft.issn=0264-9381&rft.eissn=1361-6382&rft.volume=37&rft.issue=24&rft_id=info:doi/10.1088%2F1361-6382%2Fabc134&rft.externalDocID=cqgabc134 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-9381&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-9381&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-9381&client=summon |