Review of magnetostrictive vibration energy harvesters

The field of energy harvesting has grown concurrently with the rapid development of portable and wireless electronics in which reliable and long-lasting power sources are required. Electrochemical batteries have a limited lifespan and require periodic recharging. In contrast, vibration energy harves...

Full description

Saved in:
Bibliographic Details
Published inSmart materials and structures Vol. 26; no. 10; pp. 103001 - 103018
Main Authors Deng, Zhangxian, Dapino, Marcelo J
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The field of energy harvesting has grown concurrently with the rapid development of portable and wireless electronics in which reliable and long-lasting power sources are required. Electrochemical batteries have a limited lifespan and require periodic recharging. In contrast, vibration energy harvesters can supply uninterrupted power by scavenging useful electrical energy from ambient structural vibrations. This article reviews the current state of vibration energy harvesters based on magnetostrictive materials, especially Terfenol-D and Galfenol. Existing magnetostrictive harvester designs are compared in terms of various performance metrics. Advanced techniques that can reduce device size and improve performance are presented. Models for magnetostrictive devices are summarized to guide future harvester designs.
AbstractList The field of energy harvesting has grown concurrently with the rapid development of portable and wireless electronics in which reliable and long-lasting power sources are required. Electrochemical batteries have a limited lifespan and require periodic recharging. In contrast, vibration energy harvesters can supply uninterrupted power by scavenging useful electrical energy from ambient structural vibrations. This article reviews the current state of vibration energy harvesters based on magnetostrictive materials, especially Terfenol-D and Galfenol. Existing magnetostrictive harvester designs are compared in terms of various performance metrics. Advanced techniques that can reduce device size and improve performance are presented. Models for magnetostrictive devices are summarized to guide future harvester designs.
Author Dapino, Marcelo J
Deng, Zhangxian
Author_xml – sequence: 1
  givenname: Zhangxian
  orcidid: 0000-0003-1084-1738
  surname: Deng
  fullname: Deng, Zhangxian
  organization: The Ohio State University NSF I/UCRC Smart Vehicle Concepts Center, Department of Mechanical and Aerospace Engineering, Columbus, OH 43210, United States of America
– sequence: 2
  givenname: Marcelo J
  orcidid: 0000-0003-4888-1903
  surname: Dapino
  fullname: Dapino, Marcelo J
  email: dapino.1@osu.edu
  organization: The Ohio State University NSF I/UCRC Smart Vehicle Concepts Center, Department of Mechanical and Aerospace Engineering, Columbus, OH 43210, United States of America
BookMark eNp9z01LAzEQgOEgFWyrd4_7A1ybMZtkc5TiFxQEUfAWknRSU9pNSeJK_72tFQ-CngaGeQeeERl0sUNCzoFeAm3bCTABtRD8dWJMyxp5RIY_qwEZUiWaGuSVOCGjnJeUArQMhkQ8YR_wo4q-WptFhyXmkoIroceqDzaZEmJXYYdpsa3eTOoxF0z5lBx7s8p49j3H5OX25nl6X88e7x6m17PasUaUmjWWO-UVV86CcdJ5aymfzz1wx7k1BuRuWKWkatmcNsw01jLpwSJaKZGNCT38dSnmnNDrTQprk7YaqN679R6p90h9cO8S8StxoXwxSjJh9V94cQhD3OhlfE_dTvb3-SeLH26A
CODEN SMSTER
CitedBy_id crossref_primary_10_1016_j_ijmecsci_2022_107291
crossref_primary_10_1016_j_mtener_2021_100848
crossref_primary_10_3390_app14199070
crossref_primary_10_3390_mi15101189
crossref_primary_10_1109_TMAG_2021_3059927
crossref_primary_10_35848_1882_0786_ad1f06
crossref_primary_10_1177_14644193221135929
crossref_primary_10_3390_ma13071494
crossref_primary_10_1038_s41467_023_39650_8
crossref_primary_10_3139_146_111889
crossref_primary_10_1007_s11998_022_00690_2
crossref_primary_10_1063_1_5111351
crossref_primary_10_1016_j_sna_2024_115207
crossref_primary_10_1109_TMAG_2020_3014603
crossref_primary_10_1142_S0219455422500286
crossref_primary_10_3390_mi15091109
crossref_primary_10_1142_S2010135X19300019
crossref_primary_10_1080_14786435_2020_1861357
crossref_primary_10_1016_j_jallcom_2023_169844
crossref_primary_10_1080_15376494_2022_2080893
crossref_primary_10_3390_en15249366
crossref_primary_10_1016_j_nanoen_2021_106304
crossref_primary_10_1007_s00466_020_01914_1
crossref_primary_10_1007_s10854_024_13513_4
crossref_primary_10_1109_TMAG_2023_3283960
crossref_primary_10_14243_jsaem_31_525
crossref_primary_10_1016_j_jmmm_2018_08_085
crossref_primary_10_1016_j_scriptamat_2024_116471
crossref_primary_10_1080_15397734_2020_1728546
crossref_primary_10_1002_adma_201707271
crossref_primary_10_1109_TMAG_2019_2891118
crossref_primary_10_3390_ma14164486
crossref_primary_10_1177_10775463221102668
crossref_primary_10_3390_app13063477
crossref_primary_10_1016_j_ymssp_2020_106642
crossref_primary_10_1016_j_apples_2022_100106
crossref_primary_10_1177_1045389X20978292
crossref_primary_10_1016_j_jmmm_2023_171281
crossref_primary_10_1002_aenm_202302699
crossref_primary_10_1016_j_matdes_2019_107803
crossref_primary_10_1021_acsami_1c06031
crossref_primary_10_1016_j_engstruct_2025_119644
crossref_primary_10_3390_electronics13244904
crossref_primary_10_1016_j_enconman_2019_111973
crossref_primary_10_1080_21663831_2018_1451403
crossref_primary_10_1061_JOEEDU_EEENG_7073
crossref_primary_10_1016_j_jmmm_2020_167260
crossref_primary_10_1063_1_5140485
crossref_primary_10_1016_j_snr_2024_100236
crossref_primary_10_3390_app14199146
crossref_primary_10_1115_1_4050194
crossref_primary_10_1016_j_ecmx_2024_100705
crossref_primary_10_1142_S0219455419410025
crossref_primary_10_1016_j_actamat_2021_116975
crossref_primary_10_1016_j_ymssp_2023_110437
crossref_primary_10_1016_j_addma_2022_102741
crossref_primary_10_1002_adem_202101036
crossref_primary_10_1016_j_ecmx_2024_100544
crossref_primary_10_3390_nanoenergyadv4010001
crossref_primary_10_3390_s22062102
crossref_primary_10_1016_j_hybadv_2024_100242
crossref_primary_10_1088_1361_665X_ad1dec
crossref_primary_10_1007_s41230_020_0011_9
crossref_primary_10_1016_j_ymssp_2020_107477
crossref_primary_10_1016_j_ymssp_2021_108444
crossref_primary_10_1088_1361_665X_ad1deb
crossref_primary_10_1007_s12598_023_02294_0
crossref_primary_10_1080_01495739_2024_2400195
crossref_primary_10_2320_matertrans_MT_M2021079
crossref_primary_10_1016_j_ijmecsci_2023_108731
crossref_primary_10_1016_j_sna_2023_114303
crossref_primary_10_1103_PhysRevB_109_014417
crossref_primary_10_1177_1045389X231225502
crossref_primary_10_3390_act8020045
crossref_primary_10_3390_en13010086
crossref_primary_10_1016_j_energy_2023_128287
crossref_primary_10_1016_j_jfluidstructs_2023_103910
crossref_primary_10_1109_TMAG_2019_2902569
crossref_primary_10_3390_mi10100701
crossref_primary_10_1016_j_ymssp_2019_106418
crossref_primary_10_1109_JSEN_2020_2976541
crossref_primary_10_3390_en13051230
crossref_primary_10_1088_1361_665X_ad7ca7
crossref_primary_10_3390_ma12132055
crossref_primary_10_1016_j_ijfatigue_2019_105325
crossref_primary_10_3390_app142311178
crossref_primary_10_1016_j_jallcom_2024_178128
crossref_primary_10_1007_s13349_023_00678_5
crossref_primary_10_1016_j_pmatsci_2020_100705
crossref_primary_10_1016_j_elstat_2025_104037
crossref_primary_10_1177_1045389X221147854
crossref_primary_10_1016_j_jmmm_2023_170943
crossref_primary_10_1016_j_suscom_2024_101039
crossref_primary_10_2320_matertrans_MT_M2019146
crossref_primary_10_1016_j_jmmm_2019_165771
crossref_primary_10_1038_s41427_019_0160_8
crossref_primary_10_1007_s11012_022_01599_1
crossref_primary_10_1016_j_ijmecsci_2020_105568
crossref_primary_10_1103_PhysRevMaterials_3_033401
crossref_primary_10_1063_1_5063718
crossref_primary_10_1016_j_sna_2024_116186
crossref_primary_10_1016_j_chaos_2024_115897
crossref_primary_10_1016_j_apenergy_2018_02_093
crossref_primary_10_1016_j_sna_2024_115017
crossref_primary_10_3390_machines10100848
crossref_primary_10_1002_adem_202300185
crossref_primary_10_1063_5_0051297
crossref_primary_10_1007_s00542_025_05856_7
crossref_primary_10_1016_j_jallcom_2022_166894
crossref_primary_10_2320_materia_59_16
crossref_primary_10_1088_1361_665X_ad126e
crossref_primary_10_1177_10775463221134962
crossref_primary_10_3390_electricity5010002
crossref_primary_10_1016_j_ijmecsci_2021_106544
crossref_primary_10_3390_app13031606
crossref_primary_10_1109_TMAG_2018_2831000
crossref_primary_10_1088_1361_665X_ac699a
crossref_primary_10_14243_jsaem_29_570
crossref_primary_10_1587_elex_22_20250031
Cites_doi 10.1109/TMAG.2011.2158303
10.1117/12.2050453
10.1088/0964-1726/24/12/125032
10.1063/1.4972479
10.1177/1045389X05054042
10.1117/12.2218759
10.1117/12.2046247
10.1109/TMAG.2006.878395
10.1016/j.jsv.2010.11.018
10.1098/rsta.1948.0007
10.1109/TMAG.2015.2441295
10.1016/S0924-4247(01)00569-6
10.1016/j.jmmm.2004.11.395
10.1177/1045389X12436729
10.1016/S0304-8853(02)01567-6
10.1063/1.4907237
10.1063/1.4729875
10.1109/92.920820
10.1117/12.2009812
10.1016/j.sna.2009.11.007
10.1016/j.sna.2003.09.045
10.1109/TMAG.2015.2446495
10.1002/pip.2573
10.1016/j.compstruc.2007.01.030
10.1007/978-1-4612-3028-1
10.1117/12.2220302
10.1063/1.4917464
10.1063/1.3318494
10.1088/0964-1726/19/5/055009
10.1109/ICEMS.2015.7385068
10.1117/12.604871
10.1016/j.sna.2009.03.027
10.1016/S0140-3664(02)00248-7
10.1109/TMAG.2011.2162744
10.1117/12.914412
10.1016/0304-8853(86)90066-1
10.4271/952641
10.1109/TMAG.1984.1063522
10.1109/TMAG.2014.2360195
10.1088/0964-1726/20/4/045013
10.1016/j.sna.2010.12.026
10.1109/JPROC.2008.927494
10.1016/0022-460X(79)90520-0
10.1109/TMAG.2012.2202273
10.1109/JMEMS.2004.830151
10.1088/1361-665X/aa5c48
10.1063/1.3357403
10.1063/1.4865976
10.1109/T-VT.1980.23859
10.1063/1.2839280
10.1002/adma.201100773
10.1016/j.sna.2010.05.022
10.1177/1045389X11403822
10.1177/0954406214545821
10.1088/0964-1726/22/8/085015
10.1063/1.2165133
10.1063/1.3597222
10.1088/0964-1726/16/3/R01
10.1177/1045389x16666176
10.1016/j.sna.2010.12.025
10.1016/j.jmmm.2015.08.074
10.1177/1045389X14521703
10.1109/JSEN.2011.2167747
10.1109/TMAG.2015.2454442
10.1109/JSSC.2008.920318
10.1177/1045389x16685444
10.1117/12.2085550
10.1109/TMAG.2014.2327169
10.1109/ISCAS.1998.699014
ContentType Journal Article
Copyright 2017 IOP Publishing Ltd
Copyright_xml – notice: 2017 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-665X/aa8347
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Review of magnetostrictive vibration energy harvesters
EISSN 1361-665X
ExternalDocumentID 10_1088_1361_665X_aa8347
smsaa8347
GrantInformation_xml – fundername: Division of Industrial Innovation and Partnerships
  grantid: NSF Grant IIP-1238286
  funderid: https://doi.org/10.13039/100000151
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c346t-34b5c9f959cb1ac7cfbb05ddf15c55baa1755bb997983d043a4bb37f1beeb77e3
IEDL.DBID IOP
ISSN 0964-1726
IngestDate Thu Apr 24 22:54:17 EDT 2025
Tue Jul 01 03:38:39 EDT 2025
Wed Aug 21 03:40:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c346t-34b5c9f959cb1ac7cfbb05ddf15c55baa1755bb997983d043a4bb37f1beeb77e3
Notes SMS-104997.R1
ORCID 0000-0003-4888-1903
0000-0003-1084-1738
PageCount 18
ParticipantIDs crossref_primary_10_1088_1361_665X_aa8347
crossref_citationtrail_10_1088_1361_665X_aa8347
iop_journals_10_1088_1361_665X_aa8347
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Smart materials and structures
PublicationTitleAbbrev SMS
PublicationTitleAlternate Smart Mater. Struct
PublicationYear 2017
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
45
46
Scheidler J J (9) 2016
47
Deng Z (29) 2017; 26
49
Nair B (35) 2014
Scheidler J J (71) 2013; 22
Dudley J H (37)
Anton S R (17) 2007; 16
Hu J (48) 2011; 20
50
51
52
Al Janaideh M (62) 2009; 18
53
10
11
12
56
57
14
Wang L (19) 2008; 17
58
15
59
18
Moss S (16) 2011; 20
1
2
3
4
5
6
7
8
Murphree Z (36) 2013
60
Marin A (54)
61
63
20
64
21
65
22
66
23
67
68
25
69
26
27
Chakrabarti S (77) 2010; 19
Deng Z (24) 2015; 24
Staley M E (39) 2005
70
72
73
30
74
31
32
Scheidler J J (75) 2017; 26
76
Despesse G (13) 2005
33
34
78
79
38
Deng Z (28) 2015
Mori K (55) 2015; 24
80
81
82
83
40
84
41
42
43
References_xml – ident: 21
  doi: 10.1109/TMAG.2011.2158303
– ident: 84
  doi: 10.1117/12.2050453
– volume: 24
  issn: 0964-1726
  year: 2015
  ident: 55
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/12/125032
– ident: 67
  doi: 10.1063/1.4972479
– ident: 26
  doi: 10.1177/1045389X05054042
– ident: 49
  doi: 10.1117/12.2218759
– ident: 72
  doi: 10.1117/12.2046247
– ident: 64
  doi: 10.1109/TMAG.2006.878395
– ident: 59
  doi: 10.1016/j.jsv.2010.11.018
– ident: 20
  doi: 10.1098/rsta.1948.0007
– ident: 34
  doi: 10.1109/TMAG.2015.2441295
– year: 2013
  ident: 36
  publication-title: US Patent App.
– ident: 11
  doi: 10.1016/S0924-4247(01)00569-6
– ident: 81
  doi: 10.1016/j.jmmm.2004.11.395
– ident: 23
  doi: 10.1177/1045389X12436729
– ident: 66
  doi: 10.1016/S0304-8853(02)01567-6
– ident: 44
  doi: 10.1063/1.4907237
– ident: 60
  doi: 10.1063/1.4729875
– ident: 14
  doi: 10.1109/92.920820
– ident: 27
  doi: 10.1117/12.2009812
– ident: 5
– ident: 50
  doi: 10.1016/j.sna.2009.11.007
– ident: 12
  doi: 10.1016/j.sna.2003.09.045
– ident: 73
  doi: 10.1109/TMAG.2015.2446495
– ident: 4
  doi: 10.1002/pip.2573
– ident: 41
  doi: 10.1016/j.compstruc.2007.01.030
– ident: 61
  doi: 10.1007/978-1-4612-3028-1
– year: 2015
  ident: 28
– volume: 26
  issn: 0964-1726
  year: 2017
  ident: 29
  publication-title: Smart Mater. Struct.
– ident: 22
  doi: 10.1117/12.2220302
– year: 2016
  ident: 9
  publication-title: Proc. Internoise
– ident: 45
  doi: 10.1063/1.4917464
– ident: 54
  publication-title: US Patent App.
– ident: 68
  doi: 10.1063/1.3318494
– volume: 19
  issn: 0964-1726
  year: 2010
  ident: 77
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/19/5/055009
– ident: 33
  doi: 10.1109/ICEMS.2015.7385068
– ident: 38
  doi: 10.1117/12.604871
– ident: 82
  doi: 10.1016/j.sna.2009.03.027
– ident: 8
  doi: 10.1016/S0140-3664(02)00248-7
– ident: 37
  publication-title: US Patent App.
– ident: 80
  doi: 10.1109/TMAG.2011.2162744
– ident: 56
  doi: 10.1117/12.914412
– ident: 63
  doi: 10.1016/0304-8853(86)90066-1
– ident: 10
  doi: 10.4271/952641
– ident: 2
  doi: 10.1109/TMAG.1984.1063522
– volume: 17
  issn: 0964-1726
  year: 2008
  ident: 19
  publication-title: Smart Mater. Struct.
– volume: 20
  issn: 0964-1726
  year: 2011
  ident: 48
  publication-title: Smart Mater. Struct.
– year: 2014
  ident: 35
  publication-title: US Patent App.
– ident: 74
  doi: 10.1109/TMAG.2014.2360195
– volume: 20
  issn: 0964-1726
  year: 2011
  ident: 16
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/20/4/045013
– ident: 51
  doi: 10.1016/j.sna.2010.12.026
– ident: 18
  doi: 10.1109/JPROC.2008.927494
– ident: 57
  doi: 10.1016/0022-460X(79)90520-0
– ident: 79
  doi: 10.1109/TMAG.2012.2202273
– ident: 15
  doi: 10.1109/JMEMS.2004.830151
– volume: 26
  issn: 0964-1726
  year: 2017
  ident: 75
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa5c48
– ident: 47
  doi: 10.1063/1.3357403
– ident: 42
  doi: 10.1063/1.4865976
– ident: 7
  doi: 10.1109/T-VT.1980.23859
– ident: 65
  doi: 10.1063/1.2839280
– ident: 52
  doi: 10.1002/adma.201100773
– ident: 58
  doi: 10.1016/j.sna.2010.05.022
– ident: 76
  doi: 10.1177/1045389X11403822
– ident: 32
  doi: 10.1177/0954406214545821
– start-page: 386
  year: 2005
  ident: 13
  publication-title: Proc. Design, Test, Integration and Packaging of MEMS and MOEMS
– volume: 24
  issn: 0964-1726
  year: 2015
  ident: 24
  publication-title: Smart Mater. Struct.
– ident: 3
– volume: 22
  issn: 0964-1726
  year: 2013
  ident: 71
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/8/085015
– ident: 69
  doi: 10.1063/1.2165133
– ident: 30
  doi: 10.1063/1.3597222
– volume: 16
  start-page: R1
  issn: 0964-1726
  year: 2007
  ident: 17
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/16/3/R01
– ident: 25
  doi: 10.1177/1045389x16666176
– ident: 53
  doi: 10.1016/j.sna.2010.12.025
– volume: 18
  issn: 0964-1726
  year: 2009
  ident: 62
  publication-title: Smart Mater. Struct.
– ident: 40
  doi: 10.1016/j.jmmm.2015.08.074
– ident: 78
  doi: 10.1177/1045389X14521703
– ident: 83
  doi: 10.1109/JSEN.2011.2167747
– ident: 31
  doi: 10.1109/TMAG.2015.2454442
– ident: 6
  doi: 10.1109/JSSC.2008.920318
– ident: 70
  doi: 10.1177/1045389x16685444
– ident: 46
  doi: 10.1117/12.2085550
– ident: 43
  doi: 10.1109/TMAG.2014.2327169
– ident: 1
  doi: 10.1109/ISCAS.1998.699014
– year: 2005
  ident: 39
SSID ssj0011831
Score 2.5780787
SecondaryResourceType review_article
Snippet The field of energy harvesting has grown concurrently with the rapid development of portable and wireless electronics in which reliable and long-lasting power...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 103001
SubjectTerms design
energy harvester
magnetostrictive materials
modeling
Title Review of magnetostrictive vibration energy harvesters
URI https://iopscience.iop.org/article/10.1088/1361-665X/aa8347
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qRdCDj6pYX-SgBw_bJt3dJIsnEUsRfBws9CCEnc1GQU1Km_bgr3c3SUsVFfGWwyRZvt15LDPzDcCJsneM2JWkgx1JmAglQZpQgjG1VRdG_bS9KN7c-r0-ux7wQQ3O570w2bAy_S3zWBIFlxBWBXFh26O-R3yfD9pShpQFS7BMQ-M4bffe3f08hWDOajEuT_iMGC89y1F-94VPPmnJ_HfBxXQ34HG2uLKy5KU1ybGl3r_wNv5z9ZuwXoWezkUpugU1nTZgbYGQsAErRUGoGm-DXyYNnCxx3uRTqvPMDvgojKMztVdsu6GOLjoHnWc5mhaMC-Md6HevHi57pJqxQBRlfk4oQ65EIrhQ6EkVqATR5XGceFxxjlKa8IIjChGIkMYuo5Ih0iDxUGsMAk13oZ5mqd4DJ0C0Xa40cCVnRrFDoY05Zdr4SRNT6rgJ7RnKkaoIyO0cjNeoSISHYWSxiSw2UYlNE87mbwxL8o1fZE8N5FGlgeMf5fb_KHcAqx3rwYu6vUOo56OJPjLxR47HxTn7AHDG0SI
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED5BEQgG3og3GWBgcNvEdhIPDAioeMMAUrfgcxyQgLaiaRH8Kf4KPwk7SStAgFgY2DJcItvf-R65F8C6sj5GXJXEQ08SJkJJkCaUYExt1oW5fto6iien_v4lO6zz-gC89Gthmq1C9JfNY94oOD_CIiEurLjUd4nv83pFypCyoNKKkyKr8kg_PRqfrb11sGsA3vC82t7Fzj4pxgoQRZmfEsqQK5EILhS6UgUqQazyOE5crjhHKY1G5YhCBCKkcZVRyRBpkLioNQaBpua7gzDEqdHVtmLw7LwftjD3IxvRJ3xGjGXQi4t-teoPenDQ7PWdWqtNwGvvQPJslttyJ8Wyev7UK_IfndgkjBcmtrOdL28KBnRjGsbeNV6chuEs8VW1Z8DPgyNOM3Hu5XVDp007yCRTAk7X_kqwjOvorELSuZEP3ayzRHsWLv9kC3NQajQbeh6cANFW89KgKjkzAiwU2qgNpo09YGxnHS9ApYdspIpG63bex12UBfzDMLJ4RBaPKMdjATb7b7TyJiM_0G4YmKNC0rS_pVv8Jd0ajJzv1qLjg9OjJRj1rNGSpSouQyl96OgVY3KluJqxuQNXf80lb3pmM-I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+magnetostrictive+vibration+energy+harvesters&rft.jtitle=Smart+materials+and+structures&rft.au=Deng%2C+Zhangxian&rft.au=Dapino%2C+Marcelo+J&rft.date=2017-10-01&rft.pub=IOP+Publishing&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=26&rft.issue=10&rft_id=info:doi/10.1088%2F1361-665X%2Faa8347&rft.externalDocID=smsaa8347
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon