Modelling lined rock caverns subject to hydrogen embrittlement and cyclic pressurisation in fractured rock masses

The technology of lined rock cavern (LRC) with great geographical flexibility is a promising, cost-effective solution to underground hydrogen storage. However, the air-tight steel tanks used in this technology are susceptible to material degradation due to hydrogen embrittlement (HE), potentially le...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 152; p. 150027
Main Authors Zhao, Chenxi, Yu, Haiyang, Zhang, Zixin, Lei, Qinghua
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 28.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The technology of lined rock cavern (LRC) with great geographical flexibility is a promising, cost-effective solution to underground hydrogen storage. However, the air-tight steel tanks used in this technology are susceptible to material degradation due to hydrogen embrittlement (HE), potentially leading to leakage and structural failure, especial for LRCs constructed in complex geological conditions. In this paper, we develop a 2D multiscale numerical model based on the finite element method to assess the impact of HE on the LRC performance in fractured rock masses under cyclic gas pressurisation. Within this framework, a large-scale model is used to simulate the deformation and damage evolution of both fractured rock and an LRC under in-situ stresses and internal gas pressurisation, while a small-scale model captures HE in the steel lining of the LRC. Our simulations reveal that damage in the rock, concrete, and steel degradation is strongly affected by pre-existing fractures and in-situ stresses. Our results also reveal the presence of a strong positive feedback between hydrogen concentration and stress redistribution in the steel lining. Moreover, a comparison between models with and without considering HE illuminates that hydrogen concentration significantly contributes to steel degradation, particularly during the long-term LRC operation, highlighting the critical role of HE in the safety and performance of the LRC. The findings and insights obtained from our work have important implications for the design optimisation and performance assessment of LRCs for sustainable underground hydrogen storage. •A multiscale model is developed to simulate lined rock caverns for hydrogen storage.•Interaction between the cavern and its surrounding fractured rock mass is captured.•Effects of hydrogen diffusion and embrittlement in steel linings are considered.•Fractures in rock exert a strong control on damage in concrete and steel linings.•Interplay of hydrogen accumulation and stress concentration drives steel degradation.
AbstractList The technology of lined rock cavern (LRC) with great geographical flexibility is a promising, cost-effective solution to underground hydrogen storage. However, the air-tight steel tanks used in this technology are susceptible to material degradation due to hydrogen embrittlement (HE), potentially leading to leakage and structural failure, especial for LRCs constructed in complex geological conditions. In this paper, we develop a 2D multiscale numerical model based on the finite element method to assess the impact of HE on the LRC performance in fractured rock masses under cyclic gas pressurisation. Within this framework, a large-scale model is used to simulate the deformation and damage evolution of both fractured rock and an LRC under in-situ stresses and internal gas pressurisation, while a small-scale model captures HE in the steel lining of the LRC. Our simulations reveal that damage in the rock, concrete, and steel degradation is strongly affected by pre-existing fractures and in-situ stresses. Our results also reveal the presence of a strong positive feedback between hydrogen concentration and stress redistribution in the steel lining. Moreover, a comparison between models with and without considering HE illuminates that hydrogen concentration significantly contributes to steel degradation, particularly during the long-term LRC operation, highlighting the critical role of HE in the safety and performance of the LRC. The findings and insights obtained from our work have important implications for the design optimisation and performance assessment of LRCs for sustainable underground hydrogen storage.
The technology of lined rock cavern (LRC) with great geographical flexibility is a promising, cost-effective solution to underground hydrogen storage. However, the air-tight steel tanks used in this technology are susceptible to material degradation due to hydrogen embrittlement (HE), potentially leading to leakage and structural failure, especial for LRCs constructed in complex geological conditions. In this paper, we develop a 2D multiscale numerical model based on the finite element method to assess the impact of HE on the LRC performance in fractured rock masses under cyclic gas pressurisation. Within this framework, a large-scale model is used to simulate the deformation and damage evolution of both fractured rock and an LRC under in-situ stresses and internal gas pressurisation, while a small-scale model captures HE in the steel lining of the LRC. Our simulations reveal that damage in the rock, concrete, and steel degradation is strongly affected by pre-existing fractures and in-situ stresses. Our results also reveal the presence of a strong positive feedback between hydrogen concentration and stress redistribution in the steel lining. Moreover, a comparison between models with and without considering HE illuminates that hydrogen concentration significantly contributes to steel degradation, particularly during the long-term LRC operation, highlighting the critical role of HE in the safety and performance of the LRC. The findings and insights obtained from our work have important implications for the design optimisation and performance assessment of LRCs for sustainable underground hydrogen storage. •A multiscale model is developed to simulate lined rock caverns for hydrogen storage.•Interaction between the cavern and its surrounding fractured rock mass is captured.•Effects of hydrogen diffusion and embrittlement in steel linings are considered.•Fractures in rock exert a strong control on damage in concrete and steel linings.•Interplay of hydrogen accumulation and stress concentration drives steel degradation.
ArticleNumber 150027
Author Zhao, Chenxi
Zhang, Zixin
Yu, Haiyang
Lei, Qinghua
Author_xml – sequence: 1
  givenname: Chenxi
  orcidid: 0009-0002-4517-4584
  surname: Zhao
  fullname: Zhao, Chenxi
  organization: CCTEG Coal Mining Research Institute, Beijing, 100013, China
– sequence: 2
  givenname: Haiyang
  orcidid: 0000-0002-2419-6736
  surname: Yu
  fullname: Yu, Haiyang
  organization: Department of Materials Science and Engineering, Uppsala University, Uppsala, 75103, Sweden
– sequence: 3
  givenname: Zixin
  surname: Zhang
  fullname: Zhang, Zixin
  organization: Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, 200092, China
– sequence: 4
  givenname: Qinghua
  orcidid: 0000-0002-3990-4707
  surname: Lei
  fullname: Lei, Qinghua
  email: qinghua.lei@geo.uu.se
  organization: Department of Earth Sciences, Uppsala University, Uppsala, 75236, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-564308$$DView record from Swedish Publication Index
BookMark eNqFkMtOwzAQRb0oEm3hF5A_gATbeTjZUZWnVMQG2FqOPSkOiV3spKh_T1AoWzZzN_ceac4CzayzgNAFJTElNL9qYtO8HzRYiBlhWUwzQhifoTlJchIltCxP0SKEhhDKSVrO0eeT09C2xm7xeEBj79QHVnIP3gYchqoB1ePe4ZHq3RYshq7ypu9b6MD2WFqN1UG1RuGdhxAGb4LsjbPYWFx7qfrBH6mdDAHCGTqpZRvg_DeX6PXu9mX9EG2e7x_Xq02kkjTvo5TKggHNcs0rlmUsraqsTKHkWaoZr1VN8yTntU5YReqySGsOjGrKOCl5QZhKluhy4oYv2A2V2HnTSX8QThpxY95WwvmtGAaR5WlCirGeT3XlXQge6r8BJeLHrWjE0a34cSsmt-PwehrC-MzegBdBGbAKtPGjO6Gd-Q_xDaFujEY
Cites_doi 10.1007/s11440-017-0594-5
10.1016/j.enggeo.2021.106169
10.1007/s00603-014-0632-7
10.1016/j.jrmge.2015.09.006
10.1016/S1365-1609(02)00022-9
10.1016/j.compstruc.2012.06.006
10.1016/j.ijhydene.2023.08.342
10.1016/j.apenergy.2011.07.013
10.1039/D0EE03536J
10.1016/j.jrmge.2022.03.006
10.1016/j.ijhydene.2024.01.241
10.1016/j.ijhydene.2024.12.467
10.1007/s00603-016-1064-3
10.1016/S0022-5096(98)00064-7
10.1021/acs.chemrev.3c00624
10.1038/s43017-022-00376-8
10.1144/SP528-2022-66
10.1007/s00603-012-0312-4
10.1016/j.undsp.2024.03.009
10.1016/j.ijrmms.2012.02.010
10.1016/j.ijrmms.2020.104598
10.1016/j.tust.2005.06.002
10.1016/j.rser.2019.01.051
10.1007/s00603-015-0761-7
10.1016/j.compgeo.2013.08.003
10.1002/9781394185979.ch3
10.1016/j.ijhydene.2006.08.047
10.1016/j.tust.2012.11.004
10.1016/j.enggeo.2012.12.001
10.1016/S0013-7952(97)00067-7
10.1016/j.compgeo.2022.104707
10.1144/SP528-2022-160
10.1016/0022-5096(89)90002-1
10.1016/0360-3199(85)90006-0
10.1016/j.ijhydene.2021.03.131
10.1016/j.compgeo.2016.12.024
10.1016/j.jrmge.2022.11.011
10.1016/j.enggeo.2015.08.024
10.1016/j.engfailanal.2016.05.019
10.1016/0001-6160(70)90078-7
10.1016/j.ijhydene.2023.01.292
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOI 10.1016/j.ijhydene.2025.150027
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai_DiVA_org_uu_564308
10_1016_j_ijhydene_2025_150027
S0360319925030113
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAFTH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AFZHZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
R2-
SAC
SCB
T9H
WUQ
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-c346t-41a82e156d7b25524bb594e9754d27fcf16367fd32b0f984f7e21d127097802c3
IEDL.DBID .~1
ISSN 0360-3199
1879-3487
IngestDate Thu Aug 21 06:19:05 EDT 2025
Wed Aug 27 16:41:30 EDT 2025
Sat Aug 30 17:12:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Lined rock cavern
Underground hydrogen storage
Discrete fracture network
Fractured rock
Hydrogen embrittlement
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c346t-41a82e156d7b25524bb594e9754d27fcf16367fd32b0f984f7e21d127097802c3
ORCID 0009-0002-4517-4584
0000-0002-3990-4707
0000-0002-2419-6736
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0360319925030113
ParticipantIDs swepub_primary_oai_DiVA_org_uu_564308
crossref_primary_10_1016_j_ijhydene_2025_150027
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2025_150027
PublicationCentury 2000
PublicationDate 2025-07-28
PublicationDateYYYYMMDD 2025-07-28
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-28
  day: 28
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Krom, Koers, Bakker (b48) 1999; 47
Lu (b17) 1998; 49
Glamheden, Curtis (b11) 2006; 21
Mazars, Grange (b40) 2022
Rutqvist, Wu, Tsang, Bodvarsson (b32) 2002; 39
Tunsakul, Jongpradist, Kim, Nanakorn (b25) 2018; 13
Zhao, Zhang, Lei (b39) 2021; 289
Jaeger, Cook, Zimmerman (b41) 2007
Tunsakul, Jongpradist, Soparat, Kongkitkul, Nanakorn (b24) 2014; 55
Schultz, Heinemann, Horváth, Wickens, Miocic, Babarinde (b4) 2023; 528
Molavitabrizi, Yu, Mahmoud Mousavi (b30) 2022; 274
Kim, Rutqvist, Kim, Park, Ryu, Park (b20) 2016; 49
Yu, Díaz, Lu, Sun, Ding, Koyama (b31) 2024; 124
Damasceno, Spross, Johansson (b28) 2023
Díaz, Alegre, Cuesta (b44) 2016; 66
Patanwar, Kim, Deb, Gujjala (b9) 2024; 50
Jongpradist, Tunsakul, Kongkitkul, Fadsiri, Arangelovski, Youwai (b23) 2015; 197
Heinemann, Alcalde, Miocic, Hangx, Kallmeyer, Ostertag-Henning (b6) 2021; 14
Lei, Gholizadeh Doonechaly, Tsang (b38) 2021; 138
Schultz, Williams-Stroud, Horváth, Wickens, Bernhardt, Cao (b5) 2023; 528
Bäcklin (b12) 2022
COMSOL (b36) 2018
Kim, Rutqvist, Jeong, Choi, Ryu, Song (b19) 2013; 46
Rutqvist, Kim, Ryu, Synn, Song (b21) 2012; 52
Damasceno, Spross, Johansson (b14) 2023; 15
Vattenfall (b13) 2022
Perazzelli, Anagnostou (b26) 2016; 8
Ahn, Sofronis, Dodds (b49) 2007; 32
Johansson, Stille, Sturk (b51) 1995
Tarkowski (b1) 2019; 105
Leong, Ghayesh, Nathan, Salmachi, Rajabi (b16) 2025; 102
Meda, Bhat, Pandey, Subramanya, Lourdu Antony Raj (b47) 2023; 48
Zhao, Lei, Zhang (b29) 2025; 21
Lei, Latham, Tsang (b34) 2017; 85
Lei, Latham, Xiang (b43) 2016; 49
Koren, M. H. Hagen, Wang, Lu, Johnsen, Yamabe (b50) 2023; 215
Johanasson (b10) 2003
Barton, Quadros (b33) 2015; 48
Tunsakul, Jongpradist, Kongkitkul, Wonglert, Youwai (b22) 2013; 34
Kim, Rutqvist, Ryu, Choi, Sunwoo, Song (b18) 2012; 92
Qiu, Li, Wang, Wan, Zhao (b35) 2024; 58
Tarkowski, Uliasz-Misiak, Tarkowski (b2) 2021; 46
Jirásek, Bauer (b37) 2012; 110–111
Lei, Barton (b42) 2022; 145
Johansson, Spross, Damasceno, Johansson, Stille (b8) 2018
Zhao, Zhang, Wang, Lei (b52) 2022; 145
Sofronis, McMeeking (b46) 1989; 37
Lindblom (b7) 1985; 10
Damasceno, Spross, Johansson (b15) 2023; 15
Oriani (b45) 1970; 18
Park, Kim, Ryu, Choi, Han (b27) 2013; 153
Krevor, de Coninck, Gasda, Ghaleigh, de Gooyert, Hajibeygi (b3) 2023; 4
Barton (10.1016/j.ijhydene.2025.150027_b33) 2015; 48
COMSOL (10.1016/j.ijhydene.2025.150027_b36) 2018
Lei (10.1016/j.ijhydene.2025.150027_b43) 2016; 49
Mazars (10.1016/j.ijhydene.2025.150027_b40) 2022
Kim (10.1016/j.ijhydene.2025.150027_b18) 2012; 92
Ahn (10.1016/j.ijhydene.2025.150027_b49) 2007; 32
Heinemann (10.1016/j.ijhydene.2025.150027_b6) 2021; 14
Johanasson (10.1016/j.ijhydene.2025.150027_b10) 2003
Tunsakul (10.1016/j.ijhydene.2025.150027_b24) 2014; 55
Lei (10.1016/j.ijhydene.2025.150027_b38) 2021; 138
Tarkowski (10.1016/j.ijhydene.2025.150027_b1) 2019; 105
Jongpradist (10.1016/j.ijhydene.2025.150027_b23) 2015; 197
Kim (10.1016/j.ijhydene.2025.150027_b20) 2016; 49
Lei (10.1016/j.ijhydene.2025.150027_b42) 2022; 145
Jaeger (10.1016/j.ijhydene.2025.150027_b41) 2007
Koren (10.1016/j.ijhydene.2025.150027_b50) 2023; 215
Rutqvist (10.1016/j.ijhydene.2025.150027_b21) 2012; 52
Johansson (10.1016/j.ijhydene.2025.150027_b8) 2018
Lindblom (10.1016/j.ijhydene.2025.150027_b7) 1985; 10
Lu (10.1016/j.ijhydene.2025.150027_b17) 1998; 49
Oriani (10.1016/j.ijhydene.2025.150027_b45) 1970; 18
Damasceno (10.1016/j.ijhydene.2025.150027_b15) 2023; 15
Zhao (10.1016/j.ijhydene.2025.150027_b52) 2022; 145
Damasceno (10.1016/j.ijhydene.2025.150027_b28) 2023
Krevor (10.1016/j.ijhydene.2025.150027_b3) 2023; 4
Vattenfall (10.1016/j.ijhydene.2025.150027_b13) 2022
Kim (10.1016/j.ijhydene.2025.150027_b19) 2013; 46
Glamheden (10.1016/j.ijhydene.2025.150027_b11) 2006; 21
Rutqvist (10.1016/j.ijhydene.2025.150027_b32) 2002; 39
Schultz (10.1016/j.ijhydene.2025.150027_b5) 2023; 528
Perazzelli (10.1016/j.ijhydene.2025.150027_b26) 2016; 8
Tarkowski (10.1016/j.ijhydene.2025.150027_b2) 2021; 46
Johansson (10.1016/j.ijhydene.2025.150027_b51) 1995
Zhao (10.1016/j.ijhydene.2025.150027_b39) 2021; 289
Jirásek (10.1016/j.ijhydene.2025.150027_b37) 2012; 110–111
Damasceno (10.1016/j.ijhydene.2025.150027_b14) 2023; 15
Park (10.1016/j.ijhydene.2025.150027_b27) 2013; 153
Molavitabrizi (10.1016/j.ijhydene.2025.150027_b30) 2022; 274
Meda (10.1016/j.ijhydene.2025.150027_b47) 2023; 48
Sofronis (10.1016/j.ijhydene.2025.150027_b46) 1989; 37
Schultz (10.1016/j.ijhydene.2025.150027_b4) 2023; 528
Tunsakul (10.1016/j.ijhydene.2025.150027_b25) 2018; 13
Zhao (10.1016/j.ijhydene.2025.150027_b29) 2025; 21
Qiu (10.1016/j.ijhydene.2025.150027_b35) 2024; 58
Krom (10.1016/j.ijhydene.2025.150027_b48) 1999; 47
Patanwar (10.1016/j.ijhydene.2025.150027_b9) 2024; 50
Leong (10.1016/j.ijhydene.2025.150027_b16) 2025; 102
Yu (10.1016/j.ijhydene.2025.150027_b31) 2024; 124
Lei (10.1016/j.ijhydene.2025.150027_b34) 2017; 85
Díaz (10.1016/j.ijhydene.2025.150027_b44) 2016; 66
Bäcklin (10.1016/j.ijhydene.2025.150027_b12) 2022
Tunsakul (10.1016/j.ijhydene.2025.150027_b22) 2013; 34
References_xml – volume: 138
  year: 2021
  ident: b38
  article-title: Modelling fluid injection-induced fracture activation, damage growth, seismicity occurrence and connectivity change in naturally fractured rocks
  publication-title: Int J Rock Mech Min Sci
– volume: 47
  start-page: 971
  year: 1999
  end-page: 992
  ident: b48
  article-title: Hydrogen transport near a blunting crack tip
  publication-title: J Mech Phys Solids
– start-page: 1742
  year: 2018
  ident: b36
  article-title: COMSOL Multiphysics® v. 5.5
– volume: 15
  start-page: 1625
  year: 2023
  end-page: 1635
  ident: b14
  article-title: Effect of rock joints on lined rock caverns subjected to high internal gas pressure
  publication-title: J Rock Mech Geotech Eng
– year: 2018
  ident: b8
  article-title: Investigation of research needs regarding the storage of hydrogen gas in lined rock caverns : Prestudy for work package 2.3 in HYBRIT research program 1
– year: 2022
  ident: b13
  article-title: HYBRIT: Milestone reached – pilot facility for hydrogen storage up and running. Vattenfall
– volume: 145
  year: 2022
  ident: b52
  article-title: Effects of fracture network distribution on excavation-induced coupled responses of pore pressure perturbation and rock mass deformation
  publication-title: Comput Geotech
– volume: 105
  start-page: 86
  year: 2019
  end-page: 94
  ident: b1
  article-title: Underground hydrogen storage: Characteristics and prospects
  publication-title: Renew Sustain Energy Rev
– volume: 124
  start-page: 6271
  year: 2024
  end-page: 6392
  ident: b31
  article-title: Hydrogen embrittlement as a conspicuous material challenge—Comprehensive review and future directions
  publication-title: Chem Rev
– volume: 48
  start-page: 17894
  year: 2023
  end-page: 17913
  ident: b47
  article-title: Challenges associated with hydrogen storage systems due to the hydrogen embrittlement of high strength steels
  publication-title: Int J Hydrog Energy
– volume: 528
  start-page: 15
  year: 2023
  end-page: 35
  ident: b4
  article-title: An overview of underground energy-related product storage and sequestration
  publication-title: Geol Soc Lond Spec Publ
– volume: 15
  start-page: 119
  year: 2023
  end-page: 129
  ident: b15
  article-title: Rock mass response for lined rock caverns subjected to high internal gas pressure
  publication-title: J Rock Mech Geotech Eng
– year: 2003
  ident: b10
  article-title: High pressure storage of gas in lined rock caverns-cavern wall design principles
– volume: 92
  start-page: 653
  year: 2012
  end-page: 667
  ident: b18
  article-title: Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance
  publication-title: Appl Energy
– volume: 21
  start-page: 252
  year: 2025
  end-page: 269
  ident: b29
  article-title: Impact of fracture networks on the structural deformation of lined rock caverns under high internal gas pressure
  publication-title: Undergr Space
– volume: 85
  start-page: 151
  year: 2017
  end-page: 176
  ident: b34
  article-title: The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks
  publication-title: Comput Geotech
– volume: 197
  start-page: 158
  year: 2015
  end-page: 171
  ident: b23
  article-title: High internal pressure induced fracture patterns in rock masses surrounding caverns: Experimental study using physical model tests
  publication-title: Eng Geol
– start-page: 45
  year: 2022
  end-page: 69
  ident: b40
  article-title: Damage modeling
  publication-title: Damage and cracking of concrete structures
– volume: 274
  year: 2022
  ident: b30
  article-title: Hydrogen embrittlement in micro-architectured materials
  publication-title: Eng Fract Mech
– volume: 32
  start-page: 3734
  year: 2007
  end-page: 3742
  ident: b49
  article-title: On hydrogen-induced plastic flow localization during void growth and coalescence
  publication-title: Int J Hydrog Energy
– volume: 145
  year: 2022
  ident: b42
  article-title: On the selection of joint constitutive models for geomechanics simulation of fractured rocks
  publication-title: Comput Geotech
– volume: 49
  start-page: 4799
  year: 2016
  end-page: 4816
  ident: b43
  article-title: Implementation of an empirical joint constitutive model into finite-discrete element analysis of the geomechanical behaviour of fractured rocks
  publication-title: Rock Mech Rock Eng
– volume: 48
  start-page: 1323
  year: 2015
  end-page: 1339
  ident: b33
  article-title: Anisotropy is everywhere, to see, to measure, and to model
  publication-title: Rock Mech Rock Eng
– volume: 110–111
  start-page: 60
  year: 2012
  end-page: 78
  ident: b37
  article-title: Numerical aspects of the crack band approach
  publication-title: Comput Struct
– volume: 66
  start-page: 577
  year: 2016
  end-page: 595
  ident: b44
  article-title: A review on diffusion modelling in hydrogen related failures of metals
  publication-title: Eng Fail Anal
– volume: 153
  start-page: 144
  year: 2013
  end-page: 151
  ident: b27
  article-title: Probability-based structural design of lined rock caverns to resist high internal gas pressure
  publication-title: Eng Geol
– volume: 55
  start-page: 78
  year: 2014
  end-page: 90
  ident: b24
  article-title: Analysis of fracture propagation in a rock mass surrounding a tunnel under high internal pressure by the element-free Galerkin method
  publication-title: Comput Geotech
– volume: 37
  start-page: 317
  year: 1989
  end-page: 350
  ident: b46
  article-title: Numerical analysis of hydrogen transport near a blunting crack tip
  publication-title: J Mech Phys Solids
– volume: 49
  start-page: 573
  year: 2016
  end-page: 584
  ident: b20
  article-title: Failure monitoring and leakage detection for underground storage of compressed air energy in lined rock caverns
  publication-title: Rock Mech Rock Eng
– volume: 46
  start-page: 20010
  year: 2021
  end-page: 20022
  ident: b2
  article-title: Storage of hydrogen, natural gas, and carbon dioxide – geological and legal conditions
  publication-title: Int J Hydrog Energy
– volume: 50
  start-page: 116
  year: 2024
  end-page: 133
  ident: b9
  article-title: Underground storage of hydrogen in lined rock caverns: An overview of key components and hydrogen embrittlement challenges
  publication-title: Int J Hydrog Energy
– year: 2022
  ident: b12
  article-title: Fossil-free steel – a joint opportunity!. HYBRIT: Fossil-free steel
– volume: 49
  start-page: 353
  year: 1998
  end-page: 361
  ident: b17
  article-title: Finite element analysis of a pilot gas storage in rock cavern under high pressure
  publication-title: Eng Geol
– year: 1995
  ident: b51
  article-title: Pilot plant for lined underground gas storage facility at graengesberg. deeper analysis of test results ( pilotanlaeggning foer inklaedda gaslager i graengesberg. Foerdjupad analys av foersoeksresultaten)(in Swedish)
– volume: 10
  start-page: 667
  year: 1985
  end-page: 675
  ident: b7
  article-title: A conceptual design for compressed hydrogen storage in mined caverns
  publication-title: Int J Hydrog Energy
– volume: 39
  start-page: 429
  year: 2002
  end-page: 442
  ident: b32
  article-title: A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock
  publication-title: Int J Rock Mech Min Sci
– start-page: 1
  year: 2023
  end-page: 13
  ident: b28
  article-title: Reliability-based design tool for gas storage in lined rock caverns
  publication-title: Georisk: Assess Manag Risk Eng Syst Geohazards
– volume: 46
  start-page: 1113
  year: 2013
  end-page: 1124
  ident: b19
  article-title: Characterizing excavation damaged zone and stability of pressurized lined rock caverns for underground compressed air energy storage
  publication-title: Rock Mech Rock Eng
– volume: 21
  start-page: 56
  year: 2006
  end-page: 67
  ident: b11
  article-title: Excavation of a cavern for high-pressure storage of natural gas
  publication-title: Tunn Undergr Space Technol
– volume: 52
  start-page: 71
  year: 2012
  end-page: 81
  ident: b21
  article-title: Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns
  publication-title: Int J Rock Mech Min Sci
– volume: 18
  start-page: 147
  year: 1970
  end-page: 157
  ident: b45
  article-title: The diffusion and trapping of hydrogen in steel
  publication-title: Acta Metall
– volume: 102
  start-page: 749
  year: 2025
  end-page: 766
  ident: b16
  article-title: A review of the mechanics of lined engineered cavities and their implications on hydrogen storage
  publication-title: Int J Hydrog Energy
– volume: 215
  year: 2023
  ident: b50
  article-title: Experimental comparison of gaseous and electrochemical hydrogen charging in X65 pipeline steel using the permeation technique
  publication-title: Corros Sci
– volume: 4
  start-page: 102
  year: 2023
  end-page: 118
  ident: b3
  article-title: Subsurface carbon dioxide and hydrogen storage for a sustainable energy future
  publication-title: Nat Rev Earth Environ
– volume: 13
  start-page: 817
  year: 2018
  end-page: 832
  ident: b25
  article-title: Evaluation of rock fracture patterns based on the element-free Galerkin method for stability assessment of a highly pressurized gas storage cavern
  publication-title: Acta Geotech
– volume: 14
  start-page: 853
  year: 2021
  end-page: 864
  ident: b6
  article-title: Enabling large-scale hydrogen storage in porous media – the scientific challenges
  publication-title: Energy Env Sci
– volume: 58
  start-page: 605
  year: 2024
  end-page: 620
  ident: b35
  article-title: Research on influence patterns of fault activation on lining structures in lined rock caverns for underground hydrogen energy storage
  publication-title: Int J Hydrog Energy
– volume: 34
  start-page: 110
  year: 2013
  end-page: 123
  ident: b22
  article-title: Investigation of failure behavior of continuous rock mass around cavern under high internal pressure
  publication-title: Tunn Undergr Space Technol
– volume: 289
  year: 2021
  ident: b39
  article-title: Role of hydro-mechanical coupling in excavation-induced damage propagation, fracture deformation and microseismicity evolution in naturally fractured rocks
  publication-title: Eng Geol
– volume: 528
  start-page: 37
  year: 2023
  end-page: 59
  ident: b5
  article-title: Underground energy-related product storage and sequestration: site characterization, risk analysis and monitoring
  publication-title: Geol Soc Lond Spec Publ
– year: 2007
  ident: b41
  article-title: Fundamentals of rock mechanics
– volume: 8
  start-page: 314
  year: 2016
  end-page: 328
  ident: b26
  article-title: Design issues for compressed air energy storage in sealed underground cavities
  publication-title: J Rock Mech Geotech Eng
– year: 2003
  ident: 10.1016/j.ijhydene.2025.150027_b10
– volume: 13
  start-page: 817
  issue: 4
  year: 2018
  ident: 10.1016/j.ijhydene.2025.150027_b25
  article-title: Evaluation of rock fracture patterns based on the element-free Galerkin method for stability assessment of a highly pressurized gas storage cavern
  publication-title: Acta Geotech
  doi: 10.1007/s11440-017-0594-5
– volume: 289
  issn: 00137952
  year: 2021
  ident: 10.1016/j.ijhydene.2025.150027_b39
  article-title: Role of hydro-mechanical coupling in excavation-induced damage propagation, fracture deformation and microseismicity evolution in naturally fractured rocks
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2021.106169
– volume: 48
  start-page: 1323
  issn: 07232632
  year: 2015
  ident: 10.1016/j.ijhydene.2025.150027_b33
  article-title: Anisotropy is everywhere, to see, to measure, and to model
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-014-0632-7
– volume: 8
  start-page: 314
  issn: 16747755
  issue: 3
  year: 2016
  ident: 10.1016/j.ijhydene.2025.150027_b26
  article-title: Design issues for compressed air energy storage in sealed underground cavities
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2015.09.006
– volume: 39
  start-page: 429
  issn: 13651609
  issue: 4
  year: 2002
  ident: 10.1016/j.ijhydene.2025.150027_b32
  article-title: A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/S1365-1609(02)00022-9
– volume: 110–111
  start-page: 60
  issn: 00457949
  year: 2012
  ident: 10.1016/j.ijhydene.2025.150027_b37
  article-title: Numerical aspects of the crack band approach
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2012.06.006
– volume: 50
  start-page: 116
  issn: 03603199
  year: 2024
  ident: 10.1016/j.ijhydene.2025.150027_b9
  article-title: Underground storage of hydrogen in lined rock caverns: An overview of key components and hydrogen embrittlement challenges
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2023.08.342
– year: 2018
  ident: 10.1016/j.ijhydene.2025.150027_b8
– volume: 92
  start-page: 653
  issn: 0306-2619
  year: 2012
  ident: 10.1016/j.ijhydene.2025.150027_b18
  article-title: Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.07.013
– volume: 14
  start-page: 853
  year: 2021
  ident: 10.1016/j.ijhydene.2025.150027_b6
  article-title: Enabling large-scale hydrogen storage in porous media – the scientific challenges
  publication-title: Energy Env Sci
  doi: 10.1039/D0EE03536J
– volume: 15
  start-page: 119
  issn: 16747755
  issue: 1
  year: 2023
  ident: 10.1016/j.ijhydene.2025.150027_b15
  article-title: Rock mass response for lined rock caverns subjected to high internal gas pressure
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2022.03.006
– volume: 58
  start-page: 605
  issn: 0360-3199
  year: 2024
  ident: 10.1016/j.ijhydene.2025.150027_b35
  article-title: Research on influence patterns of fault activation on lining structures in lined rock caverns for underground hydrogen energy storage
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2024.01.241
– volume: 102
  start-page: 749
  issn: 0360-3199
  year: 2025
  ident: 10.1016/j.ijhydene.2025.150027_b16
  article-title: A review of the mechanics of lined engineered cavities and their implications on hydrogen storage
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2024.12.467
– start-page: 1
  year: 2023
  ident: 10.1016/j.ijhydene.2025.150027_b28
  article-title: Reliability-based design tool for gas storage in lined rock caverns
  publication-title: Georisk: Assess Manag Risk Eng Syst Geohazards
– volume: 49
  start-page: 4799
  issn: 0723-2632
  issue: 12
  year: 2016
  ident: 10.1016/j.ijhydene.2025.150027_b43
  article-title: Implementation of an empirical joint constitutive model into finite-discrete element analysis of the geomechanical behaviour of fractured rocks
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-016-1064-3
– volume: 47
  start-page: 971
  issn: 0022-5096
  issue: 4
  year: 1999
  ident: 10.1016/j.ijhydene.2025.150027_b48
  article-title: Hydrogen transport near a blunting crack tip
  publication-title: J Mech Phys Solids
  doi: 10.1016/S0022-5096(98)00064-7
– year: 2022
  ident: 10.1016/j.ijhydene.2025.150027_b12
– year: 1995
  ident: 10.1016/j.ijhydene.2025.150027_b51
– volume: 124
  start-page: 6271
  issn: 15206890
  issue: 10
  year: 2024
  ident: 10.1016/j.ijhydene.2025.150027_b31
  article-title: Hydrogen embrittlement as a conspicuous material challenge—Comprehensive review and future directions
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.3c00624
– volume: 4
  start-page: 102
  year: 2023
  ident: 10.1016/j.ijhydene.2025.150027_b3
  article-title: Subsurface carbon dioxide and hydrogen storage for a sustainable energy future
  publication-title: Nat Rev Earth Environ
  doi: 10.1038/s43017-022-00376-8
– volume: 528
  start-page: 37
  issue: 1
  year: 2023
  ident: 10.1016/j.ijhydene.2025.150027_b5
  article-title: Underground energy-related product storage and sequestration: site characterization, risk analysis and monitoring
  publication-title: Geol Soc Lond Spec Publ
  doi: 10.1144/SP528-2022-66
– volume: 46
  start-page: 1113
  issn: 07232632
  issue: 5
  year: 2013
  ident: 10.1016/j.ijhydene.2025.150027_b19
  article-title: Characterizing excavation damaged zone and stability of pressurized lined rock caverns for underground compressed air energy storage
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-012-0312-4
– volume: 21
  start-page: 252
  issn: 2467-9674
  year: 2025
  ident: 10.1016/j.ijhydene.2025.150027_b29
  article-title: Impact of fracture networks on the structural deformation of lined rock caverns under high internal gas pressure
  publication-title: Undergr Space
  doi: 10.1016/j.undsp.2024.03.009
– volume: 52
  start-page: 71
  year: 2012
  ident: 10.1016/j.ijhydene.2025.150027_b21
  article-title: Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2012.02.010
– volume: 138
  issn: 13651609
  year: 2021
  ident: 10.1016/j.ijhydene.2025.150027_b38
  article-title: Modelling fluid injection-induced fracture activation, damage growth, seismicity occurrence and connectivity change in naturally fractured rocks
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2020.104598
– volume: 21
  start-page: 56
  issn: 0886-7798
  issue: 1
  year: 2006
  ident: 10.1016/j.ijhydene.2025.150027_b11
  article-title: Excavation of a cavern for high-pressure storage of natural gas
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2005.06.002
– year: 2022
  ident: 10.1016/j.ijhydene.2025.150027_b13
– volume: 215
  issn: 0010938X
  issue: September 2022
  year: 2023
  ident: 10.1016/j.ijhydene.2025.150027_b50
  article-title: Experimental comparison of gaseous and electrochemical hydrogen charging in X65 pipeline steel using the permeation technique
  publication-title: Corros Sci
– start-page: 1742
  year: 2018
  ident: 10.1016/j.ijhydene.2025.150027_b36
– volume: 105
  start-page: 86
  year: 2019
  ident: 10.1016/j.ijhydene.2025.150027_b1
  article-title: Underground hydrogen storage: Characteristics and prospects
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.01.051
– volume: 49
  start-page: 573
  issn: 07232632
  issue: 2
  year: 2016
  ident: 10.1016/j.ijhydene.2025.150027_b20
  article-title: Failure monitoring and leakage detection for underground storage of compressed air energy in lined rock caverns
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-015-0761-7
– volume: 55
  start-page: 78
  year: 2014
  ident: 10.1016/j.ijhydene.2025.150027_b24
  article-title: Analysis of fracture propagation in a rock mass surrounding a tunnel under high internal pressure by the element-free Galerkin method
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2013.08.003
– start-page: 45
  year: 2022
  ident: 10.1016/j.ijhydene.2025.150027_b40
  article-title: Damage modeling
  doi: 10.1002/9781394185979.ch3
– volume: 32
  start-page: 3734
  issn: 03603199
  issue: 16
  year: 2007
  ident: 10.1016/j.ijhydene.2025.150027_b49
  article-title: On hydrogen-induced plastic flow localization during void growth and coalescence
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2006.08.047
– volume: 274
  issn: 00137944
  issue: August
  year: 2022
  ident: 10.1016/j.ijhydene.2025.150027_b30
  article-title: Hydrogen embrittlement in micro-architectured materials
  publication-title: Eng Fract Mech
– volume: 34
  start-page: 110
  year: 2013
  ident: 10.1016/j.ijhydene.2025.150027_b22
  article-title: Investigation of failure behavior of continuous rock mass around cavern under high internal pressure
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2012.11.004
– volume: 153
  start-page: 144
  issn: 0013-7952
  year: 2013
  ident: 10.1016/j.ijhydene.2025.150027_b27
  article-title: Probability-based structural design of lined rock caverns to resist high internal gas pressure
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2012.12.001
– year: 2007
  ident: 10.1016/j.ijhydene.2025.150027_b41
– volume: 49
  start-page: 353
  issn: 0013-7952
  issue: 3
  year: 1998
  ident: 10.1016/j.ijhydene.2025.150027_b17
  article-title: Finite element analysis of a pilot gas storage in rock cavern under high pressure
  publication-title: Eng Geol
  doi: 10.1016/S0013-7952(97)00067-7
– volume: 145
  issn: 0266-352X
  year: 2022
  ident: 10.1016/j.ijhydene.2025.150027_b42
  article-title: On the selection of joint constitutive models for geomechanics simulation of fractured rocks
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2022.104707
– volume: 528
  start-page: 15
  issue: 1
  year: 2023
  ident: 10.1016/j.ijhydene.2025.150027_b4
  article-title: An overview of underground energy-related product storage and sequestration
  publication-title: Geol Soc Lond Spec Publ
  doi: 10.1144/SP528-2022-160
– volume: 37
  start-page: 317
  issn: 0022-5096
  issue: 3
  year: 1989
  ident: 10.1016/j.ijhydene.2025.150027_b46
  article-title: Numerical analysis of hydrogen transport near a blunting crack tip
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(89)90002-1
– volume: 145
  issn: 18737633
  issue: March
  year: 2022
  ident: 10.1016/j.ijhydene.2025.150027_b52
  article-title: Effects of fracture network distribution on excavation-induced coupled responses of pore pressure perturbation and rock mass deformation
  publication-title: Comput Geotech
– volume: 10
  start-page: 667
  issn: 0360-3199
  issue: 10
  year: 1985
  ident: 10.1016/j.ijhydene.2025.150027_b7
  article-title: A conceptual design for compressed hydrogen storage in mined caverns
  publication-title: Int J Hydrog Energy
  doi: 10.1016/0360-3199(85)90006-0
– volume: 46
  start-page: 20010
  issn: 0360-3199
  issue: 38
  year: 2021
  ident: 10.1016/j.ijhydene.2025.150027_b2
  article-title: Storage of hydrogen, natural gas, and carbon dioxide – geological and legal conditions
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2021.03.131
– volume: 85
  start-page: 151
  year: 2017
  ident: 10.1016/j.ijhydene.2025.150027_b34
  article-title: The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2016.12.024
– volume: 15
  start-page: 1625
  issn: 16747755
  issue: 7
  year: 2023
  ident: 10.1016/j.ijhydene.2025.150027_b14
  article-title: Effect of rock joints on lined rock caverns subjected to high internal gas pressure
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2022.11.011
– volume: 197
  start-page: 158
  year: 2015
  ident: 10.1016/j.ijhydene.2025.150027_b23
  article-title: High internal pressure induced fracture patterns in rock masses surrounding caverns: Experimental study using physical model tests
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2015.08.024
– volume: 66
  start-page: 577
  issn: 13506307
  year: 2016
  ident: 10.1016/j.ijhydene.2025.150027_b44
  article-title: A review on diffusion modelling in hydrogen related failures of metals
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2016.05.019
– volume: 18
  start-page: 147
  issn: 0001-6160
  issue: 1
  year: 1970
  ident: 10.1016/j.ijhydene.2025.150027_b45
  article-title: The diffusion and trapping of hydrogen in steel
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(70)90078-7
– volume: 48
  start-page: 17894
  issn: 03603199
  issue: 47
  year: 2023
  ident: 10.1016/j.ijhydene.2025.150027_b47
  article-title: Challenges associated with hydrogen storage systems due to the hydrogen embrittlement of high strength steels
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2023.01.292
SSID ssj0017049
Score 2.4803867
Snippet The technology of lined rock cavern (LRC) with great geographical flexibility is a promising, cost-effective solution to underground hydrogen storage. However,...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 150027
SubjectTerms Discrete fracture network
Fractured rock
Hydrogen embrittlement
Lined rock cavern
Underground hydrogen storage
Title Modelling lined rock caverns subject to hydrogen embrittlement and cyclic pressurisation in fractured rock masses
URI https://dx.doi.org/10.1016/j.ijhydene.2025.150027
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-564308
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDAgnuJZeYAxbeI4cTJWhaqAxMJDbFb8ghRIoTRDF347d3mgMiAGxkRObJ3Pd5_tu-8IOVE-15pb44mARx632sCSipXnwBf7ygLithXb53U8uuOXD9HDEhm0uTAYVtnY_tqmV9a6edNrpNl7y_PeDdheTMFJwYmjliLjJ-cCtbz7-R3mEYgGAkNjD1svZAmPu_n4aQ7LG-kyWdQFbORjdZlfHNQik2jlfYYbZL2BjbRfj2yTLNlii6wtkAluk3csa1YxbFOEjoaCa3qmOsNauh_0o1R44kJnEwqDmU5Ab6jFdC3kMMYTQpoVhuq5fsk1rYJjkV2wmjaaF9RhMlU5bf_6muFd8Q65G57fDkZeU1DB0yGPZx4PsoRZ2LEZoWArwbhSUcptKiJumHDaATiLhTMhU75LE-6EZYHBu2nkKWI63CXLxaSwe4TywDljYX8buJSrNFROiIw5E_iaGxOn-6TXSlG-1bwZsg0oG8tW7hLlLmu575O0Fbb8oQESjPuf357Ws_PdF7Jmn-X3fTmZPsqylBEgLz85-Ecfh2QVn_BclyVHZHk2Le0xAJKZ6lQa1yEr_Yur0fUXiTjjEA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25UsMwENVwFEDBcA43KqB0YsuyFZcMx4Sz4Rg6jXWBAziQxEUavp1dH0woGApaW7Y0q9Xuk7T7lpAD5XOtuTWeCHjkcasNLKlYeQ58sa8sIG5bsn3exN17fvEYPU6R4yYXBsMqa9tf2fTSWtdP2rU02-9Z1r4F24spOAk4cdTScJrMcli-WMag9fkd5xGIGgNDaw-bT6QJ91pZ73kM6xv5MlnUAnDkY3mZXzzUJJVo6X7OlshijRvpUTW0ZTJl8xWyMMEmuEo-sK5ZSbFNETsaCr7pheoUi-kO6bBQeORCR30Kgxn0QXGoxXwtJDHGI0Ka5obqsX7NNC2jY5FesJw3muXUYTZVMWj--pbiZfEauT87vTvuenVFBU-HPB55PEg7zMKWzQgFewnGlYoSbhMRccOE0w7QWSycCZnyXdLhTlgWGLycRqIipsN1MpP3c7tBKA-cMxY2uIFLuEpC5YRImTOBr7kxcbJJ2o0U5XtFnCGbiLKebOQuUe6ykvsmSRphyx8qIMG6__ntYTU7330hbfZJ9nAk-4MnWRQyAujld7b-0cc-meveXV_Jq_Oby20yj2_wkJd1dsjMaFDYXUAnI7VXat8XzLLkng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+lined+rock+caverns+subject+to+hydrogen+embrittlement+and+cyclic+pressurisation+in+fractured+rock+masses&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Zhao%2C+Chenxi&rft.au=Yu%2C+Haiyang&rft.au=Zhang%2C+Zixin&rft.au=Lei%2C+Qinghua&rft.date=2025-07-28&rft.issn=1879-3487&rft.volume=152&rft_id=info:doi/10.1016%2Fj.ijhydene.2025.150027&rft.externalDocID=oai_DiVA_org_uu_564308
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon