Classifying NIR spectra of textile products with kernel methods
This paper describes the use of kernel methods to classify tissue samples using near-infrared spectra in order to discriminate between samples, either with or without elastane. The aim of this real-world study is to identify an alternative method to classify textile products using near-infrared (NIR...
Saved in:
Published in | Engineering applications of artificial intelligence Vol. 20; no. 3; pp. 415 - 427 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2007
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0952-1976 1873-6769 |
DOI | 10.1016/j.engappai.2006.07.001 |
Cover
Loading…
Abstract | This paper describes the use of kernel methods to classify tissue samples using near-infrared spectra in order to discriminate between samples, either with or without elastane. The aim of this real-world study is to identify an alternative method to classify textile products using near-infrared (NIR) spectroscopy in order to improve quality control, and to aid in the detection of counterfeit garments.
The principles behind support vector machines (SVMs), of which the main idea is to linearly separate data, are recalled progressively in order to demonstrate that the decision function obtained is a global optimal solution of a quadratic programming problem. Generally, this solution is found after embedding data in another space
F with a higher dimension by the means of a specific non-linear function, the kernel.
For a selected kernel, one of the most important and difficult subjects concerning SVM is the determination of tuning parameters. Generally, different combinations of these parameters are tested in order to obtain a machine with adequate classification ability. With the kernel alignment method used in this paper, the most appropriate kernel parameters are identified rapidly. Since in many cases, data are embedded in
F, a linear principal component (PC) analysis (PCA) can be considered and studied. The main properties and the algorithm of
k-PCA are described here. This paper compares the results obtained in prediction for a linear classifier built in the initial space with the PCs from a PCA and those obtained in
F with non-linear PCs from a
k-PCA.
In the present study, even if there are potentially discriminating wavelengths seen on the NIR spectra, linear discriminant analysis and soft independent modelling of class analogy results show that these wavelengths are not sufficient to build a machine with correct generalisation ability. The use of a non-linear method, such as SVM and its corollary methods, kernel alignment and
k-PCA, is then justified. |
---|---|
AbstractList | This paper describes the use of kernel methods to classify tissue samples using near-infrared spectra in order to discriminate between samples, either with or without elastane. The aim of this real-world study is to identify an alternative method to classify textile products using near-infrared (NIR) spectroscopy in order to improve quality control, and to aid in the detection of counterfeit garments.
The principles behind support vector machines (SVMs), of which the main idea is to linearly separate data, are recalled progressively in order to demonstrate that the decision function obtained is a global optimal solution of a quadratic programming problem. Generally, this solution is found after embedding data in another space
F with a higher dimension by the means of a specific non-linear function, the kernel.
For a selected kernel, one of the most important and difficult subjects concerning SVM is the determination of tuning parameters. Generally, different combinations of these parameters are tested in order to obtain a machine with adequate classification ability. With the kernel alignment method used in this paper, the most appropriate kernel parameters are identified rapidly. Since in many cases, data are embedded in
F, a linear principal component (PC) analysis (PCA) can be considered and studied. The main properties and the algorithm of
k-PCA are described here. This paper compares the results obtained in prediction for a linear classifier built in the initial space with the PCs from a PCA and those obtained in
F with non-linear PCs from a
k-PCA.
In the present study, even if there are potentially discriminating wavelengths seen on the NIR spectra, linear discriminant analysis and soft independent modelling of class analogy results show that these wavelengths are not sufficient to build a machine with correct generalisation ability. The use of a non-linear method, such as SVM and its corollary methods, kernel alignment and
k-PCA, is then justified. |
Author | Hewson, D.J. Langeron, Y. Doussot, M. Duchêne, J. |
Author_xml | – sequence: 1 givenname: Y. surname: Langeron fullname: Langeron, Y. email: yves.langeron@utt.fr – sequence: 2 givenname: M. surname: Doussot fullname: Doussot, M. – sequence: 3 givenname: D.J. surname: Hewson fullname: Hewson, D.J. – sequence: 4 givenname: J. surname: Duchêne fullname: Duchêne, J. |
BackLink | https://utt.hal.science/hal-02292842$$DView record in HAL |
BookMark | eNqFkFFLwzAQx4NMcJt-BemrD62XpE1aEHQMdYOhIPoc0jTZMru2JHG6b2_H3Isvezo47ve_u98IDZq20QhdY0gwYHa7TnSzlF0nbUIAWAI8AcBnaIhzTmPGWTFAQygyEuOCsws08n4NADRP2RDdT2vpvTU72yyjl_lb5DutgpNRa6Kgf4KtddS5tvpSwUffNqyiT-0aXUcbHVZt5S_RuZG111d_dYw-nh7fp7N48fo8n04WsaIpC3GaKc4oLSrMc0wr4EYZLDMCrOJplmGc0bJMJTNaKWaYkVmeliQrTX-30VDRMbo55K5kLTpnN9LtRCutmE0WYt8DQgqSp2SL-9m7w6xyrfdOG6FskMG2Tf-YrQUGsRcn1uIoTuzFCeCiF9fj7B9-3HcSfDiAuhextdoJr6xulK6s66WKqrWnIn4BQHuN8w |
CitedBy_id | crossref_primary_10_1049_iet_spr_2019_0575 crossref_primary_10_1016_j_saa_2008_12_002 crossref_primary_10_1631_jzus_B0820299 crossref_primary_10_1088_0957_0233_19_8_085601 crossref_primary_10_1016_j_engappai_2023_106684 crossref_primary_10_1021_jf0725575 crossref_primary_10_1016_j_talanta_2012_04_034 crossref_primary_10_1080_00387010_2015_1089446 crossref_primary_10_1016_j_infrared_2016_05_020 crossref_primary_10_1016_j_cej_2008_06_030 crossref_primary_10_1016_j_jfoodeng_2009_02_023 crossref_primary_10_1111_nph_12852 crossref_primary_10_1016_j_infrared_2021_103629 crossref_primary_10_1016_j_saa_2008_04_020 crossref_primary_10_1039_C6AY01330A crossref_primary_10_3390_molecules28196886 crossref_primary_10_1016_j_jfoodeng_2016_10_021 crossref_primary_10_1109_JSEN_2011_2121902 crossref_primary_10_1016_j_jfoodeng_2016_01_002 crossref_primary_10_3390_s17102252 crossref_primary_10_1108_IJCST_07_2015_0076 crossref_primary_10_1016_j_saa_2017_10_019 crossref_primary_10_1007_s11263_019_01199_9 crossref_primary_10_1016_j_saa_2023_123672 crossref_primary_10_1177_0967033518757069 crossref_primary_10_1016_j_patrec_2015_12_007 crossref_primary_10_1016_j_eswa_2022_117000 crossref_primary_10_1108_IJCST_07_2018_0091 crossref_primary_10_3390_s19010097 crossref_primary_10_1007_s11356_017_9243_7 crossref_primary_10_3390_molecules28237891 crossref_primary_10_1007_s12161_011_9331_0 crossref_primary_10_1186_s13007_020_00576_7 crossref_primary_10_1016_j_aca_2016_05_015 crossref_primary_10_1016_j_saa_2013_08_018 crossref_primary_10_1177_0040517518817043 crossref_primary_10_1016_j_chemolab_2008_11_005 crossref_primary_10_1366_000370208784344389 crossref_primary_10_1371_journal_pone_0180534 crossref_primary_10_1016_j_foodchem_2011_08_041 crossref_primary_10_1016_j_saa_2016_08_033 crossref_primary_10_1016_j_foodchem_2008_08_042 |
Cites_doi | 10.1016/S0731-7085(99)00125-9 10.1366/0003702894202201 10.1366/0003702953964615 10.1016/S0169-7439(02)00046-1 10.1255/jnirs.30 10.1023/A:1009715923555 10.1109/72.788641 10.1162/089976698300017467 10.1016/0031-3203(76)90014-5 10.1021/bk-1977-0052.ch012 |
ContentType | Journal Article |
Copyright | 2006 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2006 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1016/j.engappai.2006.07.001 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science Statistics |
EISSN | 1873-6769 |
EndPage | 427 |
ExternalDocumentID | oai_HAL_hal_02292842v1 10_1016_j_engappai_2006_07_001 S0952197606001084 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 1XC EFKBS |
ID | FETCH-LOGICAL-c346t-45c76339d17813d07fcf1a5206d74551153bb4a6fecc6f6fa584b25bf095fe0d3 |
IEDL.DBID | AIKHN |
ISSN | 0952-1976 |
IngestDate | Wed Aug 13 07:41:48 EDT 2025 Tue Jul 01 01:03:52 EDT 2025 Thu Apr 24 22:53:33 EDT 2025 Fri Feb 23 02:28:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | K-principal component analysis Standard normal variate transformation Support vector machine Kernel alignment |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c346t-45c76339d17813d07fcf1a5206d74551153bb4a6fecc6f6fa584b25bf095fe0d3 |
ORCID | 0000-0002-3861-0352 |
PageCount | 13 |
ParticipantIDs | hal_primary_oai_HAL_hal_02292842v1 crossref_citationtrail_10_1016_j_engappai_2006_07_001 crossref_primary_10_1016_j_engappai_2006_07_001 elsevier_sciencedirect_doi_10_1016_j_engappai_2006_07_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-04-01 |
PublicationDateYYYYMMDD | 2007-04-01 |
PublicationDate_xml | – month: 04 year: 2007 text: 2007-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Engineering applications of artificial intelligence |
PublicationYear | 2007 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Burges (bib3) 1998; 2 Eriksson, Johansson, Kettaneh-Wold, Wold (bib9) 2001 Mika, S., Schölkopf, B., Smola, A.J., Müller, K.-R., Scholz, M., Rätsch, G., 1999. Kernel PCA and de-noising in feature spaces. In: Presentation at Advances in Neural Information Processing Systems, Denver, CO, USA. Scholkopf, Mika, Burges, Knirsch, Muller, Ratsch, Smola (bib15) 1999; 10 Dhanoa, Lister, Sanderson, Barnes (bib7) 1994; 2 Wold (bib16) 1976; 8 Keinosuke (bib12) 1990 Wold, S., Sjostrom, M., 1977. SIMCA: a method for analysing chemical data in terms of similarity and analogy. In: Presentation at Chemometrics Theory and Application, American Chemical Society Symposium Series, No. 52, Washington DC, USA. Cristianini, N., Elisseeff, A., Shawe-Taylor, J., Kandla, J., 2001. On kernel target alignment. NeuroCOLT Technical Report NC-TR-01-099, 2001. Gunn (bib10) 1998 Barnes, Dhanoa, Lister (bib1) 1989; 43 Dhanoa, Lister, Barnes (bib8) 1995; 49 Scholkopf, Smola, Muller (bib14) 1998; 10 Kandola, J., Shawe-Taylor, J., Cristianini, N., 2002. On the extensions of kernel alignment, NeuroCOLT Technical Report NC-TR-02-120. Belousov, Verzakov, Frese (bib2) 2002; 64 Cristianini, Shawe-Taylor (bib5) 2000 Candolfi, De Maesschalck, Jouan-Rimbaud, Hailey, Massart (bib4) 1999; 21 Belousov (10.1016/j.engappai.2006.07.001_bib2) 2002; 64 Wold (10.1016/j.engappai.2006.07.001_bib16) 1976; 8 Dhanoa (10.1016/j.engappai.2006.07.001_bib7) 1994; 2 Cristianini (10.1016/j.engappai.2006.07.001_bib5) 2000 Scholkopf (10.1016/j.engappai.2006.07.001_bib14) 1998; 10 10.1016/j.engappai.2006.07.001_bib13 10.1016/j.engappai.2006.07.001_bib11 Dhanoa (10.1016/j.engappai.2006.07.001_bib8) 1995; 49 10.1016/j.engappai.2006.07.001_bib17 10.1016/j.engappai.2006.07.001_bib6 Gunn (10.1016/j.engappai.2006.07.001_bib10) 1998 Keinosuke (10.1016/j.engappai.2006.07.001_bib12) 1990 Eriksson (10.1016/j.engappai.2006.07.001_bib9) 2001 Candolfi (10.1016/j.engappai.2006.07.001_bib4) 1999; 21 Scholkopf (10.1016/j.engappai.2006.07.001_bib15) 1999; 10 Barnes (10.1016/j.engappai.2006.07.001_bib1) 1989; 43 Burges (10.1016/j.engappai.2006.07.001_bib3) 1998; 2 |
References_xml | – reference: Cristianini, N., Elisseeff, A., Shawe-Taylor, J., Kandla, J., 2001. On kernel target alignment. NeuroCOLT Technical Report NC-TR-01-099, 2001. – volume: 2 start-page: 121 year: 1998 end-page: 169 ident: bib3 article-title: A tutorial on support vector machines publication-title: Data Min. Knowl. Discov. – volume: 10 start-page: 1299 year: 1998 end-page: 1319 ident: bib14 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural. Comput. – volume: 43 start-page: 772 year: 1989 end-page: 777 ident: bib1 article-title: Standard normal variate transformation and detrending of near-infrared diffuse reflectance spectra publication-title: Appl. Spectrosc. – year: 1990 ident: bib12 article-title: Introduction to Statistical Pattern Recognition – year: 1998 ident: bib10 article-title: Support vector machines for classification and regression. Technical Report 10 May 1998 – volume: 21 start-page: 115 year: 1999 end-page: 132 ident: bib4 article-title: The influence of data pre-processing in the pattern recognition of excipients near-infrared spectra publication-title: J. Pharmaceut. Biomed. – year: 2000 ident: bib5 article-title: An Introduction to Support Vector Machines – volume: 2 start-page: 43 year: 1994 end-page: 47 ident: bib7 article-title: The link between multiplicative scatter correction (MSC) and standard normal variate (SNV) transformations of NIR spectra publication-title: J. Near Infrared Spectrosc. – reference: Wold, S., Sjostrom, M., 1977. SIMCA: a method for analysing chemical data in terms of similarity and analogy. In: Presentation at Chemometrics Theory and Application, American Chemical Society Symposium Series, No. 52, Washington DC, USA. – volume: 49 start-page: 765 year: 1995 end-page: 772 ident: bib8 article-title: On the scales associated with near-infrared reflectance difference spectra publication-title: Appl. Spectrosc. – volume: 8 start-page: 127 year: 1976 end-page: 139 ident: bib16 article-title: Pattern recognitition by means of disjoint principal components models publication-title: Pattern Recogn. – year: 2001 ident: bib9 article-title: Multi- and Megavariate Data Analysis—Principles and Applications – reference: Mika, S., Schölkopf, B., Smola, A.J., Müller, K.-R., Scholz, M., Rätsch, G., 1999. Kernel PCA and de-noising in feature spaces. In: Presentation at Advances in Neural Information Processing Systems, Denver, CO, USA. – volume: 10 start-page: 1000 year: 1999 end-page: 1017 ident: bib15 article-title: Input space vs. feature space in kernel-based methods publication-title: IEEE Trans. Neural Networks – reference: Kandola, J., Shawe-Taylor, J., Cristianini, N., 2002. On the extensions of kernel alignment, NeuroCOLT Technical Report NC-TR-02-120. – volume: 64 start-page: 15 year: 2002 end-page: 25 ident: bib2 article-title: A flexible classification approach with optimal generalisation performance : support vector machines publication-title: Chemometr. Intell. Lab. – volume: 21 start-page: 115 year: 1999 ident: 10.1016/j.engappai.2006.07.001_bib4 article-title: The influence of data pre-processing in the pattern recognition of excipients near-infrared spectra publication-title: J. Pharmaceut. Biomed. doi: 10.1016/S0731-7085(99)00125-9 – volume: 43 start-page: 772 year: 1989 ident: 10.1016/j.engappai.2006.07.001_bib1 article-title: Standard normal variate transformation and detrending of near-infrared diffuse reflectance spectra publication-title: Appl. Spectrosc. doi: 10.1366/0003702894202201 – ident: 10.1016/j.engappai.2006.07.001_bib6 – ident: 10.1016/j.engappai.2006.07.001_bib11 – volume: 49 start-page: 765 year: 1995 ident: 10.1016/j.engappai.2006.07.001_bib8 article-title: On the scales associated with near-infrared reflectance difference spectra publication-title: Appl. Spectrosc. doi: 10.1366/0003702953964615 – volume: 64 start-page: 15 year: 2002 ident: 10.1016/j.engappai.2006.07.001_bib2 article-title: A flexible classification approach with optimal generalisation performance : support vector machines publication-title: Chemometr. Intell. Lab. doi: 10.1016/S0169-7439(02)00046-1 – volume: 2 start-page: 43 year: 1994 ident: 10.1016/j.engappai.2006.07.001_bib7 article-title: The link between multiplicative scatter correction (MSC) and standard normal variate (SNV) transformations of NIR spectra publication-title: J. Near Infrared Spectrosc. doi: 10.1255/jnirs.30 – year: 2001 ident: 10.1016/j.engappai.2006.07.001_bib9 – year: 1998 ident: 10.1016/j.engappai.2006.07.001_bib10 – year: 1990 ident: 10.1016/j.engappai.2006.07.001_bib12 – year: 2000 ident: 10.1016/j.engappai.2006.07.001_bib5 – volume: 2 start-page: 121 year: 1998 ident: 10.1016/j.engappai.2006.07.001_bib3 article-title: A tutorial on support vector machines publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009715923555 – ident: 10.1016/j.engappai.2006.07.001_bib13 – volume: 10 start-page: 1000 year: 1999 ident: 10.1016/j.engappai.2006.07.001_bib15 article-title: Input space vs. feature space in kernel-based methods publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.788641 – volume: 10 start-page: 1299 year: 1998 ident: 10.1016/j.engappai.2006.07.001_bib14 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural. Comput. doi: 10.1162/089976698300017467 – volume: 8 start-page: 127 year: 1976 ident: 10.1016/j.engappai.2006.07.001_bib16 article-title: Pattern recognitition by means of disjoint principal components models publication-title: Pattern Recogn. doi: 10.1016/0031-3203(76)90014-5 – ident: 10.1016/j.engappai.2006.07.001_bib17 doi: 10.1021/bk-1977-0052.ch012 |
SSID | ssj0003846 |
Score | 2.0725844 |
Snippet | This paper describes the use of kernel methods to classify tissue samples using near-infrared spectra in order to discriminate between samples, either with or... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 415 |
SubjectTerms | K-principal component analysis Kernel alignment Machine Learning Standard normal variate transformation Statistics Support vector machine |
Title | Classifying NIR spectra of textile products with kernel methods |
URI | https://dx.doi.org/10.1016/j.engappai.2006.07.001 https://utt.hal.science/hal-02292842 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLZ6LCzciFsWYg2Nj1wTqiqqQqFDoaJbZCc2tFRp1BZGfjvPiVPBgBiYIj3lydGz_fnL8zsQuqQul0xFwhEslQ4PlOuEnAWONLdQJNCESeOHfBj4vRG_G3vjGupUuTAmrNJif4npBVpbSctas5VPJq1HIAew3QJg4ObHJuR11KQs8mFpN9u3_d5gDcgsLPN14H3HKHxLFJ5eqexF5LmY2HsJU9CQ_HZG1V8rb2tx-nS30aaljbhdftkOqqlsF21ZContBl2CqOrSUMn20HXR93JS5DPhwe0QF8mVC4HnGpuwD4AFnJd1X5fYuGXxm1pkaobL5tLLfTTq3jx1eo5tm-AkjPsrh3sJgAaLUhKEhKVuoBNNhEddPw04ECTAOCm58DXMnq99LYCDSOpJDQbSyk3ZAWpk80wdIky5jIpcntQDGiCloFRTGqZeoiIiNDlCXmWoOLE1xU1ri1lcBY9N48rApuGlH7vmuhv0Wmu9vKyq8adGVM1D_GN9xAD9f-pewMStBzIFtXvt-9jIgMFEcEDTD3L8jwFO0Ebp8jUBPaeosVq8qzPgKit5jupXn-Tcrkjz7A-f-19Hpejc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZaGGDhjXhjIda08SOvCSFEVaDtAK3ULbITG1qqELWFkd_OOXEKDKgD68knR2ff3ZfzPRC6pC6XTEXCESyVDg-U64ScBY40r1Ak0IRJE4fs9vz2gN8PvWEN3VS1MCat0tr-0qYX1tpSmlaazXw0aj4BOAB1CwCBmx-bkNfRKgf1NdrZ-PzO82BhWa0Dqx2z_EeZ8LihsmeR52JkXyVMO0Pyl4eqv1Sx1sL3tLbQhgWN-Lr8rm1UU9kO2rQAElv1nAGpmtFQ0XbRVTH1clRUM-He3SMuSiunAr9pbJI-wCjgvOz6OsMmKItf1TRTE1yOlp7toUHrtn_TduzQBCdh3J873EvAZLAoJUFIWOoGOtFEeNT104ADPAILJyUXvoaz87WvBSAQST2pQUBauSnbRyvZW6YOEKZcRkUlT-oBCJBSUKopDVMvURERmhwirxJUnNiO4mawxSSuUsfGcSVgM-7Sj13z2A18zQVfXvbUWMoRVecQ_7odMRj-pbwXcHCLjUw77fZ1JzY0wC8RuGf6QY7-scE5Wmv3u524c9d7OEbrZfDXpPacoJX59F2dAmqZy7PiVn4B5wLn_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifying+NIR+spectra+of+textile+products+with+kernel+methods&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Langeron%2C+Yves&rft.au=Doussot%2C+Michel&rft.au=Hewson%2C+David&rft.au=Duchene%2C+Jacques&rft.date=2007-04-01&rft.pub=Elsevier&rft.issn=0952-1976&rft.volume=20&rft.issue=3&rft.spage=415&rft.epage=427&rft_id=info:doi/10.1016%2Fj.engappai.2006.07.001&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02292842v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |