Range projections and the Moore-Penrose inverse in rings with involution

In this article we study the existence of range projections in rings with involution, relating it to the existence of the Moore-Penrose inverse. The results are applied to the solution of the equation xbx = x in rings with involution, extending the results of Greville for matrices. Simpler new proof...

Full description

Saved in:
Bibliographic Details
Published inLinear & multilinear algebra Vol. 55; no. 2; pp. 103 - 112
Main Authors Koliha, J. J., RakoČević, V.
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 01.03.2007
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article we study the existence of range projections in rings with involution, relating it to the existence of the Moore-Penrose inverse. The results are applied to the solution of the equation xbx = x in rings with involution, extending the results of Greville for matrices. Simpler new proofs are given of the Moore-Penrose invertibility of regular elements in rings with involution, and of the Ljance's formula.
AbstractList In this article we study the existence of range projections in rings with involution, relating it to the existence of the Moore-Penrose inverse. The results are applied to the solution of the equation xbx = x in rings with involution, extending the results of Greville for matrices. Simpler new proofs are given of the Moore-Penrose invertibility of regular elements in rings with involution, and of the Ljance's formula.
Author RakoČević, V.
Koliha, J. J.
Author_xml – sequence: 1
  givenname: J. J.
  surname: Koliha
  fullname: Koliha, J. J.
  email: j.koliha@ms.unimelb.edu.au
  organization: Department of Mathematics and Statistics , The University of Melbourne
– sequence: 2
  givenname: V.
  surname: RakoČević
  fullname: RakoČević, V.
  organization: Faculty of Science and Mathematics , University of Niš
BookMark eNqNkMFKAzEQhoNUsK0-gLe8wGqy2ewm4EWKWqGiiJ5DujtpU7ZJSaK1b--u9WShePqHmflmfv4RGjjvAKFLSq4oEeSaMCL6ghNSVLnkxQkaUl6yjFMmB2jYz7NuoTpDoxhXpFujjA_R9FW7BeBN8Cuok_UuYu0anJaAn7wPkL2ACz4Ctu4Two_iYN0i4q1Ny77r24-eO0enRrcRLn51jN7v794m02z2_PA4uZ1lNSvKlBWGUEmo5qIpmTGipMDB1CIvqWCloYXsGlSYam4kN6SSwHMAITWXpaD5nI0R3d-tO1sxgFGbYNc67BQlqk9AHUTRMdUfprZJ965T0LY9St7sSeuMD2u99aFtVNK71gcTtKttVOwfj4_gB5RKX4l9A-x_iMk
CitedBy_id crossref_primary_10_1016_j_amc_2020_125832
crossref_primary_10_1016_j_laa_2009_09_024
crossref_primary_10_1007_s40840_015_0242_x
crossref_primary_10_1007_s10114_023_1439_9
crossref_primary_10_5402_2011_846165
crossref_primary_10_1016_j_laa_2009_02_032
crossref_primary_10_1080_03081087_2011_605064
crossref_primary_10_1016_j_amc_2011_06_040
crossref_primary_10_1016_j_laa_2008_05_012
crossref_primary_10_1016_j_amc_2015_07_057
crossref_primary_10_1016_j_laa_2015_02_017
Cites_doi 10.4064/sm-106-2-129-138
10.1216/rmjm/1181069874
10.2307/2695474
10.1515/dema-2001-0113
10.4064/sm-103-1-71-77
10.1137/0126074
10.1017/S0305004100030401
10.1080/030810802100023499
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2007
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2007
DBID AAYXX
CITATION
DOI 10.1080/03081080500472954
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1563-5139
EndPage 112
ExternalDocumentID 10_1080_03081080500472954
147278
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADIYS
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGCQS
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
~S~
07G
1TA
AAGDL
AAHIA
AAIKQ
AAKBW
AAYXX
ABEFU
ACAGQ
ACGEE
ADYSH
AEUMN
AFFNX
AFRVT
AGLEN
AGROQ
AHMOU
AIYEW
ALCKM
AMEWO
AMPGV
AMVHM
AMXXU
BCCOT
BPLKW
C06
CITATION
CRFIH
DMQIW
DWIFK
HF~
IVXBP
LJTGL
NUSFT
QCRFL
TAQ
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
ID FETCH-LOGICAL-c346t-4f01901a58d63ff861e5efc8261836f1491e518f7bf95f079e52ee89a596812b3
ISSN 0308-1087
IngestDate Tue Jul 01 01:40:18 EDT 2025
Thu Apr 24 23:01:01 EDT 2025
Wed Dec 25 09:05:27 EST 2024
Mon May 13 12:09:03 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c346t-4f01901a58d63ff861e5efc8261836f1491e518f7bf95f079e52ee89a596812b3
PageCount 10
ParticipantIDs crossref_primary_10_1080_03081080500472954
crossref_citationtrail_10_1080_03081080500472954
informaworld_taylorfrancis_310_1080_03081080500472954
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 3/1/2007
2007-03-00
PublicationDateYYYYMMDD 2007-03-01
PublicationDate_xml – month: 03
  year: 2007
  text: 3/1/2007
  day: 01
PublicationDecade 2000
PublicationTitle Linear & multilinear algebra
PublicationYear 2007
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References Koliha JJ (CIT0004) 2001; 34
Ljance VE (CIT0007) 1959; 1
CIT0001
Harte R (CIT0003) 1993; 106
CIT0005
CIT0006
Harte R (CIT0002) 1992; 103
CIT0009
CIT0008
References_xml – volume: 106
  start-page: 129
  year: 1993
  ident: CIT0003
  publication-title: Studia Mathematica
  doi: 10.4064/sm-106-2-129-138
– ident: CIT0005
  doi: 10.1216/rmjm/1181069874
– ident: CIT0009
  doi: 10.2307/2695474
– volume: 34
  start-page: 91
  year: 2001
  ident: CIT0004
  publication-title: Demonstratio Mathematica
  doi: 10.1515/dema-2001-0113
– volume: 103
  start-page: 71
  year: 1992
  ident: CIT0002
  publication-title: Studia Mathematica
  doi: 10.4064/sm-103-1-71-77
– volume: 1
  start-page: 16
  year: 1959
  ident: CIT0007
  publication-title: Teoretichna i Prikladna Mathematika
– ident: CIT0001
  doi: 10.1137/0126074
– ident: CIT0008
  doi: 10.1017/S0305004100030401
– ident: CIT0006
  doi: 10.1080/030810802100023499
SSID ssj0004135
Score 1.7767693
Snippet In this article we study the existence of range projections in rings with involution, relating it to the existence of the Moore-Penrose inverse. The results...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 103
SubjectTerms 2000 Mathematics Subject Classifications: 46L05
C-algebra
Idempotent
Moore-Penrose inverse
Range projection
Title Range projections and the Moore-Penrose inverse in rings with involution
URI https://www.tandfonline.com/doi/abs/10.1080/03081080500472954
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZd-rI9jPUylnUteujThoNlWbL1WNKWkJFSSkJLX4LlSFAWkpF5MPa0_9B_uF-yo4svSZbQFoKjCFl2fD5LR9Kn7yB0qhIqoWOSAddhGsQTxgOZJTwQWQq9tZH4suHeBle8N4r7d-yuptva3SWF7OS__7uv5CVWhTywq9kl-wzLVpVCBqTBvnAEC8PxSTa-MTsDvvjJFMtoK_mQg7nhz3oiA72GCgwv_WFmSBhWJmRhw3XaWVjI9XfZ9FRhkGo0fgwyLOlw6n6bsCByUbXlX-fTB7dk1O_Ap141-ja3bmoX-l2bSCyhtrM0yZDULKtyc5VVgfV9o_JtJacBI06LqGxMneauB03UaBlJSBudLHHc6bX22xMe4WomyayWpXAq08ta2St9WMUsJKXk6WoVr9BuBCOJqIV2z3rn97f15lkfhbX8h-XStxFgX61kyXlZkrZtOCXDd-itH03gMweNPbSjZvvozaCS4v1xgPoWJLgBEgwgwVACW5D8_fPo4YE9POAbW3hgAw9cw-MQjS4vht1e4ANoBDmNeRHE2igFkIylE061TjlRTOkcRpTQkHMNg2PIIKlOpBZMh4lQLFIqFRkTRpZO0veoNZvP1AeE8yyTZnIsFRPwZxItMq15FCmaCU0I120Ulk9mnHt1eRPkZDreaJE2-lyd8t1Jq2wrHDYf97iw81naBZ9ZLz4ufhVtxLacQjde6uNz7usIva7fl0-oVSx-qmNwUwt54oH2D_52hVc
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN6I8PTAhuSRN7MQjQlQBmgqhVuoWJaktIVCCmlRC_Hp8eZS2PIZOiSxf7NgXn-_L-TuAS-lYkTZMEeXKcKk9YpxGocOpCF1trZHiq0j35ve4N7AfhmxYAW5ZFVaJPrQqiSKKtRo_bgSj65C4a-RYwRtWcB0KZq_CGhPcwQwGltH7PhdZJdi0CgpT16n_av72iDm7NMdaOmNvOtsQ1D0tw0xeW5M8asWfCySOy7_KDmxVW1FyU-rOLqzIZA82_SmPa7YP3jOePSAVXIMaSnRTRNcgfpqOJX3S6pdmkrwkGN6BV4JAYUYQ38XSSrMPYNC56996tMq9QGPL5jm1FR4yN0PmjrillMtNyaSKtTOi1wCutF-lC0xXOZESTBmOkKwtpStCPQ96zxBZh9BI0kQeAYnDMEJcxRUjbQodJUKleLstrVAo0-SqCUY98kFcEZNjfoy3wKz5SxcHqQlXU5H3kpXjv8rG7HQGeQGFqDJvyc_qQf6RN4H9I2L92dTxknIXsO71_W7Qve89nsBGiR9jnNspNPLxRJ7pjU8enRfa_QWHyvQS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dS8MwEMCDThB98Fucn3nwSehs1yZtHkUd82NjiIO9lbTNgSjtWDsQ_3pz_Zjb1D3sqSUkDUmvueR69ztCLpVrB1oxBQYH0zOciHEjkC43hPS0tkbEV57urdPl7b7zOGCD0jcnLd0q8QwNBSgiX6vx4x5GUHnEXSNiBW9YjjoUzFklaxzB4RjBYXZ_wiLL_Jp2TjD13Oqn5l-PmFFLM9DSKXXT2i5yqqY5pRC9TN4b4yxohF9zDMelR7JDtsqNKL0pJGeXrKh4j2x2JhTXdJ-0XzDygJbGGpRPqnuiugbtJMlIGT0tfEmq6FuMzh14pWgmTClad7G0lOsD0m_dv962jTLzghHaDs8MBzDE3JLMi7gN4HFLMQWhPoroFYCDPlXpAssDNwDBwHSFYk2lPCGZQJ5ZYB-SWpzE6ojQUMoArSqeiLQidEFIAN5sKlsKsCwOdWJWE--HJZYcs2N8-FZFL52fpDq5mjQZFkyORZXN6bfpZ7khBIqsJb-r-9lnVidsQRP7366Ol2x3QdZ7dy3_-aH7dEI2CuMxOrmdklo2GqszvevJgvNctr8Bg1jytg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Range+projections+and+the+Moore%E2%80%93Penrose+inverse+in+rings+with+involution&rft.jtitle=Linear+%26+multilinear+algebra&rft.au=Koliha%2C+J.+J.&rft.au=Rako%C4%8Cevi%C4%87%2C+V.&rft.date=2007-03-01&rft.issn=0308-1087&rft.eissn=1563-5139&rft.volume=55&rft.issue=2&rft.spage=103&rft.epage=112&rft_id=info:doi/10.1080%2F03081080500472954&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03081080500472954
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-1087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-1087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-1087&client=summon