Improving energy efficiency in water supply systems with pump scheduling optimization
Water supply systems have a significant environmental and energetic impact due to the large amount of energy consumed in water pumping and water losses. The safe and efficient operation of these systems is crucial, where digital tools, such as monitoring, hydro-informatics, and optimization algorith...
Saved in:
Published in | Journal of cleaner production Vol. 213; pp. 342 - 356 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
10.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Water supply systems have a significant environmental and energetic impact due to the large amount of energy consumed in water pumping and water losses. The safe and efficient operation of these systems is crucial, where digital tools, such as monitoring, hydro-informatics, and optimization algorithms, are key approaches that can play an important role on support decisions.
This paper presents a hybrid optimization method to improve the energy efficiency of a water supply system towards a more sustainable water management concerning the water-energy nexus. A genetic algorithm was used to optimize the pumping schedule during the day. Knowing the water consumption a priori, it is possible to define the optimal pump status for a specific timeframe (e.g. every 1 h), minimizing the operation costs, and also the energy consumption and associated carbon dioxide emissions. Knowledge-based mechanisms, like introducing known feasible solutions in the population and selective mutation mechanisms, were introduced in order to boost the algorithm convergence. A model of the water network developed in the hydraulic simulator EPANET was used to evaluate the solutions. All the physical constraints of the water supply system (e.g. hydraulic compliances) and water demands must be met for each solution, including the level limits of the water storage tanks.
From the obtained solutions, it is found that optimizing the pump scheduling can improve the energy efficiency up to 15% in average (maximum of 25%) comparatively to the real operation, although this value can severely decrease if a conservative approach is assumed of maintaining more water stored in the tanks (low-risk approach). Similar improvements were achieved for cost and carbon dioxide emissions. Besides knowledge-based mechanisms, the analysis of the water storage risk was also an innovative outcome of this paper.
Finally, digital tools can be used to optimize the system with minimal investment in equipment or physical intervention, although optimal solutions depend on water availability, water demand, and water storage risk.
•Optimal pumping reduces up to 25% of the energy consumption and carbon emissions.•Improving water systems efficiency contribute to sustainable consumption patters.•Using the risk level in the water tanks may be crucial in costs reduction.•Digital water systems are becoming crucial sustainability tools.•Knowledge-based mechanisms in optimization can improve solutions exploitation. |
---|---|
AbstractList | Water supply systems have a significant environmental and energetic impact due to the large amount of energy consumed in water pumping and water losses. The safe and efficient operation of these systems is crucial, where digital tools, such as monitoring, hydro-informatics, and optimization algorithms, are key approaches that can play an important role on support decisions.
This paper presents a hybrid optimization method to improve the energy efficiency of a water supply system towards a more sustainable water management concerning the water-energy nexus. A genetic algorithm was used to optimize the pumping schedule during the day. Knowing the water consumption a priori, it is possible to define the optimal pump status for a specific timeframe (e.g. every 1 h), minimizing the operation costs, and also the energy consumption and associated carbon dioxide emissions. Knowledge-based mechanisms, like introducing known feasible solutions in the population and selective mutation mechanisms, were introduced in order to boost the algorithm convergence. A model of the water network developed in the hydraulic simulator EPANET was used to evaluate the solutions. All the physical constraints of the water supply system (e.g. hydraulic compliances) and water demands must be met for each solution, including the level limits of the water storage tanks.
From the obtained solutions, it is found that optimizing the pump scheduling can improve the energy efficiency up to 15% in average (maximum of 25%) comparatively to the real operation, although this value can severely decrease if a conservative approach is assumed of maintaining more water stored in the tanks (low-risk approach). Similar improvements were achieved for cost and carbon dioxide emissions. Besides knowledge-based mechanisms, the analysis of the water storage risk was also an innovative outcome of this paper.
Finally, digital tools can be used to optimize the system with minimal investment in equipment or physical intervention, although optimal solutions depend on water availability, water demand, and water storage risk.
•Optimal pumping reduces up to 25% of the energy consumption and carbon emissions.•Improving water systems efficiency contribute to sustainable consumption patters.•Using the risk level in the water tanks may be crucial in costs reduction.•Digital water systems are becoming crucial sustainability tools.•Knowledge-based mechanisms in optimization can improve solutions exploitation. |
Author | Luna, Tiago Alves, Rita Ribau, João Figueiredo, David |
Author_xml | – sequence: 1 givenname: Tiago surname: Luna fullname: Luna, Tiago email: tiago.m.c.luna@gmail.com organization: Sustainable Innovation Centre, Instituto de Soldadura e Qualidade, Av. Prof. Dr. Cavaco Silva, 33, Taguspark, 2740-120 Oeiras, Portugal – sequence: 2 givenname: João surname: Ribau fullname: Ribau, João email: jfribau@isq.pt organization: Sustainable Innovation Centre, Instituto de Soldadura e Qualidade, Av. Prof. Dr. Cavaco Silva, 33, Taguspark, 2740-120 Oeiras, Portugal – sequence: 3 givenname: David surname: Figueiredo fullname: Figueiredo, David email: davidfigueiredo@adp.pt organization: Águas Do Tejo Atlântico, SA, Portugal – sequence: 4 givenname: Rita surname: Alves fullname: Alves, Rita email: rita.alves@adp.pt organization: Águas Do Tejo Atlântico, SA, Portugal |
BookMark | eNqFkMtqwzAUREVpoUnaTyjoB-zqypFkr0oJfQQC3TRrIcvXiYxfSE6C-_V1muy7mtUZZs6c3LZdi4Q8AYuBgXyu4srW2Psu5gzSGHgMGbshM0hVFoFK5S2ZsUxkkRRc3pN5CBVjoJhazsh23Uzg0bU7ii363UixLJ112NqRupaezICehkPf1yMNYxiwCfTkhj3tD01Pg91jcajPeNcPrnE_ZnBd-0DuSlMHfLzmgmzf375Xn9Hm62O9et1ENlnKIRIJsxzyTNmEM7lEm6RFigogk8YoJSzmJYAQwBNQnOWlTFIlrRAmM7m0RbIg4tJrfReCx1L33jXGjxqYPrvRlb660Wc3Grie3Ezcy4XDadzRodfh7zIWzqMddNG5fxp-AeG-c8E |
CitedBy_id | crossref_primary_10_1051_e3sconf_202341005010 crossref_primary_10_1061_JWRMD5_WRENG_6197 crossref_primary_10_3390_en13102530 crossref_primary_10_1016_j_resconrec_2022_106282 crossref_primary_10_2166_ws_2023_244 crossref_primary_10_3390_su15043628 crossref_primary_10_1016_j_jwpe_2023_104035 crossref_primary_10_2166_hydro_2023_191 crossref_primary_10_1007_s11269_023_03479_z crossref_primary_10_3390_w14101652 crossref_primary_10_1109_ACCESS_2022_3178846 crossref_primary_10_1186_s44147_023_00256_y crossref_primary_10_2478_rtuect_2020_0081 crossref_primary_10_1016_j_jclepro_2019_117778 crossref_primary_10_1016_j_jclepro_2023_138513 crossref_primary_10_1016_j_seta_2022_102919 crossref_primary_10_3390_en14082169 crossref_primary_10_1080_01969722_2024_2343990 crossref_primary_10_1016_j_epsr_2023_109343 crossref_primary_10_2478_amns_2024_0523 crossref_primary_10_1016_j_jclepro_2023_138597 crossref_primary_10_1007_s11269_020_02588_3 crossref_primary_10_1016_j_rser_2022_113140 crossref_primary_10_1016_j_jclepro_2024_142655 crossref_primary_10_1016_j_jwpe_2024_105374 crossref_primary_10_1016_j_scs_2022_103873 crossref_primary_10_1080_09640568_2024_2311817 crossref_primary_10_3390_en14175256 crossref_primary_10_1002_wat2_1510 crossref_primary_10_2166_hydro_2022_146 crossref_primary_10_3390_electronics10030250 crossref_primary_10_3390_w13040531 crossref_primary_10_1016_j_compchemeng_2022_108025 crossref_primary_10_3390_en16093911 crossref_primary_10_1109_ACCESS_2021_3068374 crossref_primary_10_1111_poms_13923 crossref_primary_10_1186_s42162_023_00268_1 crossref_primary_10_3390_en15124343 crossref_primary_10_1016_j_jclepro_2019_117768 crossref_primary_10_3390_en14216875 crossref_primary_10_3390_w13050644 crossref_primary_10_1016_j_jclepro_2019_119745 crossref_primary_10_1061_JWRMD5_WRENG_6295 crossref_primary_10_2166_ws_2023_065 crossref_primary_10_1016_j_apenergy_2020_115587 crossref_primary_10_3390_en14020302 crossref_primary_10_1088_1742_6596_1858_1_012055 crossref_primary_10_1007_s11269_020_02722_1 crossref_primary_10_1016_j_procs_2022_12_266 crossref_primary_10_3390_w13202886 crossref_primary_10_3390_w15020286 crossref_primary_10_3390_w16131876 crossref_primary_10_3390_en14165101 crossref_primary_10_3390_en16083340 crossref_primary_10_3390_w15173067 crossref_primary_10_1016_j_apenergy_2022_120178 crossref_primary_10_1155_2024_7800284 crossref_primary_10_3390_su13063470 crossref_primary_10_1007_s11269_022_03255_5 crossref_primary_10_1016_j_ijdrr_2022_103266 crossref_primary_10_1016_j_watres_2022_119350 crossref_primary_10_3390_w13111474 crossref_primary_10_3390_w13091268 crossref_primary_10_1061_JWRMD5_WRENG_6215 crossref_primary_10_3390_en15124410 crossref_primary_10_1007_s11269_019_02297_6 crossref_primary_10_1155_2021_6691799 crossref_primary_10_1111_wej_12519 crossref_primary_10_1016_j_scs_2021_103036 crossref_primary_10_1016_j_jobe_2023_107770 crossref_primary_10_1016_j_scs_2023_104844 crossref_primary_10_3390_pr10112163 crossref_primary_10_1016_j_jclepro_2020_124148 crossref_primary_10_36659_dae_2022_043 crossref_primary_10_1016_j_jclepro_2021_128128 crossref_primary_10_1016_j_apenergy_2022_120583 crossref_primary_10_1016_j_jclepro_2020_123573 crossref_primary_10_1007_s11269_024_03791_2 crossref_primary_10_1029_2023WR035630 crossref_primary_10_1088_1748_9326_abcc2a crossref_primary_10_3390_su131910906 crossref_primary_10_1016_j_rser_2020_110381 crossref_primary_10_1007_s11269_023_03718_3 crossref_primary_10_1080_1573062X_2020_1758165 crossref_primary_10_3390_en15010310 crossref_primary_10_3390_su16114705 |
Cites_doi | 10.1016/j.jclepro.2017.12.158 10.1016/j.proeng.2014.11.246 10.1162/EVCO_a_00035 10.1061/(ASCE)0733-9496(2004)130:2(160) 10.2166/ws.2011.121 10.1016/j.enpol.2008.07.040 10.1080/10286608.2013.820279 10.2166/hydro.2010.014 10.2166/ws.2010.194 10.1016/j.jclepro.2018.02.156 10.1061/(ASCE)0733-9372(1994)120:4(803) 10.1016/j.jclepro.2016.12.056 10.5194/dwes-5-15-2012 10.1016/j.envsoft.2017.02.009 10.1007/s11269-015-1209-2 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jclepro.2018.12.190 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1786 |
EndPage | 356 |
ExternalDocumentID | 10_1016_j_jclepro_2018_12_190 S0959652618339064 |
GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADHUB AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSJ SSR SSZ T5K ~G- 29K AAHBH AAQXK AAXKI AAYXX ABFNM ABTAH ABXDB ADMUD AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION D-I FEDTE FGOYB G-2 HVGLF HZ~ R2- SEN SEW WUQ ZY4 |
ID | FETCH-LOGICAL-c346t-530c21b97c32064ec38d8e71196aa775cebf11551231720bf63876c55a9ab6cd3 |
IEDL.DBID | .~1 |
ISSN | 0959-6526 |
IngestDate | Thu Sep 26 17:03:44 EDT 2024 Fri Feb 23 02:48:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Water supply systems Energy CO2 emissions Cost Optimization Pump scheduling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c346t-530c21b97c32064ec38d8e71196aa775cebf11551231720bf63876c55a9ab6cd3 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1016_j_jclepro_2018_12_190 elsevier_sciencedirect_doi_10_1016_j_jclepro_2018_12_190 |
PublicationCentury | 2000 |
PublicationDate | 2019-03-10 |
PublicationDateYYYYMMDD | 2019-03-10 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-10 day: 10 |
PublicationDecade | 2010 |
PublicationTitle | Journal of cleaner production |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Syberfeldt, Persson (bib30) 2009 Goldberg (bib12) 1989 Papagiannis, Gazzola, Burak, Pokutsa (bib26) 2018; 183 Suribabu (bib29) 2010; 12 Zhang, Zhao, Cao, Wen (bib36) 2018; 176 Marchi, Simpson, Lambert (bib22) 2017 UN General Assembly (bib31) 2015 López-Ibáñez, Prasad, Paechter (bib18) 2011; 19 Carrijo, Fernanda, Reis, Walters, Savic, Reis, Walters, Savic (bib5) 2004 van Zyl, Savic, Walters (bib32) 2004; 130 Alvisi, Franchini (bib3) 2016 WssTP (bib34) 2018 Kazantzis, Simpson, Kwong, Tan (bib15) 2002 Mackle, Savic, Walters (bib19) 1995 Chipperfield, Fleming, Pohlheim (bib6) 1994 Aguas de Portugal (bib2) 2016 Muranho, Ferreira, Sousa, Gomes, Sá Marques (bib25) 2012; 12 Costa, de Athayde Prata, Ramos, de Castro (bib8) 2015; 30 Farina, Creaco, Franchini (bib11) 2014; 31 Vieira, Ramos (bib33) 2008; 36 Rossman, Clark, Grayman (bib27) 1994; 120 Coelho, Tavares, Efficiency, Algorithms, Scheduling (bib7) 2012 Mala-Jetmarova, Sultanova, Savic (bib20) 2017; 93 Mays (bib23) 2000 IEA (bib14) 2016 EPANET (bib10) 2018 Abiodun, Ismail (bib1) 2013 Blinco, Simpson, Lambert, Auricht, Hurr, Tiggemann, Marchi (bib4) 2014; 89 Sousa, Cunha, Marques (bib28) 2006 Grundfos (bib13) 2004 Lam, Kenway, Lant (bib16) 2017; 143 Marchi, Simpson, Ertugrul (bib21) 2012; 5 López-ibáñez, Devi Prasad, Paechter (bib17) 2005 Yingying, Jeffrey, Yeongho, Srinivas, Yu (bib35) 2018 Moreira, Ramos (bib24) 2013 Costa, Ramos, de Castro (bib9) 2010 Marchi (10.1016/j.jclepro.2018.12.190_bib22) 2017 Alvisi (10.1016/j.jclepro.2018.12.190_bib3) 2016 Rossman (10.1016/j.jclepro.2018.12.190_bib27) 1994; 120 WssTP (10.1016/j.jclepro.2018.12.190_bib34) 2018 Costa (10.1016/j.jclepro.2018.12.190_bib8) 2015; 30 Syberfeldt (10.1016/j.jclepro.2018.12.190_bib30) 2009 Goldberg (10.1016/j.jclepro.2018.12.190_bib12) 1989 Coelho (10.1016/j.jclepro.2018.12.190_bib7) 2012 Abiodun (10.1016/j.jclepro.2018.12.190_bib1) 2013 Blinco (10.1016/j.jclepro.2018.12.190_bib4) 2014; 89 van Zyl (10.1016/j.jclepro.2018.12.190_bib32) 2004; 130 Grundfos (10.1016/j.jclepro.2018.12.190_bib13) 2004 López-ibáñez (10.1016/j.jclepro.2018.12.190_bib17) 2005 Lam (10.1016/j.jclepro.2018.12.190_bib16) 2017; 143 Suribabu (10.1016/j.jclepro.2018.12.190_bib29) 2010; 12 Vieira (10.1016/j.jclepro.2018.12.190_bib33) 2008; 36 Zhang (10.1016/j.jclepro.2018.12.190_bib36) 2018; 176 Yingying (10.1016/j.jclepro.2018.12.190_bib35) 2018 Carrijo (10.1016/j.jclepro.2018.12.190_bib5) 2004 Muranho (10.1016/j.jclepro.2018.12.190_bib25) 2012; 12 López-Ibáñez (10.1016/j.jclepro.2018.12.190_bib18) 2011; 19 Mays (10.1016/j.jclepro.2018.12.190_bib23) 2000 EPANET (10.1016/j.jclepro.2018.12.190_bib10) 2018 Papagiannis (10.1016/j.jclepro.2018.12.190_bib26) 2018; 183 Aguas de Portugal (10.1016/j.jclepro.2018.12.190_bib2) 2016 Marchi (10.1016/j.jclepro.2018.12.190_bib21) 2012; 5 Mala-Jetmarova (10.1016/j.jclepro.2018.12.190_bib20) 2017; 93 Kazantzis (10.1016/j.jclepro.2018.12.190_bib15) 2002 UN General Assembly (10.1016/j.jclepro.2018.12.190_bib31) 2015 Mackle (10.1016/j.jclepro.2018.12.190_bib19) 1995 Sousa (10.1016/j.jclepro.2018.12.190_bib28) 2006 Farina (10.1016/j.jclepro.2018.12.190_bib11) 2014; 31 IEA (10.1016/j.jclepro.2018.12.190_bib14) 2016 Moreira (10.1016/j.jclepro.2018.12.190_bib24) 2013 Chipperfield (10.1016/j.jclepro.2018.12.190_bib6) 1994 Costa (10.1016/j.jclepro.2018.12.190_bib9) 2010 |
References_xml | – start-page: 12 year: 2013 end-page: 17 ident: bib1 article-title: Pump scheduling optimization model for water supply system using AWGA publication-title: 2013 IEEE Symposium on Computers & Informatics (ISCI) contributor: fullname: Ismail – volume: 12 start-page: 66 year: 2010 ident: bib29 article-title: Differential evolution algorithm for optimal design of water distribution networks publication-title: J. Hydroinf. contributor: fullname: Suribabu – volume: 31 start-page: 36 year: 2014 end-page: 50 ident: bib11 article-title: Using EPANET for modelling water distribution systems with users along the pipes publication-title: Civ. Eng. Environ. Syst. contributor: fullname: Franchini – volume: 183 start-page: 358 year: 2018 end-page: 369 ident: bib26 article-title: Overhauls in water supply systems in Ukraine: A hydro-economic model of socially responsible planning and cost management publication-title: J. Clean. Prod. contributor: fullname: Pokutsa – start-page: 200 year: 1994 end-page: 207 ident: bib6 article-title: Genetic Algorithm Toolbox for use with MATLAB publication-title: Proc. Int. Conf. Syst. Eng contributor: fullname: Pohlheim – year: 2002 ident: bib15 article-title: A new methodology for optimizing the daily operations of a pumping plant publication-title: Conference on Water Resources Planning and Management contributor: fullname: Tan – start-page: 365 year: 2016 end-page: 372 ident: bib3 article-title: A Methodology for Pumping Control Based on Time Variable Trigger Levels publication-title: Procedia Engineering contributor: fullname: Franchini – volume: 12 start-page: 117 year: 2012 end-page: 123 ident: bib25 article-title: WaterNetGen: an EPANET extension for automatic water distribution network models generation and pipe sizing publication-title: Water Sci. Technol. Water Supply contributor: fullname: Sá Marques – volume: 19 start-page: 429 year: 2011 end-page: 467 ident: bib18 article-title: Representations and Evolutionary Operators for the Scheduling of Pump Operations in Water Distribution Networks publication-title: Evol. Comput. contributor: fullname: Paechter – volume: 120 start-page: 803 year: 1994 end-page: 820 ident: bib27 article-title: Modeling Chlorine Residuals in Drinking-Water Distribution Systems publication-title: J. Environ. Eng. contributor: fullname: Grayman – year: 2018 ident: bib10 article-title: Application for Modelling Drinking Water Distribution Systems contributor: fullname: EPANET – start-page: 1 year: 2004 end-page: 8 ident: bib5 article-title: Operational Optimization of WDS based on Multiobjective Genetic Algorithms and Operational Extraction Rules using Data Mining publication-title: Crit. Transitions Water Environ. Resour. Manag contributor: fullname: Savic – year: 2009 ident: bib30 article-title: Using Heuristic Search for Initiating the Genetic Population in Simulation-Based Optimization of Vehicle Routing Problems publication-title: Proceedings of Industrial Simulation Conference. Proceedings of Industrial Simulation Conference EUROSIS-ETI contributor: fullname: Persson – year: 2016 ident: bib2 article-title: Relatório De Sustentabilidade (Annual Report 2016) contributor: fullname: Aguas de Portugal – year: 1989 ident: bib12 article-title: Genetic Algorithms in Search, Optimization, and Machine Learning contributor: fullname: Goldberg – start-page: 400 year: 1995 end-page: 405 ident: bib19 article-title: Application of genetic algorithms to pump scheduling for water supply publication-title: First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications contributor: fullname: Walters – year: 2016 ident: bib14 article-title: World Energy Outlook 2016 - Special Report: Water-Energy Nexus contributor: fullname: IEA – volume: 143 start-page: 699 year: 2017 end-page: 709 ident: bib16 article-title: Energy use for water provision in cities publication-title: J. Clean. Prod. contributor: fullname: Lant – start-page: 315 year: 2010 end-page: 326 ident: bib9 article-title: Hybrid genetic algorithm in the optimization of energy costs in water supply networks publication-title: Water Sci. Technol. Water Supply contributor: fullname: de Castro – year: 2015 ident: bib31 article-title: Transforming our world : the 2030 Agenda for Sustainable Development contributor: fullname: UN General Assembly – volume: 36 start-page: 4142 year: 2008 end-page: 4148 ident: bib33 article-title: Hybrid solution and pump-storage optimization in water supply system efficiency: A case study publication-title: Energy Pol. contributor: fullname: Ramos – volume: 176 start-page: 663 year: 2018 end-page: 675 ident: bib36 article-title: Multi-scale water network optimization considering simultaneous intra- and inter-plant integration in steel industry publication-title: J. Clean. Prod. contributor: fullname: Wen – start-page: 3060 year: 2006 end-page: 3069 ident: bib28 article-title: A Simulated Annealing Algorithm For The Optimal Operation Of Water Distribution Networks publication-title: Joint International Conference on Computing and Decision Making in Civil and Building Engineering contributor: fullname: Marques – volume: 30 start-page: 1037 year: 2015 end-page: 1052 ident: bib8 article-title: A Branch-and-Bound Algorithm for Optimal Pump Scheduling in Water Distribution Networks publication-title: Water Resour. Manag. contributor: fullname: de Castro – volume: 93 start-page: 209 year: 2017 end-page: 254 ident: bib20 article-title: Lost in Optimisation of Water Distribution Systems? A Literature Review of System Operation publication-title: Environ. Model. Software contributor: fullname: Savic – year: 2018 ident: bib35 article-title: Better Water Demand and Pipe Description Improve the Distribution Network Modeling Results publication-title: World Environ. Water Resour. Congr. 2017, Proceedings contributor: fullname: Yu – year: 2018 ident: bib34 article-title: Water Supply and Sanitation Technology Platform contributor: fullname: WssTP – year: 2004 ident: bib13 article-title: Pump Handbook contributor: fullname: Grundfos – year: 2000 ident: bib23 article-title: COMPUTER MODELS/EPANET publication-title: Water Distrib. Syst. Handb. contributor: fullname: Mays – volume: 130 start-page: 160 year: 2004 end-page: 170 ident: bib32 article-title: Operational Optimization of Water Distribution Systems Using a Hybrid Genetic Algorithm publication-title: J. Water Resour. Plann. Manag. contributor: fullname: Walters – start-page: 210 year: 2017 end-page: 217 ident: bib22 article-title: Pump Operation Optimization Using Rule-based Controls publication-title: Procedia Engineering contributor: fullname: Lambert – volume: 89 start-page: 509 year: 2014 end-page: 516 ident: bib4 article-title: Genetic Algorithm Optimization of Operational Costs and Greenhouse Gas Emissions for Water Distribution Systems publication-title: Procedia Eng contributor: fullname: Marchi – year: 2012 ident: bib7 article-title: Analysis of diverse optimisation algorithms for pump scheduling in water supply systems 1–5 contributor: fullname: Scheduling – volume: 5 start-page: 15 year: 2012 end-page: 21 ident: bib21 article-title: Assessing variable speed pump efficiency in water distribution systems publication-title: Drink. Water Eng. Sci. contributor: fullname: Ertugrul – year: 2005 ident: bib17 article-title: Optimal pump scheduling: Representation and multiple objectives publication-title: Conf. Comput. Control Water Ind. contributor: fullname: Paechter – start-page: 1 year: 2013 end-page: 9 ident: bib24 article-title: Energy Cost Optimization in a Water Supply System Case Study publication-title: J. Energy contributor: fullname: Ramos – volume: 176 start-page: 663 year: 2018 ident: 10.1016/j.jclepro.2018.12.190_bib36 article-title: Multi-scale water network optimization considering simultaneous intra- and inter-plant integration in steel industry publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.12.158 contributor: fullname: Zhang – year: 2016 ident: 10.1016/j.jclepro.2018.12.190_bib14 contributor: fullname: IEA – year: 2015 ident: 10.1016/j.jclepro.2018.12.190_bib31 contributor: fullname: UN General Assembly – volume: 89 start-page: 509 year: 2014 ident: 10.1016/j.jclepro.2018.12.190_bib4 article-title: Genetic Algorithm Optimization of Operational Costs and Greenhouse Gas Emissions for Water Distribution Systems publication-title: Procedia Eng doi: 10.1016/j.proeng.2014.11.246 contributor: fullname: Blinco – year: 1989 ident: 10.1016/j.jclepro.2018.12.190_bib12 contributor: fullname: Goldberg – year: 2018 ident: 10.1016/j.jclepro.2018.12.190_bib35 article-title: Better Water Demand and Pipe Description Improve the Distribution Network Modeling Results contributor: fullname: Yingying – year: 2018 ident: 10.1016/j.jclepro.2018.12.190_bib10 contributor: fullname: EPANET – start-page: 365 year: 2016 ident: 10.1016/j.jclepro.2018.12.190_bib3 article-title: A Methodology for Pumping Control Based on Time Variable Trigger Levels contributor: fullname: Alvisi – volume: 19 start-page: 429 year: 2011 ident: 10.1016/j.jclepro.2018.12.190_bib18 article-title: Representations and Evolutionary Operators for the Scheduling of Pump Operations in Water Distribution Networks publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00035 contributor: fullname: López-Ibáñez – volume: 130 start-page: 160 year: 2004 ident: 10.1016/j.jclepro.2018.12.190_bib32 article-title: Operational Optimization of Water Distribution Systems Using a Hybrid Genetic Algorithm publication-title: J. Water Resour. Plann. Manag. doi: 10.1061/(ASCE)0733-9496(2004)130:2(160) contributor: fullname: van Zyl – start-page: 1 year: 2004 ident: 10.1016/j.jclepro.2018.12.190_bib5 article-title: Operational Optimization of WDS based on Multiobjective Genetic Algorithms and Operational Extraction Rules using Data Mining publication-title: Crit. Transitions Water Environ. Resour. Manag contributor: fullname: Carrijo – volume: 12 start-page: 117 year: 2012 ident: 10.1016/j.jclepro.2018.12.190_bib25 article-title: WaterNetGen: an EPANET extension for automatic water distribution network models generation and pipe sizing publication-title: Water Sci. Technol. Water Supply doi: 10.2166/ws.2011.121 contributor: fullname: Muranho – year: 2016 ident: 10.1016/j.jclepro.2018.12.190_bib2 contributor: fullname: Aguas de Portugal – volume: 36 start-page: 4142 year: 2008 ident: 10.1016/j.jclepro.2018.12.190_bib33 article-title: Hybrid solution and pump-storage optimization in water supply system efficiency: A case study publication-title: Energy Pol. doi: 10.1016/j.enpol.2008.07.040 contributor: fullname: Vieira – volume: 31 start-page: 36 year: 2014 ident: 10.1016/j.jclepro.2018.12.190_bib11 article-title: Using EPANET for modelling water distribution systems with users along the pipes publication-title: Civ. Eng. Environ. Syst. doi: 10.1080/10286608.2013.820279 contributor: fullname: Farina – start-page: 210 year: 2017 ident: 10.1016/j.jclepro.2018.12.190_bib22 article-title: Pump Operation Optimization Using Rule-based Controls contributor: fullname: Marchi – volume: 12 start-page: 66 year: 2010 ident: 10.1016/j.jclepro.2018.12.190_bib29 article-title: Differential evolution algorithm for optimal design of water distribution networks publication-title: J. Hydroinf. doi: 10.2166/hydro.2010.014 contributor: fullname: Suribabu – start-page: 315 year: 2010 ident: 10.1016/j.jclepro.2018.12.190_bib9 article-title: Hybrid genetic algorithm in the optimization of energy costs in water supply networks publication-title: Water Sci. Technol. Water Supply doi: 10.2166/ws.2010.194 contributor: fullname: Costa – year: 2002 ident: 10.1016/j.jclepro.2018.12.190_bib15 article-title: A new methodology for optimizing the daily operations of a pumping plant contributor: fullname: Kazantzis – volume: 183 start-page: 358 year: 2018 ident: 10.1016/j.jclepro.2018.12.190_bib26 article-title: Overhauls in water supply systems in Ukraine: A hydro-economic model of socially responsible planning and cost management publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.02.156 contributor: fullname: Papagiannis – start-page: 200 year: 1994 ident: 10.1016/j.jclepro.2018.12.190_bib6 article-title: Genetic Algorithm Toolbox for use with MATLAB publication-title: Proc. Int. Conf. Syst. Eng contributor: fullname: Chipperfield – start-page: 12 year: 2013 ident: 10.1016/j.jclepro.2018.12.190_bib1 article-title: Pump scheduling optimization model for water supply system using AWGA contributor: fullname: Abiodun – year: 2005 ident: 10.1016/j.jclepro.2018.12.190_bib17 article-title: Optimal pump scheduling: Representation and multiple objectives publication-title: Conf. Comput. Control Water Ind. contributor: fullname: López-ibáñez – year: 2000 ident: 10.1016/j.jclepro.2018.12.190_bib23 article-title: COMPUTER MODELS/EPANET publication-title: Water Distrib. Syst. Handb. contributor: fullname: Mays – volume: 120 start-page: 803 year: 1994 ident: 10.1016/j.jclepro.2018.12.190_bib27 article-title: Modeling Chlorine Residuals in Drinking-Water Distribution Systems publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)0733-9372(1994)120:4(803) contributor: fullname: Rossman – volume: 143 start-page: 699 year: 2017 ident: 10.1016/j.jclepro.2018.12.190_bib16 article-title: Energy use for water provision in cities publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.12.056 contributor: fullname: Lam – year: 2009 ident: 10.1016/j.jclepro.2018.12.190_bib30 article-title: Using Heuristic Search for Initiating the Genetic Population in Simulation-Based Optimization of Vehicle Routing Problems contributor: fullname: Syberfeldt – year: 2018 ident: 10.1016/j.jclepro.2018.12.190_bib34 contributor: fullname: WssTP – year: 2004 ident: 10.1016/j.jclepro.2018.12.190_bib13 contributor: fullname: Grundfos – start-page: 400 year: 1995 ident: 10.1016/j.jclepro.2018.12.190_bib19 article-title: Application of genetic algorithms to pump scheduling for water supply contributor: fullname: Mackle – start-page: 1 year: 2013 ident: 10.1016/j.jclepro.2018.12.190_bib24 article-title: Energy Cost Optimization in a Water Supply System Case Study publication-title: J. Energy contributor: fullname: Moreira – volume: 5 start-page: 15 year: 2012 ident: 10.1016/j.jclepro.2018.12.190_bib21 article-title: Assessing variable speed pump efficiency in water distribution systems publication-title: Drink. Water Eng. Sci. doi: 10.5194/dwes-5-15-2012 contributor: fullname: Marchi – volume: 93 start-page: 209 year: 2017 ident: 10.1016/j.jclepro.2018.12.190_bib20 article-title: Lost in Optimisation of Water Distribution Systems? A Literature Review of System Operation publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2017.02.009 contributor: fullname: Mala-Jetmarova – start-page: 3060 year: 2006 ident: 10.1016/j.jclepro.2018.12.190_bib28 article-title: A Simulated Annealing Algorithm For The Optimal Operation Of Water Distribution Networks contributor: fullname: Sousa – volume: 30 start-page: 1037 year: 2015 ident: 10.1016/j.jclepro.2018.12.190_bib8 article-title: A Branch-and-Bound Algorithm for Optimal Pump Scheduling in Water Distribution Networks publication-title: Water Resour. Manag. doi: 10.1007/s11269-015-1209-2 contributor: fullname: Costa – year: 2012 ident: 10.1016/j.jclepro.2018.12.190_bib7 contributor: fullname: Coelho |
SSID | ssj0017074 |
Score | 2.620364 |
Snippet | Water supply systems have a significant environmental and energetic impact due to the large amount of energy consumed in water pumping and water losses. The... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 342 |
SubjectTerms | CO2 emissions Cost Energy Optimization Pump scheduling Water supply systems |
Title | Improving energy efficiency in water supply systems with pump scheduling optimization |
URI | https://dx.doi.org/10.1016/j.jclepro.2018.12.190 |
Volume | 213 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg5e033mscdSLFWxFy30FjbZLLTgtrQV8eJvd2YftYJ48LjLZllmku-bzM58IeTW5jHnKksZsDVnsfBzZkIbshzo1QR-qsLy1JKnsRhN4ocpn7bIoOmFwbLKGvsrTC_Rur7j1db0lrOZ94wZLMFhB6Ai2LgL1ARFsS2Y073PbZlHIP1KiRnTXfj0dxePN-_N4WUAVFjhpTArGCA0_8ZPO5wzPCKHdbBI-9X3HJOWK07IwY6E4CmZbLMC1JVtfNSVohDYUUlnBX2HWHJF13h25wetZJvXFJOvdAmOpLC3Ba7BlnS6APB4rbsyz8hkePcyGLH6qARmo1hsGI98GwYmkTYKwRTORipTTgawvtJUSm6dyQOMjiCck6Fvclh2UljO0yQ1wmbROWkXi8JdECqAwoHYhFVRHvvg4Cwx-M-LOxengJ8d0msMpJeVIoZuSsXmuraoRovqINRg0Q5RjRn1D9dqQO2_h17-f-gV2YerhJWld9ekvVm9uRuIHzamW06QLtnr3z-Oxl9psMYX |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgAD4inK0wOrm6cdZ0QVqEDbhVbqZsWOI7USadUWIRZ-O-c8SpEQA2sSR9F39vedL3dngFudhYyJNKGo1oyG3M2o8rVPM5RX5bmJ8ItTS_oD3h2FT2M2bkCnroWxaZUV95ecXrB1dcWp0HTmk4nzYiNYnOEOQAS4cefhFmyHtn8WTur25zrPw4vcshWzjXfZx7_LeJxpe4pvQ6ayKV7ChgU9y82_CdSG6DwcwH7lLZK78oMOoWHyI9jb6CF4DKN1WICYoo6PmKIrhC2pJJOcvKMzuSBLe3jnByn7Ni-Jjb6SOVqS4OYWxcbWpJMZssdrVZZ5AqOH-2GnS6uzEqgOQr6iLHC176k40oGPWBgdiFSYyMMFliRRxLRRmWfdI_TnIt9VGa67iGvGkjhRXKfBKTTzWW7OgHDUcFQ2rkWQhS5aOI2V_enFjAkTJNAWtGuA5LxsiSHrXLGprBCVFlHp-RIRbYGoYZQ_bCuRtv8eev7_oTew0x32e7L3OHi-gF28E9MiD-8SmqvFm7lCZ2KlrovJ8gVVhse5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+energy+efficiency+in+water+supply+systems+with+pump+scheduling+optimization&rft.jtitle=Journal+of+cleaner+production&rft.au=Luna%2C+Tiago&rft.au=Ribau%2C+Jo%C3%A3o&rft.au=Figueiredo%2C+David&rft.au=Alves%2C+Rita&rft.date=2019-03-10&rft.issn=0959-6526&rft.volume=213&rft.spage=342&rft.epage=356&rft_id=info:doi/10.1016%2Fj.jclepro.2018.12.190&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jclepro_2018_12_190 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |