Characterizing a non-equilibrium phase transition on a quantum computer

Quantum systems subject to driving and dissipation display distinctive non-equilibrium phenomena relevant to condensed matter, quantum optics, metrology and quantum error correction. An example is the emergence of phase transitions with uniquely quantum properties, which opposes the intuition that d...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 19; no. 12; pp. 1799 - 1804
Main Authors Chertkov, Eli, Cheng, Zihan, Potter, Andrew C., Gopalakrishnan, Sarang, Gatterman, Thomas M., Gerber, Justin A., Gilmore, Kevin, Gresh, Dan, Hall, Alex, Hankin, Aaron, Matheny, Mitchell, Mengle, Tanner, Hayes, David, Neyenhuis, Brian, Stutz, Russell, Foss-Feig, Michael
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2023
Nature Publishing Group
Nature Publishing Group (NPG)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantum systems subject to driving and dissipation display distinctive non-equilibrium phenomena relevant to condensed matter, quantum optics, metrology and quantum error correction. An example is the emergence of phase transitions with uniquely quantum properties, which opposes the intuition that dissipation generally leads to classical behaviour. The quantum and non-equilibrium nature of such systems makes them hard to study with existing tools, such as those from equilibrium statistical mechanics, and represents a challenge for numerical simulations. Quantum computers, however, are well suited to simulating such systems, especially as hardware developments enable the controlled application of dissipative operations in a pristine quantum environment. Here we demonstrate a large-scale accurate quantum simulation of a non-equilibrium phase transition using a trapped-ion quantum computer. We simulate a quantum extension of the classical contact process that has been proposed as a description for driven gases of Rydberg atoms and has stimulated numerous attempts to determine the impact of quantum effects on the classical directed-percolation universality class. We use techniques such as qubit reuse and error avoidance based on real-time conditional logic to implement large instances of the model with 73 sites and up to 72 circuit layers and quantitatively determine the model’s critical properties. Our work demonstrates that today’s quantum computers are able to perform useful simulations of open quantum system dynamics and non-equilibrium phase transitions. Quantum computers may help to solve classically intractable problems, such as simulating non-equilibrium dissipative quantum systems. The critical dynamics of a dissipative quantum model has now been probed on a trapped-ion quantum computer.
AbstractList Quantum systems subject to driving and dissipation display distinctive non-equilibrium phenomena relevant to condensed matter, quantum optics, metrology and quantum error correction. An example is the emergence of phase transitions with uniquely quantum properties, which opposes the intuition that dissipation generally leads to classical behaviour. The quantum and non-equilibrium nature of such systems makes them hard to study with existing tools, such as those from equilibrium statistical mechanics, and represents a challenge for numerical simulations. Quantum computers, however, are well suited to simulating such systems, especially as hardware developments enable the controlled application of dissipative operations in a pristine quantum environment. Here we demonstrate a large-scale accurate quantum simulation of a non-equilibrium phase transition using a trapped-ion quantum computer. We simulate a quantum extension of the classical contact process that has been proposed as a description for driven gases of Rydberg atoms and has stimulated numerous attempts to determine the impact of quantum effects on the classical directed-percolation universality class. We use techniques such as qubit reuse and error avoidance based on real-time conditional logic to implement large instances of the model with 73 sites and up to 72 circuit layers and quantitatively determine the model’s critical properties. Our work demonstrates that today’s quantum computers are able to perform useful simulations of open quantum system dynamics and non-equilibrium phase transitions.Quantum computers may help to solve classically intractable problems, such as simulating non-equilibrium dissipative quantum systems. The critical dynamics of a dissipative quantum model has now been probed on a trapped-ion quantum computer.
Quantum systems subject to driving and dissipation display distinctive non-equilibrium phenomena relevant to condensed matter, quantum optics, metrology and quantum error correction. An example is the emergence of phase transitions with uniquely quantum properties, which opposes the intuition that dissipation generally leads to classical behaviour. The quantum and non-equilibrium nature of such systems makes them hard to study with existing tools, such as those from equilibrium statistical mechanics, and represents a challenge for numerical simulations. Quantum computers, however, are well suited to simulating such systems, especially as hardware developments enable the controlled application of dissipative operations in a pristine quantum environment. Here we demonstrate a large-scale accurate quantum simulation of a non-equilibrium phase transition using a trapped-ion quantum computer. We simulate a quantum extension of the classical contact process that has been proposed as a description for driven gases of Rydberg atoms and has stimulated numerous attempts to determine the impact of quantum effects on the classical directed-percolation universality class. We use techniques such as qubit reuse and error avoidance based on real-time conditional logic to implement large instances of the model with 73 sites and up to 72 circuit layers and quantitatively determine the model’s critical properties. Our work demonstrates that today’s quantum computers are able to perform useful simulations of open quantum system dynamics and non-equilibrium phase transitions. Quantum computers may help to solve classically intractable problems, such as simulating non-equilibrium dissipative quantum systems. The critical dynamics of a dissipative quantum model has now been probed on a trapped-ion quantum computer.
Not provided.
Author Gresh, Dan
Hankin, Aaron
Mengle, Tanner
Neyenhuis, Brian
Stutz, Russell
Hall, Alex
Hayes, David
Foss-Feig, Michael
Matheny, Mitchell
Gatterman, Thomas M.
Cheng, Zihan
Chertkov, Eli
Gilmore, Kevin
Potter, Andrew C.
Gerber, Justin A.
Gopalakrishnan, Sarang
Author_xml – sequence: 1
  givenname: Eli
  orcidid: 0000-0002-5957-1356
  surname: Chertkov
  fullname: Chertkov, Eli
  email: eli.chertkov@quantinuum.com
  organization: Quantinuum
– sequence: 2
  givenname: Zihan
  orcidid: 0000-0002-0267-1815
  surname: Cheng
  fullname: Cheng, Zihan
  organization: Department of Physics, University of Texas at Austin
– sequence: 3
  givenname: Andrew C.
  surname: Potter
  fullname: Potter, Andrew C.
  organization: Department of Physics, University of Texas at Austin, Department of Physics and Astronomy, and Stewart Blusson Quantum Matter Institute, University of British Columbia
– sequence: 4
  givenname: Sarang
  surname: Gopalakrishnan
  fullname: Gopalakrishnan, Sarang
  organization: Department of Electrical and Computer Engineering, Princeton University
– sequence: 5
  givenname: Thomas M.
  surname: Gatterman
  fullname: Gatterman, Thomas M.
  organization: Quantinuum
– sequence: 6
  givenname: Justin A.
  orcidid: 0000-0002-3140-4935
  surname: Gerber
  fullname: Gerber, Justin A.
  organization: Quantinuum
– sequence: 7
  givenname: Kevin
  orcidid: 0000-0002-8230-7000
  surname: Gilmore
  fullname: Gilmore, Kevin
  organization: Quantinuum
– sequence: 8
  givenname: Dan
  surname: Gresh
  fullname: Gresh, Dan
  organization: Quantinuum
– sequence: 9
  givenname: Alex
  surname: Hall
  fullname: Hall, Alex
  organization: Quantinuum
– sequence: 10
  givenname: Aaron
  surname: Hankin
  fullname: Hankin, Aaron
  organization: Quantinuum
– sequence: 11
  givenname: Mitchell
  surname: Matheny
  fullname: Matheny, Mitchell
  organization: Quantinuum
– sequence: 12
  givenname: Tanner
  surname: Mengle
  fullname: Mengle, Tanner
  organization: Quantinuum
– sequence: 13
  givenname: David
  surname: Hayes
  fullname: Hayes, David
  organization: Quantinuum
– sequence: 14
  givenname: Brian
  surname: Neyenhuis
  fullname: Neyenhuis, Brian
  organization: Quantinuum
– sequence: 15
  givenname: Russell
  orcidid: 0000-0002-3124-2999
  surname: Stutz
  fullname: Stutz, Russell
  organization: Quantinuum
– sequence: 16
  givenname: Michael
  surname: Foss-Feig
  fullname: Foss-Feig, Michael
  organization: Quantinuum
BackLink https://www.osti.gov/biblio/2578103$$D View this record in Osti.gov
BookMark eNp9kE9LAzEQxYNUsK1-AU-Lnlfzb3ezRylahYIXPYfZbLZNaZM2yVL005u6ouChMGEG8n6PmTdBI-usRuia4DuCmbgPnBRllWPK0iN1nR_O0JhUvMgpF2T0O1fsAk1CWGPMaUnYGM1nK_Cgovbm09hlBllyzvW-NxvTeNNvs90Kgs6iBxtMNM5mqSDb92Bj-lVuu-sTfYnOO9gEffXTp-j96fFt9pwvXucvs4dFrhgvYy4IEAWNgrJsSN11LS6g1BXBtO0YFVRxWmvVtnVBWcPbgrWkaYDzlrUUAzRsim4GXxeikUGZqNVKOWu1ipIWlUhxJNHtINp5t-91iHLtem_TXpKKui5KXIqjSgwq5V0IXncyucHxxHSs2UiC5TFbOWQrU7byO1t5SCj9h-682YL_OA2xAQpJbJfa_211gvoC43yPvg
CitedBy_id crossref_primary_10_22331_q_2024_12_10_1557
crossref_primary_10_1088_2058_9565_adb2bd
crossref_primary_10_1103_PhysRevB_109_214305
crossref_primary_10_1038_s41467_024_51162_7
crossref_primary_10_1103_PhysRevX_13_041057
crossref_primary_10_22331_q_2025_01_28_1612
crossref_primary_10_1103_PhysRevLett_133_136503
crossref_primary_10_1103_PhysRevLett_133_136602
crossref_primary_10_1103_PhysRevLett_133_266502
crossref_primary_10_1016_j_xcrp_2024_102105
crossref_primary_10_1038_s41534_025_00997_z
crossref_primary_10_1109_TQE_2024_3511419
crossref_primary_10_1088_2058_9565_ad3f42
crossref_primary_10_1088_1367_2630_ad8d74
crossref_primary_10_1103_PhysRevLett_132_130401
crossref_primary_10_1103_PhysRevLett_133_070401
crossref_primary_10_1103_PRXQuantum_6_010351
crossref_primary_10_1103_PhysRevB_110_064420
crossref_primary_10_1016_j_future_2024_06_058
crossref_primary_10_1088_1751_8121_ad6363
crossref_primary_10_1103_PhysRevLett_131_220404
crossref_primary_10_1038_s41567_023_02245_7
crossref_primary_10_1103_PhysRevB_109_L020304
crossref_primary_10_1146_annurev_conmatphys_032822_045619
Cites_doi 10.1103/PRXQuantum.2.010342
10.1103/PhysRevResearch.3.023005
10.1088/2058-9565/aaf831
10.1103/PhysRevB.106.165126
10.1103/PhysRevE.106.L032103
10.1103/PhysRevA.92.022116
10.1103/PhysRevLett.131.060403
10.1103/PhysRevB.97.035127
10.1080/00018730050198152
10.1088/1367-2630/ab43b0
10.1103/PhysRevB.106.L220307
10.1103/PhysRevResearch.3.033002
10.1103/PhysRevLett.93.207204
10.1103/PhysRevLett.119.180509
10.1016/j.physa.2006.04.007
10.1103/RevModPhys.93.015008
10.1103/PhysRevResearch.3.013238
10.1038/s41586-021-03318-4
10.1214/aop/1176996493
10.1103/RevModPhys.76.663
10.1103/PhysRevLett.127.230502
10.1103/PhysRevA.103.L040201
10.1103/PRXQuantum.3.030317
10.1103/PhysRevLett.114.220601
10.1088/2058-9565/aae724
10.1038/s41567-022-01689-7
10.1103/PhysRevResearch.3.043167
10.1103/PhysRevLett.123.100604
10.1088/0305-4470/32/28/304
10.1103/PhysRevLett.125.100403
10.1038/nphys1342
10.22331/q-2020-09-11-318
10.1103/PhysRevLett.116.237201
10.1038/s41467-022-33737-4
10.1103/PhysRevLett.116.245701
10.1017/CBO9780511524288
10.21203/rs.3.rs-2019123/v1
10.1038/s41534-021-00420-3
10.1103/PhysRevX.13.041057
10.21468/SciPostPhysCodeb.4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
CorporateAuthor Univ. of Texas, Austin, TX (United States)
UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Univ. of Texas, Austin, TX (United States)
– name: UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
OTOTI
DOI 10.1038/s41567-023-02199-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
OSTI.GOV
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 1804
ExternalDocumentID 2578103
10_1038_s41567_023_02199_w
GrantInformation_xml – fundername: Sloan Research Fellowship from Alfred P. Sloan Foundation
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-SC0022102; DE-AC05-00OR22725
  funderid: https://doi.org/10.13039/100000015
– fundername: National Science Foundation (NSF)
  grantid: PHY-1748958; PHY-1607611; PHY-1607611
  funderid: https://doi.org/10.13039/100000001
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NFIDA
PHGZM
PHGZT
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQGLB
PQUKI
PUEGO
Q9U
OTOTI
ID FETCH-LOGICAL-c346t-81a1cabca66b19ffd05a6e7102df3282c429ecdd9523b4d53d1bba44d3d20aab3
IEDL.DBID BENPR
ISSN 1745-2473
IngestDate Mon Aug 25 02:20:52 EDT 2025
Sat Aug 23 13:42:12 EDT 2025
Tue Jul 01 00:25:42 EDT 2025
Thu Apr 24 23:44:05 EDT 2025
Fri Feb 21 02:38:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c346t-81a1cabca66b19ffd05a6e7102df3282c429ecdd9523b4d53d1bba44d3d20aab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
None
USDOE Office of Science (SC)
AC05-00OR22725; SC0022102
ORCID 0000-0002-3140-4935
0000-0002-5957-1356
0000-0002-8230-7000
0000-0002-3124-2999
0000-0002-0267-1815
0000000231404935
0000000259571356
0000000282307000
0000000231242999
0000000202671815
PQID 2899560683
PQPubID 27545
PageCount 6
ParticipantIDs osti_scitechconnect_2578103
proquest_journals_2899560683
crossref_citationtrail_10_1038_s41567_023_02199_w
crossref_primary_10_1038_s41567_023_02199_w
springer_journals_10_1038_s41567_023_02199_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Nature physics
PublicationTitleAbbrev Nat. Phys
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Publishing Group (NPG)
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Publishing Group (NPG)
References Carollo, Gillman, Weimer, Lesanovsky (CR7) 2019; 123
Verstraete, Wolf, Cirac (CR3) 2009; 5
Gillman, Carollo, Lesanovsky (CR12) 2021; 103
CR17
CR16
Ódor (CR18) 2004; 76
Pino (CR22) 2021; 592
CR32
Dborin (CR30) 2022; 13
CR31
Werner (CR36) 2016; 116
Iadecola, Ganeshan, Pixley, Wilson (CR42) 2023; 131
Cui, Cirac, Bañuls (CR34) 2015; 114
Foss-Feig (CR24) 2021; 3
Gillman, Carollo, Lesanovsky (CR14) 2022; 106
Jaschke, Montangero, Carr (CR38) 2018; 4
Temme, Bravyi, Gambetta (CR44) 2017; 119
Zhang, Jahanbani, Niu, Haghshenas, Potter (CR29) 2022; 106
Verstraete, García-Ripoll, Cirac (CR33) 2004; 93
Li, Benjamin (CR45) 2017; 7
Cheng, Potter (CR40) 2022; 106
Chertkov (CR26) 2022; 18
White, Zaletel, Mong, Refael (CR37) 2018; 97
Gillman, Carollo, Lesanovsky (CR8) 2019; 21
Lin, Dilip, Green, Smith, Pollmann (CR28) 2021; 2
Jo, Lee, Choi, Kahng (CR9) 2021; 3
CR25
Jensen (CR19) 1999; 32
CR46
CR23
Noh, Jiang, Fefferman (CR2) 2020; 4
Gillman, Carollo, Lesanovsky (CR13) 2021; 127
CR21
Mascarenhas, Flayac, Savona (CR35) 2015; 92
CR43
Hinrichsen (CR5) 2000; 49
Marcuzzi, Buchhold, Diehl, Lesanovsky (CR6) 2016; 116
Lesanovsky, Macieszczak, Garrahan (CR10) 2019; 4
CR41
Hinrichsen (CR20) 2006; 369
Niu (CR27) 2022; 3
Cheng (CR39) 2021; 3
Harris (CR4) 1974; 2
Gillman, Carollo, Lesanovsky (CR11) 2020; 125
Nigmatullin, Wagner, Brennen (CR15) 2021; 3
Weimer, Kshetrimayum, Orús (CR1) 2021; 93
J Cui (2199_CR34) 2015; 114
J Dborin (2199_CR30) 2022; 13
E Gillman (2199_CR14) 2022; 106
2199_CR46
2199_CR23
K Temme (2199_CR44) 2017; 119
JM Pino (2199_CR22) 2021; 592
2199_CR25
E Gillman (2199_CR12) 2021; 103
E Mascarenhas (2199_CR35) 2015; 92
CD White (2199_CR37) 2018; 97
H Weimer (2199_CR1) 2021; 93
E Gillman (2199_CR8) 2019; 21
TE Harris (2199_CR4) 1974; 2
F Carollo (2199_CR7) 2019; 123
T Iadecola (2199_CR42) 2023; 131
2199_CR41
2199_CR21
2199_CR43
F Verstraete (2199_CR33) 2004; 93
AH Werner (2199_CR36) 2016; 116
M Marcuzzi (2199_CR6) 2016; 116
I Lesanovsky (2199_CR10) 2019; 4
Z Cheng (2199_CR40) 2022; 106
S Cheng (2199_CR39) 2021; 3
H Hinrichsen (2199_CR20) 2006; 369
S-H Lin (2199_CR28) 2021; 2
E Gillman (2199_CR11) 2020; 125
M Foss-Feig (2199_CR24) 2021; 3
E Chertkov (2199_CR26) 2022; 18
G Ódor (2199_CR18) 2004; 76
Y Zhang (2199_CR29) 2022; 106
2199_CR17
D Jaschke (2199_CR38) 2018; 4
2199_CR16
M Jo (2199_CR9) 2021; 3
K Noh (2199_CR2) 2020; 4
D Niu (2199_CR27) 2022; 3
H Hinrichsen (2199_CR5) 2000; 49
2199_CR31
I Jensen (2199_CR19) 1999; 32
R Nigmatullin (2199_CR15) 2021; 3
2199_CR32
Y Li (2199_CR45) 2017; 7
F Verstraete (2199_CR3) 2009; 5
E Gillman (2199_CR13) 2021; 127
References_xml – volume: 2
  start-page: 010342
  year: 2021
  ident: CR28
  article-title: Real- and imaginary-time evolution with compressed quantum circuits
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.2.010342
– volume: 3
  start-page: 023005
  year: 2021
  ident: CR39
  article-title: Simulating noisy quantum circuits with matrix product density operators
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.023005
– ident: CR43
– volume: 4
  start-page: 02LT02
  year: 2019
  ident: CR10
  article-title: Non-equilibrium absorbing state phase transitions in discrete-time quantum cellular automaton dynamics on spin lattices
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aaf831
– volume: 106
  start-page: 165126
  year: 2022
  ident: CR29
  article-title: Qubit-efficient simulation of thermal states with quantum tensor networks
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.106.165126
– volume: 106
  start-page: L032103
  year: 2022
  ident: CR14
  article-title: Asynchronism and nonequilibrium phase transitions in (1 + 1)-dimensional quantum cellular automata
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.106.L032103
– volume: 92
  start-page: 022116
  year: 2015
  ident: CR35
  article-title: Matrix-product-operator approach to the nonequilibrium steady state of driven-dissipative quantum arrays
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.92.022116
– volume: 131
  start-page: 060403
  year: 2023
  ident: CR42
  article-title: Measurement and feedback driven entanglement transition in the probabilistic control of chaos
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.131.060403
– volume: 97
  start-page: 035127
  year: 2018
  ident: CR37
  article-title: Quantum dynamics of thermalizing systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.035127
– ident: CR16
– volume: 49
  start-page: 815
  year: 2000
  ident: CR5
  article-title: Non-equilibrium critical phenomena and phase transitions into absorbing states
  publication-title: Adv. Phys.
  doi: 10.1080/00018730050198152
– volume: 21
  start-page: 093064
  year: 2019
  ident: CR8
  article-title: Numerical simulation of critical dissipative non-equilibrium quantum systems with an absorbing state
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab43b0
– volume: 106
  start-page: L220307
  year: 2022
  ident: CR40
  article-title: Matrix product operator approach to nonequilibrium Floquet steady states
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.106.L220307
– volume: 3
  start-page: 033002
  year: 2021
  ident: CR24
  article-title: Holographic quantum algorithms for simulating correlated spin systems
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.033002
– ident: CR25
– volume: 93
  start-page: 207204
  year: 2004
  ident: CR33
  article-title: Matrix product density operators: simulation of finite-temperature and dissipative systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.207204
– ident: CR23
– volume: 119
  start-page: 180509
  year: 2017
  ident: CR44
  article-title: Error mitigation for short-depth quantum circuits
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.180509
– volume: 369
  start-page: 1
  year: 2006
  end-page: 28
  ident: CR20
  article-title: Non-equilibrium phase transitions
  publication-title: Physica A
  doi: 10.1016/j.physa.2006.04.007
– volume: 93
  start-page: 015008
  year: 2021
  ident: CR1
  article-title: Simulation methods for open quantum many-body systems
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.93.015008
– volume: 3
  start-page: 013238
  year: 2021
  ident: CR9
  article-title: Absorbing phase transition with a continuously varying exponent in a quantum contact process: a neural network approach
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.013238
– ident: CR21
– volume: 592
  start-page: 209
  year: 2021
  ident: CR22
  article-title: Demonstration of the trapped-ion quantum CCD computer architecture
  publication-title: Nature
  doi: 10.1038/s41586-021-03318-4
– ident: CR46
– volume: 2
  start-page: 969
  year: 1974
  ident: CR4
  article-title: Contact interactions on a lattice
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1176996493
– volume: 76
  start-page: 663
  year: 2004
  ident: CR18
  article-title: Universality classes in nonequilibrium lattice systems
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.76.663
– volume: 127
  start-page: 230502
  year: 2021
  ident: CR13
  article-title: Quantum and classical temporal correlations in (1 + 1)D quantum cellular automata
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.230502
– volume: 103
  start-page: L040201
  year: 2021
  ident: CR12
  article-title: Numerical simulation of quantum nonequilibrium phase transitions without finite-size effects
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.103.L040201
– volume: 3
  start-page: 030317
  year: 2022
  ident: CR27
  article-title: Holographic simulation of correlated electrons on a trapped ion quantum processor
  publication-title: PRX quantum
  doi: 10.1103/PRXQuantum.3.030317
– ident: CR17
– volume: 114
  start-page: 220601
  year: 2015
  ident: CR34
  article-title: Variational matrix product operators for the steady state of dissipative quantum systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.220601
– ident: CR31
– volume: 4
  start-page: 013001
  year: 2018
  ident: CR38
  article-title: One-dimensional many-body entangled open quantum systems with tensor network methods
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aae724
– volume: 18
  start-page: 1074
  year: 2022
  ident: CR26
  article-title: Holographic dynamics simulations with a trapped-ion quantum computer
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-022-01689-7
– volume: 3
  start-page: 043167
  year: 2021
  ident: CR15
  article-title: Directed percolation in nonunitary quantum cellular automata
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.043167
– ident: CR32
– volume: 7
  start-page: 021050
  year: 2017
  ident: CR45
  article-title: Efficient variational quantum simulator incorporating active error minimization
  publication-title: Phys. Rev. X
– volume: 123
  start-page: 100604
  year: 2019
  ident: CR7
  article-title: Critical behavior of the quantum contact process in one dimension
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.100604
– volume: 32
  start-page: 5233
  year: 1999
  ident: CR19
  article-title: Low-density series expansions for directed percolation: I. a new efficient algorithm with applications to the square lattice
  publication-title: J. Phys. A Math. Gen.
  doi: 10.1088/0305-4470/32/28/304
– volume: 125
  start-page: 100403
  year: 2020
  ident: CR11
  article-title: Nonequilibrium phase transitions in (1 + 1)-dimensional quantum cellular automata with controllable quantum correlations
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.100403
– ident: CR41
– volume: 5
  start-page: 633
  year: 2009
  ident: CR3
  article-title: Quantum computation and quantum-state engineering driven by dissipation
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1342
– volume: 4
  start-page: 318
  year: 2020
  ident: CR2
  article-title: Efficient classical simulation of noisy random quantum circuits in one dimension
  publication-title: Quantum
  doi: 10.22331/q-2020-09-11-318
– volume: 116
  start-page: 237201
  year: 2016
  ident: CR36
  article-title: Positive tensor network approach for simulating open quantum many-body systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.237201
– volume: 13
  start-page: 5977
  year: 2022
  ident: CR30
  article-title: Simulating groundstate and dynamical quantum phase transitions on a superconducting quantum computer
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33737-4
– volume: 116
  start-page: 245701
  year: 2016
  ident: CR6
  article-title: Absorbing state phase transition with competing quantum and classical fluctuations
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.245701
– volume: 4
  start-page: 318
  year: 2020
  ident: 2199_CR2
  publication-title: Quantum
  doi: 10.22331/q-2020-09-11-318
– ident: 2199_CR17
  doi: 10.1017/CBO9780511524288
– volume: 5
  start-page: 633
  year: 2009
  ident: 2199_CR3
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1342
– volume: 32
  start-page: 5233
  year: 1999
  ident: 2199_CR19
  publication-title: J. Phys. A Math. Gen.
  doi: 10.1088/0305-4470/32/28/304
– volume: 106
  start-page: L032103
  year: 2022
  ident: 2199_CR14
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.106.L032103
– volume: 106
  start-page: 165126
  year: 2022
  ident: 2199_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.106.165126
– ident: 2199_CR41
  doi: 10.21203/rs.3.rs-2019123/v1
– volume: 3
  start-page: 043167
  year: 2021
  ident: 2199_CR15
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.043167
– volume: 92
  start-page: 022116
  year: 2015
  ident: 2199_CR35
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.92.022116
– ident: 2199_CR21
– ident: 2199_CR23
– volume: 3
  start-page: 033002
  year: 2021
  ident: 2199_CR24
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.033002
– volume: 13
  start-page: 5977
  year: 2022
  ident: 2199_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33737-4
– volume: 3
  start-page: 030317
  year: 2022
  ident: 2199_CR27
  publication-title: PRX quantum
  doi: 10.1103/PRXQuantum.3.030317
– volume: 131
  start-page: 060403
  year: 2023
  ident: 2199_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.131.060403
– volume: 103
  start-page: L040201
  year: 2021
  ident: 2199_CR12
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.103.L040201
– ident: 2199_CR25
  doi: 10.1038/s41534-021-00420-3
– ident: 2199_CR31
  doi: 10.1103/PhysRevX.13.041057
– volume: 3
  start-page: 013238
  year: 2021
  ident: 2199_CR9
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.013238
– volume: 93
  start-page: 207204
  year: 2004
  ident: 2199_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.207204
– volume: 4
  start-page: 02LT02
  year: 2019
  ident: 2199_CR10
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aaf831
– volume: 4
  start-page: 013001
  year: 2018
  ident: 2199_CR38
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aae724
– ident: 2199_CR16
– volume: 2
  start-page: 010342
  year: 2021
  ident: 2199_CR28
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.2.010342
– ident: 2199_CR43
– volume: 2
  start-page: 969
  year: 1974
  ident: 2199_CR4
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1176996493
– volume: 127
  start-page: 230502
  year: 2021
  ident: 2199_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.230502
– volume: 592
  start-page: 209
  year: 2021
  ident: 2199_CR22
  publication-title: Nature
  doi: 10.1038/s41586-021-03318-4
– volume: 369
  start-page: 1
  year: 2006
  ident: 2199_CR20
  publication-title: Physica A
  doi: 10.1016/j.physa.2006.04.007
– volume: 93
  start-page: 015008
  year: 2021
  ident: 2199_CR1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.93.015008
– volume: 106
  start-page: L220307
  year: 2022
  ident: 2199_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.106.L220307
– volume: 123
  start-page: 100604
  year: 2019
  ident: 2199_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.100604
– volume: 119
  start-page: 180509
  year: 2017
  ident: 2199_CR44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.180509
– volume: 18
  start-page: 1074
  year: 2022
  ident: 2199_CR26
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-022-01689-7
– volume: 97
  start-page: 035127
  year: 2018
  ident: 2199_CR37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.035127
– volume: 49
  start-page: 815
  year: 2000
  ident: 2199_CR5
  publication-title: Adv. Phys.
  doi: 10.1080/00018730050198152
– volume: 76
  start-page: 663
  year: 2004
  ident: 2199_CR18
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.76.663
– volume: 3
  start-page: 023005
  year: 2021
  ident: 2199_CR39
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.023005
– volume: 125
  start-page: 100403
  year: 2020
  ident: 2199_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.100403
– volume: 114
  start-page: 220601
  year: 2015
  ident: 2199_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.220601
– volume: 7
  start-page: 021050
  year: 2017
  ident: 2199_CR45
  publication-title: Phys. Rev. X
– ident: 2199_CR46
  doi: 10.21468/SciPostPhysCodeb.4
– volume: 21
  start-page: 093064
  year: 2019
  ident: 2199_CR8
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab43b0
– volume: 116
  start-page: 237201
  year: 2016
  ident: 2199_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.237201
– volume: 116
  start-page: 245701
  year: 2016
  ident: 2199_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.245701
– ident: 2199_CR32
SSID ssj0042613
Score 2.6036723
Snippet Quantum systems subject to driving and dissipation display distinctive non-equilibrium phenomena relevant to condensed matter, quantum optics, metrology and...
Not provided.
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1799
SubjectTerms 639/766/483/3926
639/766/530/2795
Atomic
Circuits
Classical and Continuum Physics
Complex Systems
Computers
Condensed Matter Physics
Dissipation
Equilibrium
Error correction
Mathematical and Computational Physics
Mathematical models
Molecular
Optical and Plasma Physics
Optics
Percolation
Phase transitions
Physics
Physics and Astronomy
Quantum computers
Quantum computing
Quantum optics
Quantum theory
Qubits (quantum computing)
Simulation
Statistical mechanics
System dynamics
Theoretical
Title Characterizing a non-equilibrium phase transition on a quantum computer
URI https://link.springer.com/article/10.1038/s41567-023-02199-w
https://www.proquest.com/docview/2899560683
https://www.osti.gov/biblio/2578103
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90Q_BF_MTpHH3wTYNNk3bpk2ziFMEhouBbyFdRULe5DsG_3kubKgoK7UvTNOWS3O9-yeUO4FAXLkXdmxDlMk54zhwRznFiaN8KVjAbc384-XqcXd7zq4f0ISy4zYNbZaMTK0VtJ8avkZ94YoDonAl2Op0RnzXK766GFBrL0EYVLJB8tYfn45vbRhd7fsDqI5EpSXifhWMzMRMnc09d-gQxC2-a5-T9BzS1JjjFfpidv3ZKKwAarcNasByjQd3VG7DkXjdhpfLgNPMtuDj7Cr38gfUjFSGxJ262eKq8-hcv0fQRESsqPThVfloRXiqaLVC2WGpCeodtuB-d351dkpAlgRjGs5IIqqhR2qgs0zQvChunKnPecLAFQ0JlEHGcsTZHyqm5TZmlWivOLbNJrJRmO9DCH3K7EFGXc8OtyY0oeKKYZtQkuXIsFvgk6XeANgKSJoQQ95ksnmW1lc2ErIUqUaiyEqp878DRV51pHUDj37f3vdwlwr-PYWu8s48ppdcrWKMD3aY7ZJhqc_k9MDpw3HTRd_Hfbe39_7V9WPWp5WvXlS60yreFO0ADpNQ9WBajix60B6PhcNwLY-4T6Tfavw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VRYheEE-xtIAPcAKrccbJ2geEUGG7pY9TK_Vm_IqKBPvoZrWCH8VvZJxHqyLRW6XkEsdJNDOebyaeB8AbV8WCdG_ObSwllxojVzFK7sUoKKwwZDIlJx8dl5NT-fWsONuAP30uTAqr7HVio6jDzKd_5DvJMSB0LhV-nC946hqVdlf7FhqtWBzEX2ty2ZYf9j8Tf9_m-fjLye6Ed10FuEdZ1lwJK7x13palE7qqQlbYMiagDRWSA-JJQ0cfgiYXzclQYBDOWSkDhjyz1iE99w7clYg6rSg13us1f_JGsE3ALHguR9gl6WSodpbJURpxQkg6hdZ8fQ0IBzNa0NeM3H_2ZRu4Gz-EB52dyj61gvUINuL0Mdxr4kX98gns7V4Wev5N85ll09mUx8Xqe5NDsPrJ5ueEj6xOUNhEhTE6LFusiJM06rtmEk_h9Fao9wwG9EHxOTARtfQyeO1VJXOLDoXPtY2YKbqSj4YgegIZ3xUsT30zfphm4xyVaYlqiKimIapZD-Hd5Zx5W67jxru3Et0NGRupYq5PoUW-NkmL0YwhbPfsMN3CXporMRzC-55FV8P_f9eLm5_2Gu5PTo4OzeH-8cEWbKam9m3QzDYM6otVfEmmT-1eNfLG4NttC_hfG-4VoA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BIhAX1BaqLlDqQ3sCa-PYeR0Q4rVAaVeoAomb61dUJNgHm9UKfhq_jnEeICrBDSm5xHESzYznm4nnAfBd5y5C3RtS5WJBRcYdTZ0T1LDEpjznNhA-Ofl3Lz6-ED8vo8sZeGhyYXxYZaMTS0VtB8b_I-94xwDROU55J6_DIs4OujvDEfUdpPxOa9NOoxKRU3c3RfdtvH1ygLz-EYbdw_P9Y1p3GKCGi7igKVPMKG1UHGuW5bkNIhU7D7o25-iMGNTWzlibobumhY24ZVorISy3YaCU5vjcWZhL0CsKWjC3d9g7-9PggPdNeJWOGdFQJLxO2Ql42hl7tymhiJd4siyj0xew2Brg8n5h8v63S1uCX_cDLNVWK9mtxOwjzLj-J5gvo0fNeBmO9p_KPt_jfKJIf9CnbjS5KjMKJjdk-A_RkhQeGMsYMYKHIqMJ8hVHTd1aYgUu3oV-n6GFH-S-AGEuE0ZYk5k0F6HimjMTZsrxIMUrYdIG1hBImrp8ue-icS3LbXSeyoqoEokqS6LKaRs2n-YMq-Idb9695uku0fTw9XONDzQyhfQ6DWe0Yb1hh6yX-Vg-C2UbthoWPQ-__q7Vt5_2DRZQuOWvk97pGiz6DvdVBM06tIrbifuKdlChN2qBI_D3vWX8EaAJGzI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+a+non-equilibrium+phase+transition+on+a+quantum+computer&rft.jtitle=Nature+physics&rft.au=Chertkov%2C+Eli&rft.au=Cheng%2C+Zihan&rft.au=Potter%2C+Andrew+C.&rft.au=Gopalakrishnan%2C+Sarang&rft.date=2023-12-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=19&rft.issue=12&rft.spage=1799&rft.epage=1804&rft_id=info:doi/10.1038%2Fs41567-023-02199-w&rft.externalDocID=10_1038_s41567_023_02199_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon