Modelling lined rock caverns subject to hydrogen embrittlement and cyclic pressurisation in fractured rock masses
The technology of lined rock cavern (LRC) with great geographical flexibility is a promising, cost-effective solution to underground hydrogen storage. However, the air-tight steel tanks used in this technology are susceptible to material degradation due to hydrogen embrittlement (HE), potentially le...
Saved in:
Published in | International journal of hydrogen energy Vol. 152; p. 150027 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
28.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The technology of lined rock cavern (LRC) with great geographical flexibility is a promising, cost-effective solution to underground hydrogen storage. However, the air-tight steel tanks used in this technology are susceptible to material degradation due to hydrogen embrittlement (HE), potentially leading to leakage and structural failure, especial for LRCs constructed in complex geological conditions. In this paper, we develop a 2D multiscale numerical model based on the finite element method to assess the impact of HE on the LRC performance in fractured rock masses under cyclic gas pressurisation. Within this framework, a large-scale model is used to simulate the deformation and damage evolution of both fractured rock and an LRC under in-situ stresses and internal gas pressurisation, while a small-scale model captures HE in the steel lining of the LRC. Our simulations reveal that damage in the rock, concrete, and steel degradation is strongly affected by pre-existing fractures and in-situ stresses. Our results also reveal the presence of a strong positive feedback between hydrogen concentration and stress redistribution in the steel lining. Moreover, a comparison between models with and without considering HE illuminates that hydrogen concentration significantly contributes to steel degradation, particularly during the long-term LRC operation, highlighting the critical role of HE in the safety and performance of the LRC. The findings and insights obtained from our work have important implications for the design optimisation and performance assessment of LRCs for sustainable underground hydrogen storage.
•A multiscale model is developed to simulate lined rock caverns for hydrogen storage.•Interaction between the cavern and its surrounding fractured rock mass is captured.•Effects of hydrogen diffusion and embrittlement in steel linings are considered.•Fractures in rock exert a strong control on damage in concrete and steel linings.•Interplay of hydrogen accumulation and stress concentration drives steel degradation. |
---|---|
AbstractList | The technology of lined rock cavern (LRC) with great geographical flexibility is a promising, cost-effective solution to underground hydrogen storage. However, the air-tight steel tanks used in this technology are susceptible to material degradation due to hydrogen embrittlement (HE), potentially leading to leakage and structural failure, especial for LRCs constructed in complex geological conditions. In this paper, we develop a 2D multiscale numerical model based on the finite element method to assess the impact of HE on the LRC performance in fractured rock masses under cyclic gas pressurisation. Within this framework, a large-scale model is used to simulate the deformation and damage evolution of both fractured rock and an LRC under in-situ stresses and internal gas pressurisation, while a small-scale model captures HE in the steel lining of the LRC. Our simulations reveal that damage in the rock, concrete, and steel degradation is strongly affected by pre-existing fractures and in-situ stresses. Our results also reveal the presence of a strong positive feedback between hydrogen concentration and stress redistribution in the steel lining. Moreover, a comparison between models with and without considering HE illuminates that hydrogen concentration significantly contributes to steel degradation, particularly during the long-term LRC operation, highlighting the critical role of HE in the safety and performance of the LRC. The findings and insights obtained from our work have important implications for the design optimisation and performance assessment of LRCs for sustainable underground hydrogen storage. The technology of lined rock cavern (LRC) with great geographical flexibility is a promising, cost-effective solution to underground hydrogen storage. However, the air-tight steel tanks used in this technology are susceptible to material degradation due to hydrogen embrittlement (HE), potentially leading to leakage and structural failure, especial for LRCs constructed in complex geological conditions. In this paper, we develop a 2D multiscale numerical model based on the finite element method to assess the impact of HE on the LRC performance in fractured rock masses under cyclic gas pressurisation. Within this framework, a large-scale model is used to simulate the deformation and damage evolution of both fractured rock and an LRC under in-situ stresses and internal gas pressurisation, while a small-scale model captures HE in the steel lining of the LRC. Our simulations reveal that damage in the rock, concrete, and steel degradation is strongly affected by pre-existing fractures and in-situ stresses. Our results also reveal the presence of a strong positive feedback between hydrogen concentration and stress redistribution in the steel lining. Moreover, a comparison between models with and without considering HE illuminates that hydrogen concentration significantly contributes to steel degradation, particularly during the long-term LRC operation, highlighting the critical role of HE in the safety and performance of the LRC. The findings and insights obtained from our work have important implications for the design optimisation and performance assessment of LRCs for sustainable underground hydrogen storage. •A multiscale model is developed to simulate lined rock caverns for hydrogen storage.•Interaction between the cavern and its surrounding fractured rock mass is captured.•Effects of hydrogen diffusion and embrittlement in steel linings are considered.•Fractures in rock exert a strong control on damage in concrete and steel linings.•Interplay of hydrogen accumulation and stress concentration drives steel degradation. |
ArticleNumber | 150027 |
Author | Zhao, Chenxi Zhang, Zixin Yu, Haiyang Lei, Qinghua |
Author_xml | – sequence: 1 givenname: Chenxi orcidid: 0009-0002-4517-4584 surname: Zhao fullname: Zhao, Chenxi organization: CCTEG Coal Mining Research Institute, Beijing, 100013, China – sequence: 2 givenname: Haiyang orcidid: 0000-0002-2419-6736 surname: Yu fullname: Yu, Haiyang organization: Department of Materials Science and Engineering, Uppsala University, Uppsala, 75103, Sweden – sequence: 3 givenname: Zixin surname: Zhang fullname: Zhang, Zixin organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, 200092, China – sequence: 4 givenname: Qinghua orcidid: 0000-0002-3990-4707 surname: Lei fullname: Lei, Qinghua email: qinghua.lei@geo.uu.se organization: Department of Earth Sciences, Uppsala University, Uppsala, 75236, Sweden |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-564308$$DView record from Swedish Publication Index |
BookMark | eNqFkMtOwzAQRb0oEm3hF5A_gATbeTjZUZWnVMQG2FqOPSkOiV3spKh_T1AoWzZzN_ceac4CzayzgNAFJTElNL9qYtO8HzRYiBlhWUwzQhifoTlJchIltCxP0SKEhhDKSVrO0eeT09C2xm7xeEBj79QHVnIP3gYchqoB1ePe4ZHq3RYshq7ypu9b6MD2WFqN1UG1RuGdhxAGb4LsjbPYWFx7qfrBH6mdDAHCGTqpZRvg_DeX6PXu9mX9EG2e7x_Xq02kkjTvo5TKggHNcs0rlmUsraqsTKHkWaoZr1VN8yTntU5YReqySGsOjGrKOCl5QZhKluhy4oYv2A2V2HnTSX8QThpxY95WwvmtGAaR5WlCirGeT3XlXQge6r8BJeLHrWjE0a34cSsmt-PwehrC-MzegBdBGbAKtPGjO6Gd-Q_xDaFujEY |
Cites_doi | 10.1007/s11440-017-0594-5 10.1016/j.enggeo.2021.106169 10.1007/s00603-014-0632-7 10.1016/j.jrmge.2015.09.006 10.1016/S1365-1609(02)00022-9 10.1016/j.compstruc.2012.06.006 10.1016/j.ijhydene.2023.08.342 10.1016/j.apenergy.2011.07.013 10.1039/D0EE03536J 10.1016/j.jrmge.2022.03.006 10.1016/j.ijhydene.2024.01.241 10.1016/j.ijhydene.2024.12.467 10.1007/s00603-016-1064-3 10.1016/S0022-5096(98)00064-7 10.1021/acs.chemrev.3c00624 10.1038/s43017-022-00376-8 10.1144/SP528-2022-66 10.1007/s00603-012-0312-4 10.1016/j.undsp.2024.03.009 10.1016/j.ijrmms.2012.02.010 10.1016/j.ijrmms.2020.104598 10.1016/j.tust.2005.06.002 10.1016/j.rser.2019.01.051 10.1007/s00603-015-0761-7 10.1016/j.compgeo.2013.08.003 10.1002/9781394185979.ch3 10.1016/j.ijhydene.2006.08.047 10.1016/j.tust.2012.11.004 10.1016/j.enggeo.2012.12.001 10.1016/S0013-7952(97)00067-7 10.1016/j.compgeo.2022.104707 10.1144/SP528-2022-160 10.1016/0022-5096(89)90002-1 10.1016/0360-3199(85)90006-0 10.1016/j.ijhydene.2021.03.131 10.1016/j.compgeo.2016.12.024 10.1016/j.jrmge.2022.11.011 10.1016/j.enggeo.2015.08.024 10.1016/j.engfailanal.2016.05.019 10.1016/0001-6160(70)90078-7 10.1016/j.ijhydene.2023.01.292 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
DOI | 10.1016/j.ijhydene.2025.150027 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | oai_DiVA_org_uu_564308 10_1016_j_ijhydene_2025_150027 S0360319925030113 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAFTH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADECG ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AFZHZ AGCQF AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SEW SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF R2- SAC SCB T9H WUQ ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
ID | FETCH-LOGICAL-c346t-41a82e156d7b25524bb594e9754d27fcf16367fd32b0f984f7e21d127097802c3 |
IEDL.DBID | .~1 |
ISSN | 0360-3199 1879-3487 |
IngestDate | Thu Aug 21 06:19:05 EDT 2025 Wed Aug 27 16:41:30 EDT 2025 Sat Aug 30 17:12:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lined rock cavern Underground hydrogen storage Discrete fracture network Fractured rock Hydrogen embrittlement |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c346t-41a82e156d7b25524bb594e9754d27fcf16367fd32b0f984f7e21d127097802c3 |
ORCID | 0009-0002-4517-4584 0000-0002-3990-4707 0000-0002-2419-6736 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0360319925030113 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_564308 crossref_primary_10_1016_j_ijhydene_2025_150027 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2025_150027 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-28 |
PublicationDateYYYYMMDD | 2025-07-28 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Krom, Koers, Bakker (b48) 1999; 47 Lu (b17) 1998; 49 Glamheden, Curtis (b11) 2006; 21 Mazars, Grange (b40) 2022 Rutqvist, Wu, Tsang, Bodvarsson (b32) 2002; 39 Tunsakul, Jongpradist, Kim, Nanakorn (b25) 2018; 13 Zhao, Zhang, Lei (b39) 2021; 289 Jaeger, Cook, Zimmerman (b41) 2007 Tunsakul, Jongpradist, Soparat, Kongkitkul, Nanakorn (b24) 2014; 55 Schultz, Heinemann, Horváth, Wickens, Miocic, Babarinde (b4) 2023; 528 Molavitabrizi, Yu, Mahmoud Mousavi (b30) 2022; 274 Kim, Rutqvist, Kim, Park, Ryu, Park (b20) 2016; 49 Yu, Díaz, Lu, Sun, Ding, Koyama (b31) 2024; 124 Damasceno, Spross, Johansson (b28) 2023 Díaz, Alegre, Cuesta (b44) 2016; 66 Patanwar, Kim, Deb, Gujjala (b9) 2024; 50 Jongpradist, Tunsakul, Kongkitkul, Fadsiri, Arangelovski, Youwai (b23) 2015; 197 Heinemann, Alcalde, Miocic, Hangx, Kallmeyer, Ostertag-Henning (b6) 2021; 14 Lei, Gholizadeh Doonechaly, Tsang (b38) 2021; 138 Schultz, Williams-Stroud, Horváth, Wickens, Bernhardt, Cao (b5) 2023; 528 Bäcklin (b12) 2022 COMSOL (b36) 2018 Kim, Rutqvist, Jeong, Choi, Ryu, Song (b19) 2013; 46 Rutqvist, Kim, Ryu, Synn, Song (b21) 2012; 52 Damasceno, Spross, Johansson (b14) 2023; 15 Vattenfall (b13) 2022 Perazzelli, Anagnostou (b26) 2016; 8 Ahn, Sofronis, Dodds (b49) 2007; 32 Johansson, Stille, Sturk (b51) 1995 Tarkowski (b1) 2019; 105 Leong, Ghayesh, Nathan, Salmachi, Rajabi (b16) 2025; 102 Meda, Bhat, Pandey, Subramanya, Lourdu Antony Raj (b47) 2023; 48 Zhao, Lei, Zhang (b29) 2025; 21 Lei, Latham, Tsang (b34) 2017; 85 Lei, Latham, Xiang (b43) 2016; 49 Koren, M. H. Hagen, Wang, Lu, Johnsen, Yamabe (b50) 2023; 215 Johanasson (b10) 2003 Barton, Quadros (b33) 2015; 48 Tunsakul, Jongpradist, Kongkitkul, Wonglert, Youwai (b22) 2013; 34 Kim, Rutqvist, Ryu, Choi, Sunwoo, Song (b18) 2012; 92 Qiu, Li, Wang, Wan, Zhao (b35) 2024; 58 Tarkowski, Uliasz-Misiak, Tarkowski (b2) 2021; 46 Jirásek, Bauer (b37) 2012; 110–111 Lei, Barton (b42) 2022; 145 Johansson, Spross, Damasceno, Johansson, Stille (b8) 2018 Zhao, Zhang, Wang, Lei (b52) 2022; 145 Sofronis, McMeeking (b46) 1989; 37 Lindblom (b7) 1985; 10 Damasceno, Spross, Johansson (b15) 2023; 15 Oriani (b45) 1970; 18 Park, Kim, Ryu, Choi, Han (b27) 2013; 153 Krevor, de Coninck, Gasda, Ghaleigh, de Gooyert, Hajibeygi (b3) 2023; 4 Barton (10.1016/j.ijhydene.2025.150027_b33) 2015; 48 COMSOL (10.1016/j.ijhydene.2025.150027_b36) 2018 Lei (10.1016/j.ijhydene.2025.150027_b43) 2016; 49 Mazars (10.1016/j.ijhydene.2025.150027_b40) 2022 Kim (10.1016/j.ijhydene.2025.150027_b18) 2012; 92 Ahn (10.1016/j.ijhydene.2025.150027_b49) 2007; 32 Heinemann (10.1016/j.ijhydene.2025.150027_b6) 2021; 14 Johanasson (10.1016/j.ijhydene.2025.150027_b10) 2003 Tunsakul (10.1016/j.ijhydene.2025.150027_b24) 2014; 55 Lei (10.1016/j.ijhydene.2025.150027_b38) 2021; 138 Tarkowski (10.1016/j.ijhydene.2025.150027_b1) 2019; 105 Jongpradist (10.1016/j.ijhydene.2025.150027_b23) 2015; 197 Kim (10.1016/j.ijhydene.2025.150027_b20) 2016; 49 Lei (10.1016/j.ijhydene.2025.150027_b42) 2022; 145 Jaeger (10.1016/j.ijhydene.2025.150027_b41) 2007 Koren (10.1016/j.ijhydene.2025.150027_b50) 2023; 215 Rutqvist (10.1016/j.ijhydene.2025.150027_b21) 2012; 52 Johansson (10.1016/j.ijhydene.2025.150027_b8) 2018 Lindblom (10.1016/j.ijhydene.2025.150027_b7) 1985; 10 Lu (10.1016/j.ijhydene.2025.150027_b17) 1998; 49 Oriani (10.1016/j.ijhydene.2025.150027_b45) 1970; 18 Damasceno (10.1016/j.ijhydene.2025.150027_b15) 2023; 15 Zhao (10.1016/j.ijhydene.2025.150027_b52) 2022; 145 Damasceno (10.1016/j.ijhydene.2025.150027_b28) 2023 Krevor (10.1016/j.ijhydene.2025.150027_b3) 2023; 4 Vattenfall (10.1016/j.ijhydene.2025.150027_b13) 2022 Kim (10.1016/j.ijhydene.2025.150027_b19) 2013; 46 Glamheden (10.1016/j.ijhydene.2025.150027_b11) 2006; 21 Rutqvist (10.1016/j.ijhydene.2025.150027_b32) 2002; 39 Schultz (10.1016/j.ijhydene.2025.150027_b5) 2023; 528 Perazzelli (10.1016/j.ijhydene.2025.150027_b26) 2016; 8 Tarkowski (10.1016/j.ijhydene.2025.150027_b2) 2021; 46 Johansson (10.1016/j.ijhydene.2025.150027_b51) 1995 Zhao (10.1016/j.ijhydene.2025.150027_b39) 2021; 289 Jirásek (10.1016/j.ijhydene.2025.150027_b37) 2012; 110–111 Damasceno (10.1016/j.ijhydene.2025.150027_b14) 2023; 15 Park (10.1016/j.ijhydene.2025.150027_b27) 2013; 153 Molavitabrizi (10.1016/j.ijhydene.2025.150027_b30) 2022; 274 Meda (10.1016/j.ijhydene.2025.150027_b47) 2023; 48 Sofronis (10.1016/j.ijhydene.2025.150027_b46) 1989; 37 Schultz (10.1016/j.ijhydene.2025.150027_b4) 2023; 528 Tunsakul (10.1016/j.ijhydene.2025.150027_b25) 2018; 13 Zhao (10.1016/j.ijhydene.2025.150027_b29) 2025; 21 Qiu (10.1016/j.ijhydene.2025.150027_b35) 2024; 58 Krom (10.1016/j.ijhydene.2025.150027_b48) 1999; 47 Patanwar (10.1016/j.ijhydene.2025.150027_b9) 2024; 50 Leong (10.1016/j.ijhydene.2025.150027_b16) 2025; 102 Yu (10.1016/j.ijhydene.2025.150027_b31) 2024; 124 Lei (10.1016/j.ijhydene.2025.150027_b34) 2017; 85 Díaz (10.1016/j.ijhydene.2025.150027_b44) 2016; 66 Bäcklin (10.1016/j.ijhydene.2025.150027_b12) 2022 Tunsakul (10.1016/j.ijhydene.2025.150027_b22) 2013; 34 |
References_xml | – volume: 138 year: 2021 ident: b38 article-title: Modelling fluid injection-induced fracture activation, damage growth, seismicity occurrence and connectivity change in naturally fractured rocks publication-title: Int J Rock Mech Min Sci – volume: 47 start-page: 971 year: 1999 end-page: 992 ident: b48 article-title: Hydrogen transport near a blunting crack tip publication-title: J Mech Phys Solids – start-page: 1742 year: 2018 ident: b36 article-title: COMSOL Multiphysics® v. 5.5 – volume: 15 start-page: 1625 year: 2023 end-page: 1635 ident: b14 article-title: Effect of rock joints on lined rock caverns subjected to high internal gas pressure publication-title: J Rock Mech Geotech Eng – year: 2018 ident: b8 article-title: Investigation of research needs regarding the storage of hydrogen gas in lined rock caverns : Prestudy for work package 2.3 in HYBRIT research program 1 – year: 2022 ident: b13 article-title: HYBRIT: Milestone reached – pilot facility for hydrogen storage up and running. Vattenfall – volume: 145 year: 2022 ident: b52 article-title: Effects of fracture network distribution on excavation-induced coupled responses of pore pressure perturbation and rock mass deformation publication-title: Comput Geotech – volume: 105 start-page: 86 year: 2019 end-page: 94 ident: b1 article-title: Underground hydrogen storage: Characteristics and prospects publication-title: Renew Sustain Energy Rev – volume: 124 start-page: 6271 year: 2024 end-page: 6392 ident: b31 article-title: Hydrogen embrittlement as a conspicuous material challenge—Comprehensive review and future directions publication-title: Chem Rev – volume: 48 start-page: 17894 year: 2023 end-page: 17913 ident: b47 article-title: Challenges associated with hydrogen storage systems due to the hydrogen embrittlement of high strength steels publication-title: Int J Hydrog Energy – volume: 528 start-page: 15 year: 2023 end-page: 35 ident: b4 article-title: An overview of underground energy-related product storage and sequestration publication-title: Geol Soc Lond Spec Publ – volume: 15 start-page: 119 year: 2023 end-page: 129 ident: b15 article-title: Rock mass response for lined rock caverns subjected to high internal gas pressure publication-title: J Rock Mech Geotech Eng – year: 2003 ident: b10 article-title: High pressure storage of gas in lined rock caverns-cavern wall design principles – volume: 92 start-page: 653 year: 2012 end-page: 667 ident: b18 article-title: Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance publication-title: Appl Energy – volume: 21 start-page: 252 year: 2025 end-page: 269 ident: b29 article-title: Impact of fracture networks on the structural deformation of lined rock caverns under high internal gas pressure publication-title: Undergr Space – volume: 85 start-page: 151 year: 2017 end-page: 176 ident: b34 article-title: The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks publication-title: Comput Geotech – volume: 197 start-page: 158 year: 2015 end-page: 171 ident: b23 article-title: High internal pressure induced fracture patterns in rock masses surrounding caverns: Experimental study using physical model tests publication-title: Eng Geol – start-page: 45 year: 2022 end-page: 69 ident: b40 article-title: Damage modeling publication-title: Damage and cracking of concrete structures – volume: 274 year: 2022 ident: b30 article-title: Hydrogen embrittlement in micro-architectured materials publication-title: Eng Fract Mech – volume: 32 start-page: 3734 year: 2007 end-page: 3742 ident: b49 article-title: On hydrogen-induced plastic flow localization during void growth and coalescence publication-title: Int J Hydrog Energy – volume: 145 year: 2022 ident: b42 article-title: On the selection of joint constitutive models for geomechanics simulation of fractured rocks publication-title: Comput Geotech – volume: 49 start-page: 4799 year: 2016 end-page: 4816 ident: b43 article-title: Implementation of an empirical joint constitutive model into finite-discrete element analysis of the geomechanical behaviour of fractured rocks publication-title: Rock Mech Rock Eng – volume: 48 start-page: 1323 year: 2015 end-page: 1339 ident: b33 article-title: Anisotropy is everywhere, to see, to measure, and to model publication-title: Rock Mech Rock Eng – volume: 110–111 start-page: 60 year: 2012 end-page: 78 ident: b37 article-title: Numerical aspects of the crack band approach publication-title: Comput Struct – volume: 66 start-page: 577 year: 2016 end-page: 595 ident: b44 article-title: A review on diffusion modelling in hydrogen related failures of metals publication-title: Eng Fail Anal – volume: 153 start-page: 144 year: 2013 end-page: 151 ident: b27 article-title: Probability-based structural design of lined rock caverns to resist high internal gas pressure publication-title: Eng Geol – volume: 55 start-page: 78 year: 2014 end-page: 90 ident: b24 article-title: Analysis of fracture propagation in a rock mass surrounding a tunnel under high internal pressure by the element-free Galerkin method publication-title: Comput Geotech – volume: 37 start-page: 317 year: 1989 end-page: 350 ident: b46 article-title: Numerical analysis of hydrogen transport near a blunting crack tip publication-title: J Mech Phys Solids – volume: 49 start-page: 573 year: 2016 end-page: 584 ident: b20 article-title: Failure monitoring and leakage detection for underground storage of compressed air energy in lined rock caverns publication-title: Rock Mech Rock Eng – volume: 46 start-page: 20010 year: 2021 end-page: 20022 ident: b2 article-title: Storage of hydrogen, natural gas, and carbon dioxide – geological and legal conditions publication-title: Int J Hydrog Energy – volume: 50 start-page: 116 year: 2024 end-page: 133 ident: b9 article-title: Underground storage of hydrogen in lined rock caverns: An overview of key components and hydrogen embrittlement challenges publication-title: Int J Hydrog Energy – year: 2022 ident: b12 article-title: Fossil-free steel – a joint opportunity!. HYBRIT: Fossil-free steel – volume: 49 start-page: 353 year: 1998 end-page: 361 ident: b17 article-title: Finite element analysis of a pilot gas storage in rock cavern under high pressure publication-title: Eng Geol – year: 1995 ident: b51 article-title: Pilot plant for lined underground gas storage facility at graengesberg. deeper analysis of test results ( pilotanlaeggning foer inklaedda gaslager i graengesberg. Foerdjupad analys av foersoeksresultaten)(in Swedish) – volume: 10 start-page: 667 year: 1985 end-page: 675 ident: b7 article-title: A conceptual design for compressed hydrogen storage in mined caverns publication-title: Int J Hydrog Energy – volume: 39 start-page: 429 year: 2002 end-page: 442 ident: b32 article-title: A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock publication-title: Int J Rock Mech Min Sci – start-page: 1 year: 2023 end-page: 13 ident: b28 article-title: Reliability-based design tool for gas storage in lined rock caverns publication-title: Georisk: Assess Manag Risk Eng Syst Geohazards – volume: 46 start-page: 1113 year: 2013 end-page: 1124 ident: b19 article-title: Characterizing excavation damaged zone and stability of pressurized lined rock caverns for underground compressed air energy storage publication-title: Rock Mech Rock Eng – volume: 21 start-page: 56 year: 2006 end-page: 67 ident: b11 article-title: Excavation of a cavern for high-pressure storage of natural gas publication-title: Tunn Undergr Space Technol – volume: 52 start-page: 71 year: 2012 end-page: 81 ident: b21 article-title: Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns publication-title: Int J Rock Mech Min Sci – volume: 18 start-page: 147 year: 1970 end-page: 157 ident: b45 article-title: The diffusion and trapping of hydrogen in steel publication-title: Acta Metall – volume: 102 start-page: 749 year: 2025 end-page: 766 ident: b16 article-title: A review of the mechanics of lined engineered cavities and their implications on hydrogen storage publication-title: Int J Hydrog Energy – volume: 215 year: 2023 ident: b50 article-title: Experimental comparison of gaseous and electrochemical hydrogen charging in X65 pipeline steel using the permeation technique publication-title: Corros Sci – volume: 4 start-page: 102 year: 2023 end-page: 118 ident: b3 article-title: Subsurface carbon dioxide and hydrogen storage for a sustainable energy future publication-title: Nat Rev Earth Environ – volume: 13 start-page: 817 year: 2018 end-page: 832 ident: b25 article-title: Evaluation of rock fracture patterns based on the element-free Galerkin method for stability assessment of a highly pressurized gas storage cavern publication-title: Acta Geotech – volume: 14 start-page: 853 year: 2021 end-page: 864 ident: b6 article-title: Enabling large-scale hydrogen storage in porous media – the scientific challenges publication-title: Energy Env Sci – volume: 58 start-page: 605 year: 2024 end-page: 620 ident: b35 article-title: Research on influence patterns of fault activation on lining structures in lined rock caverns for underground hydrogen energy storage publication-title: Int J Hydrog Energy – volume: 34 start-page: 110 year: 2013 end-page: 123 ident: b22 article-title: Investigation of failure behavior of continuous rock mass around cavern under high internal pressure publication-title: Tunn Undergr Space Technol – volume: 289 year: 2021 ident: b39 article-title: Role of hydro-mechanical coupling in excavation-induced damage propagation, fracture deformation and microseismicity evolution in naturally fractured rocks publication-title: Eng Geol – volume: 528 start-page: 37 year: 2023 end-page: 59 ident: b5 article-title: Underground energy-related product storage and sequestration: site characterization, risk analysis and monitoring publication-title: Geol Soc Lond Spec Publ – year: 2007 ident: b41 article-title: Fundamentals of rock mechanics – volume: 8 start-page: 314 year: 2016 end-page: 328 ident: b26 article-title: Design issues for compressed air energy storage in sealed underground cavities publication-title: J Rock Mech Geotech Eng – year: 2003 ident: 10.1016/j.ijhydene.2025.150027_b10 – volume: 13 start-page: 817 issue: 4 year: 2018 ident: 10.1016/j.ijhydene.2025.150027_b25 article-title: Evaluation of rock fracture patterns based on the element-free Galerkin method for stability assessment of a highly pressurized gas storage cavern publication-title: Acta Geotech doi: 10.1007/s11440-017-0594-5 – volume: 289 issn: 00137952 year: 2021 ident: 10.1016/j.ijhydene.2025.150027_b39 article-title: Role of hydro-mechanical coupling in excavation-induced damage propagation, fracture deformation and microseismicity evolution in naturally fractured rocks publication-title: Eng Geol doi: 10.1016/j.enggeo.2021.106169 – volume: 48 start-page: 1323 issn: 07232632 year: 2015 ident: 10.1016/j.ijhydene.2025.150027_b33 article-title: Anisotropy is everywhere, to see, to measure, and to model publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-014-0632-7 – volume: 8 start-page: 314 issn: 16747755 issue: 3 year: 2016 ident: 10.1016/j.ijhydene.2025.150027_b26 article-title: Design issues for compressed air energy storage in sealed underground cavities publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2015.09.006 – volume: 39 start-page: 429 issn: 13651609 issue: 4 year: 2002 ident: 10.1016/j.ijhydene.2025.150027_b32 article-title: A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock publication-title: Int J Rock Mech Min Sci doi: 10.1016/S1365-1609(02)00022-9 – volume: 110–111 start-page: 60 issn: 00457949 year: 2012 ident: 10.1016/j.ijhydene.2025.150027_b37 article-title: Numerical aspects of the crack band approach publication-title: Comput Struct doi: 10.1016/j.compstruc.2012.06.006 – volume: 50 start-page: 116 issn: 03603199 year: 2024 ident: 10.1016/j.ijhydene.2025.150027_b9 article-title: Underground storage of hydrogen in lined rock caverns: An overview of key components and hydrogen embrittlement challenges publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2023.08.342 – year: 2018 ident: 10.1016/j.ijhydene.2025.150027_b8 – volume: 92 start-page: 653 issn: 0306-2619 year: 2012 ident: 10.1016/j.ijhydene.2025.150027_b18 article-title: Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.07.013 – volume: 14 start-page: 853 year: 2021 ident: 10.1016/j.ijhydene.2025.150027_b6 article-title: Enabling large-scale hydrogen storage in porous media – the scientific challenges publication-title: Energy Env Sci doi: 10.1039/D0EE03536J – volume: 15 start-page: 119 issn: 16747755 issue: 1 year: 2023 ident: 10.1016/j.ijhydene.2025.150027_b15 article-title: Rock mass response for lined rock caverns subjected to high internal gas pressure publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2022.03.006 – volume: 58 start-page: 605 issn: 0360-3199 year: 2024 ident: 10.1016/j.ijhydene.2025.150027_b35 article-title: Research on influence patterns of fault activation on lining structures in lined rock caverns for underground hydrogen energy storage publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2024.01.241 – volume: 102 start-page: 749 issn: 0360-3199 year: 2025 ident: 10.1016/j.ijhydene.2025.150027_b16 article-title: A review of the mechanics of lined engineered cavities and their implications on hydrogen storage publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2024.12.467 – start-page: 1 year: 2023 ident: 10.1016/j.ijhydene.2025.150027_b28 article-title: Reliability-based design tool for gas storage in lined rock caverns publication-title: Georisk: Assess Manag Risk Eng Syst Geohazards – volume: 49 start-page: 4799 issn: 0723-2632 issue: 12 year: 2016 ident: 10.1016/j.ijhydene.2025.150027_b43 article-title: Implementation of an empirical joint constitutive model into finite-discrete element analysis of the geomechanical behaviour of fractured rocks publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-016-1064-3 – volume: 47 start-page: 971 issn: 0022-5096 issue: 4 year: 1999 ident: 10.1016/j.ijhydene.2025.150027_b48 article-title: Hydrogen transport near a blunting crack tip publication-title: J Mech Phys Solids doi: 10.1016/S0022-5096(98)00064-7 – year: 2022 ident: 10.1016/j.ijhydene.2025.150027_b12 – year: 1995 ident: 10.1016/j.ijhydene.2025.150027_b51 – volume: 124 start-page: 6271 issn: 15206890 issue: 10 year: 2024 ident: 10.1016/j.ijhydene.2025.150027_b31 article-title: Hydrogen embrittlement as a conspicuous material challenge—Comprehensive review and future directions publication-title: Chem Rev doi: 10.1021/acs.chemrev.3c00624 – volume: 4 start-page: 102 year: 2023 ident: 10.1016/j.ijhydene.2025.150027_b3 article-title: Subsurface carbon dioxide and hydrogen storage for a sustainable energy future publication-title: Nat Rev Earth Environ doi: 10.1038/s43017-022-00376-8 – volume: 528 start-page: 37 issue: 1 year: 2023 ident: 10.1016/j.ijhydene.2025.150027_b5 article-title: Underground energy-related product storage and sequestration: site characterization, risk analysis and monitoring publication-title: Geol Soc Lond Spec Publ doi: 10.1144/SP528-2022-66 – volume: 46 start-page: 1113 issn: 07232632 issue: 5 year: 2013 ident: 10.1016/j.ijhydene.2025.150027_b19 article-title: Characterizing excavation damaged zone and stability of pressurized lined rock caverns for underground compressed air energy storage publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-012-0312-4 – volume: 21 start-page: 252 issn: 2467-9674 year: 2025 ident: 10.1016/j.ijhydene.2025.150027_b29 article-title: Impact of fracture networks on the structural deformation of lined rock caverns under high internal gas pressure publication-title: Undergr Space doi: 10.1016/j.undsp.2024.03.009 – volume: 52 start-page: 71 year: 2012 ident: 10.1016/j.ijhydene.2025.150027_b21 article-title: Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2012.02.010 – volume: 138 issn: 13651609 year: 2021 ident: 10.1016/j.ijhydene.2025.150027_b38 article-title: Modelling fluid injection-induced fracture activation, damage growth, seismicity occurrence and connectivity change in naturally fractured rocks publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2020.104598 – volume: 21 start-page: 56 issn: 0886-7798 issue: 1 year: 2006 ident: 10.1016/j.ijhydene.2025.150027_b11 article-title: Excavation of a cavern for high-pressure storage of natural gas publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2005.06.002 – year: 2022 ident: 10.1016/j.ijhydene.2025.150027_b13 – volume: 215 issn: 0010938X issue: September 2022 year: 2023 ident: 10.1016/j.ijhydene.2025.150027_b50 article-title: Experimental comparison of gaseous and electrochemical hydrogen charging in X65 pipeline steel using the permeation technique publication-title: Corros Sci – start-page: 1742 year: 2018 ident: 10.1016/j.ijhydene.2025.150027_b36 – volume: 105 start-page: 86 year: 2019 ident: 10.1016/j.ijhydene.2025.150027_b1 article-title: Underground hydrogen storage: Characteristics and prospects publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.01.051 – volume: 49 start-page: 573 issn: 07232632 issue: 2 year: 2016 ident: 10.1016/j.ijhydene.2025.150027_b20 article-title: Failure monitoring and leakage detection for underground storage of compressed air energy in lined rock caverns publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-015-0761-7 – volume: 55 start-page: 78 year: 2014 ident: 10.1016/j.ijhydene.2025.150027_b24 article-title: Analysis of fracture propagation in a rock mass surrounding a tunnel under high internal pressure by the element-free Galerkin method publication-title: Comput Geotech doi: 10.1016/j.compgeo.2013.08.003 – start-page: 45 year: 2022 ident: 10.1016/j.ijhydene.2025.150027_b40 article-title: Damage modeling doi: 10.1002/9781394185979.ch3 – volume: 32 start-page: 3734 issn: 03603199 issue: 16 year: 2007 ident: 10.1016/j.ijhydene.2025.150027_b49 article-title: On hydrogen-induced plastic flow localization during void growth and coalescence publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2006.08.047 – volume: 274 issn: 00137944 issue: August year: 2022 ident: 10.1016/j.ijhydene.2025.150027_b30 article-title: Hydrogen embrittlement in micro-architectured materials publication-title: Eng Fract Mech – volume: 34 start-page: 110 year: 2013 ident: 10.1016/j.ijhydene.2025.150027_b22 article-title: Investigation of failure behavior of continuous rock mass around cavern under high internal pressure publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2012.11.004 – volume: 153 start-page: 144 issn: 0013-7952 year: 2013 ident: 10.1016/j.ijhydene.2025.150027_b27 article-title: Probability-based structural design of lined rock caverns to resist high internal gas pressure publication-title: Eng Geol doi: 10.1016/j.enggeo.2012.12.001 – year: 2007 ident: 10.1016/j.ijhydene.2025.150027_b41 – volume: 49 start-page: 353 issn: 0013-7952 issue: 3 year: 1998 ident: 10.1016/j.ijhydene.2025.150027_b17 article-title: Finite element analysis of a pilot gas storage in rock cavern under high pressure publication-title: Eng Geol doi: 10.1016/S0013-7952(97)00067-7 – volume: 145 issn: 0266-352X year: 2022 ident: 10.1016/j.ijhydene.2025.150027_b42 article-title: On the selection of joint constitutive models for geomechanics simulation of fractured rocks publication-title: Comput Geotech doi: 10.1016/j.compgeo.2022.104707 – volume: 528 start-page: 15 issue: 1 year: 2023 ident: 10.1016/j.ijhydene.2025.150027_b4 article-title: An overview of underground energy-related product storage and sequestration publication-title: Geol Soc Lond Spec Publ doi: 10.1144/SP528-2022-160 – volume: 37 start-page: 317 issn: 0022-5096 issue: 3 year: 1989 ident: 10.1016/j.ijhydene.2025.150027_b46 article-title: Numerical analysis of hydrogen transport near a blunting crack tip publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(89)90002-1 – volume: 145 issn: 18737633 issue: March year: 2022 ident: 10.1016/j.ijhydene.2025.150027_b52 article-title: Effects of fracture network distribution on excavation-induced coupled responses of pore pressure perturbation and rock mass deformation publication-title: Comput Geotech – volume: 10 start-page: 667 issn: 0360-3199 issue: 10 year: 1985 ident: 10.1016/j.ijhydene.2025.150027_b7 article-title: A conceptual design for compressed hydrogen storage in mined caverns publication-title: Int J Hydrog Energy doi: 10.1016/0360-3199(85)90006-0 – volume: 46 start-page: 20010 issn: 0360-3199 issue: 38 year: 2021 ident: 10.1016/j.ijhydene.2025.150027_b2 article-title: Storage of hydrogen, natural gas, and carbon dioxide – geological and legal conditions publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2021.03.131 – volume: 85 start-page: 151 year: 2017 ident: 10.1016/j.ijhydene.2025.150027_b34 article-title: The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks publication-title: Comput Geotech doi: 10.1016/j.compgeo.2016.12.024 – volume: 15 start-page: 1625 issn: 16747755 issue: 7 year: 2023 ident: 10.1016/j.ijhydene.2025.150027_b14 article-title: Effect of rock joints on lined rock caverns subjected to high internal gas pressure publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2022.11.011 – volume: 197 start-page: 158 year: 2015 ident: 10.1016/j.ijhydene.2025.150027_b23 article-title: High internal pressure induced fracture patterns in rock masses surrounding caverns: Experimental study using physical model tests publication-title: Eng Geol doi: 10.1016/j.enggeo.2015.08.024 – volume: 66 start-page: 577 issn: 13506307 year: 2016 ident: 10.1016/j.ijhydene.2025.150027_b44 article-title: A review on diffusion modelling in hydrogen related failures of metals publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2016.05.019 – volume: 18 start-page: 147 issn: 0001-6160 issue: 1 year: 1970 ident: 10.1016/j.ijhydene.2025.150027_b45 article-title: The diffusion and trapping of hydrogen in steel publication-title: Acta Metall doi: 10.1016/0001-6160(70)90078-7 – volume: 48 start-page: 17894 issn: 03603199 issue: 47 year: 2023 ident: 10.1016/j.ijhydene.2025.150027_b47 article-title: Challenges associated with hydrogen storage systems due to the hydrogen embrittlement of high strength steels publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2023.01.292 |
SSID | ssj0017049 |
Score | 2.4803867 |
Snippet | The technology of lined rock cavern (LRC) with great geographical flexibility is a promising, cost-effective solution to underground hydrogen storage. However,... |
SourceID | swepub crossref elsevier |
SourceType | Open Access Repository Index Database Publisher |
StartPage | 150027 |
SubjectTerms | Discrete fracture network Fractured rock Hydrogen embrittlement Lined rock cavern Underground hydrogen storage |
Title | Modelling lined rock caverns subject to hydrogen embrittlement and cyclic pressurisation in fractured rock masses |
URI | https://dx.doi.org/10.1016/j.ijhydene.2025.150027 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-564308 |
Volume | 152 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDAgnuJZeYAxbeI4cTJWhaqAxMJDbFb8ghRIoTRDF347d3mgMiAGxkRObJ3Pd5_tu-8IOVE-15pb44mARx632sCSipXnwBf7ygLithXb53U8uuOXD9HDEhm0uTAYVtnY_tqmV9a6edNrpNl7y_PeDdheTMFJwYmjliLjJ-cCtbz7-R3mEYgGAkNjD1svZAmPu_n4aQ7LG-kyWdQFbORjdZlfHNQik2jlfYYbZL2BjbRfj2yTLNlii6wtkAluk3csa1YxbFOEjoaCa3qmOsNauh_0o1R44kJnEwqDmU5Ab6jFdC3kMMYTQpoVhuq5fsk1rYJjkV2wmjaaF9RhMlU5bf_6muFd8Q65G57fDkZeU1DB0yGPZx4PsoRZ2LEZoWArwbhSUcptKiJumHDaATiLhTMhU75LE-6EZYHBu2nkKWI63CXLxaSwe4TywDljYX8buJSrNFROiIw5E_iaGxOn-6TXSlG-1bwZsg0oG8tW7hLlLmu575O0Fbb8oQESjPuf357Ws_PdF7Jmn-X3fTmZPsqylBEgLz85-Ecfh2QVn_BclyVHZHk2Le0xAJKZ6lQa1yEr_Yur0fUXiTjjEA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25UsMwENVwFEDBcA43KqB0YsuyFZcMx4Sz4Rg6jXWBAziQxEUavp1dH0woGApaW7Y0q9Xuk7T7lpAD5XOtuTWeCHjkcasNLKlYeQ58sa8sIG5bsn3exN17fvEYPU6R4yYXBsMqa9tf2fTSWtdP2rU02-9Z1r4F24spOAk4cdTScJrMcli-WMag9fkd5xGIGgNDaw-bT6QJ91pZ73kM6xv5MlnUAnDkY3mZXzzUJJVo6X7OlshijRvpUTW0ZTJl8xWyMMEmuEo-sK5ZSbFNETsaCr7pheoUi-kO6bBQeORCR30Kgxn0QXGoxXwtJDHGI0Ka5obqsX7NNC2jY5FesJw3muXUYTZVMWj--pbiZfEauT87vTvuenVFBU-HPB55PEg7zMKWzQgFewnGlYoSbhMRccOE0w7QWSycCZnyXdLhTlgWGLycRqIipsN1MpP3c7tBKA-cMxY2uIFLuEpC5YRImTOBr7kxcbJJ2o0U5XtFnCGbiLKebOQuUe6ykvsmSRphyx8qIMG6__ntYTU7330hbfZJ9nAk-4MnWRQyAujld7b-0cc-meveXV_Jq_Oby20yj2_wkJd1dsjMaFDYXUAnI7VXat8XzLLkng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+lined+rock+caverns+subject+to+hydrogen+embrittlement+and+cyclic+pressurisation+in+fractured+rock+masses&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Zhao%2C+Chenxi&rft.au=Yu%2C+Haiyang&rft.au=Zhang%2C+Zixin&rft.au=Lei%2C+Qinghua&rft.date=2025-07-28&rft.issn=1879-3487&rft.volume=152&rft_id=info:doi/10.1016%2Fj.ijhydene.2025.150027&rft.externalDocID=oai_DiVA_org_uu_564308 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |