A physico-chemical properties based model for estimating evaporation and absorption rates of perfumes from skin
Synopsis Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior to incorporation into cosmetic products. Exposure assessment for these materials often involves the conservative assumption of 100% absorptio...
Saved in:
Published in | International journal of cosmetic science Vol. 23; no. 1; pp. 49 - 58 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Science Ltd
01.02.2001
Blackwell Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Synopsis
Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior to incorporation into cosmetic products. Exposure assessment for these materials often involves the conservative assumption of 100% absorption of each component. This report describes an improved method to estimate the absorption and evaporation of perfume ingredients from skin, based on their physico‐chemical properties. The effect of environmental variables such as temperature and wind velocity can be accounted for in a logical way. This was accomplished using a first‐order kinetic approach expected to be applicable for small doses applied to skin. Skin penetration rate was calculated as a fraction of the maximum flux estimated from the compound’s lipid solubility, Slip (represented by the product of octanol/water partition coefficient, Koctt, and water solubility, Sw), and molecular weight, MW. Evaporation rates were estimated from a modified Henry’s Law approach with a stagnant boundary layer whose thickness is a function of surface airflow, v. At a given value of v, evaporation rate was assumed proportional to the ratio Pvp/Slip, where Pvp is the vapour pressure of the ingredient at skin temperature, T. The model predicts a relationship for total evaporation from skin of the form %evap = 100x/(k+x) where x = PvpMW2.7/(KoctSw) and k is a parameter which depends only on v and T. Comparison with published data on perfume evaporation from human skin in vivo showed good agreement between theory and experiment for two closely related perfume mixtures (r2 = 0.52–0.74, s = 12–14%, n = 10). Thus, the method would seem to have a good prospect of providing skin absorption estimates suitable for use in exposure assessment and improved understanding of dose‐related contact allergy.
Résumé
Les parfums ont un fort potentiel allergique quand ils sont utilisés de manière inadéquate sur la peau. Pour cette raison, ils sont sujets à des tests rigoureux avant leur incorporation dans les produits cosmétiques. L’évaluation de l’exposition à ces matériaux repose souvent sur l’hypothèse que chaque composé est absorbéà 100%. Notre étude décrit une nouvelle approche pour affiner la détermination de l’absorption et l’évapouration des parfums et de leurs ingrédients à travers la peau, basée sur leurs propriétés physico‐chimiques. L’effet des variables liées au milieu ambient, comme la temperature et la vitesse de l’air, peut être introduit de manière logique en utilisant une cinétique du premier ordre, applicable a priori à de petites doses appliquées sur la peau. La vitesse de pénétration à travers la peau est calculée comme le quotient du flux maximum estiméà partir de la solubilité en phase lipide du composé, Slip (calculée comme le produit du coefficient de partage octanol/eau Koct, et la solubilité aqueuse, Sw), et du poids moleculaire, MW. Les taux d’évapouration sont calculés en utilisant une modification de la loi de Henry avec une couche stagnante dont l’épaisseur est une fonction des mouvements d’air à la surface, v. Pour une valeur donnée de v, le taux d’évapouration est supposéêtre proportionnel au quotient Pvp/Slip, ou Pvp est la pression de vapeur du composé a la température de la peau, T. Le modèle prédit une équation pour l’évapouration totale depuis la peau du type: %evap = 100x/(k+x) oùx = PvpMW2.7/(KoctSw) et k est une variable qui dépend seulement de v et de T. Pour deux parfums de compositions voisines, le modèle est en bon accord avec des données publiées sur l’évapouration de parfum depuis la peau in vivo (Corrélation théorie/expérience: (r 2 = 0.52–0.74, s = 12–14%, n = 10). En conclusion, cette méthode semble prometteuse pour fournir des estimations qui peuvent etre utilisées dans les évaluations d’exposition et pour permettre de mieux comprendre l’effet de dose dans l’allergie de contact. |
---|---|
AbstractList | Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior to incorporation into cosmetic products. Exposure assessment for these materials often involves the conservative assumption of 100% absorption of each component. This report describes an improved method to estimate the absorption and evaporation of perfume ingredients from skin, based on their physico-chemical properties. The effect of environmental variables such as temperature and wind velocity can be accounted for in a logical way. This was accomplished using a first-order kinetic approach expected to be applicable for small doses applied to skin. Skin penetration rate was calculated as a fraction of the maximum flux estimated from the compound's lipid solubility, S(lip) (represented by the product of octanol/water partition coefficient, K(octt), and water solubility, S(w)), and molecular weight, MW. Evaporation rates were estimated from a modified Henry's Law approach with a stagnant boundary layer whose thickness is a function of surface airflow, v. At a given value of v, evaporation rate was assumed proportional to the ratio P(vp)/S(lip), where P(vp) is the vapour pressure of the ingredient at skin temperature, T. The model predicts a relationship for total evaporation from skin of the form %evap = 100x/(k+x) where x = P(vp)MW(2.7)/(K(oct)S(w)) and k is a parameter which depends only on v and T. Comparison with published data on perfume evaporation from human skin in vivo showed good agreement between theory and experiment for two closely related perfume mixtures (r(2) = 0.52-0.74, s = 12-14%, n = 10). Thus, the method would seem to have a good prospect of providing skin absorption estimates suitable for use in exposure assessment and improved understanding of dose-related contact allergy. Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior to incorporation into cosmetic products. Exposure assessment for these materials often involves the conservative assumption of 100% absorption of each component. This report describes an improved method to estimate the absorption and evaporation of perfume ingredients from skin, based on their physico-chemical properties. The effect of environmental variables such as temperature and wind velocity can be accounted for in a logical way. This was accomplished using a first-order kinetic approach expected to be applicable for small doses applied to skin. Skin penetration rate was calculated as a fraction of the maximum flux estimated from the compound's lipid solubility, S(lip) (represented by the product of octanol/water partition coefficient, K(octt), and water solubility, S(w)), and molecular weight, MW. Evaporation rates were estimated from a modified Henry's Law approach with a stagnant boundary layer whose thickness is a function of surface airflow, v. At a given value of v, evaporation rate was assumed proportional to the ratio P(vp)/S(lip), where P(vp) is the vapour pressure of the ingredient at skin temperature, T. The model predicts a relationship for total evaporation from skin of the form %evap = 100x/(k+x) where x = P(vp)MW(2.7)/(K(oct)S(w)) and k is a parameter which depends only on v and T. Comparison with published data on perfume evaporation from human skin in vivo showed good agreement between theory and experiment for two closely related perfume mixtures (r(2) = 0.52-0.74, s = 12-14%, n = 10). Thus, the method would seem to have a good prospect of providing skin absorption estimates suitable for use in exposure assessment and improved understanding of dose-related contact allergy.Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior to incorporation into cosmetic products. Exposure assessment for these materials often involves the conservative assumption of 100% absorption of each component. This report describes an improved method to estimate the absorption and evaporation of perfume ingredients from skin, based on their physico-chemical properties. The effect of environmental variables such as temperature and wind velocity can be accounted for in a logical way. This was accomplished using a first-order kinetic approach expected to be applicable for small doses applied to skin. Skin penetration rate was calculated as a fraction of the maximum flux estimated from the compound's lipid solubility, S(lip) (represented by the product of octanol/water partition coefficient, K(octt), and water solubility, S(w)), and molecular weight, MW. Evaporation rates were estimated from a modified Henry's Law approach with a stagnant boundary layer whose thickness is a function of surface airflow, v. At a given value of v, evaporation rate was assumed proportional to the ratio P(vp)/S(lip), where P(vp) is the vapour pressure of the ingredient at skin temperature, T. The model predicts a relationship for total evaporation from skin of the form %evap = 100x/(k+x) where x = P(vp)MW(2.7)/(K(oct)S(w)) and k is a parameter which depends only on v and T. Comparison with published data on perfume evaporation from human skin in vivo showed good agreement between theory and experiment for two closely related perfume mixtures (r(2) = 0.52-0.74, s = 12-14%, n = 10). Thus, the method would seem to have a good prospect of providing skin absorption estimates suitable for use in exposure assessment and improved understanding of dose-related contact allergy. Synopsis Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior to incorporation into cosmetic products. Exposure assessment for these materials often involves the conservative assumption of 100% absorption of each component. This report describes an improved method to estimate the absorption and evaporation of perfume ingredients from skin, based on their physico‐chemical properties. The effect of environmental variables such as temperature and wind velocity can be accounted for in a logical way. This was accomplished using a first‐order kinetic approach expected to be applicable for small doses applied to skin. Skin penetration rate was calculated as a fraction of the maximum flux estimated from the compound’s lipid solubility, Slip (represented by the product of octanol/water partition coefficient, Koctt, and water solubility, Sw), and molecular weight, MW. Evaporation rates were estimated from a modified Henry’s Law approach with a stagnant boundary layer whose thickness is a function of surface airflow, v. At a given value of v, evaporation rate was assumed proportional to the ratio Pvp/Slip, where Pvp is the vapour pressure of the ingredient at skin temperature, T. The model predicts a relationship for total evaporation from skin of the form %evap = 100x/(k+x) where x = PvpMW2.7/(KoctSw) and k is a parameter which depends only on v and T. Comparison with published data on perfume evaporation from human skin in vivo showed good agreement between theory and experiment for two closely related perfume mixtures (r2 = 0.52–0.74, s = 12–14%, n = 10). Thus, the method would seem to have a good prospect of providing skin absorption estimates suitable for use in exposure assessment and improved understanding of dose‐related contact allergy. Résumé Les parfums ont un fort potentiel allergique quand ils sont utilisés de manière inadéquate sur la peau. Pour cette raison, ils sont sujets à des tests rigoureux avant leur incorporation dans les produits cosmétiques. L’évaluation de l’exposition à ces matériaux repose souvent sur l’hypothèse que chaque composé est absorbéà 100%. Notre étude décrit une nouvelle approche pour affiner la détermination de l’absorption et l’évapouration des parfums et de leurs ingrédients à travers la peau, basée sur leurs propriétés physico‐chimiques. L’effet des variables liées au milieu ambient, comme la temperature et la vitesse de l’air, peut être introduit de manière logique en utilisant une cinétique du premier ordre, applicable a priori à de petites doses appliquées sur la peau. La vitesse de pénétration à travers la peau est calculée comme le quotient du flux maximum estiméà partir de la solubilité en phase lipide du composé, Slip (calculée comme le produit du coefficient de partage octanol/eau Koct, et la solubilité aqueuse, Sw), et du poids moleculaire, MW. Les taux d’évapouration sont calculés en utilisant une modification de la loi de Henry avec une couche stagnante dont l’épaisseur est une fonction des mouvements d’air à la surface, v. Pour une valeur donnée de v, le taux d’évapouration est supposéêtre proportionnel au quotient Pvp/Slip, ou Pvp est la pression de vapeur du composé a la température de la peau, T. Le modèle prédit une équation pour l’évapouration totale depuis la peau du type: %evap = 100x/(k+x) oùx = PvpMW2.7/(KoctSw) et k est une variable qui dépend seulement de v et de T. Pour deux parfums de compositions voisines, le modèle est en bon accord avec des données publiées sur l’évapouration de parfum depuis la peau in vivo (Corrélation théorie/expérience: (r 2 = 0.52–0.74, s = 12–14%, n = 10). En conclusion, cette méthode semble prometteuse pour fournir des estimations qui peuvent etre utilisées dans les évaluations d’exposition et pour permettre de mieux comprendre l’effet de dose dans l’allergie de contact. Synopsis Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior to incorporation into cosmetic products. Exposure assessment for these materials often involves the conservative assumption of 100% absorption of each component. This report describes an improved method to estimate the absorption and evaporation of perfume ingredients from skin, based on their physico‐chemical properties. The effect of environmental variables such as temperature and wind velocity can be accounted for in a logical way. This was accomplished using a first‐order kinetic approach expected to be applicable for small doses applied to skin. Skin penetration rate was calculated as a fraction of the maximum flux estimated from the compound’s lipid solubility, S lip (represented by the product of octanol/water partition coefficient, K oct t , and water solubility, S w ), and molecular weight, MW . Evaporation rates were estimated from a modified Henry’s Law approach with a stagnant boundary layer whose thickness is a function of surface airflow, v . At a given value of v , evaporation rate was assumed proportional to the ratio P vp / S lip , where P vp is the vapour pressure of the ingredient at skin temperature, T . The model predicts a relationship for total evaporation from skin of the form %evap = 100 x /( k + x ) where x = P vp MW 2.7 /( K oct S w ) and k is a parameter which depends only on v and T . Comparison with published data on perfume evaporation from human skin in vivo showed good agreement between theory and experiment for two closely related perfume mixtures ( r 2 = 0.52–0.74, s = 12–14%, n = 10). Thus, the method would seem to have a good prospect of providing skin absorption estimates suitable for use in exposure assessment and improved understanding of dose‐related contact allergy. Résumé Les parfums ont un fort potentiel allergique quand ils sont utilisés de manière inadéquate sur la peau. Pour cette raison, ils sont sujets à des tests rigoureux avant leur incorporation dans les produits cosmétiques. L’évaluation de l’exposition à ces matériaux repose souvent sur l’hypothèse que chaque composé est absorbéà 100%. Notre étude décrit une nouvelle approche pour affiner la détermination de l’absorption et l’évapouration des parfums et de leurs ingrédients à travers la peau, basée sur leurs propriétés physico‐chimiques. L’effet des variables liées au milieu ambient, comme la temperature et la vitesse de l’air, peut être introduit de manière logique en utilisant une cinétique du premier ordre, applicable a priori à de petites doses appliquées sur la peau. La vitesse de pénétration à travers la peau est calculée comme le quotient du flux maximum estiméà partir de la solubilité en phase lipide du composé, S lip (calculée comme le produit du coefficient de partage octanol/eau K oct , et la solubilité aqueuse, S w ), et du poids moleculaire, MW . Les taux d’évapouration sont calculés en utilisant une modification de la loi de Henry avec une couche stagnante dont l’épaisseur est une fonction des mouvements d’air à la surface, v . Pour une valeur donnée de v , le taux d’évapouration est supposéêtre proportionnel au quotient P vp / S lip , ou P vp est la pression de vapeur du composé a la température de la peau, T . Le modèle prédit une équation pour l’évapouration totale depuis la peau du type: %evap = 100 x /( k + x ) où x = P vp MW 2.7 /( K oct S w ) et k est une variable qui dépend seulement de v et de T . Pour deux parfums de compositions voisines, le modèle est en bon accord avec des données publiées sur l’évapouration de parfum depuis la peau in vivo (Corrélation théorie/expérience: ( r 2 = 0.52–0.74, s = 12–14%, n = 10). En conclusion, cette méthode semble prometteuse pour fournir des estimations qui peuvent etre utilisées dans les évaluations d’exposition et pour permettre de mieux comprendre l’effet de dose dans l’allergie de contact. |
Author | Kasting, G.B. Saiyasombati, P. |
Author_xml | – sequence: 1 givenname: G.B. surname: Kasting fullname: Kasting, G.B. organization: College of Pharmacy, The University of Cincinnati Medical Center, PO Box 670004, Cincinnati, Ohio 45267-0004, U.S.A – sequence: 2 givenname: P. surname: Saiyasombati fullname: Saiyasombati, P. organization: College of Pharmacy, The University of Cincinnati Medical Center, PO Box 670004, Cincinnati, Ohio 45267-0004, U.S.A |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=891542$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18503438$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAUhS1URKeFv4AssWCV1K84sYSQqhEdiipYlJfYWI4f1NMkTu0MzPz7eh7Mgg2sfG1_5-jee87AyRAGCwDEqMSI8YtliRmvC8IEKwlCuEQI1aJcPwGz_NHsPk7ADGFGiopxegrOUlpmiImGPgOnuKkQZbSZgXAJx7tN8joU-s72XqsOjjGMNk7eJtiqZA3sg7EddCFCmybfq8kPP6H9pcYQcx0GqAYDVZtCHHfX_Jq1wcFs41Z9rl0MPUz3fngOnjrVJfvicJ6DL1fvPs_fFzefFtfzy5tCU8ZFwTCzxnFWC6sa1NS11QZxbJBzpnWE1aTiCrWVMNoSjERrSJYg4SqaYW7oOXi9983DPKxy27L3SduuU4MNqyRrykhTESoy-fJArtreGjnGPGHcyD87ysCrA6BSXo-LatA-HblG4IqRTL3dUzqGlKJ1Uvtpt50pKt9JjOQ2OrmU2-jkNiG5jU7uopPrbND8ZXDs5N_SN3vpb9_ZzX_r5PX8NhdZXuzlPk12fZSreC95TetKfvu4kFeLD_yH-Horv9NHi-vAhg |
CODEN | IJCMDW |
CitedBy_id | crossref_primary_10_1080_15459624_2013_831983 crossref_primary_10_3390_ijerph191610122 crossref_primary_10_2310_6620_2010_09056 crossref_primary_10_1016_j_taap_2004_08_016 crossref_primary_10_1046_j_1467_2494_2003_00193_x crossref_primary_10_1002_jps_20497 crossref_primary_10_1155_2014_398948 crossref_primary_10_1002_jps_10561 crossref_primary_10_1016_j_buildenv_2021_108483 crossref_primary_10_1016_j_tiv_2006_08_005 crossref_primary_10_1002_jps_10467 crossref_primary_10_1111_j_1365_2133_2009_09256_x crossref_primary_10_1002_aic_12043 crossref_primary_10_1007_s11869_014_0245_z crossref_primary_10_1002_aic_14106 crossref_primary_10_1111_ina_12070 |
Cites_doi | 10.1034/j.1600-0536.2000.042005251.x 10.1016/0045-6535(95)00023-2 10.1007/BF01061849 10.1177/096032719101000405 10.1111/j.1467-2494.1995.tb00110.x 10.1023/A:1015810312465 10.1046/j.1467-2494.1998.171746.x 10.1002/jps.2600840813 10.1021/js960198e 10.1021/js960515h 10.1002/jps.2600800521 10.1201/b14095 10.1111/1523-1747.ep12277592 10.1016/S0278-6915(99)00048-4 10.1002/jps.2600720808 |
ContentType | Journal Article |
Copyright | Blackwell Science Ltd 2001 INIST-CNRS |
Copyright_xml | – notice: Blackwell Science Ltd – notice: 2001 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW NPM 7X8 |
DOI | 10.1046/j.1467-2494.2001.00079.x |
DatabaseName | Istex CrossRef Pascal-Francis PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Economics Engineering Applied Sciences |
EISSN | 1468-2494 |
EndPage | 58 |
ExternalDocumentID | 18503438 891542 10_1046_j_1467_2494_2001_00079_x ICS079 ark_67375_WNG_FGJ6Z9VS_X |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29J 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BGNMA BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 CYRXZ D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EBC EBD EBS EJD EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LAK LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M4Y MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NU0 O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR XG1 YFH YUY ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW NPM 7X8 |
ID | FETCH-LOGICAL-c3469-414edf6479ea80877ecd061d0ffdbf247256a0b59dce2109bd241409f538776d3 |
IEDL.DBID | DR2 |
ISSN | 0142-5463 1468-2494 |
IngestDate | Fri Jul 11 10:27:16 EDT 2025 Mon Jul 21 05:59:43 EDT 2025 Mon Jul 21 09:09:59 EDT 2025 Thu Apr 24 23:11:01 EDT 2025 Tue Jul 01 01:51:04 EDT 2025 Wed Jan 22 16:41:12 EST 2025 Wed Oct 30 09:49:59 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Human Terpenoid Perfume Alcohol Evaporation Aldehyde Percutaneous route Toxicokinetics Absorption Skin Kinetics Mathematical model Physicochemical properties Allergen |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3469-414edf6479ea80877ecd061d0ffdbf247256a0b59dce2109bd241409f538776d3 |
Notes | Presented in part at the Experimental Contact Dermatitis Research Group meeting, Cincinnati, OH, U.S.A., May 1999. ark:/67375/WNG-FGJ6Z9VS-X istex:5BE1D66D48F6AF2E31638D513506C8DDFE5CFFA9 ArticleID:ICS079 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 18503438 |
PQID | 734285239 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_734285239 pubmed_primary_18503438 pascalfrancis_primary_891542 crossref_citationtrail_10_1046_j_1467_2494_2001_00079_x crossref_primary_10_1046_j_1467_2494_2001_00079_x wiley_primary_10_1046_j_1467_2494_2001_00079_x_ICS079 istex_primary_ark_67375_WNG_FGJ6Z9VS_X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2001 |
PublicationDateYYYYMMDD | 2001-02-01 |
PublicationDate_xml | – month: 02 year: 2001 text: February 2001 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: London – name: England |
PublicationTitle | International journal of cosmetic science |
PublicationTitleAlternate | Int J Cosmet Sci |
PublicationYear | 2001 |
Publisher | Blackwell Science Ltd Blackwell Science |
Publisher_xml | – name: Blackwell Science Ltd – name: Blackwell Science |
References | Peck, K.D., Ghanem, A.-H. & Higuchi, W.I. The effect of temperature upon the permeation of polar and ionic solutes through human epidermal membrane. J. Pharm. Sci. 84, 975-982 (1995). Blank, I.H., Scheuplein, R.J. & MacFarlane, D.J. Mechanism of percutaneous absorption III. The effect of temperature on the transport of non-electrolytes across the skin. J. Invest. Dermatol. 49, 582-589 (1967). Potts, R.O. & Guy, R.H. Predicting skin permeability. Pharm. Res. 9, 663-669 (1992). Yalkowski, S.H., Valvani, S.C. & Roseman, T.J. Solubility and partitioning. Part 6. Octanol solubility and octanol-water partition coefficients. J. Pharm. Sci. 72, 866-870 (1983). Robinson, M.K, Gerberick, G.F, Ryan, C.A, McNamee, P., White, I. & Basketter, D.A. The importance of exposure estimation in the assessment of skin sensitization risk. Contact Dermatitis. 42, 251-259 (2000). Basketter, D.A. Skin sensitization: risk assessment. Int. J. Cosmet. Sci. 20, 141-150 (1998). Guy, R.A. & Hadgraft, J. Physicochemical interpretation of the pharmacokinetics of percutaneous absorption. J. Pharm. Biopharm. 11, 189-203 (1983). Wilschut, A, Ten Berge, W.F., Robinson, P.J. & McKone, T.E. Estimating skin permeation. The validation of five mathematical skin penetration models. Chemosphere. 30, 1275-1296 (1995). Johnson, M.E., Blankschtein, D & Langer, R. Evaluation of solute permeation through the stratum corneum: lateral bilayer diffusion as the primary transport mechanism. J. Pharm. Sci. 86, 1162-1172 (1997). Hostynek, J.J. Safeguards in the use of fragrance chemicals. Cosmet. Toilet. 112, 47-54 (1997). Vuilleumier, C., Flament, I. & Sauvegrain, P. Headspace analysis study of evaporation rate of perfume ingredients applied onto skin. Int. J. Cosmet. Sci. 17, 61-76 (1995). Sanderson, D.M. & Earnshaw, C.G. Computer prediction of possible toxic action from chemical structure; the DEREK system. Human Exp. Toxicol. 10, 261-273 (1991). Mehta, S.C, Afouna, M.I, Ghanem, A.-H., Higuchi, W.I & Kern, E.R. Relationship of skin target site free drug concentration (C*) to the in vivo efficacy: an extensive evaluation of the predictive value of the C* concept using acyclovir as a model drug. J. Pharm. Sci. 86, 797-801 (1997). Kubota, K. A compartment model for percutaneous drug absorption. J. Pharm. Sci. 80, 502-504 (1991). Anderson, B.D. & Raykar, P.V. Solute structure-permeability relationships in human stratum corneum. J. Invest. Dermatol. 93, 280-286 (1989). Kimber, I., Gerberick, G.F. & Basketter, D.A. Thresholds in contact sensitization: theoretical and practical considerations. Fd. Chem. Toxicol. 37, 553-560 (1999). 1995; 30 1989; 93 1995; 84 1992; 9 1995; 17 1991; 10 1997; 86 1999; 37 2000; 42 1997; 112 1987 1991; 80 1982 1983; 72 1993 1992 1967; 49 1998; 20 1969 1983; 11 1999 e_1_2_10_22_2 e_1_2_10_23_2 e_1_2_10_20_2 e_1_2_10_21_2 Hostynek J.J. (e_1_2_10_11_2) 1997; 112 e_1_2_10_19_2 e_1_2_10_3_2 e_1_2_10_17_2 e_1_2_10_2_2 e_1_2_10_18_2 e_1_2_10_5_2 e_1_2_10_15_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_7_2 e_1_2_10_13_2 e_1_2_10_6_2 e_1_2_10_14_2 e_1_2_10_9_2 e_1_2_10_8_2 e_1_2_10_12_2 e_1_2_10_10_2 Blank I.H. (e_1_2_10_28_2) 1967; 49 e_1_2_10_29_2 e_1_2_10_26_2 e_1_2_10_27_2 e_1_2_10_24_2 e_1_2_10_25_2 |
References_xml | – reference: Blank, I.H., Scheuplein, R.J. & MacFarlane, D.J. Mechanism of percutaneous absorption III. The effect of temperature on the transport of non-electrolytes across the skin. J. Invest. Dermatol. 49, 582-589 (1967). – reference: Potts, R.O. & Guy, R.H. Predicting skin permeability. Pharm. Res. 9, 663-669 (1992). – reference: Yalkowski, S.H., Valvani, S.C. & Roseman, T.J. Solubility and partitioning. Part 6. Octanol solubility and octanol-water partition coefficients. J. Pharm. Sci. 72, 866-870 (1983). – reference: Vuilleumier, C., Flament, I. & Sauvegrain, P. Headspace analysis study of evaporation rate of perfume ingredients applied onto skin. Int. J. Cosmet. Sci. 17, 61-76 (1995). – reference: Anderson, B.D. & Raykar, P.V. Solute structure-permeability relationships in human stratum corneum. J. Invest. Dermatol. 93, 280-286 (1989). – reference: Johnson, M.E., Blankschtein, D & Langer, R. Evaluation of solute permeation through the stratum corneum: lateral bilayer diffusion as the primary transport mechanism. J. Pharm. Sci. 86, 1162-1172 (1997). – reference: Basketter, D.A. Skin sensitization: risk assessment. Int. J. Cosmet. Sci. 20, 141-150 (1998). – reference: Mehta, S.C, Afouna, M.I, Ghanem, A.-H., Higuchi, W.I & Kern, E.R. Relationship of skin target site free drug concentration (C*) to the in vivo efficacy: an extensive evaluation of the predictive value of the C* concept using acyclovir as a model drug. J. Pharm. Sci. 86, 797-801 (1997). – reference: Peck, K.D., Ghanem, A.-H. & Higuchi, W.I. The effect of temperature upon the permeation of polar and ionic solutes through human epidermal membrane. J. Pharm. Sci. 84, 975-982 (1995). – reference: Wilschut, A, Ten Berge, W.F., Robinson, P.J. & McKone, T.E. Estimating skin permeation. The validation of five mathematical skin penetration models. Chemosphere. 30, 1275-1296 (1995). – reference: Kimber, I., Gerberick, G.F. & Basketter, D.A. Thresholds in contact sensitization: theoretical and practical considerations. Fd. Chem. Toxicol. 37, 553-560 (1999). – reference: Hostynek, J.J. Safeguards in the use of fragrance chemicals. Cosmet. Toilet. 112, 47-54 (1997). – reference: Sanderson, D.M. & Earnshaw, C.G. Computer prediction of possible toxic action from chemical structure; the DEREK system. Human Exp. Toxicol. 10, 261-273 (1991). – reference: Kubota, K. A compartment model for percutaneous drug absorption. J. Pharm. Sci. 80, 502-504 (1991). – reference: Robinson, M.K, Gerberick, G.F, Ryan, C.A, McNamee, P., White, I. & Basketter, D.A. The importance of exposure estimation in the assessment of skin sensitization risk. Contact Dermatitis. 42, 251-259 (2000). – reference: Guy, R.A. & Hadgraft, J. Physicochemical interpretation of the pharmacokinetics of percutaneous absorption. J. Pharm. Biopharm. 11, 189-203 (1983). – volume: 86 start-page: 797 year: 1997 end-page: 801 article-title: Relationship of skin target site free drug concentration (C*) to the efficacy: an extensive evaluation of the predictive value of the C* concept using acyclovir as a model drug. publication-title: J. Pharm. Sci. – volume: 84 start-page: 975 year: 1995 end-page: 982 article-title: The effect of temperature upon the permeation of polar and ionic solutes through human epidermal membrane. publication-title: J. Pharm. Sci. – volume: 37 start-page: 553 year: 1999 end-page: 560 article-title: Thresholds in contact sensitization: theoretical and practical considerations. publication-title: Fd. Chem. Toxicol. – year: 1987 – volume: 112 start-page: 47 year: 1997 end-page: 54 article-title: Safeguards in the use of fragrance chemicals. publication-title: Cosmet. Toilet. – volume: 49 start-page: 582 year: 1967 end-page: 589 article-title: Mechanism of percutaneous absorption III. The effect of temperature on the transport of non‐electrolytes across the skin. publication-title: J. Invest. Dermatol. – volume: 42 start-page: 251 year: 2000 end-page: 259 article-title: The importance of exposure estimation in the assessment of skin sensitization risk. publication-title: Contact Dermatitis. – start-page: 1 year: 1982 end-page: 5 – volume: 30 start-page: 1275 year: 1995 end-page: 1296 article-title: Estimating skin permeation. The validation of five mathematical skin penetration models. publication-title: Chemosphere. – start-page: 117 year: 1992 end-page: 161 – volume: 80 start-page: 502 year: 1991 end-page: 504 article-title: A compartment model for percutaneous drug absorption. publication-title: J. Pharm. Sci. – year: 1992 – volume: 20 start-page: 141 year: 1998 end-page: 150 article-title: Skin sensitization: risk assessment. publication-title: Int. J. Cosmet. Sci. – volume: 10 start-page: 261 year: 1991 end-page: 273 article-title: Computer prediction of possible toxic action from chemical structure; the DEREK system. publication-title: Human Exp. Toxicol. – volume: 93 start-page: 280 year: 1989 end-page: 286 article-title: Solute structure‐permeability relationships in human stratum corneum. publication-title: J. Invest. Dermatol. – start-page: 16 year: 1982 end-page: 1 – volume: 17 start-page: 61 year: 1995 end-page: 76 article-title: Headspace analysis study of evaporation rate of perfume ingredients applied onto skin. publication-title: Int. J. Cosmet. Sci. – year: 1982 – volume: 11 start-page: 189 year: 1983 end-page: 203 article-title: Physicochemical interpretation of the pharmacokinetics of percutaneous absorption. publication-title: J. Pharm. Biopharm. – year: 1969 – volume: 9 start-page: 663 year: 1992 end-page: 669 article-title: Predicting skin permeability. publication-title: Pharm. Res. – volume: 86 start-page: 1162 year: 1997 end-page: 1172 article-title: Evaluation of solute permeation through the stratum corneum: lateral bilayer diffusion as the primary transport mechanism. publication-title: J. Pharm. Sci. – volume: 72 start-page: 866 year: 1983 end-page: 870 article-title: Solubility and partitioning. Part 6. Octanol solubility and octanol‐water partition coefficients. publication-title: J. Pharm. Sci. – year: 1993 – year: 1999 – ident: e_1_2_10_2_2 doi: 10.1034/j.1600-0536.2000.042005251.x – ident: e_1_2_10_20_2 – ident: e_1_2_10_23_2 – ident: e_1_2_10_10_2 doi: 10.1016/0045-6535(95)00023-2 – ident: e_1_2_10_21_2 doi: 10.1007/BF01061849 – ident: e_1_2_10_26_2 – ident: e_1_2_10_15_2 – ident: e_1_2_10_18_2 – ident: e_1_2_10_12_2 – ident: e_1_2_10_5_2 doi: 10.1177/096032719101000405 – ident: e_1_2_10_6_2 doi: 10.1111/j.1467-2494.1995.tb00110.x – ident: e_1_2_10_9_2 doi: 10.1023/A:1015810312465 – volume: 49 start-page: 582 year: 1967 ident: e_1_2_10_28_2 article-title: Mechanism of percutaneous absorption III. The effect of temperature on the transport of non‐electrolytes across the skin. publication-title: J. Invest. Dermatol. – ident: e_1_2_10_3_2 doi: 10.1046/j.1467-2494.1998.171746.x – ident: e_1_2_10_7_2 – ident: e_1_2_10_14_2 – ident: e_1_2_10_27_2 doi: 10.1002/jps.2600840813 – ident: e_1_2_10_25_2 – ident: e_1_2_10_29_2 doi: 10.1021/js960198e – ident: e_1_2_10_13_2 doi: 10.1021/js960515h – ident: e_1_2_10_22_2 doi: 10.1002/jps.2600800521 – ident: e_1_2_10_19_2 doi: 10.1201/b14095 – ident: e_1_2_10_8_2 doi: 10.1111/1523-1747.ep12277592 – volume: 112 start-page: 47 year: 1997 ident: e_1_2_10_11_2 article-title: Safeguards in the use of fragrance chemicals. publication-title: Cosmet. Toilet. – ident: e_1_2_10_4_2 doi: 10.1016/S0278-6915(99)00048-4 – ident: e_1_2_10_24_2 – ident: e_1_2_10_16_2 – ident: e_1_2_10_17_2 doi: 10.1002/jps.2600720808 |
SSID | ssj0004983 |
Score | 1.6329151 |
Snippet | Synopsis
Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior... Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior to... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 49 |
SubjectTerms | absorption Allergic diseases Applied sciences Biological and medical sciences Chemical industry and chemicals Essential oils, perfumes evaporation Exact sciences and technology exposure assessment fragrance Immunopathology mathematical model Medical sciences Skin allergic diseases. Stinging insect allergies Washing products. Cosmetics and toiletries. Perfumes |
Title | A physico-chemical properties based model for estimating evaporation and absorption rates of perfumes from skin |
URI | https://api.istex.fr/ark:/67375/WNG-FGJ6Z9VS-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1467-2494.2001.00079.x https://www.ncbi.nlm.nih.gov/pubmed/18503438 https://www.proquest.com/docview/734285239 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQkXgceCyvQEE-IG5ZJWs7jo9VxbZUogdKYcXFimO7QouSZbOLKk78BH4jv4QZO9myqIcKcctlImcyM_7GM_6GkJemKGuTCZHmnsuUl56BzwkL7q6Yz5wAxBEaZI-Lw1N-NBOzvv8J78JEfojNgRt6RojX6OCViVNIssBu2zs5pA_haCRHJkKpxognsXUL8dG7CyYpriIjZ86R-r9gfVPPUOC87EVbO9V1VPo5dk5WHSjPx6kXl8HSbZQbtqnpXTIfPjB2p8zH65UZ19__4n78Pxq4R-70aJbuRfO7T665ZkRuDpeduxG5_Qff4YjceNtX8h-Qr3s0Hqq0v378rHvWArrA0sASOV4pbq-WhkE9FIA1RTYQRNfNGXXfqkVvubRqLIX1tssQ-igSX3S09RRe4yHsdhTvz9Bu_rl5SE6nr9_vH6b9-Ie0ZpC0pzznzvqCS-WqEnkLXW0BfdjMe2v8hEtAa1VmhLK1g8RVGQtoBNJVDzFcysKyR2SnaRv3hFCbl5UB5FfD3otTtwxEeK-UEVIJBpgvIXL41bruudFxRMcXHWr0vIg5ktSoa5zcmeuga32ekHwjuYj8IFeQeRWsaSNQLefYXyeF_nh8oKcHR8Un9eFEzxKyu2VuG4FSAfKdJIQO1qchKGClp2pcu-60ZJBViglTCXkcrfJicaXIGGdlQkSwrSuvWr_ZP4GHp_8o94zciu172Am0S3ZWy7V7DnhuZV4ET_0NOVE6VA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtNAEB2hVqJwoBAoGArsAXFLsONdr_dYFdK0tDnQFiIuK6_Xi1AqJ8QJqjjxCXwjX9KZtZMQ1EOFuPky1no8M_tmZ_YNwCuTpLkJhWhHjss2T12MPicsuruKXVgIRBy-QXaQ9M_50VAMm3FAdBem5odYHriRZ_h4TQ5OB9JvmrLkyssxf_BnIxFREUrVQUC5SQO-iUj_7YcVlxRXNSdnxIn8P4mbtp5FifO6N63tVZuk9kvqncwqVJ-r515cB0zXca7fqHrbcLH4xLo_ZdSZz0wn__EX--N_0sF9uNcAWrZXW-ADuFWULdha3HeuWnD3D8rDFtw-aYr5D-HbHqvPVca_f_7KG-ICNqHqwJRoXhntsJb5WT0MsTUjQhAC2OUXVnzPJo3xsqy0LDPVeOqjHyPui4qNHcPXOIy8FaMrNKwafS0fwXnv3dl-v91MgGjnMebtbR7xwrqES1VkKVEXFrlFAGJD56xxXS4RsGWhEcrmBeauylgEJJixOgzjUiY23oGNclwWT4DZKM0Mgr8ct18avGUwyDuljJBKxAj7ApCLf63zhh6dpnRcaF-m50mdJklNuqbhnZH2utaXAURLyUlNEXIDmdfenJYC2XRELXZS6E-DA907OEo-q4-nehjA7pq9LQVSheC3GwBbmJ_GuEDFnqwsxvNKyxgTS9GNVQCPa7NcLS4VYczjNADhjevGq9aH-6f48PQf5V7CVv_s5FgfHw7eP4M7dTcfNQbtwsZsOi-eI7ybmRfeba8A2ao-cA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB6hVipw4CdQaiiwB8QtwY53vd5j1ZL-ABGiFCIuK6_Xi1AqO8QJqjjxCDwjT8LM2kkI6qFC3HwZaz2emf1mZ_YbgGcmSXMTCtGNHJddnroYfU5YdHcVu7AQiDh8g-wwOTrjJyMxavuf6C5Mww-xPHAjz_Dxmhx8Yt2Ltiq5cnJMH_zRSERMhFL1EE9u8iRUNMbh4N2KSoqrhpIz4sT9n8RtV8-iwnnZm9a2qk3S-gW1TmY1as81Yy8uw6XrMNfvU4PbMF58YdOeMu7NZ6aXf_-L_PH_qOAO3GrhLNtr7O8uXCvKDlxf3HauO3DzD8LDDmy9aUv59-DrHmtOVapfP37mLW0Bm1BtYEokr4z2V8v8pB6GyJoRHQjB6_IzK75lk9Z0WVZalpm6mvrYx4j5omaVY_gah3G3ZnSBhtXjL-V9OBu8fL9_1G3nP3TzGLP2Lo94YV3CpSqylIgLi9wi_LChc9a4PpcI17LQCGXzAjNXZSzCEcxXHQZxKRMbb8NGWZXFDjAbpZlB6Jfj5ktjtwyGeKeUEVKJGEFfAHLxq3XekqPTjI5z7Yv0PGmSJKlJ1zS6M9Je1_oigGgpOWkIQq4g89xb01Igm46pwU4K_XF4qAeHJ8kn9eFUjwLYXTO3pUCqEPr2A2AL69MYFajUk5VFNa-1jDGtFP1YBfCgscrV4lIRxjxOAxDetq68an28f4oPD_9R7ilsvT0Y6NfHw1eP4EbTykddQbuwMZvOi8eI7WbmiXfa39laPR8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+physico-chemical+properties+based+model+for+estimating+evaporation+and+absorption+rates+of+perfumes+from+skin&rft.jtitle=International+journal+of+cosmetic+science&rft.au=Kasting%2C+G+B&rft.au=Saiyasombati%2C+P&rft.date=2001-02-01&rft.eissn=1468-2494&rft.volume=23&rft.issue=1&rft.spage=49&rft_id=info:doi/10.1046%2Fj.1467-2494.2001.00079.x&rft_id=info%3Apmid%2F18503438&rft.externalDocID=18503438 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-5463&client=summon |