Characterizing a non-equilibrium phase transition on a quantum computer
Quantum systems subject to driving and dissipation display distinctive non-equilibrium phenomena relevant to condensed matter, quantum optics, metrology and quantum error correction. An example is the emergence of phase transitions with uniquely quantum properties, which opposes the intuition that d...
Saved in:
Published in | Nature physics Vol. 19; no. 12; pp. 1799 - 1804 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2023
Nature Publishing Group Nature Publishing Group (NPG) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantum systems subject to driving and dissipation display distinctive non-equilibrium phenomena relevant to condensed matter, quantum optics, metrology and quantum error correction. An example is the emergence of phase transitions with uniquely quantum properties, which opposes the intuition that dissipation generally leads to classical behaviour. The quantum and non-equilibrium nature of such systems makes them hard to study with existing tools, such as those from equilibrium statistical mechanics, and represents a challenge for numerical simulations. Quantum computers, however, are well suited to simulating such systems, especially as hardware developments enable the controlled application of dissipative operations in a pristine quantum environment. Here we demonstrate a large-scale accurate quantum simulation of a non-equilibrium phase transition using a trapped-ion quantum computer. We simulate a quantum extension of the classical contact process that has been proposed as a description for driven gases of Rydberg atoms and has stimulated numerous attempts to determine the impact of quantum effects on the classical directed-percolation universality class. We use techniques such as qubit reuse and error avoidance based on real-time conditional logic to implement large instances of the model with 73 sites and up to 72 circuit layers and quantitatively determine the model’s critical properties. Our work demonstrates that today’s quantum computers are able to perform useful simulations of open quantum system dynamics and non-equilibrium phase transitions.
Quantum computers may help to solve classically intractable problems, such as simulating non-equilibrium dissipative quantum systems. The critical dynamics of a dissipative quantum model has now been probed on a trapped-ion quantum computer. |
---|---|
AbstractList | Quantum systems subject to driving and dissipation display distinctive non-equilibrium phenomena relevant to condensed matter, quantum optics, metrology and quantum error correction. An example is the emergence of phase transitions with uniquely quantum properties, which opposes the intuition that dissipation generally leads to classical behaviour. The quantum and non-equilibrium nature of such systems makes them hard to study with existing tools, such as those from equilibrium statistical mechanics, and represents a challenge for numerical simulations. Quantum computers, however, are well suited to simulating such systems, especially as hardware developments enable the controlled application of dissipative operations in a pristine quantum environment. Here we demonstrate a large-scale accurate quantum simulation of a non-equilibrium phase transition using a trapped-ion quantum computer. We simulate a quantum extension of the classical contact process that has been proposed as a description for driven gases of Rydberg atoms and has stimulated numerous attempts to determine the impact of quantum effects on the classical directed-percolation universality class. We use techniques such as qubit reuse and error avoidance based on real-time conditional logic to implement large instances of the model with 73 sites and up to 72 circuit layers and quantitatively determine the model’s critical properties. Our work demonstrates that today’s quantum computers are able to perform useful simulations of open quantum system dynamics and non-equilibrium phase transitions.Quantum computers may help to solve classically intractable problems, such as simulating non-equilibrium dissipative quantum systems. The critical dynamics of a dissipative quantum model has now been probed on a trapped-ion quantum computer. Quantum systems subject to driving and dissipation display distinctive non-equilibrium phenomena relevant to condensed matter, quantum optics, metrology and quantum error correction. An example is the emergence of phase transitions with uniquely quantum properties, which opposes the intuition that dissipation generally leads to classical behaviour. The quantum and non-equilibrium nature of such systems makes them hard to study with existing tools, such as those from equilibrium statistical mechanics, and represents a challenge for numerical simulations. Quantum computers, however, are well suited to simulating such systems, especially as hardware developments enable the controlled application of dissipative operations in a pristine quantum environment. Here we demonstrate a large-scale accurate quantum simulation of a non-equilibrium phase transition using a trapped-ion quantum computer. We simulate a quantum extension of the classical contact process that has been proposed as a description for driven gases of Rydberg atoms and has stimulated numerous attempts to determine the impact of quantum effects on the classical directed-percolation universality class. We use techniques such as qubit reuse and error avoidance based on real-time conditional logic to implement large instances of the model with 73 sites and up to 72 circuit layers and quantitatively determine the model’s critical properties. Our work demonstrates that today’s quantum computers are able to perform useful simulations of open quantum system dynamics and non-equilibrium phase transitions. Quantum computers may help to solve classically intractable problems, such as simulating non-equilibrium dissipative quantum systems. The critical dynamics of a dissipative quantum model has now been probed on a trapped-ion quantum computer. Not provided. |
Author | Gresh, Dan Hankin, Aaron Mengle, Tanner Neyenhuis, Brian Stutz, Russell Hall, Alex Hayes, David Foss-Feig, Michael Matheny, Mitchell Gatterman, Thomas M. Cheng, Zihan Chertkov, Eli Gilmore, Kevin Potter, Andrew C. Gerber, Justin A. Gopalakrishnan, Sarang |
Author_xml | – sequence: 1 givenname: Eli orcidid: 0000-0002-5957-1356 surname: Chertkov fullname: Chertkov, Eli email: eli.chertkov@quantinuum.com organization: Quantinuum – sequence: 2 givenname: Zihan orcidid: 0000-0002-0267-1815 surname: Cheng fullname: Cheng, Zihan organization: Department of Physics, University of Texas at Austin – sequence: 3 givenname: Andrew C. surname: Potter fullname: Potter, Andrew C. organization: Department of Physics, University of Texas at Austin, Department of Physics and Astronomy, and Stewart Blusson Quantum Matter Institute, University of British Columbia – sequence: 4 givenname: Sarang surname: Gopalakrishnan fullname: Gopalakrishnan, Sarang organization: Department of Electrical and Computer Engineering, Princeton University – sequence: 5 givenname: Thomas M. surname: Gatterman fullname: Gatterman, Thomas M. organization: Quantinuum – sequence: 6 givenname: Justin A. orcidid: 0000-0002-3140-4935 surname: Gerber fullname: Gerber, Justin A. organization: Quantinuum – sequence: 7 givenname: Kevin orcidid: 0000-0002-8230-7000 surname: Gilmore fullname: Gilmore, Kevin organization: Quantinuum – sequence: 8 givenname: Dan surname: Gresh fullname: Gresh, Dan organization: Quantinuum – sequence: 9 givenname: Alex surname: Hall fullname: Hall, Alex organization: Quantinuum – sequence: 10 givenname: Aaron surname: Hankin fullname: Hankin, Aaron organization: Quantinuum – sequence: 11 givenname: Mitchell surname: Matheny fullname: Matheny, Mitchell organization: Quantinuum – sequence: 12 givenname: Tanner surname: Mengle fullname: Mengle, Tanner organization: Quantinuum – sequence: 13 givenname: David surname: Hayes fullname: Hayes, David organization: Quantinuum – sequence: 14 givenname: Brian surname: Neyenhuis fullname: Neyenhuis, Brian organization: Quantinuum – sequence: 15 givenname: Russell orcidid: 0000-0002-3124-2999 surname: Stutz fullname: Stutz, Russell organization: Quantinuum – sequence: 16 givenname: Michael surname: Foss-Feig fullname: Foss-Feig, Michael organization: Quantinuum |
BackLink | https://www.osti.gov/biblio/2578103$$D View this record in Osti.gov |
BookMark | eNp9kE9LAzEQxYNUsK1-AU-Lnlfzb3ezRylahYIXPYfZbLZNaZM2yVL005u6ouChMGEG8n6PmTdBI-usRuia4DuCmbgPnBRllWPK0iN1nR_O0JhUvMgpF2T0O1fsAk1CWGPMaUnYGM1nK_Cgovbm09hlBllyzvW-NxvTeNNvs90Kgs6iBxtMNM5mqSDb92Bj-lVuu-sTfYnOO9gEffXTp-j96fFt9pwvXucvs4dFrhgvYy4IEAWNgrJsSN11LS6g1BXBtO0YFVRxWmvVtnVBWcPbgrWkaYDzlrUUAzRsim4GXxeikUGZqNVKOWu1ipIWlUhxJNHtINp5t-91iHLtem_TXpKKui5KXIqjSgwq5V0IXncyucHxxHSs2UiC5TFbOWQrU7byO1t5SCj9h-682YL_OA2xAQpJbJfa_211gvoC43yPvg |
CitedBy_id | crossref_primary_10_22331_q_2024_12_10_1557 crossref_primary_10_1088_2058_9565_adb2bd crossref_primary_10_1103_PhysRevB_109_214305 crossref_primary_10_1038_s41467_024_51162_7 crossref_primary_10_1103_PhysRevX_13_041057 crossref_primary_10_22331_q_2025_01_28_1612 crossref_primary_10_1103_PhysRevLett_133_136503 crossref_primary_10_1103_PhysRevLett_133_136602 crossref_primary_10_1103_PhysRevLett_133_266502 crossref_primary_10_1016_j_xcrp_2024_102105 crossref_primary_10_1038_s41534_025_00997_z crossref_primary_10_1109_TQE_2024_3511419 crossref_primary_10_1088_2058_9565_ad3f42 crossref_primary_10_1088_1367_2630_ad8d74 crossref_primary_10_1103_PhysRevLett_132_130401 crossref_primary_10_1103_PhysRevLett_133_070401 crossref_primary_10_1103_PRXQuantum_6_010351 crossref_primary_10_1103_PhysRevB_110_064420 crossref_primary_10_1016_j_future_2024_06_058 crossref_primary_10_1088_1751_8121_ad6363 crossref_primary_10_1103_PhysRevLett_131_220404 crossref_primary_10_1038_s41567_023_02245_7 crossref_primary_10_1103_PhysRevB_109_L020304 crossref_primary_10_1146_annurev_conmatphys_032822_045619 |
Cites_doi | 10.1103/PRXQuantum.2.010342 10.1103/PhysRevResearch.3.023005 10.1088/2058-9565/aaf831 10.1103/PhysRevB.106.165126 10.1103/PhysRevE.106.L032103 10.1103/PhysRevA.92.022116 10.1103/PhysRevLett.131.060403 10.1103/PhysRevB.97.035127 10.1080/00018730050198152 10.1088/1367-2630/ab43b0 10.1103/PhysRevB.106.L220307 10.1103/PhysRevResearch.3.033002 10.1103/PhysRevLett.93.207204 10.1103/PhysRevLett.119.180509 10.1016/j.physa.2006.04.007 10.1103/RevModPhys.93.015008 10.1103/PhysRevResearch.3.013238 10.1038/s41586-021-03318-4 10.1214/aop/1176996493 10.1103/RevModPhys.76.663 10.1103/PhysRevLett.127.230502 10.1103/PhysRevA.103.L040201 10.1103/PRXQuantum.3.030317 10.1103/PhysRevLett.114.220601 10.1088/2058-9565/aae724 10.1038/s41567-022-01689-7 10.1103/PhysRevResearch.3.043167 10.1103/PhysRevLett.123.100604 10.1088/0305-4470/32/28/304 10.1103/PhysRevLett.125.100403 10.1038/nphys1342 10.22331/q-2020-09-11-318 10.1103/PhysRevLett.116.237201 10.1038/s41467-022-33737-4 10.1103/PhysRevLett.116.245701 10.1017/CBO9780511524288 10.21203/rs.3.rs-2019123/v1 10.1038/s41534-021-00420-3 10.1103/PhysRevX.13.041057 10.21468/SciPostPhysCodeb.4 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
CorporateAuthor | Univ. of Texas, Austin, TX (United States) UT-Battelle LLC/ORNL, Oak Ridge, TN (United States) |
CorporateAuthor_xml | – name: Univ. of Texas, Austin, TX (United States) – name: UT-Battelle LLC/ORNL, Oak Ridge, TN (United States) |
DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U OTOTI |
DOI | 10.1038/s41567-023-02199-w |
DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic OSTI.GOV |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-2481 |
EndPage | 1804 |
ExternalDocumentID | 2578103 10_1038_s41567_023_02199_w |
GrantInformation_xml | – fundername: Sloan Research Fellowship from Alfred P. Sloan Foundation – fundername: U.S. Department of Energy (DOE) grantid: DE-SC0022102; DE-AC05-00OR22725 funderid: https://doi.org/10.13039/100000015 – fundername: National Science Foundation (NSF) grantid: PHY-1748958; PHY-1607611; PHY-1607611 funderid: https://doi.org/10.13039/100000001 |
GroupedDBID | 0R~ 123 29M 39C 3V. 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION NFIDA PHGZM PHGZT 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQGLB PQUKI PUEGO Q9U OTOTI |
ID | FETCH-LOGICAL-c346t-81a1cabca66b19ffd05a6e7102df3282c429ecdd9523b4d53d1bba44d3d20aab3 |
IEDL.DBID | BENPR |
ISSN | 1745-2473 |
IngestDate | Mon Aug 25 02:20:52 EDT 2025 Sat Aug 23 13:42:12 EDT 2025 Tue Jul 01 00:25:42 EDT 2025 Thu Apr 24 23:44:05 EDT 2025 Fri Feb 21 02:38:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c346t-81a1cabca66b19ffd05a6e7102df3282c429ecdd9523b4d53d1bba44d3d20aab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 None USDOE Office of Science (SC) AC05-00OR22725; SC0022102 |
ORCID | 0000-0002-3140-4935 0000-0002-5957-1356 0000-0002-8230-7000 0000-0002-3124-2999 0000-0002-0267-1815 0000000231404935 0000000259571356 0000000282307000 0000000231242999 0000000202671815 |
PQID | 2899560683 |
PQPubID | 27545 |
PageCount | 6 |
ParticipantIDs | osti_scitechconnect_2578103 proquest_journals_2899560683 crossref_citationtrail_10_1038_s41567_023_02199_w crossref_primary_10_1038_s41567_023_02199_w springer_journals_10_1038_s41567_023_02199_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nat. Phys |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Publishing Group (NPG) |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Publishing Group (NPG) |
References | Carollo, Gillman, Weimer, Lesanovsky (CR7) 2019; 123 Verstraete, Wolf, Cirac (CR3) 2009; 5 Gillman, Carollo, Lesanovsky (CR12) 2021; 103 CR17 CR16 Ódor (CR18) 2004; 76 Pino (CR22) 2021; 592 CR32 Dborin (CR30) 2022; 13 CR31 Werner (CR36) 2016; 116 Iadecola, Ganeshan, Pixley, Wilson (CR42) 2023; 131 Cui, Cirac, Bañuls (CR34) 2015; 114 Foss-Feig (CR24) 2021; 3 Gillman, Carollo, Lesanovsky (CR14) 2022; 106 Jaschke, Montangero, Carr (CR38) 2018; 4 Temme, Bravyi, Gambetta (CR44) 2017; 119 Zhang, Jahanbani, Niu, Haghshenas, Potter (CR29) 2022; 106 Verstraete, García-Ripoll, Cirac (CR33) 2004; 93 Li, Benjamin (CR45) 2017; 7 Cheng, Potter (CR40) 2022; 106 Chertkov (CR26) 2022; 18 White, Zaletel, Mong, Refael (CR37) 2018; 97 Gillman, Carollo, Lesanovsky (CR8) 2019; 21 Lin, Dilip, Green, Smith, Pollmann (CR28) 2021; 2 Jo, Lee, Choi, Kahng (CR9) 2021; 3 CR25 Jensen (CR19) 1999; 32 CR46 CR23 Noh, Jiang, Fefferman (CR2) 2020; 4 Gillman, Carollo, Lesanovsky (CR13) 2021; 127 CR21 Mascarenhas, Flayac, Savona (CR35) 2015; 92 CR43 Hinrichsen (CR5) 2000; 49 Marcuzzi, Buchhold, Diehl, Lesanovsky (CR6) 2016; 116 Lesanovsky, Macieszczak, Garrahan (CR10) 2019; 4 CR41 Hinrichsen (CR20) 2006; 369 Niu (CR27) 2022; 3 Cheng (CR39) 2021; 3 Harris (CR4) 1974; 2 Gillman, Carollo, Lesanovsky (CR11) 2020; 125 Nigmatullin, Wagner, Brennen (CR15) 2021; 3 Weimer, Kshetrimayum, Orús (CR1) 2021; 93 J Cui (2199_CR34) 2015; 114 J Dborin (2199_CR30) 2022; 13 E Gillman (2199_CR14) 2022; 106 2199_CR46 2199_CR23 K Temme (2199_CR44) 2017; 119 JM Pino (2199_CR22) 2021; 592 2199_CR25 E Gillman (2199_CR12) 2021; 103 E Mascarenhas (2199_CR35) 2015; 92 CD White (2199_CR37) 2018; 97 H Weimer (2199_CR1) 2021; 93 E Gillman (2199_CR8) 2019; 21 TE Harris (2199_CR4) 1974; 2 F Carollo (2199_CR7) 2019; 123 T Iadecola (2199_CR42) 2023; 131 2199_CR41 2199_CR21 2199_CR43 F Verstraete (2199_CR33) 2004; 93 AH Werner (2199_CR36) 2016; 116 M Marcuzzi (2199_CR6) 2016; 116 I Lesanovsky (2199_CR10) 2019; 4 Z Cheng (2199_CR40) 2022; 106 S Cheng (2199_CR39) 2021; 3 H Hinrichsen (2199_CR20) 2006; 369 S-H Lin (2199_CR28) 2021; 2 E Gillman (2199_CR11) 2020; 125 M Foss-Feig (2199_CR24) 2021; 3 E Chertkov (2199_CR26) 2022; 18 G Ódor (2199_CR18) 2004; 76 Y Zhang (2199_CR29) 2022; 106 2199_CR17 D Jaschke (2199_CR38) 2018; 4 2199_CR16 M Jo (2199_CR9) 2021; 3 K Noh (2199_CR2) 2020; 4 D Niu (2199_CR27) 2022; 3 H Hinrichsen (2199_CR5) 2000; 49 2199_CR31 I Jensen (2199_CR19) 1999; 32 R Nigmatullin (2199_CR15) 2021; 3 2199_CR32 Y Li (2199_CR45) 2017; 7 F Verstraete (2199_CR3) 2009; 5 E Gillman (2199_CR13) 2021; 127 |
References_xml | – volume: 2 start-page: 010342 year: 2021 ident: CR28 article-title: Real- and imaginary-time evolution with compressed quantum circuits publication-title: PRX Quantum doi: 10.1103/PRXQuantum.2.010342 – volume: 3 start-page: 023005 year: 2021 ident: CR39 article-title: Simulating noisy quantum circuits with matrix product density operators publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.023005 – ident: CR43 – volume: 4 start-page: 02LT02 year: 2019 ident: CR10 article-title: Non-equilibrium absorbing state phase transitions in discrete-time quantum cellular automaton dynamics on spin lattices publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/aaf831 – volume: 106 start-page: 165126 year: 2022 ident: CR29 article-title: Qubit-efficient simulation of thermal states with quantum tensor networks publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.165126 – volume: 106 start-page: L032103 year: 2022 ident: CR14 article-title: Asynchronism and nonequilibrium phase transitions in (1 + 1)-dimensional quantum cellular automata publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.106.L032103 – volume: 92 start-page: 022116 year: 2015 ident: CR35 article-title: Matrix-product-operator approach to the nonequilibrium steady state of driven-dissipative quantum arrays publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.92.022116 – volume: 131 start-page: 060403 year: 2023 ident: CR42 article-title: Measurement and feedback driven entanglement transition in the probabilistic control of chaos publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.131.060403 – volume: 97 start-page: 035127 year: 2018 ident: CR37 article-title: Quantum dynamics of thermalizing systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.035127 – ident: CR16 – volume: 49 start-page: 815 year: 2000 ident: CR5 article-title: Non-equilibrium critical phenomena and phase transitions into absorbing states publication-title: Adv. Phys. doi: 10.1080/00018730050198152 – volume: 21 start-page: 093064 year: 2019 ident: CR8 article-title: Numerical simulation of critical dissipative non-equilibrium quantum systems with an absorbing state publication-title: New J. Phys. doi: 10.1088/1367-2630/ab43b0 – volume: 106 start-page: L220307 year: 2022 ident: CR40 article-title: Matrix product operator approach to nonequilibrium Floquet steady states publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.L220307 – volume: 3 start-page: 033002 year: 2021 ident: CR24 article-title: Holographic quantum algorithms for simulating correlated spin systems publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.033002 – ident: CR25 – volume: 93 start-page: 207204 year: 2004 ident: CR33 article-title: Matrix product density operators: simulation of finite-temperature and dissipative systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.207204 – ident: CR23 – volume: 119 start-page: 180509 year: 2017 ident: CR44 article-title: Error mitigation for short-depth quantum circuits publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.180509 – volume: 369 start-page: 1 year: 2006 end-page: 28 ident: CR20 article-title: Non-equilibrium phase transitions publication-title: Physica A doi: 10.1016/j.physa.2006.04.007 – volume: 93 start-page: 015008 year: 2021 ident: CR1 article-title: Simulation methods for open quantum many-body systems publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.93.015008 – volume: 3 start-page: 013238 year: 2021 ident: CR9 article-title: Absorbing phase transition with a continuously varying exponent in a quantum contact process: a neural network approach publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.013238 – ident: CR21 – volume: 592 start-page: 209 year: 2021 ident: CR22 article-title: Demonstration of the trapped-ion quantum CCD computer architecture publication-title: Nature doi: 10.1038/s41586-021-03318-4 – ident: CR46 – volume: 2 start-page: 969 year: 1974 ident: CR4 article-title: Contact interactions on a lattice publication-title: Ann. Probab. doi: 10.1214/aop/1176996493 – volume: 76 start-page: 663 year: 2004 ident: CR18 article-title: Universality classes in nonequilibrium lattice systems publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.76.663 – volume: 127 start-page: 230502 year: 2021 ident: CR13 article-title: Quantum and classical temporal correlations in (1 + 1)D quantum cellular automata publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.230502 – volume: 103 start-page: L040201 year: 2021 ident: CR12 article-title: Numerical simulation of quantum nonequilibrium phase transitions without finite-size effects publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.103.L040201 – volume: 3 start-page: 030317 year: 2022 ident: CR27 article-title: Holographic simulation of correlated electrons on a trapped ion quantum processor publication-title: PRX quantum doi: 10.1103/PRXQuantum.3.030317 – ident: CR17 – volume: 114 start-page: 220601 year: 2015 ident: CR34 article-title: Variational matrix product operators for the steady state of dissipative quantum systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.220601 – ident: CR31 – volume: 4 start-page: 013001 year: 2018 ident: CR38 article-title: One-dimensional many-body entangled open quantum systems with tensor network methods publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/aae724 – volume: 18 start-page: 1074 year: 2022 ident: CR26 article-title: Holographic dynamics simulations with a trapped-ion quantum computer publication-title: Nat. Phys. doi: 10.1038/s41567-022-01689-7 – volume: 3 start-page: 043167 year: 2021 ident: CR15 article-title: Directed percolation in nonunitary quantum cellular automata publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.043167 – ident: CR32 – volume: 7 start-page: 021050 year: 2017 ident: CR45 article-title: Efficient variational quantum simulator incorporating active error minimization publication-title: Phys. Rev. X – volume: 123 start-page: 100604 year: 2019 ident: CR7 article-title: Critical behavior of the quantum contact process in one dimension publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.100604 – volume: 32 start-page: 5233 year: 1999 ident: CR19 article-title: Low-density series expansions for directed percolation: I. a new efficient algorithm with applications to the square lattice publication-title: J. Phys. A Math. Gen. doi: 10.1088/0305-4470/32/28/304 – volume: 125 start-page: 100403 year: 2020 ident: CR11 article-title: Nonequilibrium phase transitions in (1 + 1)-dimensional quantum cellular automata with controllable quantum correlations publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.100403 – ident: CR41 – volume: 5 start-page: 633 year: 2009 ident: CR3 article-title: Quantum computation and quantum-state engineering driven by dissipation publication-title: Nat. Phys. doi: 10.1038/nphys1342 – volume: 4 start-page: 318 year: 2020 ident: CR2 article-title: Efficient classical simulation of noisy random quantum circuits in one dimension publication-title: Quantum doi: 10.22331/q-2020-09-11-318 – volume: 116 start-page: 237201 year: 2016 ident: CR36 article-title: Positive tensor network approach for simulating open quantum many-body systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.237201 – volume: 13 start-page: 5977 year: 2022 ident: CR30 article-title: Simulating groundstate and dynamical quantum phase transitions on a superconducting quantum computer publication-title: Nat. Commun. doi: 10.1038/s41467-022-33737-4 – volume: 116 start-page: 245701 year: 2016 ident: CR6 article-title: Absorbing state phase transition with competing quantum and classical fluctuations publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.245701 – volume: 4 start-page: 318 year: 2020 ident: 2199_CR2 publication-title: Quantum doi: 10.22331/q-2020-09-11-318 – ident: 2199_CR17 doi: 10.1017/CBO9780511524288 – volume: 5 start-page: 633 year: 2009 ident: 2199_CR3 publication-title: Nat. Phys. doi: 10.1038/nphys1342 – volume: 32 start-page: 5233 year: 1999 ident: 2199_CR19 publication-title: J. Phys. A Math. Gen. doi: 10.1088/0305-4470/32/28/304 – volume: 106 start-page: L032103 year: 2022 ident: 2199_CR14 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.106.L032103 – volume: 106 start-page: 165126 year: 2022 ident: 2199_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.165126 – ident: 2199_CR41 doi: 10.21203/rs.3.rs-2019123/v1 – volume: 3 start-page: 043167 year: 2021 ident: 2199_CR15 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.043167 – volume: 92 start-page: 022116 year: 2015 ident: 2199_CR35 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.92.022116 – ident: 2199_CR21 – ident: 2199_CR23 – volume: 3 start-page: 033002 year: 2021 ident: 2199_CR24 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.033002 – volume: 13 start-page: 5977 year: 2022 ident: 2199_CR30 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33737-4 – volume: 3 start-page: 030317 year: 2022 ident: 2199_CR27 publication-title: PRX quantum doi: 10.1103/PRXQuantum.3.030317 – volume: 131 start-page: 060403 year: 2023 ident: 2199_CR42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.131.060403 – volume: 103 start-page: L040201 year: 2021 ident: 2199_CR12 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.103.L040201 – ident: 2199_CR25 doi: 10.1038/s41534-021-00420-3 – ident: 2199_CR31 doi: 10.1103/PhysRevX.13.041057 – volume: 3 start-page: 013238 year: 2021 ident: 2199_CR9 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.013238 – volume: 93 start-page: 207204 year: 2004 ident: 2199_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.207204 – volume: 4 start-page: 02LT02 year: 2019 ident: 2199_CR10 publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/aaf831 – volume: 4 start-page: 013001 year: 2018 ident: 2199_CR38 publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/aae724 – ident: 2199_CR16 – volume: 2 start-page: 010342 year: 2021 ident: 2199_CR28 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.2.010342 – ident: 2199_CR43 – volume: 2 start-page: 969 year: 1974 ident: 2199_CR4 publication-title: Ann. Probab. doi: 10.1214/aop/1176996493 – volume: 127 start-page: 230502 year: 2021 ident: 2199_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.230502 – volume: 592 start-page: 209 year: 2021 ident: 2199_CR22 publication-title: Nature doi: 10.1038/s41586-021-03318-4 – volume: 369 start-page: 1 year: 2006 ident: 2199_CR20 publication-title: Physica A doi: 10.1016/j.physa.2006.04.007 – volume: 93 start-page: 015008 year: 2021 ident: 2199_CR1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.93.015008 – volume: 106 start-page: L220307 year: 2022 ident: 2199_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.L220307 – volume: 123 start-page: 100604 year: 2019 ident: 2199_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.100604 – volume: 119 start-page: 180509 year: 2017 ident: 2199_CR44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.180509 – volume: 18 start-page: 1074 year: 2022 ident: 2199_CR26 publication-title: Nat. Phys. doi: 10.1038/s41567-022-01689-7 – volume: 97 start-page: 035127 year: 2018 ident: 2199_CR37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.035127 – volume: 49 start-page: 815 year: 2000 ident: 2199_CR5 publication-title: Adv. Phys. doi: 10.1080/00018730050198152 – volume: 76 start-page: 663 year: 2004 ident: 2199_CR18 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.76.663 – volume: 3 start-page: 023005 year: 2021 ident: 2199_CR39 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.023005 – volume: 125 start-page: 100403 year: 2020 ident: 2199_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.100403 – volume: 114 start-page: 220601 year: 2015 ident: 2199_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.220601 – volume: 7 start-page: 021050 year: 2017 ident: 2199_CR45 publication-title: Phys. Rev. X – ident: 2199_CR46 doi: 10.21468/SciPostPhysCodeb.4 – volume: 21 start-page: 093064 year: 2019 ident: 2199_CR8 publication-title: New J. Phys. doi: 10.1088/1367-2630/ab43b0 – volume: 116 start-page: 237201 year: 2016 ident: 2199_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.237201 – volume: 116 start-page: 245701 year: 2016 ident: 2199_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.245701 – ident: 2199_CR32 |
SSID | ssj0042613 |
Score | 2.6036723 |
Snippet | Quantum systems subject to driving and dissipation display distinctive non-equilibrium phenomena relevant to condensed matter, quantum optics, metrology and... Not provided. |
SourceID | osti proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1799 |
SubjectTerms | 639/766/483/3926 639/766/530/2795 Atomic Circuits Classical and Continuum Physics Complex Systems Computers Condensed Matter Physics Dissipation Equilibrium Error correction Mathematical and Computational Physics Mathematical models Molecular Optical and Plasma Physics Optics Percolation Phase transitions Physics Physics and Astronomy Quantum computers Quantum computing Quantum optics Quantum theory Qubits (quantum computing) Simulation Statistical mechanics System dynamics Theoretical |
Title | Characterizing a non-equilibrium phase transition on a quantum computer |
URI | https://link.springer.com/article/10.1038/s41567-023-02199-w https://www.proquest.com/docview/2899560683 https://www.osti.gov/biblio/2578103 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90Q_BF_MTpHH3wTYNNk3bpk2ziFMEhouBbyFdRULe5DsG_3kubKgoK7UvTNOWS3O9-yeUO4FAXLkXdmxDlMk54zhwRznFiaN8KVjAbc384-XqcXd7zq4f0ISy4zYNbZaMTK0VtJ8avkZ94YoDonAl2Op0RnzXK766GFBrL0EYVLJB8tYfn45vbRhd7fsDqI5EpSXifhWMzMRMnc09d-gQxC2-a5-T9BzS1JjjFfpidv3ZKKwAarcNasByjQd3VG7DkXjdhpfLgNPMtuDj7Cr38gfUjFSGxJ262eKq8-hcv0fQRESsqPThVfloRXiqaLVC2WGpCeodtuB-d351dkpAlgRjGs5IIqqhR2qgs0zQvChunKnPecLAFQ0JlEHGcsTZHyqm5TZmlWivOLbNJrJRmO9DCH3K7EFGXc8OtyY0oeKKYZtQkuXIsFvgk6XeANgKSJoQQ95ksnmW1lc2ErIUqUaiyEqp878DRV51pHUDj37f3vdwlwr-PYWu8s48ppdcrWKMD3aY7ZJhqc_k9MDpw3HTRd_Hfbe39_7V9WPWp5WvXlS60yreFO0ADpNQ9WBajix60B6PhcNwLY-4T6Tfavw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VRYheEE-xtIAPcAKrccbJ2geEUGG7pY9TK_Vm_IqKBPvoZrWCH8VvZJxHqyLRW6XkEsdJNDOebyaeB8AbV8WCdG_ObSwllxojVzFK7sUoKKwwZDIlJx8dl5NT-fWsONuAP30uTAqr7HVio6jDzKd_5DvJMSB0LhV-nC946hqVdlf7FhqtWBzEX2ty2ZYf9j8Tf9_m-fjLye6Ed10FuEdZ1lwJK7x13palE7qqQlbYMiagDRWSA-JJQ0cfgiYXzclQYBDOWSkDhjyz1iE99w7clYg6rSg13us1f_JGsE3ALHguR9gl6WSodpbJURpxQkg6hdZ8fQ0IBzNa0NeM3H_2ZRu4Gz-EB52dyj61gvUINuL0Mdxr4kX98gns7V4Wev5N85ll09mUx8Xqe5NDsPrJ5ueEj6xOUNhEhTE6LFusiJM06rtmEk_h9Fao9wwG9EHxOTARtfQyeO1VJXOLDoXPtY2YKbqSj4YgegIZ3xUsT30zfphm4xyVaYlqiKimIapZD-Hd5Zx5W67jxru3Et0NGRupYq5PoUW-NkmL0YwhbPfsMN3CXporMRzC-55FV8P_f9eLm5_2Gu5PTo4OzeH-8cEWbKam9m3QzDYM6otVfEmmT-1eNfLG4NttC_hfG-4VoA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BIhAX1BaqLlDqQ3sCa-PYeR0Q4rVAaVeoAomb61dUJNgHm9UKfhq_jnEeICrBDSm5xHESzYznm4nnAfBd5y5C3RtS5WJBRcYdTZ0T1LDEpjznNhA-Ofl3Lz6-ED8vo8sZeGhyYXxYZaMTS0VtB8b_I-94xwDROU55J6_DIs4OujvDEfUdpPxOa9NOoxKRU3c3RfdtvH1ygLz-EYbdw_P9Y1p3GKCGi7igKVPMKG1UHGuW5bkNIhU7D7o25-iMGNTWzlibobumhY24ZVorISy3YaCU5vjcWZhL0CsKWjC3d9g7-9PggPdNeJWOGdFQJLxO2Ql42hl7tymhiJd4siyj0xew2Brg8n5h8v63S1uCX_cDLNVWK9mtxOwjzLj-J5gvo0fNeBmO9p_KPt_jfKJIf9CnbjS5KjMKJjdk-A_RkhQeGMsYMYKHIqMJ8hVHTd1aYgUu3oV-n6GFH-S-AGEuE0ZYk5k0F6HimjMTZsrxIMUrYdIG1hBImrp8ue-icS3LbXSeyoqoEokqS6LKaRs2n-YMq-Idb9695uku0fTw9XONDzQyhfQ6DWe0Yb1hh6yX-Vg-C2UbthoWPQ-__q7Vt5_2DRZQuOWvk97pGiz6DvdVBM06tIrbifuKdlChN2qBI_D3vWX8EaAJGzI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+a+non-equilibrium+phase+transition+on+a+quantum+computer&rft.jtitle=Nature+physics&rft.au=Chertkov%2C+Eli&rft.au=Cheng%2C+Zihan&rft.au=Potter%2C+Andrew+C.&rft.au=Gopalakrishnan%2C+Sarang&rft.date=2023-12-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=19&rft.issue=12&rft.spage=1799&rft.epage=1804&rft_id=info:doi/10.1038%2Fs41567-023-02199-w&rft.externalDocID=10_1038_s41567_023_02199_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |