Generative adversarial networks for data augmentation in machine fault diagnosis
•Generative adversarial network is able to generate realistic samples.•Model with one dimensional convolution operation achieves best performance.•Quality of generated samples is evaluated by statistical features and experiments.•Generated samples serve as training data in machine fault diagnosis ta...
Saved in:
Published in | Computers in industry Vol. 106; pp. 85 - 93 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Generative adversarial network is able to generate realistic samples.•Model with one dimensional convolution operation achieves best performance.•Quality of generated samples is evaluated by statistical features and experiments.•Generated samples serve as training data in machine fault diagnosis tasks.•Generated samples enrich dataset and improve fault classification performance.
Generative adversarial networks (GANs) have been proved to be able to produce artificial data that are alike the real data, and have been successfully applied to various image generation tasks as a useful tool for data augmentation. In this paper, we develop an auxiliary classifier GAN(ACGAN)-based framework to learn from mechanical sensor signals and generate realistic one-dimensional raw data. The proposed architecture contains two parts, generator and discriminator, and both of them are built by stacking one-dimensional convolution layers to learn local features from the original input. Such stacked structure is able to learn hierarchical representations through convolution operation and easy to train. Batch normalization is performed within generator to avoid the problem of gradient vanishing during training, and category labels are used as the auxiliary information in this framework to help train the model. The proposed approach is designed to produce realistic synthesized signals with labels and the generated signals can be used as augmented data for further applications in machine fault diagnosis. In order to evaluate the performance of the generative model, we introduce a set of assessment to evaluate the quality of generated samples, including statistical characteristics and experimental verification. Finally, induction motor vibration signal datasets are utilized to investigate the effectiveness of the proposed framework. |
---|---|
AbstractList | •Generative adversarial network is able to generate realistic samples.•Model with one dimensional convolution operation achieves best performance.•Quality of generated samples is evaluated by statistical features and experiments.•Generated samples serve as training data in machine fault diagnosis tasks.•Generated samples enrich dataset and improve fault classification performance.
Generative adversarial networks (GANs) have been proved to be able to produce artificial data that are alike the real data, and have been successfully applied to various image generation tasks as a useful tool for data augmentation. In this paper, we develop an auxiliary classifier GAN(ACGAN)-based framework to learn from mechanical sensor signals and generate realistic one-dimensional raw data. The proposed architecture contains two parts, generator and discriminator, and both of them are built by stacking one-dimensional convolution layers to learn local features from the original input. Such stacked structure is able to learn hierarchical representations through convolution operation and easy to train. Batch normalization is performed within generator to avoid the problem of gradient vanishing during training, and category labels are used as the auxiliary information in this framework to help train the model. The proposed approach is designed to produce realistic synthesized signals with labels and the generated signals can be used as augmented data for further applications in machine fault diagnosis. In order to evaluate the performance of the generative model, we introduce a set of assessment to evaluate the quality of generated samples, including statistical characteristics and experimental verification. Finally, induction motor vibration signal datasets are utilized to investigate the effectiveness of the proposed framework. |
Author | Yan, Ruqiang Shao, Siyu Wang, Pu |
Author_xml | – sequence: 1 givenname: Siyu orcidid: 0000-0003-3180-2180 surname: Shao fullname: Shao, Siyu email: cathygx.sy@gmail.com organization: School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, China – sequence: 2 givenname: Pu orcidid: 0000-0001-8725-6225 surname: Wang fullname: Wang, Pu email: wangpuupup@outlook.com organization: School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, China – sequence: 3 givenname: Ruqiang surname: Yan fullname: Yan, Ruqiang email: ruqiang@seu.edu.cn organization: School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, China |
BookMark | eNqFkM1KAzEUhYNUsFYfQcgLzJjMTyaDC5GiVSjoQtfhmtzU1JlMSdKKb--UduWmd3M35ztwvksy8YNHQm44yznj4nad66HfOG_ygvE2ZzxnjJ-RKZdNkQneVhMyHXMiKwWvL8hljGs2XtOIKXlboMcAye2QgtlhiBAcdNRj-hnCd6R2CNRAAgrbVY8-jdHBU-dpD_rLeaQWtl2ixsHKD9HFK3JuoYt4ffwz8vH0-D5_zpavi5f5wzLTZSVSVsgGGlnqylZaSys_WStNbRtrS11Upq2LsgJeSSykRqGNgKatpUXNuRFC1OWM1IdeHYYYA1q1Ca6H8Ks4U3staq2OWtRei2JcjVpG7u4fp91hVArgupP0_YHGcdrOYVBRO_QajQuokzKDO9HwBxR1heM |
CitedBy_id | crossref_primary_10_1155_2021_9927151 crossref_primary_10_1109_JIOT_2022_3163391 crossref_primary_10_3390_s24082575 crossref_primary_10_1109_TII_2022_3168667 crossref_primary_10_1109_MIS_2022_3168356 crossref_primary_10_21595_jme_2025_24663 crossref_primary_10_23919_IEN_2024_0027 crossref_primary_10_32604_cmes_2023_025307 crossref_primary_10_1007_s11071_022_07341_6 crossref_primary_10_1016_j_ymssp_2021_108487 crossref_primary_10_1016_j_eswa_2023_122806 crossref_primary_10_1109_JSEN_2024_3372438 crossref_primary_10_1002_cjce_24949 crossref_primary_10_1177_09544100221137975 crossref_primary_10_3390_e25081233 crossref_primary_10_1016_j_eswa_2022_117731 crossref_primary_10_1016_j_eswa_2023_120984 crossref_primary_10_1038_s41598_022_08956_w crossref_primary_10_1109_TIM_2023_3292952 crossref_primary_10_1016_j_apacoust_2022_108727 crossref_primary_10_1109_JSEN_2021_3099638 crossref_primary_10_1016_j_measurement_2020_107929 crossref_primary_10_1109_JSEN_2024_3418413 crossref_primary_10_1155_2021_6616592 crossref_primary_10_1177_09544062221097339 crossref_primary_10_1002_rob_22127 crossref_primary_10_1109_TIM_2023_3345907 crossref_primary_10_1109_TIM_2024_3457923 crossref_primary_10_3390_app14010221 crossref_primary_10_1016_j_ijepes_2024_110190 crossref_primary_10_1016_j_jwpe_2023_104303 crossref_primary_10_3390_act12120460 crossref_primary_10_1016_j_knosys_2021_107892 crossref_primary_10_1016_j_eswa_2022_117288 crossref_primary_10_1109_TIM_2023_3301898 crossref_primary_10_1016_j_aei_2022_101552 crossref_primary_10_1016_j_aei_2023_102344 crossref_primary_10_1109_JSEN_2022_3160762 crossref_primary_10_1109_TGRS_2023_3274296 crossref_primary_10_1007_s11063_022_10918_2 crossref_primary_10_1177_09544062231154077 crossref_primary_10_1016_j_apenergy_2023_120814 crossref_primary_10_1016_j_asoc_2020_106333 crossref_primary_10_3390_app12147032 crossref_primary_10_1016_j_istruc_2023_05_151 crossref_primary_10_1109_TETCI_2021_3115666 crossref_primary_10_3389_fbuil_2022_816644 crossref_primary_10_1016_j_compind_2024_104099 crossref_primary_10_1016_j_ress_2024_110343 crossref_primary_10_1007_s12273_021_0807_6 crossref_primary_10_1109_JSEN_2024_3487209 crossref_primary_10_1016_j_aej_2024_09_004 crossref_primary_10_1016_j_aei_2024_102612 crossref_primary_10_3390_electronics10040389 crossref_primary_10_3390_s23031305 crossref_primary_10_1016_j_compind_2019_103184 crossref_primary_10_1007_s10489_024_05960_7 crossref_primary_10_1177_1475921719893594 crossref_primary_10_1007_s40436_024_00496_y crossref_primary_10_1088_1361_6501_ad7f76 crossref_primary_10_1088_1361_6501_acad20 crossref_primary_10_1109_TASE_2023_3267860 crossref_primary_10_3390_s23167263 crossref_primary_10_1016_j_ymssp_2024_111155 crossref_primary_10_1016_j_isatra_2021_02_042 crossref_primary_10_3390_app15052830 crossref_primary_10_1007_s12206_024_0104_2 crossref_primary_10_1109_ACCESS_2023_3267960 crossref_primary_10_1007_s00521_022_08080_w crossref_primary_10_1109_TIM_2020_3041905 crossref_primary_10_1109_ACCESS_2023_3311269 crossref_primary_10_17531_ein_2020_1_8 crossref_primary_10_1109_JSEN_2021_3123807 crossref_primary_10_3390_s22020671 crossref_primary_10_1016_j_eswa_2021_115234 crossref_primary_10_1109_JSEN_2022_3178137 crossref_primary_10_1016_j_engappai_2025_110410 crossref_primary_10_3390_s22228749 crossref_primary_10_1007_s13735_020_00196_w crossref_primary_10_1109_TIM_2020_3043098 crossref_primary_10_3390_pr9060919 crossref_primary_10_1016_j_cirp_2024_04_101 crossref_primary_10_1016_j_ymssp_2024_111147 crossref_primary_10_1016_j_procs_2022_08_008 crossref_primary_10_1007_s41060_023_00416_6 crossref_primary_10_1177_0954406220941037 crossref_primary_10_1109_TII_2022_3229829 crossref_primary_10_1080_01605682_2021_1880296 crossref_primary_10_1016_j_fusengdes_2024_114475 crossref_primary_10_31857_S2500262724050102 crossref_primary_10_1109_JSEN_2024_3466520 crossref_primary_10_1007_s10570_023_05108_9 crossref_primary_10_1155_2020_8503247 crossref_primary_10_1007_s42417_022_00498_9 crossref_primary_10_1109_JSEN_2024_3405889 crossref_primary_10_3390_cryst11030258 crossref_primary_10_3390_e27020111 crossref_primary_10_1016_j_cose_2024_104073 crossref_primary_10_1016_j_engappai_2024_109443 crossref_primary_10_1088_1361_6501_acf6d9 crossref_primary_10_1016_j_knosys_2023_111158 crossref_primary_10_1109_ACCESS_2020_3030058 crossref_primary_10_1016_j_eswa_2024_125398 crossref_primary_10_3390_s21155173 crossref_primary_10_1007_s10489_023_04870_4 crossref_primary_10_1177_09544062211043132 crossref_primary_10_1109_TNNLS_2021_3137172 crossref_primary_10_1016_j_engappai_2022_105508 crossref_primary_10_1016_j_eswa_2020_113696 crossref_primary_10_1016_j_cosrev_2021_100452 crossref_primary_10_3390_app11135835 crossref_primary_10_1088_1361_6501_ad0f67 crossref_primary_10_1016_j_ymssp_2022_109772 crossref_primary_10_1016_j_cirp_2020_05_002 crossref_primary_10_1186_s10033_021_00587_y crossref_primary_10_1016_j_ress_2022_108867 crossref_primary_10_1155_2021_3477667 crossref_primary_10_1016_j_neucom_2020_04_045 crossref_primary_10_1016_j_neucom_2024_129288 crossref_primary_10_1109_TIM_2021_3127636 crossref_primary_10_1016_j_ymssp_2023_110370 crossref_primary_10_1109_ACCESS_2020_3016314 crossref_primary_10_3390_app12147346 crossref_primary_10_1016_j_eswa_2023_120084 crossref_primary_10_1016_j_engfailanal_2022_106573 crossref_primary_10_1016_j_ifacol_2022_07_531 crossref_primary_10_1109_TII_2020_3029551 crossref_primary_10_1109_JAS_2022_105935 crossref_primary_10_1109_JSTARS_2022_3228741 crossref_primary_10_1007_s41870_025_02459_3 crossref_primary_10_1016_j_anucene_2022_109267 crossref_primary_10_1109_ACCESS_2019_2950985 crossref_primary_10_3390_su122310090 crossref_primary_10_1016_j_measurement_2022_110924 crossref_primary_10_1016_j_aei_2022_101762 crossref_primary_10_1016_j_asoc_2024_111544 crossref_primary_10_1109_JSEN_2022_3211021 crossref_primary_10_1109_JSEN_2021_3069452 crossref_primary_10_1016_j_bspc_2022_103718 crossref_primary_10_1088_1361_6501_ad5904 crossref_primary_10_3390_pr11071928 crossref_primary_10_3390_app10217712 crossref_primary_10_1029_2023SW003472 crossref_primary_10_1109_ACCESS_2019_2906388 crossref_primary_10_1155_2021_7496007 crossref_primary_10_1016_j_isatra_2020_11_005 crossref_primary_10_1016_j_jmsy_2022_03_009 crossref_primary_10_1002_cjce_24020 crossref_primary_10_1109_ACCESS_2019_2928848 crossref_primary_10_1016_j_eswa_2024_124511 crossref_primary_10_1109_TMECH_2021_3132459 crossref_primary_10_3390_s22103848 crossref_primary_10_1109_TIM_2022_3190525 crossref_primary_10_1016_j_isatra_2022_10_008 crossref_primary_10_2118_214661_PA crossref_primary_10_1002_cjce_24818 crossref_primary_10_1016_j_compind_2021_103528 crossref_primary_10_1016_j_engfracmech_2024_110096 crossref_primary_10_1088_1361_6501_ad86d5 crossref_primary_10_1177_10775463241272933 crossref_primary_10_3390_diagnostics11122349 crossref_primary_10_1109_ACCESS_2023_3323038 crossref_primary_10_1109_TII_2021_3053106 crossref_primary_10_1088_1361_6501_ad437e crossref_primary_10_1371_journal_pone_0246905 crossref_primary_10_1016_j_compchemeng_2024_108723 crossref_primary_10_1049_cim2_12047 crossref_primary_10_3390_machines13030193 crossref_primary_10_1109_ACCESS_2020_3011689 crossref_primary_10_1109_ACCESS_2024_3397184 crossref_primary_10_1109_TIM_2024_3446655 crossref_primary_10_1016_j_biosystemseng_2023_11_002 crossref_primary_10_1016_j_knosys_2021_107488 crossref_primary_10_1109_TR_2024_3403660 crossref_primary_10_1109_TIM_2020_3043959 crossref_primary_10_32604_cmes_2024_055633 crossref_primary_10_1088_1361_6501_ac7d3d crossref_primary_10_1007_s12555_022_0798_9 crossref_primary_10_1016_j_knosys_2020_106679 crossref_primary_10_1109_TII_2022_3218737 crossref_primary_10_1088_1361_6501_acc5fe crossref_primary_10_3390_s23041892 crossref_primary_10_1016_j_compind_2021_103546 crossref_primary_10_1007_s10479_023_05722_7 crossref_primary_10_1016_j_measurement_2023_113814 crossref_primary_10_1016_j_measurement_2022_110826 crossref_primary_10_1016_j_ymssp_2020_107043 crossref_primary_10_1016_j_neucom_2020_04_074 crossref_primary_10_3390_electronics11040622 crossref_primary_10_1109_JSEN_2024_3448467 crossref_primary_10_1016_j_isatra_2022_01_011 crossref_primary_10_1109_TIE_2022_3231300 crossref_primary_10_1109_JSEN_2024_3477456 crossref_primary_10_3390_jsan13050060 crossref_primary_10_1016_j_measurement_2020_107768 crossref_primary_10_1007_s10845_020_01579_w crossref_primary_10_3934_mbe_2022534 crossref_primary_10_1007_s42417_022_00823_2 crossref_primary_10_3389_fmech_2024_1430542 crossref_primary_10_1016_j_engappai_2022_105149 crossref_primary_10_1109_JSEN_2023_3279436 crossref_primary_10_1007_s11431_023_2496_6 crossref_primary_10_1088_1361_6501_ad0fd2 crossref_primary_10_1007_s12206_024_0414_4 crossref_primary_10_1109_ACCESS_2020_2985769 crossref_primary_10_1007_s10845_023_02126_z crossref_primary_10_1016_j_conengprac_2021_104903 crossref_primary_10_1109_TIM_2021_3073436 crossref_primary_10_1109_JSEN_2021_3131166 crossref_primary_10_1109_JSEN_2024_3476381 crossref_primary_10_1155_2022_1679836 crossref_primary_10_1016_j_autcon_2022_104734 crossref_primary_10_1016_j_apenergy_2024_123745 crossref_primary_10_1016_j_isatra_2023_07_030 crossref_primary_10_1177_1077546321993563 crossref_primary_10_1109_TIM_2021_3087834 crossref_primary_10_1109_TIM_2023_3298425 crossref_primary_10_1093_jcde_qwae075 crossref_primary_10_1155_2020_8823050 crossref_primary_10_1016_j_measurement_2025_116988 crossref_primary_10_1016_j_measurement_2024_116589 crossref_primary_10_1016_j_neucom_2021_11_080 crossref_primary_10_1007_s00158_022_03425_4 crossref_primary_10_3390_s23010211 crossref_primary_10_1016_j_ymssp_2023_110828 crossref_primary_10_1016_j_procs_2021_01_290 crossref_primary_10_1007_s10489_024_05314_3 crossref_primary_10_3389_frai_2020_578613 crossref_primary_10_1016_j_knosys_2021_107142 crossref_primary_10_1016_j_aei_2021_101448 crossref_primary_10_1016_j_ymssp_2021_108664 crossref_primary_10_1007_s10462_024_11021_9 crossref_primary_10_1016_j_measurement_2020_107741 crossref_primary_10_1088_1361_665X_acc0ed crossref_primary_10_3390_land14030578 crossref_primary_10_1016_j_rcim_2023_102624 crossref_primary_10_1109_ACCESS_2024_3524061 crossref_primary_10_1016_j_engappai_2024_108332 crossref_primary_10_1155_2022_9908074 crossref_primary_10_1016_j_engappai_2025_110242 crossref_primary_10_1016_j_procs_2020_06_107 crossref_primary_10_1109_ACCESS_2021_3063929 crossref_primary_10_1016_j_oceaneng_2022_111516 crossref_primary_10_1109_TIA_2022_3182314 crossref_primary_10_1007_s12206_024_0835_0 crossref_primary_10_1088_1755_1315_791_1_012030 crossref_primary_10_1093_jcde_qwae061 crossref_primary_10_1016_j_pnucene_2024_105294 crossref_primary_10_1016_j_asoc_2020_106829 crossref_primary_10_1155_2020_8836477 crossref_primary_10_1007_s10845_020_01614_w crossref_primary_10_1016_j_measurement_2020_107880 crossref_primary_10_1080_10589759_2024_2413696 crossref_primary_10_3390_machines10050336 crossref_primary_10_1016_j_measurement_2023_112879 crossref_primary_10_1007_s00170_025_15087_9 crossref_primary_10_3390_s21175739 crossref_primary_10_3390_s24041290 crossref_primary_10_1142_S0218348X23401394 crossref_primary_10_1016_j_rineng_2025_103991 crossref_primary_10_1007_s41870_023_01725_6 crossref_primary_10_3390_s22145413 crossref_primary_10_1038_s41598_024_75112_x crossref_primary_10_1016_j_knosys_2022_110175 crossref_primary_10_1016_j_promfg_2020_07_003 crossref_primary_10_1016_j_rsase_2022_100810 crossref_primary_10_3233_IDA_215735 crossref_primary_10_1007_s11276_023_03331_7 crossref_primary_10_1016_j_ymssp_2020_106825 crossref_primary_10_1080_00207543_2019_1662133 crossref_primary_10_3390_make2030020 crossref_primary_10_1016_j_ejmp_2021_04_016 crossref_primary_10_3390_s23042024 crossref_primary_10_1177_1687814020944323 crossref_primary_10_1016_j_engappai_2024_108869 crossref_primary_10_1016_j_cmpb_2023_107583 crossref_primary_10_3390_app15063166 crossref_primary_10_1016_j_measurement_2021_109467 crossref_primary_10_1016_j_neucom_2020_07_088 crossref_primary_10_1007_s00521_020_05137_6 crossref_primary_10_3103_S1068367425700107 crossref_primary_10_1109_LRA_2021_3103648 crossref_primary_10_1088_1361_6501_ac18d2 crossref_primary_10_3390_lubricants9100105 crossref_primary_10_1007_s11517_024_03084_1 crossref_primary_10_1016_j_engappai_2021_104279 crossref_primary_10_1142_S0218001423510047 crossref_primary_10_1016_j_ijepes_2021_106965 crossref_primary_10_1186_s10033_021_00570_7 crossref_primary_10_1016_j_aei_2024_102605 crossref_primary_10_1109_TIM_2024_3472781 crossref_primary_10_1109_TII_2020_2968370 crossref_primary_10_1007_s10845_023_02176_3 crossref_primary_10_1016_j_eswa_2023_121001 crossref_primary_10_1109_ACCESS_2020_3038605 crossref_primary_10_1109_ACCESS_2019_2943497 crossref_primary_10_1109_ACCESS_2021_3117603 crossref_primary_10_1109_JSEN_2023_3307425 crossref_primary_10_1109_TIM_2021_3123433 crossref_primary_10_1109_TIM_2021_3125973 crossref_primary_10_3389_fnins_2020_00853 crossref_primary_10_3390_s20164485 crossref_primary_10_1109_TIM_2021_3055821 crossref_primary_10_1109_ACCESS_2020_3022840 crossref_primary_10_3390_pr9101751 crossref_primary_10_1016_j_isatra_2020_08_012 crossref_primary_10_1016_j_compeleceng_2021_107195 crossref_primary_10_1016_j_rcim_2020_101975 crossref_primary_10_1109_TIM_2021_3089240 crossref_primary_10_1016_j_ymssp_2023_110747 crossref_primary_10_3390_app132212458 crossref_primary_10_1109_TIM_2024_3457925 crossref_primary_10_1007_s11760_025_03935_w crossref_primary_10_1109_TIE_2022_3231287 crossref_primary_10_1109_TIM_2022_3184368 crossref_primary_10_1016_j_compbiomed_2023_107024 crossref_primary_10_1007_s13349_022_00627_8 crossref_primary_10_1088_1361_6501_ad1708 crossref_primary_10_1109_TIM_2021_3102745 crossref_primary_10_1109_TIM_2025_3542138 crossref_primary_10_3390_e24050614 crossref_primary_10_1016_j_neucom_2023_02_051 crossref_primary_10_1016_j_jobe_2023_106563 crossref_primary_10_1016_j_net_2024_07_015 crossref_primary_10_1109_TR_2022_3215243 crossref_primary_10_1016_j_scitotenv_2021_149508 crossref_primary_10_1109_ACCESS_2019_2930882 crossref_primary_10_1109_ACCESS_2023_3291336 crossref_primary_10_1088_1361_6501_ab3072 crossref_primary_10_1007_s10489_023_04749_4 crossref_primary_10_1186_s10033_024_01046_0 crossref_primary_10_3390_buildings14092894 crossref_primary_10_1109_ACCESS_2020_3029127 crossref_primary_10_1016_j_engfailanal_2020_104759 crossref_primary_10_1007_s10586_024_04451_1 crossref_primary_10_1016_j_measurement_2020_108522 crossref_primary_10_1007_s12555_021_0691_y crossref_primary_10_1109_TII_2023_3326507 crossref_primary_10_1088_1361_6501_aca0b4 crossref_primary_10_1016_j_eswa_2023_120255 crossref_primary_10_1109_TASE_2020_2998467 crossref_primary_10_1007_s12008_023_01721_x crossref_primary_10_3390_app14198811 crossref_primary_10_36074_grail_of_science_06_09_2024_039 crossref_primary_10_3390_pr10020200 |
Cites_doi | 10.1109/TII.2017.2672988 10.1109/TII.2018.2793246 10.1016/j.ymssp.2018.05.050 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compind.2019.01.001 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-6194 |
EndPage | 93 |
ExternalDocumentID | 10_1016_j_compind_2019_01_001 S0166361518305657 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACDAQ ACGFO ACGFS ACGOD ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY7 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSV SSZ T5K TAE TAF TN5 U5U UNMZH VH1 WH7 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c346t-287a783c4f4cc8f8b098d5f7ff3c24d95234a148e28ce6cd6a7958fec11d66653 |
IEDL.DBID | .~1 |
ISSN | 0166-3615 |
IngestDate | Tue Jul 01 00:52:00 EDT 2025 Thu Apr 24 23:01:30 EDT 2025 Fri Feb 23 02:40:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fault diagnosis Induction motor Signal generation Data augmentation Auxiliary classifier generative adversarial networks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c346t-287a783c4f4cc8f8b098d5f7ff3c24d95234a148e28ce6cd6a7958fec11d66653 |
ORCID | 0000-0001-8725-6225 0000-0003-3180-2180 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_compind_2019_01_001 crossref_citationtrail_10_1016_j_compind_2019_01_001 elsevier_sciencedirect_doi_10_1016_j_compind_2019_01_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Computers in industry |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Odena (bib0045) 2016 Donahue, McAuley, Puckette (bib0055) 2018 Diederik, Jimmy (bib0090) 2014 Yang, Yan, Gao (bib0095) 2015 Ma, Sun, Chen (bib0015) 2018; 14 Springenberg (bib0070) 2015 Sun, Zhao, Yan, Shao, Chen (bib0010) 2017; 13 Shao, McAleer, Yan, Baldi (bib0020) 2018 Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville (bib0035) 2017 Radford, Metz, Chintala (bib0040) 2015 Zhao, Yan, Chen, Mao, Wang, Gao (bib0005) 2019; 115 Peyré, Cuturi (bib0085) 2017 Odena, Olah, Shlens (bib0050) 2016 Heusel, Ramsauer, Unterthiner, Nessler, Hochreiter (bib0080) 2017 Salimans, Goodfellow, Zaremba, Cheung, Radford, Chen (bib0075) 2016 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Bengio (bib0025) 2014 Kindermans, Schütt, Alber, Müller, Erhan, Kim, Dähne (bib0065) 2017 Arjovsky, Chintala, Bottou (bib0030) 2017 Hartmann, Schirrmeister, Ball (bib0060) 2018 Yang (10.1016/j.compind.2019.01.001_bib0095) 2015 Odena (10.1016/j.compind.2019.01.001_bib0050) 2016 Radford (10.1016/j.compind.2019.01.001_bib0040) 2015 Kindermans (10.1016/j.compind.2019.01.001_bib0065) 2017 Heusel (10.1016/j.compind.2019.01.001_bib0080) 2017 Odena (10.1016/j.compind.2019.01.001_bib0045) 2016 Donahue (10.1016/j.compind.2019.01.001_bib0055) 2018 Ma (10.1016/j.compind.2019.01.001_bib0015) 2018; 14 Gulrajani (10.1016/j.compind.2019.01.001_bib0035) 2017 Zhao (10.1016/j.compind.2019.01.001_bib0005) 2019; 115 Diederik (10.1016/j.compind.2019.01.001_bib0090) 2014 Hartmann (10.1016/j.compind.2019.01.001_bib0060) 2018 Peyré (10.1016/j.compind.2019.01.001_bib0085) 2017 Arjovsky (10.1016/j.compind.2019.01.001_bib0030) 2017 Salimans (10.1016/j.compind.2019.01.001_bib0075) 2016 Springenberg (10.1016/j.compind.2019.01.001_bib0070) 2015 Sun (10.1016/j.compind.2019.01.001_bib0010) 2017; 13 Shao (10.1016/j.compind.2019.01.001_bib0020) 2018 Goodfellow (10.1016/j.compind.2019.01.001_bib0025) 2014 |
References_xml | – start-page: 256 year: 2015 end-page: 260 ident: bib0095 article-title: Induction motor fault diagnosis using multiple class feature selection, in Proc publication-title: IEEE Int. Instrum. Meas. Technol. Conf. – year: 2016 ident: bib0050 article-title: Conditional image synthesis with auxiliary classifier GANs publication-title: arXiv preprint – start-page: 5767 year: 2017 end-page: 5777 ident: bib0035 article-title: Improved training of wasserstein gans publication-title: Adv. Neural Inf. Process. Syst. – year: 2018 ident: bib0055 article-title: Synthesizing audio with generative adversarial networks publication-title: arXiv preprint – year: 2017 ident: bib0030 article-title: Wasserstein gan publication-title: arXiv preprint – year: 2018 ident: bib0060 article-title: EEG-GAN: generative adversarial networks for electroencephalographic (EEG) brain signals publication-title: arXiv preprint – year: 2017 ident: bib0085 article-title: Computational Optimal Transport – volume: 13 start-page: 1350 year: 2017 end-page: 1359 ident: bib0010 article-title: Convolutional discriminative feature learning for induction motor fault diagnosis publication-title: IEEE Trans. Industr. Inform. – year: 2018 ident: bib0020 article-title: Highly-accurate machine fault diagnosis using deep transfer learning publication-title: IEEE Trans. Industr. Inform. – year: 2016 ident: bib0045 article-title: Semi-supervised learning with generative adversarial networks publication-title: arXiv preprint – year: 2015 ident: bib0070 article-title: Unsupervised and semi-supervised learning with categorical generative adversarial networks publication-title: arXiv preprint – start-page: 6626 year: 2017 end-page: 6637 ident: bib0080 article-title: Gans trained by a two time-scale update rule converge to a local nash equilibrium publication-title: Adv. Neural Inf. Process. Syst. – volume: 14 start-page: 1137 year: 2018 end-page: 1145 ident: bib0015 article-title: Deep coupling autoencoder for fault diagnosis with multimodal sensory data publication-title: IEEE Trans. Industr. Inform. – year: 2014 ident: bib0090 article-title: ADAM: a method for stochastic optimization publication-title: arXiv preprint arXiv – year: 2017 ident: bib0065 article-title: Learning how to explain neural networks: PatternNet and PatternAttribution publication-title: arXiv preprint – volume: 115 start-page: 213 year: 2019 end-page: 237 ident: bib0005 article-title: Deep learning and its applications to machine health monitoring publication-title: Mech. Syst. Signal Process. – start-page: 2672 year: 2014 end-page: 2680 ident: bib0025 article-title: Generative adversarial nets publication-title: Adv. Neural Inf. Process. Syst. – year: 2015 ident: bib0040 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: arXiv preprint – start-page: 2234 year: 2016 end-page: 2242 ident: bib0075 article-title: Improved techniques for training gans publication-title: Adv. Neural Inf. Process. Syst. – year: 2016 ident: 10.1016/j.compind.2019.01.001_bib0045 article-title: Semi-supervised learning with generative adversarial networks publication-title: arXiv preprint – start-page: 256 year: 2015 ident: 10.1016/j.compind.2019.01.001_bib0095 article-title: Induction motor fault diagnosis using multiple class feature selection, in Proc publication-title: IEEE Int. Instrum. Meas. Technol. Conf. – year: 2018 ident: 10.1016/j.compind.2019.01.001_bib0060 article-title: EEG-GAN: generative adversarial networks for electroencephalographic (EEG) brain signals publication-title: arXiv preprint – year: 2014 ident: 10.1016/j.compind.2019.01.001_bib0090 article-title: ADAM: a method for stochastic optimization publication-title: arXiv preprint arXiv – year: 2018 ident: 10.1016/j.compind.2019.01.001_bib0055 article-title: Synthesizing audio with generative adversarial networks publication-title: arXiv preprint – year: 2015 ident: 10.1016/j.compind.2019.01.001_bib0040 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: arXiv preprint – year: 2016 ident: 10.1016/j.compind.2019.01.001_bib0050 article-title: Conditional image synthesis with auxiliary classifier GANs publication-title: arXiv preprint – start-page: 6626 year: 2017 ident: 10.1016/j.compind.2019.01.001_bib0080 article-title: Gans trained by a two time-scale update rule converge to a local nash equilibrium publication-title: Adv. Neural Inf. Process. Syst. – start-page: 5767 year: 2017 ident: 10.1016/j.compind.2019.01.001_bib0035 article-title: Improved training of wasserstein gans publication-title: Adv. Neural Inf. Process. Syst. – year: 2015 ident: 10.1016/j.compind.2019.01.001_bib0070 article-title: Unsupervised and semi-supervised learning with categorical generative adversarial networks publication-title: arXiv preprint – volume: 13 start-page: 1350 issue: 3 year: 2017 ident: 10.1016/j.compind.2019.01.001_bib0010 article-title: Convolutional discriminative feature learning for induction motor fault diagnosis publication-title: IEEE Trans. Industr. Inform. doi: 10.1109/TII.2017.2672988 – start-page: 2672 year: 2014 ident: 10.1016/j.compind.2019.01.001_bib0025 article-title: Generative adversarial nets publication-title: Adv. Neural Inf. Process. Syst. – year: 2017 ident: 10.1016/j.compind.2019.01.001_bib0065 article-title: Learning how to explain neural networks: PatternNet and PatternAttribution publication-title: arXiv preprint – year: 2017 ident: 10.1016/j.compind.2019.01.001_bib0085 – volume: 14 start-page: 1137 issue: 3 year: 2018 ident: 10.1016/j.compind.2019.01.001_bib0015 article-title: Deep coupling autoencoder for fault diagnosis with multimodal sensory data publication-title: IEEE Trans. Industr. Inform. doi: 10.1109/TII.2018.2793246 – year: 2018 ident: 10.1016/j.compind.2019.01.001_bib0020 article-title: Highly-accurate machine fault diagnosis using deep transfer learning publication-title: IEEE Trans. Industr. Inform. – volume: 115 start-page: 213 year: 2019 ident: 10.1016/j.compind.2019.01.001_bib0005 article-title: Deep learning and its applications to machine health monitoring publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.05.050 – year: 2017 ident: 10.1016/j.compind.2019.01.001_bib0030 article-title: Wasserstein gan publication-title: arXiv preprint – start-page: 2234 year: 2016 ident: 10.1016/j.compind.2019.01.001_bib0075 article-title: Improved techniques for training gans publication-title: Adv. Neural Inf. Process. Syst. |
SSID | ssj0000776 |
Score | 2.6531396 |
Snippet | •Generative adversarial network is able to generate realistic samples.•Model with one dimensional convolution operation achieves best performance.•Quality of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 85 |
SubjectTerms | Auxiliary classifier generative adversarial networks Data augmentation Fault diagnosis Induction motor Signal generation |
Title | Generative adversarial networks for data augmentation in machine fault diagnosis |
URI | https://dx.doi.org/10.1016/j.compind.2019.01.001 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MFrmjTZTTbHUiz1QSlqobew2YektLHY9upvdye7sRVBwVNIyIQwzMzOB998g9BNzqkOE556uYFtHqHU5BwNpMkrbcJFypSJSu1zGA_G5H5CJw3Uq2dhgFbpar-t6VW1dk98501_URT-s2lW4ggOZAZtMIWJckISiPL2x4bmAXI1Vt879uDtzRSPP4VvLwz0BYZXWql3ut0wP86nrTOnf4D2XbOIu_Z_DlFDlUdob0tC8BiNrG40FC3MYbnykkNI4dLSu5fYNKUYaKCYr1_nbtCoxEWJ5xWNUmHN17MVlpZyVyxP0Lh_-9IbeG5LgiciEq88A3l4wiJBNBGCaZYHKZNUJ1pHIiQyNUiTcAN6VMiEioWMeZJSppXodKTBLjQ6Rc3yrVRnCEeCx2FuMjzUCgxSIvNIRzyRQa6YSM8RqX2TCSchDpssZlnNFZtmzqUZuDQLOsCZO0ftL7OF1dD4y4DVjs--BUNm6vzvphf_N71Eu3BnaTlXqLl6X6tr03Gs8lYVUi200-09PY7gevcwGH4CR6bZWw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSD8RnxuQevFWh32-2REAkKEhMh4dZs92EgUInA_3enXQRjoonXtt-mmcwz-fYbgLtUMONHIvZSO7Z5lDEbc6yubFwZ6y5KxVzmap_9sDOkTyM2KkFrfRcGaZUu9xc5Pc_W7knNWbM2H49rr7ZZCQMsyBzbYBbtQAXVqVgZKs3Hbqe_SchRvmMOv_cQsLnIU5vg8XM7_SLJK84FPN16mB8laqvstA_hwPWLpFn80hGUdHYM-1sqgifwUkhHY94iAvcrLwR6FckKhveC2L6UIBOUiNXbzN01ysg4I7OcSamJEavpkqiCdTdenMKw_TBodTy3KMGTAQ2Xnp16RMQDSQ2Vkhue1mOumImMCaRPVWyHTSrs3KN9LnUoVSiimHGjZaOh7PjCgjMoZ--ZPgcSSBH6qQ1y32gExFSlgQlEpOqp5jKuAl3bJpFORRyXWUyTNV1skjiTJmjSpN5A2lwV7r9g80JG4y8AXxs--eYPiU31v0Mv_g-9hd3O4LmX9B773UvYwzcFS-cKysuPlb62DcgyvXEO9gnwwdp3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+adversarial+networks+for+data+augmentation+in+machine+fault+diagnosis&rft.jtitle=Computers+in+industry&rft.au=Shao%2C+Siyu&rft.au=Wang%2C+Pu&rft.au=Yan%2C+Ruqiang&rft.date=2019-04-01&rft.pub=Elsevier+B.V&rft.issn=0166-3615&rft.eissn=1872-6194&rft.volume=106&rft.spage=85&rft.epage=93&rft_id=info:doi/10.1016%2Fj.compind.2019.01.001&rft.externalDocID=S0166361518305657 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-3615&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-3615&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-3615&client=summon |