Generative adversarial networks for data augmentation in machine fault diagnosis

•Generative adversarial network is able to generate realistic samples.•Model with one dimensional convolution operation achieves best performance.•Quality of generated samples is evaluated by statistical features and experiments.•Generated samples serve as training data in machine fault diagnosis ta...

Full description

Saved in:
Bibliographic Details
Published inComputers in industry Vol. 106; pp. 85 - 93
Main Authors Shao, Siyu, Wang, Pu, Yan, Ruqiang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Generative adversarial network is able to generate realistic samples.•Model with one dimensional convolution operation achieves best performance.•Quality of generated samples is evaluated by statistical features and experiments.•Generated samples serve as training data in machine fault diagnosis tasks.•Generated samples enrich dataset and improve fault classification performance. Generative adversarial networks (GANs) have been proved to be able to produce artificial data that are alike the real data, and have been successfully applied to various image generation tasks as a useful tool for data augmentation. In this paper, we develop an auxiliary classifier GAN(ACGAN)-based framework to learn from mechanical sensor signals and generate realistic one-dimensional raw data. The proposed architecture contains two parts, generator and discriminator, and both of them are built by stacking one-dimensional convolution layers to learn local features from the original input. Such stacked structure is able to learn hierarchical representations through convolution operation and easy to train. Batch normalization is performed within generator to avoid the problem of gradient vanishing during training, and category labels are used as the auxiliary information in this framework to help train the model. The proposed approach is designed to produce realistic synthesized signals with labels and the generated signals can be used as augmented data for further applications in machine fault diagnosis. In order to evaluate the performance of the generative model, we introduce a set of assessment to evaluate the quality of generated samples, including statistical characteristics and experimental verification. Finally, induction motor vibration signal datasets are utilized to investigate the effectiveness of the proposed framework.
AbstractList •Generative adversarial network is able to generate realistic samples.•Model with one dimensional convolution operation achieves best performance.•Quality of generated samples is evaluated by statistical features and experiments.•Generated samples serve as training data in machine fault diagnosis tasks.•Generated samples enrich dataset and improve fault classification performance. Generative adversarial networks (GANs) have been proved to be able to produce artificial data that are alike the real data, and have been successfully applied to various image generation tasks as a useful tool for data augmentation. In this paper, we develop an auxiliary classifier GAN(ACGAN)-based framework to learn from mechanical sensor signals and generate realistic one-dimensional raw data. The proposed architecture contains two parts, generator and discriminator, and both of them are built by stacking one-dimensional convolution layers to learn local features from the original input. Such stacked structure is able to learn hierarchical representations through convolution operation and easy to train. Batch normalization is performed within generator to avoid the problem of gradient vanishing during training, and category labels are used as the auxiliary information in this framework to help train the model. The proposed approach is designed to produce realistic synthesized signals with labels and the generated signals can be used as augmented data for further applications in machine fault diagnosis. In order to evaluate the performance of the generative model, we introduce a set of assessment to evaluate the quality of generated samples, including statistical characteristics and experimental verification. Finally, induction motor vibration signal datasets are utilized to investigate the effectiveness of the proposed framework.
Author Yan, Ruqiang
Shao, Siyu
Wang, Pu
Author_xml – sequence: 1
  givenname: Siyu
  orcidid: 0000-0003-3180-2180
  surname: Shao
  fullname: Shao, Siyu
  email: cathygx.sy@gmail.com
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, China
– sequence: 2
  givenname: Pu
  orcidid: 0000-0001-8725-6225
  surname: Wang
  fullname: Wang, Pu
  email: wangpuupup@outlook.com
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, China
– sequence: 3
  givenname: Ruqiang
  surname: Yan
  fullname: Yan, Ruqiang
  email: ruqiang@seu.edu.cn
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, China
BookMark eNqFkM1KAzEUhYNUsFYfQcgLzJjMTyaDC5GiVSjoQtfhmtzU1JlMSdKKb--UduWmd3M35ztwvksy8YNHQm44yznj4nad66HfOG_ygvE2ZzxnjJ-RKZdNkQneVhMyHXMiKwWvL8hljGs2XtOIKXlboMcAye2QgtlhiBAcdNRj-hnCd6R2CNRAAgrbVY8-jdHBU-dpD_rLeaQWtl2ixsHKD9HFK3JuoYt4ffwz8vH0-D5_zpavi5f5wzLTZSVSVsgGGlnqylZaSys_WStNbRtrS11Upq2LsgJeSSykRqGNgKatpUXNuRFC1OWM1IdeHYYYA1q1Ca6H8Ks4U3staq2OWtRei2JcjVpG7u4fp91hVArgupP0_YHGcdrOYVBRO_QajQuokzKDO9HwBxR1heM
CitedBy_id crossref_primary_10_1155_2021_9927151
crossref_primary_10_1109_JIOT_2022_3163391
crossref_primary_10_3390_s24082575
crossref_primary_10_1109_TII_2022_3168667
crossref_primary_10_1109_MIS_2022_3168356
crossref_primary_10_21595_jme_2025_24663
crossref_primary_10_23919_IEN_2024_0027
crossref_primary_10_32604_cmes_2023_025307
crossref_primary_10_1007_s11071_022_07341_6
crossref_primary_10_1016_j_ymssp_2021_108487
crossref_primary_10_1016_j_eswa_2023_122806
crossref_primary_10_1109_JSEN_2024_3372438
crossref_primary_10_1002_cjce_24949
crossref_primary_10_1177_09544100221137975
crossref_primary_10_3390_e25081233
crossref_primary_10_1016_j_eswa_2022_117731
crossref_primary_10_1016_j_eswa_2023_120984
crossref_primary_10_1038_s41598_022_08956_w
crossref_primary_10_1109_TIM_2023_3292952
crossref_primary_10_1016_j_apacoust_2022_108727
crossref_primary_10_1109_JSEN_2021_3099638
crossref_primary_10_1016_j_measurement_2020_107929
crossref_primary_10_1109_JSEN_2024_3418413
crossref_primary_10_1155_2021_6616592
crossref_primary_10_1177_09544062221097339
crossref_primary_10_1002_rob_22127
crossref_primary_10_1109_TIM_2023_3345907
crossref_primary_10_1109_TIM_2024_3457923
crossref_primary_10_3390_app14010221
crossref_primary_10_1016_j_ijepes_2024_110190
crossref_primary_10_1016_j_jwpe_2023_104303
crossref_primary_10_3390_act12120460
crossref_primary_10_1016_j_knosys_2021_107892
crossref_primary_10_1016_j_eswa_2022_117288
crossref_primary_10_1109_TIM_2023_3301898
crossref_primary_10_1016_j_aei_2022_101552
crossref_primary_10_1016_j_aei_2023_102344
crossref_primary_10_1109_JSEN_2022_3160762
crossref_primary_10_1109_TGRS_2023_3274296
crossref_primary_10_1007_s11063_022_10918_2
crossref_primary_10_1177_09544062231154077
crossref_primary_10_1016_j_apenergy_2023_120814
crossref_primary_10_1016_j_asoc_2020_106333
crossref_primary_10_3390_app12147032
crossref_primary_10_1016_j_istruc_2023_05_151
crossref_primary_10_1109_TETCI_2021_3115666
crossref_primary_10_3389_fbuil_2022_816644
crossref_primary_10_1016_j_compind_2024_104099
crossref_primary_10_1016_j_ress_2024_110343
crossref_primary_10_1007_s12273_021_0807_6
crossref_primary_10_1109_JSEN_2024_3487209
crossref_primary_10_1016_j_aej_2024_09_004
crossref_primary_10_1016_j_aei_2024_102612
crossref_primary_10_3390_electronics10040389
crossref_primary_10_3390_s23031305
crossref_primary_10_1016_j_compind_2019_103184
crossref_primary_10_1007_s10489_024_05960_7
crossref_primary_10_1177_1475921719893594
crossref_primary_10_1007_s40436_024_00496_y
crossref_primary_10_1088_1361_6501_ad7f76
crossref_primary_10_1088_1361_6501_acad20
crossref_primary_10_1109_TASE_2023_3267860
crossref_primary_10_3390_s23167263
crossref_primary_10_1016_j_ymssp_2024_111155
crossref_primary_10_1016_j_isatra_2021_02_042
crossref_primary_10_3390_app15052830
crossref_primary_10_1007_s12206_024_0104_2
crossref_primary_10_1109_ACCESS_2023_3267960
crossref_primary_10_1007_s00521_022_08080_w
crossref_primary_10_1109_TIM_2020_3041905
crossref_primary_10_1109_ACCESS_2023_3311269
crossref_primary_10_17531_ein_2020_1_8
crossref_primary_10_1109_JSEN_2021_3123807
crossref_primary_10_3390_s22020671
crossref_primary_10_1016_j_eswa_2021_115234
crossref_primary_10_1109_JSEN_2022_3178137
crossref_primary_10_1016_j_engappai_2025_110410
crossref_primary_10_3390_s22228749
crossref_primary_10_1007_s13735_020_00196_w
crossref_primary_10_1109_TIM_2020_3043098
crossref_primary_10_3390_pr9060919
crossref_primary_10_1016_j_cirp_2024_04_101
crossref_primary_10_1016_j_ymssp_2024_111147
crossref_primary_10_1016_j_procs_2022_08_008
crossref_primary_10_1007_s41060_023_00416_6
crossref_primary_10_1177_0954406220941037
crossref_primary_10_1109_TII_2022_3229829
crossref_primary_10_1080_01605682_2021_1880296
crossref_primary_10_1016_j_fusengdes_2024_114475
crossref_primary_10_31857_S2500262724050102
crossref_primary_10_1109_JSEN_2024_3466520
crossref_primary_10_1007_s10570_023_05108_9
crossref_primary_10_1155_2020_8503247
crossref_primary_10_1007_s42417_022_00498_9
crossref_primary_10_1109_JSEN_2024_3405889
crossref_primary_10_3390_cryst11030258
crossref_primary_10_3390_e27020111
crossref_primary_10_1016_j_cose_2024_104073
crossref_primary_10_1016_j_engappai_2024_109443
crossref_primary_10_1088_1361_6501_acf6d9
crossref_primary_10_1016_j_knosys_2023_111158
crossref_primary_10_1109_ACCESS_2020_3030058
crossref_primary_10_1016_j_eswa_2024_125398
crossref_primary_10_3390_s21155173
crossref_primary_10_1007_s10489_023_04870_4
crossref_primary_10_1177_09544062211043132
crossref_primary_10_1109_TNNLS_2021_3137172
crossref_primary_10_1016_j_engappai_2022_105508
crossref_primary_10_1016_j_eswa_2020_113696
crossref_primary_10_1016_j_cosrev_2021_100452
crossref_primary_10_3390_app11135835
crossref_primary_10_1088_1361_6501_ad0f67
crossref_primary_10_1016_j_ymssp_2022_109772
crossref_primary_10_1016_j_cirp_2020_05_002
crossref_primary_10_1186_s10033_021_00587_y
crossref_primary_10_1016_j_ress_2022_108867
crossref_primary_10_1155_2021_3477667
crossref_primary_10_1016_j_neucom_2020_04_045
crossref_primary_10_1016_j_neucom_2024_129288
crossref_primary_10_1109_TIM_2021_3127636
crossref_primary_10_1016_j_ymssp_2023_110370
crossref_primary_10_1109_ACCESS_2020_3016314
crossref_primary_10_3390_app12147346
crossref_primary_10_1016_j_eswa_2023_120084
crossref_primary_10_1016_j_engfailanal_2022_106573
crossref_primary_10_1016_j_ifacol_2022_07_531
crossref_primary_10_1109_TII_2020_3029551
crossref_primary_10_1109_JAS_2022_105935
crossref_primary_10_1109_JSTARS_2022_3228741
crossref_primary_10_1007_s41870_025_02459_3
crossref_primary_10_1016_j_anucene_2022_109267
crossref_primary_10_1109_ACCESS_2019_2950985
crossref_primary_10_3390_su122310090
crossref_primary_10_1016_j_measurement_2022_110924
crossref_primary_10_1016_j_aei_2022_101762
crossref_primary_10_1016_j_asoc_2024_111544
crossref_primary_10_1109_JSEN_2022_3211021
crossref_primary_10_1109_JSEN_2021_3069452
crossref_primary_10_1016_j_bspc_2022_103718
crossref_primary_10_1088_1361_6501_ad5904
crossref_primary_10_3390_pr11071928
crossref_primary_10_3390_app10217712
crossref_primary_10_1029_2023SW003472
crossref_primary_10_1109_ACCESS_2019_2906388
crossref_primary_10_1155_2021_7496007
crossref_primary_10_1016_j_isatra_2020_11_005
crossref_primary_10_1016_j_jmsy_2022_03_009
crossref_primary_10_1002_cjce_24020
crossref_primary_10_1109_ACCESS_2019_2928848
crossref_primary_10_1016_j_eswa_2024_124511
crossref_primary_10_1109_TMECH_2021_3132459
crossref_primary_10_3390_s22103848
crossref_primary_10_1109_TIM_2022_3190525
crossref_primary_10_1016_j_isatra_2022_10_008
crossref_primary_10_2118_214661_PA
crossref_primary_10_1002_cjce_24818
crossref_primary_10_1016_j_compind_2021_103528
crossref_primary_10_1016_j_engfracmech_2024_110096
crossref_primary_10_1088_1361_6501_ad86d5
crossref_primary_10_1177_10775463241272933
crossref_primary_10_3390_diagnostics11122349
crossref_primary_10_1109_ACCESS_2023_3323038
crossref_primary_10_1109_TII_2021_3053106
crossref_primary_10_1088_1361_6501_ad437e
crossref_primary_10_1371_journal_pone_0246905
crossref_primary_10_1016_j_compchemeng_2024_108723
crossref_primary_10_1049_cim2_12047
crossref_primary_10_3390_machines13030193
crossref_primary_10_1109_ACCESS_2020_3011689
crossref_primary_10_1109_ACCESS_2024_3397184
crossref_primary_10_1109_TIM_2024_3446655
crossref_primary_10_1016_j_biosystemseng_2023_11_002
crossref_primary_10_1016_j_knosys_2021_107488
crossref_primary_10_1109_TR_2024_3403660
crossref_primary_10_1109_TIM_2020_3043959
crossref_primary_10_32604_cmes_2024_055633
crossref_primary_10_1088_1361_6501_ac7d3d
crossref_primary_10_1007_s12555_022_0798_9
crossref_primary_10_1016_j_knosys_2020_106679
crossref_primary_10_1109_TII_2022_3218737
crossref_primary_10_1088_1361_6501_acc5fe
crossref_primary_10_3390_s23041892
crossref_primary_10_1016_j_compind_2021_103546
crossref_primary_10_1007_s10479_023_05722_7
crossref_primary_10_1016_j_measurement_2023_113814
crossref_primary_10_1016_j_measurement_2022_110826
crossref_primary_10_1016_j_ymssp_2020_107043
crossref_primary_10_1016_j_neucom_2020_04_074
crossref_primary_10_3390_electronics11040622
crossref_primary_10_1109_JSEN_2024_3448467
crossref_primary_10_1016_j_isatra_2022_01_011
crossref_primary_10_1109_TIE_2022_3231300
crossref_primary_10_1109_JSEN_2024_3477456
crossref_primary_10_3390_jsan13050060
crossref_primary_10_1016_j_measurement_2020_107768
crossref_primary_10_1007_s10845_020_01579_w
crossref_primary_10_3934_mbe_2022534
crossref_primary_10_1007_s42417_022_00823_2
crossref_primary_10_3389_fmech_2024_1430542
crossref_primary_10_1016_j_engappai_2022_105149
crossref_primary_10_1109_JSEN_2023_3279436
crossref_primary_10_1007_s11431_023_2496_6
crossref_primary_10_1088_1361_6501_ad0fd2
crossref_primary_10_1007_s12206_024_0414_4
crossref_primary_10_1109_ACCESS_2020_2985769
crossref_primary_10_1007_s10845_023_02126_z
crossref_primary_10_1016_j_conengprac_2021_104903
crossref_primary_10_1109_TIM_2021_3073436
crossref_primary_10_1109_JSEN_2021_3131166
crossref_primary_10_1109_JSEN_2024_3476381
crossref_primary_10_1155_2022_1679836
crossref_primary_10_1016_j_autcon_2022_104734
crossref_primary_10_1016_j_apenergy_2024_123745
crossref_primary_10_1016_j_isatra_2023_07_030
crossref_primary_10_1177_1077546321993563
crossref_primary_10_1109_TIM_2021_3087834
crossref_primary_10_1109_TIM_2023_3298425
crossref_primary_10_1093_jcde_qwae075
crossref_primary_10_1155_2020_8823050
crossref_primary_10_1016_j_measurement_2025_116988
crossref_primary_10_1016_j_measurement_2024_116589
crossref_primary_10_1016_j_neucom_2021_11_080
crossref_primary_10_1007_s00158_022_03425_4
crossref_primary_10_3390_s23010211
crossref_primary_10_1016_j_ymssp_2023_110828
crossref_primary_10_1016_j_procs_2021_01_290
crossref_primary_10_1007_s10489_024_05314_3
crossref_primary_10_3389_frai_2020_578613
crossref_primary_10_1016_j_knosys_2021_107142
crossref_primary_10_1016_j_aei_2021_101448
crossref_primary_10_1016_j_ymssp_2021_108664
crossref_primary_10_1007_s10462_024_11021_9
crossref_primary_10_1016_j_measurement_2020_107741
crossref_primary_10_1088_1361_665X_acc0ed
crossref_primary_10_3390_land14030578
crossref_primary_10_1016_j_rcim_2023_102624
crossref_primary_10_1109_ACCESS_2024_3524061
crossref_primary_10_1016_j_engappai_2024_108332
crossref_primary_10_1155_2022_9908074
crossref_primary_10_1016_j_engappai_2025_110242
crossref_primary_10_1016_j_procs_2020_06_107
crossref_primary_10_1109_ACCESS_2021_3063929
crossref_primary_10_1016_j_oceaneng_2022_111516
crossref_primary_10_1109_TIA_2022_3182314
crossref_primary_10_1007_s12206_024_0835_0
crossref_primary_10_1088_1755_1315_791_1_012030
crossref_primary_10_1093_jcde_qwae061
crossref_primary_10_1016_j_pnucene_2024_105294
crossref_primary_10_1016_j_asoc_2020_106829
crossref_primary_10_1155_2020_8836477
crossref_primary_10_1007_s10845_020_01614_w
crossref_primary_10_1016_j_measurement_2020_107880
crossref_primary_10_1080_10589759_2024_2413696
crossref_primary_10_3390_machines10050336
crossref_primary_10_1016_j_measurement_2023_112879
crossref_primary_10_1007_s00170_025_15087_9
crossref_primary_10_3390_s21175739
crossref_primary_10_3390_s24041290
crossref_primary_10_1142_S0218348X23401394
crossref_primary_10_1016_j_rineng_2025_103991
crossref_primary_10_1007_s41870_023_01725_6
crossref_primary_10_3390_s22145413
crossref_primary_10_1038_s41598_024_75112_x
crossref_primary_10_1016_j_knosys_2022_110175
crossref_primary_10_1016_j_promfg_2020_07_003
crossref_primary_10_1016_j_rsase_2022_100810
crossref_primary_10_3233_IDA_215735
crossref_primary_10_1007_s11276_023_03331_7
crossref_primary_10_1016_j_ymssp_2020_106825
crossref_primary_10_1080_00207543_2019_1662133
crossref_primary_10_3390_make2030020
crossref_primary_10_1016_j_ejmp_2021_04_016
crossref_primary_10_3390_s23042024
crossref_primary_10_1177_1687814020944323
crossref_primary_10_1016_j_engappai_2024_108869
crossref_primary_10_1016_j_cmpb_2023_107583
crossref_primary_10_3390_app15063166
crossref_primary_10_1016_j_measurement_2021_109467
crossref_primary_10_1016_j_neucom_2020_07_088
crossref_primary_10_1007_s00521_020_05137_6
crossref_primary_10_3103_S1068367425700107
crossref_primary_10_1109_LRA_2021_3103648
crossref_primary_10_1088_1361_6501_ac18d2
crossref_primary_10_3390_lubricants9100105
crossref_primary_10_1007_s11517_024_03084_1
crossref_primary_10_1016_j_engappai_2021_104279
crossref_primary_10_1142_S0218001423510047
crossref_primary_10_1016_j_ijepes_2021_106965
crossref_primary_10_1186_s10033_021_00570_7
crossref_primary_10_1016_j_aei_2024_102605
crossref_primary_10_1109_TIM_2024_3472781
crossref_primary_10_1109_TII_2020_2968370
crossref_primary_10_1007_s10845_023_02176_3
crossref_primary_10_1016_j_eswa_2023_121001
crossref_primary_10_1109_ACCESS_2020_3038605
crossref_primary_10_1109_ACCESS_2019_2943497
crossref_primary_10_1109_ACCESS_2021_3117603
crossref_primary_10_1109_JSEN_2023_3307425
crossref_primary_10_1109_TIM_2021_3123433
crossref_primary_10_1109_TIM_2021_3125973
crossref_primary_10_3389_fnins_2020_00853
crossref_primary_10_3390_s20164485
crossref_primary_10_1109_TIM_2021_3055821
crossref_primary_10_1109_ACCESS_2020_3022840
crossref_primary_10_3390_pr9101751
crossref_primary_10_1016_j_isatra_2020_08_012
crossref_primary_10_1016_j_compeleceng_2021_107195
crossref_primary_10_1016_j_rcim_2020_101975
crossref_primary_10_1109_TIM_2021_3089240
crossref_primary_10_1016_j_ymssp_2023_110747
crossref_primary_10_3390_app132212458
crossref_primary_10_1109_TIM_2024_3457925
crossref_primary_10_1007_s11760_025_03935_w
crossref_primary_10_1109_TIE_2022_3231287
crossref_primary_10_1109_TIM_2022_3184368
crossref_primary_10_1016_j_compbiomed_2023_107024
crossref_primary_10_1007_s13349_022_00627_8
crossref_primary_10_1088_1361_6501_ad1708
crossref_primary_10_1109_TIM_2021_3102745
crossref_primary_10_1109_TIM_2025_3542138
crossref_primary_10_3390_e24050614
crossref_primary_10_1016_j_neucom_2023_02_051
crossref_primary_10_1016_j_jobe_2023_106563
crossref_primary_10_1016_j_net_2024_07_015
crossref_primary_10_1109_TR_2022_3215243
crossref_primary_10_1016_j_scitotenv_2021_149508
crossref_primary_10_1109_ACCESS_2019_2930882
crossref_primary_10_1109_ACCESS_2023_3291336
crossref_primary_10_1088_1361_6501_ab3072
crossref_primary_10_1007_s10489_023_04749_4
crossref_primary_10_1186_s10033_024_01046_0
crossref_primary_10_3390_buildings14092894
crossref_primary_10_1109_ACCESS_2020_3029127
crossref_primary_10_1016_j_engfailanal_2020_104759
crossref_primary_10_1007_s10586_024_04451_1
crossref_primary_10_1016_j_measurement_2020_108522
crossref_primary_10_1007_s12555_021_0691_y
crossref_primary_10_1109_TII_2023_3326507
crossref_primary_10_1088_1361_6501_aca0b4
crossref_primary_10_1016_j_eswa_2023_120255
crossref_primary_10_1109_TASE_2020_2998467
crossref_primary_10_1007_s12008_023_01721_x
crossref_primary_10_3390_app14198811
crossref_primary_10_36074_grail_of_science_06_09_2024_039
crossref_primary_10_3390_pr10020200
Cites_doi 10.1109/TII.2017.2672988
10.1109/TII.2018.2793246
10.1016/j.ymssp.2018.05.050
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.compind.2019.01.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6194
EndPage 93
ExternalDocumentID 10_1016_j_compind_2019_01_001
S0166361518305657
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSZ
T5K
TAE
TAF
TN5
U5U
UNMZH
VH1
WH7
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c346t-287a783c4f4cc8f8b098d5f7ff3c24d95234a148e28ce6cd6a7958fec11d66653
IEDL.DBID .~1
ISSN 0166-3615
IngestDate Tue Jul 01 00:52:00 EDT 2025
Thu Apr 24 23:01:30 EDT 2025
Fri Feb 23 02:40:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Induction motor
Signal generation
Data augmentation
Auxiliary classifier generative adversarial networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c346t-287a783c4f4cc8f8b098d5f7ff3c24d95234a148e28ce6cd6a7958fec11d66653
ORCID 0000-0001-8725-6225
0000-0003-3180-2180
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_compind_2019_01_001
crossref_citationtrail_10_1016_j_compind_2019_01_001
elsevier_sciencedirect_doi_10_1016_j_compind_2019_01_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Computers in industry
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Odena (bib0045) 2016
Donahue, McAuley, Puckette (bib0055) 2018
Diederik, Jimmy (bib0090) 2014
Yang, Yan, Gao (bib0095) 2015
Ma, Sun, Chen (bib0015) 2018; 14
Springenberg (bib0070) 2015
Sun, Zhao, Yan, Shao, Chen (bib0010) 2017; 13
Shao, McAleer, Yan, Baldi (bib0020) 2018
Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville (bib0035) 2017
Radford, Metz, Chintala (bib0040) 2015
Zhao, Yan, Chen, Mao, Wang, Gao (bib0005) 2019; 115
Peyré, Cuturi (bib0085) 2017
Odena, Olah, Shlens (bib0050) 2016
Heusel, Ramsauer, Unterthiner, Nessler, Hochreiter (bib0080) 2017
Salimans, Goodfellow, Zaremba, Cheung, Radford, Chen (bib0075) 2016
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Bengio (bib0025) 2014
Kindermans, Schütt, Alber, Müller, Erhan, Kim, Dähne (bib0065) 2017
Arjovsky, Chintala, Bottou (bib0030) 2017
Hartmann, Schirrmeister, Ball (bib0060) 2018
Yang (10.1016/j.compind.2019.01.001_bib0095) 2015
Odena (10.1016/j.compind.2019.01.001_bib0050) 2016
Radford (10.1016/j.compind.2019.01.001_bib0040) 2015
Kindermans (10.1016/j.compind.2019.01.001_bib0065) 2017
Heusel (10.1016/j.compind.2019.01.001_bib0080) 2017
Odena (10.1016/j.compind.2019.01.001_bib0045) 2016
Donahue (10.1016/j.compind.2019.01.001_bib0055) 2018
Ma (10.1016/j.compind.2019.01.001_bib0015) 2018; 14
Gulrajani (10.1016/j.compind.2019.01.001_bib0035) 2017
Zhao (10.1016/j.compind.2019.01.001_bib0005) 2019; 115
Diederik (10.1016/j.compind.2019.01.001_bib0090) 2014
Hartmann (10.1016/j.compind.2019.01.001_bib0060) 2018
Peyré (10.1016/j.compind.2019.01.001_bib0085) 2017
Arjovsky (10.1016/j.compind.2019.01.001_bib0030) 2017
Salimans (10.1016/j.compind.2019.01.001_bib0075) 2016
Springenberg (10.1016/j.compind.2019.01.001_bib0070) 2015
Sun (10.1016/j.compind.2019.01.001_bib0010) 2017; 13
Shao (10.1016/j.compind.2019.01.001_bib0020) 2018
Goodfellow (10.1016/j.compind.2019.01.001_bib0025) 2014
References_xml – start-page: 256
  year: 2015
  end-page: 260
  ident: bib0095
  article-title: Induction motor fault diagnosis using multiple class feature selection, in Proc
  publication-title: IEEE Int. Instrum. Meas. Technol. Conf.
– year: 2016
  ident: bib0050
  article-title: Conditional image synthesis with auxiliary classifier GANs
  publication-title: arXiv preprint
– start-page: 5767
  year: 2017
  end-page: 5777
  ident: bib0035
  article-title: Improved training of wasserstein gans
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2018
  ident: bib0055
  article-title: Synthesizing audio with generative adversarial networks
  publication-title: arXiv preprint
– year: 2017
  ident: bib0030
  article-title: Wasserstein gan
  publication-title: arXiv preprint
– year: 2018
  ident: bib0060
  article-title: EEG-GAN: generative adversarial networks for electroencephalographic (EEG) brain signals
  publication-title: arXiv preprint
– year: 2017
  ident: bib0085
  article-title: Computational Optimal Transport
– volume: 13
  start-page: 1350
  year: 2017
  end-page: 1359
  ident: bib0010
  article-title: Convolutional discriminative feature learning for induction motor fault diagnosis
  publication-title: IEEE Trans. Industr. Inform.
– year: 2018
  ident: bib0020
  article-title: Highly-accurate machine fault diagnosis using deep transfer learning
  publication-title: IEEE Trans. Industr. Inform.
– year: 2016
  ident: bib0045
  article-title: Semi-supervised learning with generative adversarial networks
  publication-title: arXiv preprint
– year: 2015
  ident: bib0070
  article-title: Unsupervised and semi-supervised learning with categorical generative adversarial networks
  publication-title: arXiv preprint
– start-page: 6626
  year: 2017
  end-page: 6637
  ident: bib0080
  article-title: Gans trained by a two time-scale update rule converge to a local nash equilibrium
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 14
  start-page: 1137
  year: 2018
  end-page: 1145
  ident: bib0015
  article-title: Deep coupling autoencoder for fault diagnosis with multimodal sensory data
  publication-title: IEEE Trans. Industr. Inform.
– year: 2014
  ident: bib0090
  article-title: ADAM: a method for stochastic optimization
  publication-title: arXiv preprint arXiv
– year: 2017
  ident: bib0065
  article-title: Learning how to explain neural networks: PatternNet and PatternAttribution
  publication-title: arXiv preprint
– volume: 115
  start-page: 213
  year: 2019
  end-page: 237
  ident: bib0005
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech. Syst. Signal Process.
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: bib0025
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2015
  ident: bib0040
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: arXiv preprint
– start-page: 2234
  year: 2016
  end-page: 2242
  ident: bib0075
  article-title: Improved techniques for training gans
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2016
  ident: 10.1016/j.compind.2019.01.001_bib0045
  article-title: Semi-supervised learning with generative adversarial networks
  publication-title: arXiv preprint
– start-page: 256
  year: 2015
  ident: 10.1016/j.compind.2019.01.001_bib0095
  article-title: Induction motor fault diagnosis using multiple class feature selection, in Proc
  publication-title: IEEE Int. Instrum. Meas. Technol. Conf.
– year: 2018
  ident: 10.1016/j.compind.2019.01.001_bib0060
  article-title: EEG-GAN: generative adversarial networks for electroencephalographic (EEG) brain signals
  publication-title: arXiv preprint
– year: 2014
  ident: 10.1016/j.compind.2019.01.001_bib0090
  article-title: ADAM: a method for stochastic optimization
  publication-title: arXiv preprint arXiv
– year: 2018
  ident: 10.1016/j.compind.2019.01.001_bib0055
  article-title: Synthesizing audio with generative adversarial networks
  publication-title: arXiv preprint
– year: 2015
  ident: 10.1016/j.compind.2019.01.001_bib0040
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: arXiv preprint
– year: 2016
  ident: 10.1016/j.compind.2019.01.001_bib0050
  article-title: Conditional image synthesis with auxiliary classifier GANs
  publication-title: arXiv preprint
– start-page: 6626
  year: 2017
  ident: 10.1016/j.compind.2019.01.001_bib0080
  article-title: Gans trained by a two time-scale update rule converge to a local nash equilibrium
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 5767
  year: 2017
  ident: 10.1016/j.compind.2019.01.001_bib0035
  article-title: Improved training of wasserstein gans
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2015
  ident: 10.1016/j.compind.2019.01.001_bib0070
  article-title: Unsupervised and semi-supervised learning with categorical generative adversarial networks
  publication-title: arXiv preprint
– volume: 13
  start-page: 1350
  issue: 3
  year: 2017
  ident: 10.1016/j.compind.2019.01.001_bib0010
  article-title: Convolutional discriminative feature learning for induction motor fault diagnosis
  publication-title: IEEE Trans. Industr. Inform.
  doi: 10.1109/TII.2017.2672988
– start-page: 2672
  year: 2014
  ident: 10.1016/j.compind.2019.01.001_bib0025
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2017
  ident: 10.1016/j.compind.2019.01.001_bib0065
  article-title: Learning how to explain neural networks: PatternNet and PatternAttribution
  publication-title: arXiv preprint
– year: 2017
  ident: 10.1016/j.compind.2019.01.001_bib0085
– volume: 14
  start-page: 1137
  issue: 3
  year: 2018
  ident: 10.1016/j.compind.2019.01.001_bib0015
  article-title: Deep coupling autoencoder for fault diagnosis with multimodal sensory data
  publication-title: IEEE Trans. Industr. Inform.
  doi: 10.1109/TII.2018.2793246
– year: 2018
  ident: 10.1016/j.compind.2019.01.001_bib0020
  article-title: Highly-accurate machine fault diagnosis using deep transfer learning
  publication-title: IEEE Trans. Industr. Inform.
– volume: 115
  start-page: 213
  year: 2019
  ident: 10.1016/j.compind.2019.01.001_bib0005
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.05.050
– year: 2017
  ident: 10.1016/j.compind.2019.01.001_bib0030
  article-title: Wasserstein gan
  publication-title: arXiv preprint
– start-page: 2234
  year: 2016
  ident: 10.1016/j.compind.2019.01.001_bib0075
  article-title: Improved techniques for training gans
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0000776
Score 2.6531396
Snippet •Generative adversarial network is able to generate realistic samples.•Model with one dimensional convolution operation achieves best performance.•Quality of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 85
SubjectTerms Auxiliary classifier generative adversarial networks
Data augmentation
Fault diagnosis
Induction motor
Signal generation
Title Generative adversarial networks for data augmentation in machine fault diagnosis
URI https://dx.doi.org/10.1016/j.compind.2019.01.001
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MFrmjTZTTbHUiz1QSlqobew2YektLHY9upvdye7sRVBwVNIyIQwzMzOB998g9BNzqkOE556uYFtHqHU5BwNpMkrbcJFypSJSu1zGA_G5H5CJw3Uq2dhgFbpar-t6VW1dk98501_URT-s2lW4ggOZAZtMIWJckISiPL2x4bmAXI1Vt879uDtzRSPP4VvLwz0BYZXWql3ut0wP86nrTOnf4D2XbOIu_Z_DlFDlUdob0tC8BiNrG40FC3MYbnykkNI4dLSu5fYNKUYaKCYr1_nbtCoxEWJ5xWNUmHN17MVlpZyVyxP0Lh_-9IbeG5LgiciEq88A3l4wiJBNBGCaZYHKZNUJ1pHIiQyNUiTcAN6VMiEioWMeZJSppXodKTBLjQ6Rc3yrVRnCEeCx2FuMjzUCgxSIvNIRzyRQa6YSM8RqX2TCSchDpssZlnNFZtmzqUZuDQLOsCZO0ftL7OF1dD4y4DVjs--BUNm6vzvphf_N71Eu3BnaTlXqLl6X6tr03Gs8lYVUi200-09PY7gevcwGH4CR6bZWw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSD8RnxuQevFWh32-2REAkKEhMh4dZs92EgUInA_3enXQRjoonXtt-mmcwz-fYbgLtUMONHIvZSO7Z5lDEbc6yubFwZ6y5KxVzmap_9sDOkTyM2KkFrfRcGaZUu9xc5Pc_W7knNWbM2H49rr7ZZCQMsyBzbYBbtQAXVqVgZKs3Hbqe_SchRvmMOv_cQsLnIU5vg8XM7_SLJK84FPN16mB8laqvstA_hwPWLpFn80hGUdHYM-1sqgifwUkhHY94iAvcrLwR6FckKhveC2L6UIBOUiNXbzN01ysg4I7OcSamJEavpkqiCdTdenMKw_TBodTy3KMGTAQ2Xnp16RMQDSQ2Vkhue1mOumImMCaRPVWyHTSrs3KN9LnUoVSiimHGjZaOh7PjCgjMoZ--ZPgcSSBH6qQ1y32gExFSlgQlEpOqp5jKuAl3bJpFORRyXWUyTNV1skjiTJmjSpN5A2lwV7r9g80JG4y8AXxs--eYPiU31v0Mv_g-9hd3O4LmX9B773UvYwzcFS-cKysuPlb62DcgyvXEO9gnwwdp3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+adversarial+networks+for+data+augmentation+in+machine+fault+diagnosis&rft.jtitle=Computers+in+industry&rft.au=Shao%2C+Siyu&rft.au=Wang%2C+Pu&rft.au=Yan%2C+Ruqiang&rft.date=2019-04-01&rft.pub=Elsevier+B.V&rft.issn=0166-3615&rft.eissn=1872-6194&rft.volume=106&rft.spage=85&rft.epage=93&rft_id=info:doi/10.1016%2Fj.compind.2019.01.001&rft.externalDocID=S0166361518305657
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-3615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-3615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-3615&client=summon