Review of magnetostrictive vibration energy harvesters
The field of energy harvesting has grown concurrently with the rapid development of portable and wireless electronics in which reliable and long-lasting power sources are required. Electrochemical batteries have a limited lifespan and require periodic recharging. In contrast, vibration energy harves...
Saved in:
Published in | Smart materials and structures Vol. 26; no. 10; pp. 103001 - 103018 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The field of energy harvesting has grown concurrently with the rapid development of portable and wireless electronics in which reliable and long-lasting power sources are required. Electrochemical batteries have a limited lifespan and require periodic recharging. In contrast, vibration energy harvesters can supply uninterrupted power by scavenging useful electrical energy from ambient structural vibrations. This article reviews the current state of vibration energy harvesters based on magnetostrictive materials, especially Terfenol-D and Galfenol. Existing magnetostrictive harvester designs are compared in terms of various performance metrics. Advanced techniques that can reduce device size and improve performance are presented. Models for magnetostrictive devices are summarized to guide future harvester designs. |
---|---|
AbstractList | The field of energy harvesting has grown concurrently with the rapid development of portable and wireless electronics in which reliable and long-lasting power sources are required. Electrochemical batteries have a limited lifespan and require periodic recharging. In contrast, vibration energy harvesters can supply uninterrupted power by scavenging useful electrical energy from ambient structural vibrations. This article reviews the current state of vibration energy harvesters based on magnetostrictive materials, especially Terfenol-D and Galfenol. Existing magnetostrictive harvester designs are compared in terms of various performance metrics. Advanced techniques that can reduce device size and improve performance are presented. Models for magnetostrictive devices are summarized to guide future harvester designs. |
Author | Dapino, Marcelo J Deng, Zhangxian |
Author_xml | – sequence: 1 givenname: Zhangxian orcidid: 0000-0003-1084-1738 surname: Deng fullname: Deng, Zhangxian organization: The Ohio State University NSF I/UCRC Smart Vehicle Concepts Center, Department of Mechanical and Aerospace Engineering, Columbus, OH 43210, United States of America – sequence: 2 givenname: Marcelo J orcidid: 0000-0003-4888-1903 surname: Dapino fullname: Dapino, Marcelo J email: dapino.1@osu.edu organization: The Ohio State University NSF I/UCRC Smart Vehicle Concepts Center, Department of Mechanical and Aerospace Engineering, Columbus, OH 43210, United States of America |
BookMark | eNp9z01LAzEQgOEgFWyrd4_7A1ybMZtkc5TiFxQEUfAWknRSU9pNSeJK_72tFQ-CngaGeQeeERl0sUNCzoFeAm3bCTABtRD8dWJMyxp5RIY_qwEZUiWaGuSVOCGjnJeUArQMhkQ8YR_wo4q-WptFhyXmkoIroceqDzaZEmJXYYdpsa3eTOoxF0z5lBx7s8p49j3H5OX25nl6X88e7x6m17PasUaUmjWWO-UVV86CcdJ5aymfzz1wx7k1BuRuWKWkatmcNsw01jLpwSJaKZGNCT38dSnmnNDrTQprk7YaqN679R6p90h9cO8S8StxoXwxSjJh9V94cQhD3OhlfE_dTvb3-SeLH26A |
CODEN | SMSTER |
CitedBy_id | crossref_primary_10_1016_j_ijmecsci_2022_107291 crossref_primary_10_1016_j_mtener_2021_100848 crossref_primary_10_3390_app14199070 crossref_primary_10_3390_mi15101189 crossref_primary_10_1109_TMAG_2021_3059927 crossref_primary_10_35848_1882_0786_ad1f06 crossref_primary_10_1177_14644193221135929 crossref_primary_10_3390_ma13071494 crossref_primary_10_1038_s41467_023_39650_8 crossref_primary_10_3139_146_111889 crossref_primary_10_1007_s11998_022_00690_2 crossref_primary_10_1063_1_5111351 crossref_primary_10_1016_j_sna_2024_115207 crossref_primary_10_1109_TMAG_2020_3014603 crossref_primary_10_1142_S0219455422500286 crossref_primary_10_3390_mi15091109 crossref_primary_10_1142_S2010135X19300019 crossref_primary_10_1080_14786435_2020_1861357 crossref_primary_10_1016_j_jallcom_2023_169844 crossref_primary_10_1080_15376494_2022_2080893 crossref_primary_10_3390_en15249366 crossref_primary_10_1016_j_nanoen_2021_106304 crossref_primary_10_1007_s00466_020_01914_1 crossref_primary_10_1007_s10854_024_13513_4 crossref_primary_10_1109_TMAG_2023_3283960 crossref_primary_10_14243_jsaem_31_525 crossref_primary_10_1016_j_jmmm_2018_08_085 crossref_primary_10_1016_j_scriptamat_2024_116471 crossref_primary_10_1080_15397734_2020_1728546 crossref_primary_10_1002_adma_201707271 crossref_primary_10_1109_TMAG_2019_2891118 crossref_primary_10_3390_ma14164486 crossref_primary_10_1177_10775463221102668 crossref_primary_10_3390_app13063477 crossref_primary_10_1016_j_ymssp_2020_106642 crossref_primary_10_1016_j_apples_2022_100106 crossref_primary_10_1177_1045389X20978292 crossref_primary_10_1016_j_jmmm_2023_171281 crossref_primary_10_1002_aenm_202302699 crossref_primary_10_1016_j_matdes_2019_107803 crossref_primary_10_1021_acsami_1c06031 crossref_primary_10_1016_j_engstruct_2025_119644 crossref_primary_10_3390_electronics13244904 crossref_primary_10_1016_j_enconman_2019_111973 crossref_primary_10_1080_21663831_2018_1451403 crossref_primary_10_1061_JOEEDU_EEENG_7073 crossref_primary_10_1016_j_jmmm_2020_167260 crossref_primary_10_1063_1_5140485 crossref_primary_10_1016_j_snr_2024_100236 crossref_primary_10_3390_app14199146 crossref_primary_10_1115_1_4050194 crossref_primary_10_1016_j_ecmx_2024_100705 crossref_primary_10_1142_S0219455419410025 crossref_primary_10_1016_j_actamat_2021_116975 crossref_primary_10_1016_j_ymssp_2023_110437 crossref_primary_10_1016_j_addma_2022_102741 crossref_primary_10_1002_adem_202101036 crossref_primary_10_1016_j_ecmx_2024_100544 crossref_primary_10_3390_nanoenergyadv4010001 crossref_primary_10_3390_s22062102 crossref_primary_10_1016_j_hybadv_2024_100242 crossref_primary_10_1088_1361_665X_ad1dec crossref_primary_10_1007_s41230_020_0011_9 crossref_primary_10_1016_j_ymssp_2020_107477 crossref_primary_10_1016_j_ymssp_2021_108444 crossref_primary_10_1088_1361_665X_ad1deb crossref_primary_10_1007_s12598_023_02294_0 crossref_primary_10_1080_01495739_2024_2400195 crossref_primary_10_2320_matertrans_MT_M2021079 crossref_primary_10_1016_j_ijmecsci_2023_108731 crossref_primary_10_1016_j_sna_2023_114303 crossref_primary_10_1103_PhysRevB_109_014417 crossref_primary_10_1177_1045389X231225502 crossref_primary_10_3390_act8020045 crossref_primary_10_3390_en13010086 crossref_primary_10_1016_j_energy_2023_128287 crossref_primary_10_1016_j_jfluidstructs_2023_103910 crossref_primary_10_1109_TMAG_2019_2902569 crossref_primary_10_3390_mi10100701 crossref_primary_10_1016_j_ymssp_2019_106418 crossref_primary_10_1109_JSEN_2020_2976541 crossref_primary_10_3390_en13051230 crossref_primary_10_1088_1361_665X_ad7ca7 crossref_primary_10_3390_ma12132055 crossref_primary_10_1016_j_ijfatigue_2019_105325 crossref_primary_10_3390_app142311178 crossref_primary_10_1016_j_jallcom_2024_178128 crossref_primary_10_1007_s13349_023_00678_5 crossref_primary_10_1016_j_pmatsci_2020_100705 crossref_primary_10_1016_j_elstat_2025_104037 crossref_primary_10_1177_1045389X221147854 crossref_primary_10_1016_j_jmmm_2023_170943 crossref_primary_10_1016_j_suscom_2024_101039 crossref_primary_10_2320_matertrans_MT_M2019146 crossref_primary_10_1016_j_jmmm_2019_165771 crossref_primary_10_1038_s41427_019_0160_8 crossref_primary_10_1007_s11012_022_01599_1 crossref_primary_10_1016_j_ijmecsci_2020_105568 crossref_primary_10_1103_PhysRevMaterials_3_033401 crossref_primary_10_1063_1_5063718 crossref_primary_10_1016_j_sna_2024_116186 crossref_primary_10_1016_j_chaos_2024_115897 crossref_primary_10_1016_j_apenergy_2018_02_093 crossref_primary_10_1016_j_sna_2024_115017 crossref_primary_10_3390_machines10100848 crossref_primary_10_1002_adem_202300185 crossref_primary_10_1063_5_0051297 crossref_primary_10_1007_s00542_025_05856_7 crossref_primary_10_1016_j_jallcom_2022_166894 crossref_primary_10_2320_materia_59_16 crossref_primary_10_1088_1361_665X_ad126e crossref_primary_10_1177_10775463221134962 crossref_primary_10_3390_electricity5010002 crossref_primary_10_1016_j_ijmecsci_2021_106544 crossref_primary_10_3390_app13031606 crossref_primary_10_1109_TMAG_2018_2831000 crossref_primary_10_1088_1361_665X_ac699a crossref_primary_10_14243_jsaem_29_570 crossref_primary_10_1587_elex_22_20250031 |
Cites_doi | 10.1109/TMAG.2011.2158303 10.1117/12.2050453 10.1088/0964-1726/24/12/125032 10.1063/1.4972479 10.1177/1045389X05054042 10.1117/12.2218759 10.1117/12.2046247 10.1109/TMAG.2006.878395 10.1016/j.jsv.2010.11.018 10.1098/rsta.1948.0007 10.1109/TMAG.2015.2441295 10.1016/S0924-4247(01)00569-6 10.1016/j.jmmm.2004.11.395 10.1177/1045389X12436729 10.1016/S0304-8853(02)01567-6 10.1063/1.4907237 10.1063/1.4729875 10.1109/92.920820 10.1117/12.2009812 10.1016/j.sna.2009.11.007 10.1016/j.sna.2003.09.045 10.1109/TMAG.2015.2446495 10.1002/pip.2573 10.1016/j.compstruc.2007.01.030 10.1007/978-1-4612-3028-1 10.1117/12.2220302 10.1063/1.4917464 10.1063/1.3318494 10.1088/0964-1726/19/5/055009 10.1109/ICEMS.2015.7385068 10.1117/12.604871 10.1016/j.sna.2009.03.027 10.1016/S0140-3664(02)00248-7 10.1109/TMAG.2011.2162744 10.1117/12.914412 10.1016/0304-8853(86)90066-1 10.4271/952641 10.1109/TMAG.1984.1063522 10.1109/TMAG.2014.2360195 10.1088/0964-1726/20/4/045013 10.1016/j.sna.2010.12.026 10.1109/JPROC.2008.927494 10.1016/0022-460X(79)90520-0 10.1109/TMAG.2012.2202273 10.1109/JMEMS.2004.830151 10.1088/1361-665X/aa5c48 10.1063/1.3357403 10.1063/1.4865976 10.1109/T-VT.1980.23859 10.1063/1.2839280 10.1002/adma.201100773 10.1016/j.sna.2010.05.022 10.1177/1045389X11403822 10.1177/0954406214545821 10.1088/0964-1726/22/8/085015 10.1063/1.2165133 10.1063/1.3597222 10.1088/0964-1726/16/3/R01 10.1177/1045389x16666176 10.1016/j.sna.2010.12.025 10.1016/j.jmmm.2015.08.074 10.1177/1045389X14521703 10.1109/JSEN.2011.2167747 10.1109/TMAG.2015.2454442 10.1109/JSSC.2008.920318 10.1177/1045389x16685444 10.1117/12.2085550 10.1109/TMAG.2014.2327169 10.1109/ISCAS.1998.699014 |
ContentType | Journal Article |
Copyright | 2017 IOP Publishing Ltd |
Copyright_xml | – notice: 2017 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-665X/aa8347 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | Review of magnetostrictive vibration energy harvesters |
EISSN | 1361-665X |
ExternalDocumentID | 10_1088_1361_665X_aa8347 smsaa8347 |
GrantInformation_xml | – fundername: Division of Industrial Innovation and Partnerships grantid: NSF Grant IIP-1238286 funderid: https://doi.org/10.13039/100000151 |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c346t-34b5c9f959cb1ac7cfbb05ddf15c55baa1755bb997983d043a4bb37f1beeb77e3 |
IEDL.DBID | IOP |
ISSN | 0964-1726 |
IngestDate | Thu Apr 24 22:54:17 EDT 2025 Tue Jul 01 03:38:39 EDT 2025 Wed Aug 21 03:40:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c346t-34b5c9f959cb1ac7cfbb05ddf15c55baa1755bb997983d043a4bb37f1beeb77e3 |
Notes | SMS-104997.R1 |
ORCID | 0000-0003-4888-1903 0000-0003-1084-1738 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1088_1361_665X_aa8347 crossref_citationtrail_10_1088_1361_665X_aa8347 iop_journals_10_1088_1361_665X_aa8347 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-01 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Smart materials and structures |
PublicationTitleAbbrev | SMS |
PublicationTitleAlternate | Smart Mater. Struct |
PublicationYear | 2017 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 44 45 46 Scheidler J J (9) 2016 47 Deng Z (29) 2017; 26 49 Nair B (35) 2014 Scheidler J J (71) 2013; 22 Dudley J H (37) Anton S R (17) 2007; 16 Hu J (48) 2011; 20 50 51 52 Al Janaideh M (62) 2009; 18 53 10 11 12 56 57 14 Wang L (19) 2008; 17 58 15 59 18 Moss S (16) 2011; 20 1 2 3 4 5 6 7 8 Murphree Z (36) 2013 60 Marin A (54) 61 63 20 64 21 65 22 66 23 67 68 25 69 26 27 Chakrabarti S (77) 2010; 19 Deng Z (24) 2015; 24 Staley M E (39) 2005 70 72 73 30 74 31 32 Scheidler J J (75) 2017; 26 76 Despesse G (13) 2005 33 34 78 79 38 Deng Z (28) 2015 Mori K (55) 2015; 24 80 81 82 83 40 84 41 42 43 |
References_xml | – ident: 21 doi: 10.1109/TMAG.2011.2158303 – ident: 84 doi: 10.1117/12.2050453 – volume: 24 issn: 0964-1726 year: 2015 ident: 55 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/12/125032 – ident: 67 doi: 10.1063/1.4972479 – ident: 26 doi: 10.1177/1045389X05054042 – ident: 49 doi: 10.1117/12.2218759 – ident: 72 doi: 10.1117/12.2046247 – ident: 64 doi: 10.1109/TMAG.2006.878395 – ident: 59 doi: 10.1016/j.jsv.2010.11.018 – ident: 20 doi: 10.1098/rsta.1948.0007 – ident: 34 doi: 10.1109/TMAG.2015.2441295 – year: 2013 ident: 36 publication-title: US Patent App. – ident: 11 doi: 10.1016/S0924-4247(01)00569-6 – ident: 81 doi: 10.1016/j.jmmm.2004.11.395 – ident: 23 doi: 10.1177/1045389X12436729 – ident: 66 doi: 10.1016/S0304-8853(02)01567-6 – ident: 44 doi: 10.1063/1.4907237 – ident: 60 doi: 10.1063/1.4729875 – ident: 14 doi: 10.1109/92.920820 – ident: 27 doi: 10.1117/12.2009812 – ident: 5 – ident: 50 doi: 10.1016/j.sna.2009.11.007 – ident: 12 doi: 10.1016/j.sna.2003.09.045 – ident: 73 doi: 10.1109/TMAG.2015.2446495 – ident: 4 doi: 10.1002/pip.2573 – ident: 41 doi: 10.1016/j.compstruc.2007.01.030 – ident: 61 doi: 10.1007/978-1-4612-3028-1 – year: 2015 ident: 28 – volume: 26 issn: 0964-1726 year: 2017 ident: 29 publication-title: Smart Mater. Struct. – ident: 22 doi: 10.1117/12.2220302 – year: 2016 ident: 9 publication-title: Proc. Internoise – ident: 45 doi: 10.1063/1.4917464 – ident: 54 publication-title: US Patent App. – ident: 68 doi: 10.1063/1.3318494 – volume: 19 issn: 0964-1726 year: 2010 ident: 77 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/19/5/055009 – ident: 33 doi: 10.1109/ICEMS.2015.7385068 – ident: 38 doi: 10.1117/12.604871 – ident: 82 doi: 10.1016/j.sna.2009.03.027 – ident: 8 doi: 10.1016/S0140-3664(02)00248-7 – ident: 37 publication-title: US Patent App. – ident: 80 doi: 10.1109/TMAG.2011.2162744 – ident: 56 doi: 10.1117/12.914412 – ident: 63 doi: 10.1016/0304-8853(86)90066-1 – ident: 10 doi: 10.4271/952641 – ident: 2 doi: 10.1109/TMAG.1984.1063522 – volume: 17 issn: 0964-1726 year: 2008 ident: 19 publication-title: Smart Mater. Struct. – volume: 20 issn: 0964-1726 year: 2011 ident: 48 publication-title: Smart Mater. Struct. – year: 2014 ident: 35 publication-title: US Patent App. – ident: 74 doi: 10.1109/TMAG.2014.2360195 – volume: 20 issn: 0964-1726 year: 2011 ident: 16 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/20/4/045013 – ident: 51 doi: 10.1016/j.sna.2010.12.026 – ident: 18 doi: 10.1109/JPROC.2008.927494 – ident: 57 doi: 10.1016/0022-460X(79)90520-0 – ident: 79 doi: 10.1109/TMAG.2012.2202273 – ident: 15 doi: 10.1109/JMEMS.2004.830151 – volume: 26 issn: 0964-1726 year: 2017 ident: 75 publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa5c48 – ident: 47 doi: 10.1063/1.3357403 – ident: 42 doi: 10.1063/1.4865976 – ident: 7 doi: 10.1109/T-VT.1980.23859 – ident: 65 doi: 10.1063/1.2839280 – ident: 52 doi: 10.1002/adma.201100773 – ident: 58 doi: 10.1016/j.sna.2010.05.022 – ident: 76 doi: 10.1177/1045389X11403822 – ident: 32 doi: 10.1177/0954406214545821 – start-page: 386 year: 2005 ident: 13 publication-title: Proc. Design, Test, Integration and Packaging of MEMS and MOEMS – volume: 24 issn: 0964-1726 year: 2015 ident: 24 publication-title: Smart Mater. Struct. – ident: 3 – volume: 22 issn: 0964-1726 year: 2013 ident: 71 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/8/085015 – ident: 69 doi: 10.1063/1.2165133 – ident: 30 doi: 10.1063/1.3597222 – volume: 16 start-page: R1 issn: 0964-1726 year: 2007 ident: 17 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/16/3/R01 – ident: 25 doi: 10.1177/1045389x16666176 – ident: 53 doi: 10.1016/j.sna.2010.12.025 – volume: 18 issn: 0964-1726 year: 2009 ident: 62 publication-title: Smart Mater. Struct. – ident: 40 doi: 10.1016/j.jmmm.2015.08.074 – ident: 78 doi: 10.1177/1045389X14521703 – ident: 83 doi: 10.1109/JSEN.2011.2167747 – ident: 31 doi: 10.1109/TMAG.2015.2454442 – ident: 6 doi: 10.1109/JSSC.2008.920318 – ident: 70 doi: 10.1177/1045389x16685444 – ident: 46 doi: 10.1117/12.2085550 – ident: 43 doi: 10.1109/TMAG.2014.2327169 – ident: 1 doi: 10.1109/ISCAS.1998.699014 – year: 2005 ident: 39 |
SSID | ssj0011831 |
Score | 2.5780787 |
SecondaryResourceType | review_article |
Snippet | The field of energy harvesting has grown concurrently with the rapid development of portable and wireless electronics in which reliable and long-lasting power... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103001 |
SubjectTerms | design energy harvester magnetostrictive materials modeling |
Title | Review of magnetostrictive vibration energy harvesters |
URI | https://iopscience.iop.org/article/10.1088/1361-665X/aa8347 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qRdCDj6pYX-SgBw_bJt3dJIsnEUsRfBws9CCEnc1GQU1Km_bgr3c3SUsVFfGWwyRZvt15LDPzDcCJsneM2JWkgx1JmAglQZpQgjG1VRdG_bS9KN7c-r0-ux7wQQ3O570w2bAy_S3zWBIFlxBWBXFh26O-R3yfD9pShpQFS7BMQ-M4bffe3f08hWDOajEuT_iMGC89y1F-94VPPmnJ_HfBxXQ34HG2uLKy5KU1ybGl3r_wNv5z9ZuwXoWezkUpugU1nTZgbYGQsAErRUGoGm-DXyYNnCxx3uRTqvPMDvgojKMztVdsu6GOLjoHnWc5mhaMC-Md6HevHi57pJqxQBRlfk4oQ65EIrhQ6EkVqATR5XGceFxxjlKa8IIjChGIkMYuo5Ih0iDxUGsMAk13oZ5mqd4DJ0C0Xa40cCVnRrFDoY05Zdr4SRNT6rgJ7RnKkaoIyO0cjNeoSISHYWSxiSw2UYlNE87mbwxL8o1fZE8N5FGlgeMf5fb_KHcAqx3rwYu6vUOo56OJPjLxR47HxTn7AHDG0SI |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED5BEQgG3og3GWBgcNvEdhIPDAioeMMAUrfgcxyQgLaiaRH8Kf4KPwk7SStAgFgY2DJcItvf-R65F8C6sj5GXJXEQ08SJkJJkCaUYExt1oW5fto6iien_v4lO6zz-gC89Gthmq1C9JfNY94oOD_CIiEurLjUd4nv83pFypCyoNKKkyKr8kg_PRqfrb11sGsA3vC82t7Fzj4pxgoQRZmfEsqQK5EILhS6UgUqQazyOE5crjhHKY1G5YhCBCKkcZVRyRBpkLioNQaBpua7gzDEqdHVtmLw7LwftjD3IxvRJ3xGjGXQi4t-teoPenDQ7PWdWqtNwGvvQPJslttyJ8Wyev7UK_IfndgkjBcmtrOdL28KBnRjGsbeNV6chuEs8VW1Z8DPgyNOM3Hu5XVDp007yCRTAk7X_kqwjOvorELSuZEP3ayzRHsWLv9kC3NQajQbeh6cANFW89KgKjkzAiwU2qgNpo09YGxnHS9ApYdspIpG63bex12UBfzDMLJ4RBaPKMdjATb7b7TyJiM_0G4YmKNC0rS_pVv8Jd0ajJzv1qLjg9OjJRj1rNGSpSouQyl96OgVY3KluJqxuQNXf80lb3pmM-I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+magnetostrictive+vibration+energy+harvesters&rft.jtitle=Smart+materials+and+structures&rft.au=Deng%2C+Zhangxian&rft.au=Dapino%2C+Marcelo+J&rft.date=2017-10-01&rft.pub=IOP+Publishing&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=26&rft.issue=10&rft_id=info:doi/10.1088%2F1361-665X%2Faa8347&rft.externalDocID=smsaa8347 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon |