Classifying NIR spectra of textile products with kernel methods

This paper describes the use of kernel methods to classify tissue samples using near-infrared spectra in order to discriminate between samples, either with or without elastane. The aim of this real-world study is to identify an alternative method to classify textile products using near-infrared (NIR...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 20; no. 3; pp. 415 - 427
Main Authors Langeron, Y., Doussot, M., Hewson, D.J., Duchêne, J.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2007
Elsevier
Subjects
Online AccessGet full text
ISSN0952-1976
1873-6769
DOI10.1016/j.engappai.2006.07.001

Cover

Loading…
Abstract This paper describes the use of kernel methods to classify tissue samples using near-infrared spectra in order to discriminate between samples, either with or without elastane. The aim of this real-world study is to identify an alternative method to classify textile products using near-infrared (NIR) spectroscopy in order to improve quality control, and to aid in the detection of counterfeit garments. The principles behind support vector machines (SVMs), of which the main idea is to linearly separate data, are recalled progressively in order to demonstrate that the decision function obtained is a global optimal solution of a quadratic programming problem. Generally, this solution is found after embedding data in another space F with a higher dimension by the means of a specific non-linear function, the kernel. For a selected kernel, one of the most important and difficult subjects concerning SVM is the determination of tuning parameters. Generally, different combinations of these parameters are tested in order to obtain a machine with adequate classification ability. With the kernel alignment method used in this paper, the most appropriate kernel parameters are identified rapidly. Since in many cases, data are embedded in F, a linear principal component (PC) analysis (PCA) can be considered and studied. The main properties and the algorithm of k-PCA are described here. This paper compares the results obtained in prediction for a linear classifier built in the initial space with the PCs from a PCA and those obtained in F with non-linear PCs from a k-PCA. In the present study, even if there are potentially discriminating wavelengths seen on the NIR spectra, linear discriminant analysis and soft independent modelling of class analogy results show that these wavelengths are not sufficient to build a machine with correct generalisation ability. The use of a non-linear method, such as SVM and its corollary methods, kernel alignment and k-PCA, is then justified.
AbstractList This paper describes the use of kernel methods to classify tissue samples using near-infrared spectra in order to discriminate between samples, either with or without elastane. The aim of this real-world study is to identify an alternative method to classify textile products using near-infrared (NIR) spectroscopy in order to improve quality control, and to aid in the detection of counterfeit garments. The principles behind support vector machines (SVMs), of which the main idea is to linearly separate data, are recalled progressively in order to demonstrate that the decision function obtained is a global optimal solution of a quadratic programming problem. Generally, this solution is found after embedding data in another space F with a higher dimension by the means of a specific non-linear function, the kernel. For a selected kernel, one of the most important and difficult subjects concerning SVM is the determination of tuning parameters. Generally, different combinations of these parameters are tested in order to obtain a machine with adequate classification ability. With the kernel alignment method used in this paper, the most appropriate kernel parameters are identified rapidly. Since in many cases, data are embedded in F, a linear principal component (PC) analysis (PCA) can be considered and studied. The main properties and the algorithm of k-PCA are described here. This paper compares the results obtained in prediction for a linear classifier built in the initial space with the PCs from a PCA and those obtained in F with non-linear PCs from a k-PCA. In the present study, even if there are potentially discriminating wavelengths seen on the NIR spectra, linear discriminant analysis and soft independent modelling of class analogy results show that these wavelengths are not sufficient to build a machine with correct generalisation ability. The use of a non-linear method, such as SVM and its corollary methods, kernel alignment and k-PCA, is then justified.
Author Hewson, D.J.
Langeron, Y.
Doussot, M.
Duchêne, J.
Author_xml – sequence: 1
  givenname: Y.
  surname: Langeron
  fullname: Langeron, Y.
  email: yves.langeron@utt.fr
– sequence: 2
  givenname: M.
  surname: Doussot
  fullname: Doussot, M.
– sequence: 3
  givenname: D.J.
  surname: Hewson
  fullname: Hewson, D.J.
– sequence: 4
  givenname: J.
  surname: Duchêne
  fullname: Duchêne, J.
BackLink https://utt.hal.science/hal-02292842$$DView record in HAL
BookMark eNqFkFFLwzAQx4NMcJt-BemrD62XpE1aEHQMdYOhIPoc0jTZMru2JHG6b2_H3Isvezo47ve_u98IDZq20QhdY0gwYHa7TnSzlF0nbUIAWAI8AcBnaIhzTmPGWTFAQygyEuOCsws08n4NADRP2RDdT2vpvTU72yyjl_lb5DutgpNRa6Kgf4KtddS5tvpSwUffNqyiT-0aXUcbHVZt5S_RuZG111d_dYw-nh7fp7N48fo8n04WsaIpC3GaKc4oLSrMc0wr4EYZLDMCrOJplmGc0bJMJTNaKWaYkVmeliQrTX-30VDRMbo55K5kLTpnN9LtRCutmE0WYt8DQgqSp2SL-9m7w6xyrfdOG6FskMG2Tf-YrQUGsRcn1uIoTuzFCeCiF9fj7B9-3HcSfDiAuhextdoJr6xulK6s66WKqrWnIn4BQHuN8w
CitedBy_id crossref_primary_10_1049_iet_spr_2019_0575
crossref_primary_10_1016_j_saa_2008_12_002
crossref_primary_10_1631_jzus_B0820299
crossref_primary_10_1088_0957_0233_19_8_085601
crossref_primary_10_1016_j_engappai_2023_106684
crossref_primary_10_1021_jf0725575
crossref_primary_10_1016_j_talanta_2012_04_034
crossref_primary_10_1080_00387010_2015_1089446
crossref_primary_10_1016_j_infrared_2016_05_020
crossref_primary_10_1016_j_cej_2008_06_030
crossref_primary_10_1016_j_jfoodeng_2009_02_023
crossref_primary_10_1111_nph_12852
crossref_primary_10_1016_j_infrared_2021_103629
crossref_primary_10_1016_j_saa_2008_04_020
crossref_primary_10_1039_C6AY01330A
crossref_primary_10_3390_molecules28196886
crossref_primary_10_1016_j_jfoodeng_2016_10_021
crossref_primary_10_1109_JSEN_2011_2121902
crossref_primary_10_1016_j_jfoodeng_2016_01_002
crossref_primary_10_3390_s17102252
crossref_primary_10_1108_IJCST_07_2015_0076
crossref_primary_10_1016_j_saa_2017_10_019
crossref_primary_10_1007_s11263_019_01199_9
crossref_primary_10_1016_j_saa_2023_123672
crossref_primary_10_1177_0967033518757069
crossref_primary_10_1016_j_patrec_2015_12_007
crossref_primary_10_1016_j_eswa_2022_117000
crossref_primary_10_1108_IJCST_07_2018_0091
crossref_primary_10_3390_s19010097
crossref_primary_10_1007_s11356_017_9243_7
crossref_primary_10_3390_molecules28237891
crossref_primary_10_1007_s12161_011_9331_0
crossref_primary_10_1186_s13007_020_00576_7
crossref_primary_10_1016_j_aca_2016_05_015
crossref_primary_10_1016_j_saa_2013_08_018
crossref_primary_10_1177_0040517518817043
crossref_primary_10_1016_j_chemolab_2008_11_005
crossref_primary_10_1366_000370208784344389
crossref_primary_10_1371_journal_pone_0180534
crossref_primary_10_1016_j_foodchem_2011_08_041
crossref_primary_10_1016_j_saa_2016_08_033
crossref_primary_10_1016_j_foodchem_2008_08_042
Cites_doi 10.1016/S0731-7085(99)00125-9
10.1366/0003702894202201
10.1366/0003702953964615
10.1016/S0169-7439(02)00046-1
10.1255/jnirs.30
10.1023/A:1009715923555
10.1109/72.788641
10.1162/089976698300017467
10.1016/0031-3203(76)90014-5
10.1021/bk-1977-0052.ch012
ContentType Journal Article
Copyright 2006 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2006 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.engappai.2006.07.001
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
Statistics
EISSN 1873-6769
EndPage 427
ExternalDocumentID oai_HAL_hal_02292842v1
10_1016_j_engappai_2006_07_001
S0952197606001084
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
1XC
EFKBS
ID FETCH-LOGICAL-c346t-45c76339d17813d07fcf1a5206d74551153bb4a6fecc6f6fa584b25bf095fe0d3
IEDL.DBID AIKHN
ISSN 0952-1976
IngestDate Wed Aug 13 07:41:48 EDT 2025
Tue Jul 01 01:03:52 EDT 2025
Thu Apr 24 22:53:33 EDT 2025
Fri Feb 23 02:28:53 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords K-principal component analysis
Standard normal variate transformation
Support vector machine
Kernel alignment
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c346t-45c76339d17813d07fcf1a5206d74551153bb4a6fecc6f6fa584b25bf095fe0d3
ORCID 0000-0002-3861-0352
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_02292842v1
crossref_citationtrail_10_1016_j_engappai_2006_07_001
crossref_primary_10_1016_j_engappai_2006_07_001
elsevier_sciencedirect_doi_10_1016_j_engappai_2006_07_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-04-01
PublicationDateYYYYMMDD 2007-04-01
PublicationDate_xml – month: 04
  year: 2007
  text: 2007-04-01
  day: 01
PublicationDecade 2000
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2007
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Burges (bib3) 1998; 2
Eriksson, Johansson, Kettaneh-Wold, Wold (bib9) 2001
Mika, S., Schölkopf, B., Smola, A.J., Müller, K.-R., Scholz, M., Rätsch, G., 1999. Kernel PCA and de-noising in feature spaces. In: Presentation at Advances in Neural Information Processing Systems, Denver, CO, USA.
Scholkopf, Mika, Burges, Knirsch, Muller, Ratsch, Smola (bib15) 1999; 10
Dhanoa, Lister, Sanderson, Barnes (bib7) 1994; 2
Wold (bib16) 1976; 8
Keinosuke (bib12) 1990
Wold, S., Sjostrom, M., 1977. SIMCA: a method for analysing chemical data in terms of similarity and analogy. In: Presentation at Chemometrics Theory and Application, American Chemical Society Symposium Series, No. 52, Washington DC, USA.
Cristianini, N., Elisseeff, A., Shawe-Taylor, J., Kandla, J., 2001. On kernel target alignment. NeuroCOLT Technical Report NC-TR-01-099, 2001.
Gunn (bib10) 1998
Barnes, Dhanoa, Lister (bib1) 1989; 43
Dhanoa, Lister, Barnes (bib8) 1995; 49
Scholkopf, Smola, Muller (bib14) 1998; 10
Kandola, J., Shawe-Taylor, J., Cristianini, N., 2002. On the extensions of kernel alignment, NeuroCOLT Technical Report NC-TR-02-120.
Belousov, Verzakov, Frese (bib2) 2002; 64
Cristianini, Shawe-Taylor (bib5) 2000
Candolfi, De Maesschalck, Jouan-Rimbaud, Hailey, Massart (bib4) 1999; 21
Belousov (10.1016/j.engappai.2006.07.001_bib2) 2002; 64
Wold (10.1016/j.engappai.2006.07.001_bib16) 1976; 8
Dhanoa (10.1016/j.engappai.2006.07.001_bib7) 1994; 2
Cristianini (10.1016/j.engappai.2006.07.001_bib5) 2000
Scholkopf (10.1016/j.engappai.2006.07.001_bib14) 1998; 10
10.1016/j.engappai.2006.07.001_bib13
10.1016/j.engappai.2006.07.001_bib11
Dhanoa (10.1016/j.engappai.2006.07.001_bib8) 1995; 49
10.1016/j.engappai.2006.07.001_bib17
10.1016/j.engappai.2006.07.001_bib6
Gunn (10.1016/j.engappai.2006.07.001_bib10) 1998
Keinosuke (10.1016/j.engappai.2006.07.001_bib12) 1990
Eriksson (10.1016/j.engappai.2006.07.001_bib9) 2001
Candolfi (10.1016/j.engappai.2006.07.001_bib4) 1999; 21
Scholkopf (10.1016/j.engappai.2006.07.001_bib15) 1999; 10
Barnes (10.1016/j.engappai.2006.07.001_bib1) 1989; 43
Burges (10.1016/j.engappai.2006.07.001_bib3) 1998; 2
References_xml – reference: Cristianini, N., Elisseeff, A., Shawe-Taylor, J., Kandla, J., 2001. On kernel target alignment. NeuroCOLT Technical Report NC-TR-01-099, 2001.
– volume: 2
  start-page: 121
  year: 1998
  end-page: 169
  ident: bib3
  article-title: A tutorial on support vector machines
  publication-title: Data Min. Knowl. Discov.
– volume: 10
  start-page: 1299
  year: 1998
  end-page: 1319
  ident: bib14
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural. Comput.
– volume: 43
  start-page: 772
  year: 1989
  end-page: 777
  ident: bib1
  article-title: Standard normal variate transformation and detrending of near-infrared diffuse reflectance spectra
  publication-title: Appl. Spectrosc.
– year: 1990
  ident: bib12
  article-title: Introduction to Statistical Pattern Recognition
– year: 1998
  ident: bib10
  article-title: Support vector machines for classification and regression. Technical Report 10 May 1998
– volume: 21
  start-page: 115
  year: 1999
  end-page: 132
  ident: bib4
  article-title: The influence of data pre-processing in the pattern recognition of excipients near-infrared spectra
  publication-title: J. Pharmaceut. Biomed.
– year: 2000
  ident: bib5
  article-title: An Introduction to Support Vector Machines
– volume: 2
  start-page: 43
  year: 1994
  end-page: 47
  ident: bib7
  article-title: The link between multiplicative scatter correction (MSC) and standard normal variate (SNV) transformations of NIR spectra
  publication-title: J. Near Infrared Spectrosc.
– reference: Wold, S., Sjostrom, M., 1977. SIMCA: a method for analysing chemical data in terms of similarity and analogy. In: Presentation at Chemometrics Theory and Application, American Chemical Society Symposium Series, No. 52, Washington DC, USA.
– volume: 49
  start-page: 765
  year: 1995
  end-page: 772
  ident: bib8
  article-title: On the scales associated with near-infrared reflectance difference spectra
  publication-title: Appl. Spectrosc.
– volume: 8
  start-page: 127
  year: 1976
  end-page: 139
  ident: bib16
  article-title: Pattern recognitition by means of disjoint principal components models
  publication-title: Pattern Recogn.
– year: 2001
  ident: bib9
  article-title: Multi- and Megavariate Data Analysis—Principles and Applications
– reference: Mika, S., Schölkopf, B., Smola, A.J., Müller, K.-R., Scholz, M., Rätsch, G., 1999. Kernel PCA and de-noising in feature spaces. In: Presentation at Advances in Neural Information Processing Systems, Denver, CO, USA.
– volume: 10
  start-page: 1000
  year: 1999
  end-page: 1017
  ident: bib15
  article-title: Input space vs. feature space in kernel-based methods
  publication-title: IEEE Trans. Neural Networks
– reference: Kandola, J., Shawe-Taylor, J., Cristianini, N., 2002. On the extensions of kernel alignment, NeuroCOLT Technical Report NC-TR-02-120.
– volume: 64
  start-page: 15
  year: 2002
  end-page: 25
  ident: bib2
  article-title: A flexible classification approach with optimal generalisation performance : support vector machines
  publication-title: Chemometr. Intell. Lab.
– volume: 21
  start-page: 115
  year: 1999
  ident: 10.1016/j.engappai.2006.07.001_bib4
  article-title: The influence of data pre-processing in the pattern recognition of excipients near-infrared spectra
  publication-title: J. Pharmaceut. Biomed.
  doi: 10.1016/S0731-7085(99)00125-9
– volume: 43
  start-page: 772
  year: 1989
  ident: 10.1016/j.engappai.2006.07.001_bib1
  article-title: Standard normal variate transformation and detrending of near-infrared diffuse reflectance spectra
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702894202201
– ident: 10.1016/j.engappai.2006.07.001_bib6
– ident: 10.1016/j.engappai.2006.07.001_bib11
– volume: 49
  start-page: 765
  year: 1995
  ident: 10.1016/j.engappai.2006.07.001_bib8
  article-title: On the scales associated with near-infrared reflectance difference spectra
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702953964615
– volume: 64
  start-page: 15
  year: 2002
  ident: 10.1016/j.engappai.2006.07.001_bib2
  article-title: A flexible classification approach with optimal generalisation performance : support vector machines
  publication-title: Chemometr. Intell. Lab.
  doi: 10.1016/S0169-7439(02)00046-1
– volume: 2
  start-page: 43
  year: 1994
  ident: 10.1016/j.engappai.2006.07.001_bib7
  article-title: The link between multiplicative scatter correction (MSC) and standard normal variate (SNV) transformations of NIR spectra
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1255/jnirs.30
– year: 2001
  ident: 10.1016/j.engappai.2006.07.001_bib9
– year: 1998
  ident: 10.1016/j.engappai.2006.07.001_bib10
– year: 1990
  ident: 10.1016/j.engappai.2006.07.001_bib12
– year: 2000
  ident: 10.1016/j.engappai.2006.07.001_bib5
– volume: 2
  start-page: 121
  year: 1998
  ident: 10.1016/j.engappai.2006.07.001_bib3
  article-title: A tutorial on support vector machines
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009715923555
– ident: 10.1016/j.engappai.2006.07.001_bib13
– volume: 10
  start-page: 1000
  year: 1999
  ident: 10.1016/j.engappai.2006.07.001_bib15
  article-title: Input space vs. feature space in kernel-based methods
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.788641
– volume: 10
  start-page: 1299
  year: 1998
  ident: 10.1016/j.engappai.2006.07.001_bib14
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural. Comput.
  doi: 10.1162/089976698300017467
– volume: 8
  start-page: 127
  year: 1976
  ident: 10.1016/j.engappai.2006.07.001_bib16
  article-title: Pattern recognitition by means of disjoint principal components models
  publication-title: Pattern Recogn.
  doi: 10.1016/0031-3203(76)90014-5
– ident: 10.1016/j.engappai.2006.07.001_bib17
  doi: 10.1021/bk-1977-0052.ch012
SSID ssj0003846
Score 2.0725844
Snippet This paper describes the use of kernel methods to classify tissue samples using near-infrared spectra in order to discriminate between samples, either with or...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 415
SubjectTerms K-principal component analysis
Kernel alignment
Machine Learning
Standard normal variate transformation
Statistics
Support vector machine
Title Classifying NIR spectra of textile products with kernel methods
URI https://dx.doi.org/10.1016/j.engappai.2006.07.001
https://utt.hal.science/hal-02292842
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLZ6LCzciFsWYg2Nj1wTqiqqQqFDoaJbZCc2tFRp1BZGfjvPiVPBgBiYIj3lydGz_fnL8zsQuqQul0xFwhEslQ4PlOuEnAWONLdQJNCESeOHfBj4vRG_G3vjGupUuTAmrNJif4npBVpbSctas5VPJq1HIAew3QJg4ObHJuR11KQs8mFpN9u3_d5gDcgsLPN14H3HKHxLFJ5eqexF5LmY2HsJU9CQ_HZG1V8rb2tx-nS30aaljbhdftkOqqlsF21ZContBl2CqOrSUMn20HXR93JS5DPhwe0QF8mVC4HnGpuwD4AFnJd1X5fYuGXxm1pkaobL5tLLfTTq3jx1eo5tm-AkjPsrh3sJgAaLUhKEhKVuoBNNhEddPw04ECTAOCm58DXMnq99LYCDSOpJDQbSyk3ZAWpk80wdIky5jIpcntQDGiCloFRTGqZeoiIiNDlCXmWoOLE1xU1ri1lcBY9N48rApuGlH7vmuhv0Wmu9vKyq8adGVM1D_GN9xAD9f-pewMStBzIFtXvt-9jIgMFEcEDTD3L8jwFO0Ebp8jUBPaeosVq8qzPgKit5jupXn-Tcrkjz7A-f-19Hpejc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZaGGDhjXhjIda08SOvCSFEVaDtAK3ULbITG1qqELWFkd_OOXEKDKgD68knR2ff3ZfzPRC6pC6XTEXCESyVDg-U64ScBY40r1Ak0IRJE4fs9vz2gN8PvWEN3VS1MCat0tr-0qYX1tpSmlaazXw0aj4BOAB1CwCBmx-bkNfRKgf1NdrZ-PzO82BhWa0Dqx2z_EeZ8LihsmeR52JkXyVMO0Pyl4eqv1Sx1sL3tLbQhgWN-Lr8rm1UU9kO2rQAElv1nAGpmtFQ0XbRVTH1clRUM-He3SMuSiunAr9pbJI-wCjgvOz6OsMmKItf1TRTE1yOlp7toUHrtn_TduzQBCdh3J873EvAZLAoJUFIWOoGOtFEeNT104ADPAILJyUXvoaz87WvBSAQST2pQUBauSnbRyvZW6YOEKZcRkUlT-oBCJBSUKopDVMvURERmhwirxJUnNiO4mawxSSuUsfGcSVgM-7Sj13z2A18zQVfXvbUWMoRVecQ_7odMRj-pbwXcHCLjUw77fZ1JzY0wC8RuGf6QY7-scE5Wmv3u524c9d7OEbrZfDXpPacoJX59F2dAmqZy7PiVn4B5wLn_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifying+NIR+spectra+of+textile+products+with+kernel+methods&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Langeron%2C+Yves&rft.au=Doussot%2C+Michel&rft.au=Hewson%2C+David&rft.au=Duchene%2C+Jacques&rft.date=2007-04-01&rft.pub=Elsevier&rft.issn=0952-1976&rft.volume=20&rft.issue=3&rft.spage=415&rft.epage=427&rft_id=info:doi/10.1016%2Fj.engappai.2006.07.001&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02292842v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon