A physico-chemical properties based model for estimating evaporation and absorption rates of perfumes from skin

Synopsis Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior to incorporation into cosmetic products. Exposure assessment for these materials often involves the conservative assumption of 100% absorptio...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of cosmetic science Vol. 23; no. 1; pp. 49 - 58
Main Authors Kasting, G.B., Saiyasombati, P.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.02.2001
Blackwell Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Synopsis Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior to incorporation into cosmetic products. Exposure assessment for these materials often involves the conservative assumption of 100% absorption of each component. This report describes an improved method to estimate the absorption and evaporation of perfume ingredients from skin, based on their physico‐chemical properties. The effect of environmental variables such as temperature and wind velocity can be accounted for in a logical way. This was accomplished using a first‐order kinetic approach expected to be applicable for small doses applied to skin. Skin penetration rate was calculated as a fraction of the maximum flux estimated from the compound’s lipid solubility, Slip (represented by the product of octanol/water partition coefficient, Koctt, and water solubility, Sw), and molecular weight, MW. Evaporation rates were estimated from a modified Henry’s Law approach with a stagnant boundary layer whose thickness is a function of surface airflow, v. At a given value of v, evaporation rate was assumed proportional to the ratio Pvp/Slip, where Pvp is the vapour pressure of the ingredient at skin temperature, T. The model predicts a relationship for total evaporation from skin of the form %evap = 100x/(k+x) where x = PvpMW2.7/(KoctSw) and k is a parameter which depends only on v and T. Comparison with published data on perfume evaporation from human skin in vivo showed good agreement between theory and experiment for two closely related perfume mixtures (r2 = 0.52–0.74, s = 12–14%, n = 10). Thus, the method would seem to have a good prospect of providing skin absorption estimates suitable for use in exposure assessment and improved understanding of dose‐related contact allergy. Résumé Les parfums ont un fort potentiel allergique quand ils sont utilisés de manière inadéquate sur la peau. Pour cette raison, ils sont sujets à des tests rigoureux avant leur incorporation dans les produits cosmétiques. L’évaluation de l’exposition à ces matériaux repose souvent sur l’hypothèse que chaque composé est absorbéà 100%. Notre étude décrit une nouvelle approche pour affiner la détermination de l’absorption et l’évapouration des parfums et de leurs ingrédients à travers la peau, basée sur leurs propriétés physico‐chimiques. L’effet des variables liées au milieu ambient, comme la temperature et la vitesse de l’air, peut être introduit de manière logique en utilisant une cinétique du premier ordre, applicable a priori à de petites doses appliquées sur la peau. La vitesse de pénétration à travers la peau est calculée comme le quotient du flux maximum estiméà partir de la solubilité en phase lipide du composé, Slip (calculée comme le produit du coefficient de partage octanol/eau Koct, et la solubilité aqueuse, Sw), et du poids moleculaire, MW. Les taux d’évapouration sont calculés en utilisant une modification de la loi de Henry avec une couche stagnante dont l’épaisseur est une fonction des mouvements d’air à la surface, v. Pour une valeur donnée de v, le taux d’évapouration est supposéêtre proportionnel au quotient Pvp/Slip, ou Pvp est la pression de vapeur du composé a la température de la peau, T. Le modèle prédit une équation pour l’évapouration totale depuis la peau du type: %evap = 100x/(k+x) oùx = PvpMW2.7/(KoctSw) et k est une variable qui dépend seulement de v et de T. Pour deux parfums de compositions voisines, le modèle est en bon accord avec des données publiées sur l’évapouration de parfum depuis la peau in vivo (Corrélation théorie/expérience: (r 2 = 0.52–0.74, s = 12–14%, n = 10). En conclusion, cette méthode semble prometteuse pour fournir des estimations qui peuvent etre utilisées dans les évaluations d’exposition et pour permettre de mieux comprendre l’effet de dose dans l’allergie de contact.
AbstractList Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior to incorporation into cosmetic products. Exposure assessment for these materials often involves the conservative assumption of 100% absorption of each component. This report describes an improved method to estimate the absorption and evaporation of perfume ingredients from skin, based on their physico-chemical properties. The effect of environmental variables such as temperature and wind velocity can be accounted for in a logical way. This was accomplished using a first-order kinetic approach expected to be applicable for small doses applied to skin. Skin penetration rate was calculated as a fraction of the maximum flux estimated from the compound's lipid solubility, S(lip) (represented by the product of octanol/water partition coefficient, K(octt), and water solubility, S(w)), and molecular weight, MW. Evaporation rates were estimated from a modified Henry's Law approach with a stagnant boundary layer whose thickness is a function of surface airflow, v. At a given value of v, evaporation rate was assumed proportional to the ratio P(vp)/S(lip), where P(vp) is the vapour pressure of the ingredient at skin temperature, T. The model predicts a relationship for total evaporation from skin of the form %evap = 100x/(k+x) where x = P(vp)MW(2.7)/(K(oct)S(w)) and k is a parameter which depends only on v and T. Comparison with published data on perfume evaporation from human skin in vivo showed good agreement between theory and experiment for two closely related perfume mixtures (r(2) = 0.52-0.74, s = 12-14%, n = 10). Thus, the method would seem to have a good prospect of providing skin absorption estimates suitable for use in exposure assessment and improved understanding of dose-related contact allergy.
Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior to incorporation into cosmetic products. Exposure assessment for these materials often involves the conservative assumption of 100% absorption of each component. This report describes an improved method to estimate the absorption and evaporation of perfume ingredients from skin, based on their physico-chemical properties. The effect of environmental variables such as temperature and wind velocity can be accounted for in a logical way. This was accomplished using a first-order kinetic approach expected to be applicable for small doses applied to skin. Skin penetration rate was calculated as a fraction of the maximum flux estimated from the compound's lipid solubility, S(lip) (represented by the product of octanol/water partition coefficient, K(octt), and water solubility, S(w)), and molecular weight, MW. Evaporation rates were estimated from a modified Henry's Law approach with a stagnant boundary layer whose thickness is a function of surface airflow, v. At a given value of v, evaporation rate was assumed proportional to the ratio P(vp)/S(lip), where P(vp) is the vapour pressure of the ingredient at skin temperature, T. The model predicts a relationship for total evaporation from skin of the form %evap = 100x/(k+x) where x = P(vp)MW(2.7)/(K(oct)S(w)) and k is a parameter which depends only on v and T. Comparison with published data on perfume evaporation from human skin in vivo showed good agreement between theory and experiment for two closely related perfume mixtures (r(2) = 0.52-0.74, s = 12-14%, n = 10). Thus, the method would seem to have a good prospect of providing skin absorption estimates suitable for use in exposure assessment and improved understanding of dose-related contact allergy.Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior to incorporation into cosmetic products. Exposure assessment for these materials often involves the conservative assumption of 100% absorption of each component. This report describes an improved method to estimate the absorption and evaporation of perfume ingredients from skin, based on their physico-chemical properties. The effect of environmental variables such as temperature and wind velocity can be accounted for in a logical way. This was accomplished using a first-order kinetic approach expected to be applicable for small doses applied to skin. Skin penetration rate was calculated as a fraction of the maximum flux estimated from the compound's lipid solubility, S(lip) (represented by the product of octanol/water partition coefficient, K(octt), and water solubility, S(w)), and molecular weight, MW. Evaporation rates were estimated from a modified Henry's Law approach with a stagnant boundary layer whose thickness is a function of surface airflow, v. At a given value of v, evaporation rate was assumed proportional to the ratio P(vp)/S(lip), where P(vp) is the vapour pressure of the ingredient at skin temperature, T. The model predicts a relationship for total evaporation from skin of the form %evap = 100x/(k+x) where x = P(vp)MW(2.7)/(K(oct)S(w)) and k is a parameter which depends only on v and T. Comparison with published data on perfume evaporation from human skin in vivo showed good agreement between theory and experiment for two closely related perfume mixtures (r(2) = 0.52-0.74, s = 12-14%, n = 10). Thus, the method would seem to have a good prospect of providing skin absorption estimates suitable for use in exposure assessment and improved understanding of dose-related contact allergy.
Synopsis Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior to incorporation into cosmetic products. Exposure assessment for these materials often involves the conservative assumption of 100% absorption of each component. This report describes an improved method to estimate the absorption and evaporation of perfume ingredients from skin, based on their physico‐chemical properties. The effect of environmental variables such as temperature and wind velocity can be accounted for in a logical way. This was accomplished using a first‐order kinetic approach expected to be applicable for small doses applied to skin. Skin penetration rate was calculated as a fraction of the maximum flux estimated from the compound’s lipid solubility, Slip (represented by the product of octanol/water partition coefficient, Koctt, and water solubility, Sw), and molecular weight, MW. Evaporation rates were estimated from a modified Henry’s Law approach with a stagnant boundary layer whose thickness is a function of surface airflow, v. At a given value of v, evaporation rate was assumed proportional to the ratio Pvp/Slip, where Pvp is the vapour pressure of the ingredient at skin temperature, T. The model predicts a relationship for total evaporation from skin of the form %evap = 100x/(k+x) where x = PvpMW2.7/(KoctSw) and k is a parameter which depends only on v and T. Comparison with published data on perfume evaporation from human skin in vivo showed good agreement between theory and experiment for two closely related perfume mixtures (r2 = 0.52–0.74, s = 12–14%, n = 10). Thus, the method would seem to have a good prospect of providing skin absorption estimates suitable for use in exposure assessment and improved understanding of dose‐related contact allergy. Résumé Les parfums ont un fort potentiel allergique quand ils sont utilisés de manière inadéquate sur la peau. Pour cette raison, ils sont sujets à des tests rigoureux avant leur incorporation dans les produits cosmétiques. L’évaluation de l’exposition à ces matériaux repose souvent sur l’hypothèse que chaque composé est absorbéà 100%. Notre étude décrit une nouvelle approche pour affiner la détermination de l’absorption et l’évapouration des parfums et de leurs ingrédients à travers la peau, basée sur leurs propriétés physico‐chimiques. L’effet des variables liées au milieu ambient, comme la temperature et la vitesse de l’air, peut être introduit de manière logique en utilisant une cinétique du premier ordre, applicable a priori à de petites doses appliquées sur la peau. La vitesse de pénétration à travers la peau est calculée comme le quotient du flux maximum estiméà partir de la solubilité en phase lipide du composé, Slip (calculée comme le produit du coefficient de partage octanol/eau Koct, et la solubilité aqueuse, Sw), et du poids moleculaire, MW. Les taux d’évapouration sont calculés en utilisant une modification de la loi de Henry avec une couche stagnante dont l’épaisseur est une fonction des mouvements d’air à la surface, v. Pour une valeur donnée de v, le taux d’évapouration est supposéêtre proportionnel au quotient Pvp/Slip, ou Pvp est la pression de vapeur du composé a la température de la peau, T. Le modèle prédit une équation pour l’évapouration totale depuis la peau du type: %evap = 100x/(k+x) oùx = PvpMW2.7/(KoctSw) et k est une variable qui dépend seulement de v et de T. Pour deux parfums de compositions voisines, le modèle est en bon accord avec des données publiées sur l’évapouration de parfum depuis la peau in vivo (Corrélation théorie/expérience: (r 2 = 0.52–0.74, s = 12–14%, n = 10). En conclusion, cette méthode semble prometteuse pour fournir des estimations qui peuvent etre utilisées dans les évaluations d’exposition et pour permettre de mieux comprendre l’effet de dose dans l’allergie de contact.
Synopsis Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior to incorporation into cosmetic products. Exposure assessment for these materials often involves the conservative assumption of 100% absorption of each component. This report describes an improved method to estimate the absorption and evaporation of perfume ingredients from skin, based on their physico‐chemical properties. The effect of environmental variables such as temperature and wind velocity can be accounted for in a logical way. This was accomplished using a first‐order kinetic approach expected to be applicable for small doses applied to skin. Skin penetration rate was calculated as a fraction of the maximum flux estimated from the compound’s lipid solubility, S lip (represented by the product of octanol/water partition coefficient, K oct t , and water solubility, S w ), and molecular weight, MW . Evaporation rates were estimated from a modified Henry’s Law approach with a stagnant boundary layer whose thickness is a function of surface airflow, v . At a given value of v , evaporation rate was assumed proportional to the ratio P vp / S lip , where P vp is the vapour pressure of the ingredient at skin temperature, T . The model predicts a relationship for total evaporation from skin of the form %evap = 100 x /( k + x ) where x  =  P vp MW 2.7 /( K oct S w ) and k is a parameter which depends only on v and T . Comparison with published data on perfume evaporation from human skin in vivo showed good agreement between theory and experiment for two closely related perfume mixtures ( r 2  = 0.52–0.74, s  = 12–14%, n  = 10). Thus, the method would seem to have a good prospect of providing skin absorption estimates suitable for use in exposure assessment and improved understanding of dose‐related contact allergy. Résumé Les parfums ont un fort potentiel allergique quand ils sont utilisés de manière inadéquate sur la peau. Pour cette raison, ils sont sujets à des tests rigoureux avant leur incorporation dans les produits cosmétiques. L’évaluation de l’exposition à ces matériaux repose souvent sur l’hypothèse que chaque composé est absorbéà 100%. Notre étude décrit une nouvelle approche pour affiner la détermination de l’absorption et l’évapouration des parfums et de leurs ingrédients à travers la peau, basée sur leurs propriétés physico‐chimiques. L’effet des variables liées au milieu ambient, comme la temperature et la vitesse de l’air, peut être introduit de manière logique en utilisant une cinétique du premier ordre, applicable a priori à de petites doses appliquées sur la peau. La vitesse de pénétration à travers la peau est calculée comme le quotient du flux maximum estiméà partir de la solubilité en phase lipide du composé, S lip (calculée comme le produit du coefficient de partage octanol/eau K oct , et la solubilité aqueuse, S w ), et du poids moleculaire, MW . Les taux d’évapouration sont calculés en utilisant une modification de la loi de Henry avec une couche stagnante dont l’épaisseur est une fonction des mouvements d’air à la surface, v . Pour une valeur donnée de v , le taux d’évapouration est supposéêtre proportionnel au quotient P vp / S lip , ou P vp est la pression de vapeur du composé a la température de la peau, T . Le modèle prédit une équation pour l’évapouration totale depuis la peau du type: %evap = 100 x /( k + x ) où x  =  P vp MW 2.7 /( K oct S w ) et k est une variable qui dépend seulement de v et de T . Pour deux parfums de compositions voisines, le modèle est en bon accord avec des données publiées sur l’évapouration de parfum depuis la peau in vivo (Corrélation théorie/expérience: ( r 2 = 0.52–0.74, s  = 12–14%, n  = 10). En conclusion, cette méthode semble prometteuse pour fournir des estimations qui peuvent etre utilisées dans les évaluations d’exposition et pour permettre de mieux comprendre l’effet de dose dans l’allergie de contact.
Author Kasting, G.B.
Saiyasombati, P.
Author_xml – sequence: 1
  givenname: G.B.
  surname: Kasting
  fullname: Kasting, G.B.
  organization: College of Pharmacy, The University of Cincinnati Medical Center, PO Box 670004, Cincinnati, Ohio 45267-0004, U.S.A
– sequence: 2
  givenname: P.
  surname: Saiyasombati
  fullname: Saiyasombati, P.
  organization: College of Pharmacy, The University of Cincinnati Medical Center, PO Box 670004, Cincinnati, Ohio 45267-0004, U.S.A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=891542$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18503438$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URKeFv4AssWCV1K84sYSQqhEdiipYlJfYWI4f1NMkTu0MzPz7eh7Mgg2sfG1_5-jee87AyRAGCwDEqMSI8YtliRmvC8IEKwlCuEQI1aJcPwGz_NHsPk7ADGFGiopxegrOUlpmiImGPgOnuKkQZbSZgXAJx7tN8joU-s72XqsOjjGMNk7eJtiqZA3sg7EddCFCmybfq8kPP6H9pcYQcx0GqAYDVZtCHHfX_Jq1wcFs41Z9rl0MPUz3fngOnjrVJfvicJ6DL1fvPs_fFzefFtfzy5tCU8ZFwTCzxnFWC6sa1NS11QZxbJBzpnWE1aTiCrWVMNoSjERrSJYg4SqaYW7oOXi9983DPKxy27L3SduuU4MNqyRrykhTESoy-fJArtreGjnGPGHcyD87ysCrA6BSXo-LatA-HblG4IqRTL3dUzqGlKJ1Uvtpt50pKt9JjOQ2OrmU2-jkNiG5jU7uopPrbND8ZXDs5N_SN3vpb9_ZzX_r5PX8NhdZXuzlPk12fZSreC95TetKfvu4kFeLD_yH-Horv9NHi-vAhg
CODEN IJCMDW
CitedBy_id crossref_primary_10_1080_15459624_2013_831983
crossref_primary_10_3390_ijerph191610122
crossref_primary_10_2310_6620_2010_09056
crossref_primary_10_1016_j_taap_2004_08_016
crossref_primary_10_1046_j_1467_2494_2003_00193_x
crossref_primary_10_1002_jps_20497
crossref_primary_10_1155_2014_398948
crossref_primary_10_1002_jps_10561
crossref_primary_10_1016_j_buildenv_2021_108483
crossref_primary_10_1016_j_tiv_2006_08_005
crossref_primary_10_1002_jps_10467
crossref_primary_10_1111_j_1365_2133_2009_09256_x
crossref_primary_10_1002_aic_12043
crossref_primary_10_1007_s11869_014_0245_z
crossref_primary_10_1002_aic_14106
crossref_primary_10_1111_ina_12070
Cites_doi 10.1034/j.1600-0536.2000.042005251.x
10.1016/0045-6535(95)00023-2
10.1007/BF01061849
10.1177/096032719101000405
10.1111/j.1467-2494.1995.tb00110.x
10.1023/A:1015810312465
10.1046/j.1467-2494.1998.171746.x
10.1002/jps.2600840813
10.1021/js960198e
10.1021/js960515h
10.1002/jps.2600800521
10.1201/b14095
10.1111/1523-1747.ep12277592
10.1016/S0278-6915(99)00048-4
10.1002/jps.2600720808
ContentType Journal Article
Copyright Blackwell Science Ltd
2001 INIST-CNRS
Copyright_xml – notice: Blackwell Science Ltd
– notice: 2001 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
NPM
7X8
DOI 10.1046/j.1467-2494.2001.00079.x
DatabaseName Istex
CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Economics
Engineering
Applied Sciences
EISSN 1468-2494
EndPage 58
ExternalDocumentID 18503438
891542
10_1046_j_1467_2494_2001_00079_x
ICS079
ark_67375_WNG_FGJ6Z9VS_X
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29J
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BGNMA
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
CYRXZ
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EJD
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LAK
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M4Y
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NU0
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
YUY
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
NPM
7X8
ID FETCH-LOGICAL-c3469-414edf6479ea80877ecd061d0ffdbf247256a0b59dce2109bd241409f538776d3
IEDL.DBID DR2
ISSN 0142-5463
1468-2494
IngestDate Fri Jul 11 10:27:16 EDT 2025
Mon Jul 21 05:59:43 EDT 2025
Mon Jul 21 09:09:59 EDT 2025
Thu Apr 24 23:11:01 EDT 2025
Tue Jul 01 01:51:04 EDT 2025
Wed Jan 22 16:41:12 EST 2025
Wed Oct 30 09:49:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Human
Terpenoid
Perfume
Alcohol
Evaporation
Aldehyde
Percutaneous route
Toxicokinetics
Absorption
Skin
Kinetics
Mathematical model
Physicochemical properties
Allergen
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3469-414edf6479ea80877ecd061d0ffdbf247256a0b59dce2109bd241409f538776d3
Notes Presented in part at the Experimental Contact Dermatitis Research Group meeting, Cincinnati, OH, U.S.A., May 1999.
ark:/67375/WNG-FGJ6Z9VS-X
istex:5BE1D66D48F6AF2E31638D513506C8DDFE5CFFA9
ArticleID:ICS079
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18503438
PQID 734285239
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_734285239
pubmed_primary_18503438
pascalfrancis_primary_891542
crossref_citationtrail_10_1046_j_1467_2494_2001_00079_x
crossref_primary_10_1046_j_1467_2494_2001_00079_x
wiley_primary_10_1046_j_1467_2494_2001_00079_x_ICS079
istex_primary_ark_67375_WNG_FGJ6Z9VS_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2001
PublicationDateYYYYMMDD 2001-02-01
PublicationDate_xml – month: 02
  year: 2001
  text: February 2001
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: London
– name: England
PublicationTitle International journal of cosmetic science
PublicationTitleAlternate Int J Cosmet Sci
PublicationYear 2001
Publisher Blackwell Science Ltd
Blackwell Science
Publisher_xml – name: Blackwell Science Ltd
– name: Blackwell Science
References Peck, K.D., Ghanem, A.-H. & Higuchi, W.I. The effect of temperature upon the permeation of polar and ionic solutes through human epidermal membrane. J. Pharm. Sci. 84, 975-982 (1995).
Blank, I.H., Scheuplein, R.J. & MacFarlane, D.J. Mechanism of percutaneous absorption III. The effect of temperature on the transport of non-electrolytes across the skin. J. Invest. Dermatol. 49, 582-589 (1967).
Potts, R.O. & Guy, R.H. Predicting skin permeability. Pharm. Res. 9, 663-669 (1992).
Yalkowski, S.H., Valvani, S.C. & Roseman, T.J. Solubility and partitioning. Part 6. Octanol solubility and octanol-water partition coefficients. J. Pharm. Sci. 72, 866-870 (1983).
Robinson, M.K, Gerberick, G.F, Ryan, C.A, McNamee, P., White, I. & Basketter, D.A. The importance of exposure estimation in the assessment of skin sensitization risk. Contact Dermatitis. 42, 251-259 (2000).
Basketter, D.A. Skin sensitization: risk assessment. Int. J. Cosmet. Sci. 20, 141-150 (1998).
Guy, R.A. & Hadgraft, J. Physicochemical interpretation of the pharmacokinetics of percutaneous absorption. J. Pharm. Biopharm. 11, 189-203 (1983).
Wilschut, A, Ten Berge, W.F., Robinson, P.J. & McKone, T.E. Estimating skin permeation. The validation of five mathematical skin penetration models. Chemosphere. 30, 1275-1296 (1995).
Johnson, M.E., Blankschtein, D & Langer, R. Evaluation of solute permeation through the stratum corneum: lateral bilayer diffusion as the primary transport mechanism. J. Pharm. Sci. 86, 1162-1172 (1997).
Hostynek, J.J. Safeguards in the use of fragrance chemicals. Cosmet. Toilet. 112, 47-54 (1997).
Vuilleumier, C., Flament, I. & Sauvegrain, P. Headspace analysis study of evaporation rate of perfume ingredients applied onto skin. Int. J. Cosmet. Sci. 17, 61-76 (1995).
Sanderson, D.M. & Earnshaw, C.G. Computer prediction of possible toxic action from chemical structure; the DEREK system. Human Exp. Toxicol. 10, 261-273 (1991).
Mehta, S.C, Afouna, M.I, Ghanem, A.-H., Higuchi, W.I & Kern, E.R. Relationship of skin target site free drug concentration (C*) to the in vivo efficacy: an extensive evaluation of the predictive value of the C* concept using acyclovir as a model drug. J. Pharm. Sci. 86, 797-801 (1997).
Kubota, K. A compartment model for percutaneous drug absorption. J. Pharm. Sci. 80, 502-504 (1991).
Anderson, B.D. & Raykar, P.V. Solute structure-permeability relationships in human stratum corneum. J. Invest. Dermatol. 93, 280-286 (1989).
Kimber, I., Gerberick, G.F. & Basketter, D.A. Thresholds in contact sensitization: theoretical and practical considerations. Fd. Chem. Toxicol. 37, 553-560 (1999).
1995; 30
1989; 93
1995; 84
1992; 9
1995; 17
1991; 10
1997; 86
1999; 37
2000; 42
1997; 112
1987
1991; 80
1982
1983; 72
1993
1992
1967; 49
1998; 20
1969
1983; 11
1999
e_1_2_10_22_2
e_1_2_10_23_2
e_1_2_10_20_2
e_1_2_10_21_2
Hostynek J.J. (e_1_2_10_11_2) 1997; 112
e_1_2_10_19_2
e_1_2_10_3_2
e_1_2_10_17_2
e_1_2_10_2_2
e_1_2_10_18_2
e_1_2_10_5_2
e_1_2_10_15_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_7_2
e_1_2_10_13_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_9_2
e_1_2_10_8_2
e_1_2_10_12_2
e_1_2_10_10_2
Blank I.H. (e_1_2_10_28_2) 1967; 49
e_1_2_10_29_2
e_1_2_10_26_2
e_1_2_10_27_2
e_1_2_10_24_2
e_1_2_10_25_2
References_xml – reference: Blank, I.H., Scheuplein, R.J. & MacFarlane, D.J. Mechanism of percutaneous absorption III. The effect of temperature on the transport of non-electrolytes across the skin. J. Invest. Dermatol. 49, 582-589 (1967).
– reference: Potts, R.O. & Guy, R.H. Predicting skin permeability. Pharm. Res. 9, 663-669 (1992).
– reference: Yalkowski, S.H., Valvani, S.C. & Roseman, T.J. Solubility and partitioning. Part 6. Octanol solubility and octanol-water partition coefficients. J. Pharm. Sci. 72, 866-870 (1983).
– reference: Vuilleumier, C., Flament, I. & Sauvegrain, P. Headspace analysis study of evaporation rate of perfume ingredients applied onto skin. Int. J. Cosmet. Sci. 17, 61-76 (1995).
– reference: Anderson, B.D. & Raykar, P.V. Solute structure-permeability relationships in human stratum corneum. J. Invest. Dermatol. 93, 280-286 (1989).
– reference: Johnson, M.E., Blankschtein, D & Langer, R. Evaluation of solute permeation through the stratum corneum: lateral bilayer diffusion as the primary transport mechanism. J. Pharm. Sci. 86, 1162-1172 (1997).
– reference: Basketter, D.A. Skin sensitization: risk assessment. Int. J. Cosmet. Sci. 20, 141-150 (1998).
– reference: Mehta, S.C, Afouna, M.I, Ghanem, A.-H., Higuchi, W.I & Kern, E.R. Relationship of skin target site free drug concentration (C*) to the in vivo efficacy: an extensive evaluation of the predictive value of the C* concept using acyclovir as a model drug. J. Pharm. Sci. 86, 797-801 (1997).
– reference: Peck, K.D., Ghanem, A.-H. & Higuchi, W.I. The effect of temperature upon the permeation of polar and ionic solutes through human epidermal membrane. J. Pharm. Sci. 84, 975-982 (1995).
– reference: Wilschut, A, Ten Berge, W.F., Robinson, P.J. & McKone, T.E. Estimating skin permeation. The validation of five mathematical skin penetration models. Chemosphere. 30, 1275-1296 (1995).
– reference: Kimber, I., Gerberick, G.F. & Basketter, D.A. Thresholds in contact sensitization: theoretical and practical considerations. Fd. Chem. Toxicol. 37, 553-560 (1999).
– reference: Hostynek, J.J. Safeguards in the use of fragrance chemicals. Cosmet. Toilet. 112, 47-54 (1997).
– reference: Sanderson, D.M. & Earnshaw, C.G. Computer prediction of possible toxic action from chemical structure; the DEREK system. Human Exp. Toxicol. 10, 261-273 (1991).
– reference: Kubota, K. A compartment model for percutaneous drug absorption. J. Pharm. Sci. 80, 502-504 (1991).
– reference: Robinson, M.K, Gerberick, G.F, Ryan, C.A, McNamee, P., White, I. & Basketter, D.A. The importance of exposure estimation in the assessment of skin sensitization risk. Contact Dermatitis. 42, 251-259 (2000).
– reference: Guy, R.A. & Hadgraft, J. Physicochemical interpretation of the pharmacokinetics of percutaneous absorption. J. Pharm. Biopharm. 11, 189-203 (1983).
– volume: 86
  start-page: 797
  year: 1997
  end-page: 801
  article-title: Relationship of skin target site free drug concentration (C*) to the efficacy: an extensive evaluation of the predictive value of the C* concept using acyclovir as a model drug.
  publication-title: J. Pharm. Sci.
– volume: 84
  start-page: 975
  year: 1995
  end-page: 982
  article-title: The effect of temperature upon the permeation of polar and ionic solutes through human epidermal membrane.
  publication-title: J. Pharm. Sci.
– volume: 37
  start-page: 553
  year: 1999
  end-page: 560
  article-title: Thresholds in contact sensitization: theoretical and practical considerations.
  publication-title: Fd. Chem. Toxicol.
– year: 1987
– volume: 112
  start-page: 47
  year: 1997
  end-page: 54
  article-title: Safeguards in the use of fragrance chemicals.
  publication-title: Cosmet. Toilet.
– volume: 49
  start-page: 582
  year: 1967
  end-page: 589
  article-title: Mechanism of percutaneous absorption III. The effect of temperature on the transport of non‐electrolytes across the skin.
  publication-title: J. Invest. Dermatol.
– volume: 42
  start-page: 251
  year: 2000
  end-page: 259
  article-title: The importance of exposure estimation in the assessment of skin sensitization risk.
  publication-title: Contact Dermatitis.
– start-page: 1
  year: 1982
  end-page: 5
– volume: 30
  start-page: 1275
  year: 1995
  end-page: 1296
  article-title: Estimating skin permeation. The validation of five mathematical skin penetration models.
  publication-title: Chemosphere.
– start-page: 117
  year: 1992
  end-page: 161
– volume: 80
  start-page: 502
  year: 1991
  end-page: 504
  article-title: A compartment model for percutaneous drug absorption.
  publication-title: J. Pharm. Sci.
– year: 1992
– volume: 20
  start-page: 141
  year: 1998
  end-page: 150
  article-title: Skin sensitization: risk assessment.
  publication-title: Int. J. Cosmet. Sci.
– volume: 10
  start-page: 261
  year: 1991
  end-page: 273
  article-title: Computer prediction of possible toxic action from chemical structure; the DEREK system.
  publication-title: Human Exp. Toxicol.
– volume: 93
  start-page: 280
  year: 1989
  end-page: 286
  article-title: Solute structure‐permeability relationships in human stratum corneum.
  publication-title: J. Invest. Dermatol.
– start-page: 16
  year: 1982
  end-page: 1
– volume: 17
  start-page: 61
  year: 1995
  end-page: 76
  article-title: Headspace analysis study of evaporation rate of perfume ingredients applied onto skin.
  publication-title: Int. J. Cosmet. Sci.
– year: 1982
– volume: 11
  start-page: 189
  year: 1983
  end-page: 203
  article-title: Physicochemical interpretation of the pharmacokinetics of percutaneous absorption.
  publication-title: J. Pharm. Biopharm.
– year: 1969
– volume: 9
  start-page: 663
  year: 1992
  end-page: 669
  article-title: Predicting skin permeability.
  publication-title: Pharm. Res.
– volume: 86
  start-page: 1162
  year: 1997
  end-page: 1172
  article-title: Evaluation of solute permeation through the stratum corneum: lateral bilayer diffusion as the primary transport mechanism.
  publication-title: J. Pharm. Sci.
– volume: 72
  start-page: 866
  year: 1983
  end-page: 870
  article-title: Solubility and partitioning. Part 6. Octanol solubility and octanol‐water partition coefficients.
  publication-title: J. Pharm. Sci.
– year: 1993
– year: 1999
– ident: e_1_2_10_2_2
  doi: 10.1034/j.1600-0536.2000.042005251.x
– ident: e_1_2_10_20_2
– ident: e_1_2_10_23_2
– ident: e_1_2_10_10_2
  doi: 10.1016/0045-6535(95)00023-2
– ident: e_1_2_10_21_2
  doi: 10.1007/BF01061849
– ident: e_1_2_10_26_2
– ident: e_1_2_10_15_2
– ident: e_1_2_10_18_2
– ident: e_1_2_10_12_2
– ident: e_1_2_10_5_2
  doi: 10.1177/096032719101000405
– ident: e_1_2_10_6_2
  doi: 10.1111/j.1467-2494.1995.tb00110.x
– ident: e_1_2_10_9_2
  doi: 10.1023/A:1015810312465
– volume: 49
  start-page: 582
  year: 1967
  ident: e_1_2_10_28_2
  article-title: Mechanism of percutaneous absorption III. The effect of temperature on the transport of non‐electrolytes across the skin.
  publication-title: J. Invest. Dermatol.
– ident: e_1_2_10_3_2
  doi: 10.1046/j.1467-2494.1998.171746.x
– ident: e_1_2_10_7_2
– ident: e_1_2_10_14_2
– ident: e_1_2_10_27_2
  doi: 10.1002/jps.2600840813
– ident: e_1_2_10_25_2
– ident: e_1_2_10_29_2
  doi: 10.1021/js960198e
– ident: e_1_2_10_13_2
  doi: 10.1021/js960515h
– ident: e_1_2_10_22_2
  doi: 10.1002/jps.2600800521
– ident: e_1_2_10_19_2
  doi: 10.1201/b14095
– ident: e_1_2_10_8_2
  doi: 10.1111/1523-1747.ep12277592
– volume: 112
  start-page: 47
  year: 1997
  ident: e_1_2_10_11_2
  article-title: Safeguards in the use of fragrance chemicals.
  publication-title: Cosmet. Toilet.
– ident: e_1_2_10_4_2
  doi: 10.1016/S0278-6915(99)00048-4
– ident: e_1_2_10_24_2
– ident: e_1_2_10_16_2
– ident: e_1_2_10_17_2
  doi: 10.1002/jps.2600720808
SSID ssj0004983
Score 1.6329151
Snippet Synopsis Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior...
Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior to...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 49
SubjectTerms absorption
Allergic diseases
Applied sciences
Biological and medical sciences
Chemical industry and chemicals
Essential oils, perfumes
evaporation
Exact sciences and technology
exposure assessment
fragrance
Immunopathology
mathematical model
Medical sciences
Skin allergic diseases. Stinging insect allergies
Washing products. Cosmetics and toiletries. Perfumes
Title A physico-chemical properties based model for estimating evaporation and absorption rates of perfumes from skin
URI https://api.istex.fr/ark:/67375/WNG-FGJ6Z9VS-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1467-2494.2001.00079.x
https://www.ncbi.nlm.nih.gov/pubmed/18503438
https://www.proquest.com/docview/734285239
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQkXgceCyvQEE-IG5ZJWs7jo9VxbZUogdKYcXFimO7QouSZbOLKk78BH4jv4QZO9myqIcKcctlImcyM_7GM_6GkJemKGuTCZHmnsuUl56BzwkL7q6Yz5wAxBEaZI-Lw1N-NBOzvv8J78JEfojNgRt6RojX6OCViVNIssBu2zs5pA_haCRHJkKpxognsXUL8dG7CyYpriIjZ86R-r9gfVPPUOC87EVbO9V1VPo5dk5WHSjPx6kXl8HSbZQbtqnpXTIfPjB2p8zH65UZ19__4n78Pxq4R-70aJbuRfO7T665ZkRuDpeduxG5_Qff4YjceNtX8h-Qr3s0Hqq0v378rHvWArrA0sASOV4pbq-WhkE9FIA1RTYQRNfNGXXfqkVvubRqLIX1tssQ-igSX3S09RRe4yHsdhTvz9Bu_rl5SE6nr9_vH6b9-Ie0ZpC0pzznzvqCS-WqEnkLXW0BfdjMe2v8hEtAa1VmhLK1g8RVGQtoBNJVDzFcysKyR2SnaRv3hFCbl5UB5FfD3otTtwxEeK-UEVIJBpgvIXL41bruudFxRMcXHWr0vIg5ktSoa5zcmeuga32ekHwjuYj8IFeQeRWsaSNQLefYXyeF_nh8oKcHR8Un9eFEzxKyu2VuG4FSAfKdJIQO1qchKGClp2pcu-60ZJBViglTCXkcrfJicaXIGGdlQkSwrSuvWr_ZP4GHp_8o94zciu172Am0S3ZWy7V7DnhuZV4ET_0NOVE6VA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtNAEB2hVqJwoBAoGArsAXFLsONdr_dYFdK0tDnQFiIuK6_Xi1AqJ8QJqjjxCXwjX9KZtZMQ1EOFuPky1no8M_tmZ_YNwCuTpLkJhWhHjss2T12MPicsuruKXVgIRBy-QXaQ9M_50VAMm3FAdBem5odYHriRZ_h4TQ5OB9JvmrLkyssxf_BnIxFREUrVQUC5SQO-iUj_7YcVlxRXNSdnxIn8P4mbtp5FifO6N63tVZuk9kvqncwqVJ-r515cB0zXca7fqHrbcLH4xLo_ZdSZz0wn__EX--N_0sF9uNcAWrZXW-ADuFWULdha3HeuWnD3D8rDFtw-aYr5D-HbHqvPVca_f_7KG-ICNqHqwJRoXhntsJb5WT0MsTUjQhAC2OUXVnzPJo3xsqy0LDPVeOqjHyPui4qNHcPXOIy8FaMrNKwafS0fwXnv3dl-v91MgGjnMebtbR7xwrqES1VkKVEXFrlFAGJD56xxXS4RsGWhEcrmBeauylgEJJixOgzjUiY23oGNclwWT4DZKM0Mgr8ct18avGUwyDuljJBKxAj7ApCLf63zhh6dpnRcaF-m50mdJklNuqbhnZH2utaXAURLyUlNEXIDmdfenJYC2XRELXZS6E-DA907OEo-q4-nehjA7pq9LQVSheC3GwBbmJ_GuEDFnqwsxvNKyxgTS9GNVQCPa7NcLS4VYczjNADhjevGq9aH-6f48PQf5V7CVv_s5FgfHw7eP4M7dTcfNQbtwsZsOi-eI7ybmRfeba8A2ao-cA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB6hVipw4CdQaiiwB8QtwY53vd5j1ZL-ABGiFCIuK6_Xi1AqO8QJqjjxCDwjT8LM2kkI6qFC3HwZaz2emf1mZ_YbgGcmSXMTCtGNHJddnroYfU5YdHcVu7AQiDh8g-wwOTrjJyMxavuf6C5Mww-xPHAjz_Dxmhx8Yt2Ltiq5cnJMH_zRSERMhFL1EE9u8iRUNMbh4N2KSoqrhpIz4sT9n8RtV8-iwnnZm9a2qk3S-gW1TmY1as81Yy8uw6XrMNfvU4PbMF58YdOeMu7NZ6aXf_-L_PH_qOAO3GrhLNtr7O8uXCvKDlxf3HauO3DzD8LDDmy9aUv59-DrHmtOVapfP37mLW0Bm1BtYEokr4z2V8v8pB6GyJoRHQjB6_IzK75lk9Z0WVZalpm6mvrYx4j5omaVY_gah3G3ZnSBhtXjL-V9OBu8fL9_1G3nP3TzGLP2Lo94YV3CpSqylIgLi9wi_LChc9a4PpcI17LQCGXzAjNXZSzCEcxXHQZxKRMbb8NGWZXFDjAbpZlB6Jfj5ktjtwyGeKeUEVKJGEFfAHLxq3XekqPTjI5z7Yv0PGmSJKlJ1zS6M9Je1_oigGgpOWkIQq4g89xb01Igm46pwU4K_XF4qAeHJ8kn9eFUjwLYXTO3pUCqEPr2A2AL69MYFajUk5VFNa-1jDGtFP1YBfCgscrV4lIRxjxOAxDetq68an28f4oPD_9R7ilsvT0Y6NfHw1eP4EbTykddQbuwMZvOi8eI7WbmiXfa39laPR8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+physico-chemical+properties+based+model+for+estimating+evaporation+and+absorption+rates+of+perfumes+from+skin&rft.jtitle=International+journal+of+cosmetic+science&rft.au=Kasting%2C+G+B&rft.au=Saiyasombati%2C+P&rft.date=2001-02-01&rft.eissn=1468-2494&rft.volume=23&rft.issue=1&rft.spage=49&rft_id=info:doi/10.1046%2Fj.1467-2494.2001.00079.x&rft_id=info%3Apmid%2F18503438&rft.externalDocID=18503438
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-5463&client=summon