Specific absorption rates and signal-to-noise ratio limitations for MRI in very-low magnetic fields
Coil loading experiments were performed to characterize specific absorption rates (SARs) for adult human subjects in uniform linearly‐polarized time‐varying magnetic fields B from 30 kHz to 1.25 MHz, corresponding to a range of Larmor frequencies f that is relevant to MRI in very‐low magnetic fields...
Saved in:
Published in | Concepts in magnetic resonance. Part A, Bridging education and research Vol. 40A; no. 6; pp. 281 - 294 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.11.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1546-6086 1552-5023 |
DOI | 10.1002/cmr.a.21247 |
Cover
Abstract | Coil loading experiments were performed to characterize specific absorption rates (SARs) for adult human subjects in uniform linearly‐polarized time‐varying magnetic fields B from 30 kHz to 1.25 MHz, corresponding to a range of Larmor frequencies f that is relevant to MRI in very‐low magnetic fields. For oscillating fields directed perpendicular to the sagittal plane of the human body in the standard anatomical position it was found that
$ {\rm{SAR}} = 4.3(1) \times 10^{ - 7} (M/L)f^2 B^2 $, where M and L are the mass and height of the subject and all quantities are expressed in SI base units. The average linear density M/L appearing in this expression was observed to be an excellent anthropomorphic index for characterizing the manner in which SAR depends on the average transverse dimension of the subject normal to the applied field. As anticipated, SAR values over this frequency range were low compared to those observed at higher frequencies, indicating that emerging applications requiring high duty‐cycle and/or intense radio‐frequency MR tipping pulses will not lead to excessive heating of tissues. Data from these experiments also corroborate and quantify predictions that significant improvements in signal‐to‐noise‐ratios can be achieved through appropriate receive‐antenna design. © 2012 Wiley Periodicals, Inc. Concepts Magn Reson Part A 40A: 281–294, 2012. |
---|---|
AbstractList | Coil loading experiments were performed to characterize specific absorption rates (SARs) for adult human subjects in uniform linearly‐polarized time‐varying magnetic fields
B
from 30 kHz to 1.25 MHz, corresponding to a range of Larmor frequencies
f
that is relevant to MRI in very‐low magnetic fields. For oscillating fields directed perpendicular to the sagittal plane of the human body in the standard anatomical position it was found that
$ {\rm{SAR}} = 4.3(1) \times 10^{ - 7} (M/L)f^2 B^2 $
, where
M
and
L
are the mass and height of the subject and all quantities are expressed in SI base units. The average linear density
M
/
L
appearing in this expression was observed to be an excellent anthropomorphic index for characterizing the manner in which SAR depends on the average transverse dimension of the subject normal to the applied field. As anticipated, SAR values over this frequency range were low compared to those observed at higher frequencies, indicating that emerging applications requiring high duty‐cycle and/or intense radio‐frequency MR tipping pulses will not lead to excessive heating of tissues. Data from these experiments also corroborate and quantify predictions that significant improvements in signal‐to‐noise‐ratios can be achieved through appropriate receive‐antenna design. © 2012 Wiley Periodicals, Inc. Concepts Magn Reson Part A 40A: 281–294, 2012. Coil loading experiments were performed to characterize specific absorption rates (SARs) for adult human subjects in uniform linearly-polarized time-varying magnetic fields B from 30 kHz to 1.25 MHz, corresponding to a range of Larmor frequencies f that is relevant to MRI in very-low magnetic fields. For oscillating fields directed perpendicular to the sagittal plane of the human body in the standard anatomical position it was found that $ {\rm{SAR}} = 4.3(1) \times 10 - 7} (M/L)f arrow up B arrow up $[Imageomitted] , where M and L are the mass and height of the subject and all quantities are expressed in SI base units. The average linear density M/L appearing in this expression was observed to be an excellent anthropomorphic index for characterizing the manner in which SAR depends on the average transverse dimension of the subject normal to the applied field. As anticipated, SAR values over this frequency range were low compared to those observed at higher frequencies, indicating that emerging applications requiring high duty-cycle and/or intense radio-frequency MR tipping pulses will not lead to excessive heating of tissues. Data from these experiments also corroborate and quantify predictions that significant improvements in signal-to-noise-ratios can be achieved through appropriate receive-antenna design. copyright 2012 Wiley Periodicals, Inc. Concepts Magn Reson Part A 40A: 281-294, 2012. Coil loading experiments were performed to characterize specific absorption rates (SARs) for adult human subjects in uniform linearly‐polarized time‐varying magnetic fields B from 30 kHz to 1.25 MHz, corresponding to a range of Larmor frequencies f that is relevant to MRI in very‐low magnetic fields. For oscillating fields directed perpendicular to the sagittal plane of the human body in the standard anatomical position it was found that $ {\rm{SAR}} = 4.3(1) \times 10^{ - 7} (M/L)f^2 B^2 $, where M and L are the mass and height of the subject and all quantities are expressed in SI base units. The average linear density M/L appearing in this expression was observed to be an excellent anthropomorphic index for characterizing the manner in which SAR depends on the average transverse dimension of the subject normal to the applied field. As anticipated, SAR values over this frequency range were low compared to those observed at higher frequencies, indicating that emerging applications requiring high duty‐cycle and/or intense radio‐frequency MR tipping pulses will not lead to excessive heating of tissues. Data from these experiments also corroborate and quantify predictions that significant improvements in signal‐to‐noise‐ratios can be achieved through appropriate receive‐antenna design. © 2012 Wiley Periodicals, Inc. Concepts Magn Reson Part A 40A: 281–294, 2012. |
Author | Hayden, M. E. Chapple, E. M. Bidinosti, C. P. |
Author_xml | – sequence: 1 givenname: M. E. surname: Hayden fullname: Hayden, M. E. email: mhayden@sfu.ca organization: Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6 Canada – sequence: 2 givenname: C. P. surname: Bidinosti fullname: Bidinosti, C. P. organization: Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6 Canada – sequence: 3 givenname: E. M. surname: Chapple fullname: Chapple, E. M. organization: Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6 Canada |
BookMark | eNp9kMtOAyEUhompiba68gVYmhgqDANMl6bReqmXeF0SyjAGZaDCVO3bO2PVhYuuzknO9_3J-fug54M3AOwRPCQYZ4e6jkM1zEiWiw2wTRjLEMMZ7XV7zhHHBd8C_ZReWpjjfLQN9N3caFtZDdUshThvbPAwqsYkqHwJk332yqEmIB9sMt3FBuhsbZtu8wlWIcLL2zNoPXw3cYlc-IC1evamaTMra1yZdsBmpVwyuz9zAB5Oju_Hp2h6PTkbH02RpjkXqBREMUp4qc1M6SzL9awqc0pxgbEuCSlxQSpVCW4EL7DmI0ZZidWMCqpHrBB0APZXufMY3hYmNbK2SRvnlDdhkSRhmFOOKWUterBCdQwpRVPJebS1iktJsOyqlG2VUsnvKlua_KP1z_9NVNatdz6sM8t18XJ8efvroJVjU2M-_xwVXyUXVDD5dDWRF6K4YXf5ozynXx-VmP8 |
CitedBy_id | crossref_primary_10_1007_s10334_023_01073_3 crossref_primary_10_1016_j_jmr_2017_06_009 crossref_primary_10_1002_cmmi_1579 crossref_primary_10_1021_ac501638p crossref_primary_10_1016_j_jmr_2013_10_013 crossref_primary_10_1002_chem_201405063 crossref_primary_10_1016_j_jmr_2017_01_014 crossref_primary_10_1021_jp508719n crossref_primary_10_1016_j_jmr_2019_106622 crossref_primary_10_1063_1_5052646 crossref_primary_10_1016_j_jmmm_2019_166021 crossref_primary_10_1119_1_5034350 crossref_primary_10_1002_slct_201700718 crossref_primary_10_1007_s10334_023_01100_3 |
Cites_doi | 10.1088/0031-9155/34/9/008 10.1016/0022-2364(79)90019-2 10.1016/j.jmr.2007.02.007 10.1118/1.596677 10.1002/mrm.1910030509 10.1088/0031-9155/53/16/R01 10.1002/cmr.b.20090 10.1016/0730-725X(84)90195-4 10.1146/annurev.bioeng.9.060906.152010 10.1002/mrm.1910020404 10.1016/0730-725X(88)90403-1 10.1063/1.2998607 10.1002/mrm.20456 10.1073/pnas.0605396103 10.1016/j.jmr.2010.08.015 10.1007/BF03166953 10.1002/mrm.10047 10.1002/j.1538-7305.1925.tb00951.x 10.1118/1.1833593 10.1007/s10334-004-0035-y 10.1088/0031-9155/52/21/001 10.1016/S0730-725X(03)00178-4 10.1063/1.1146967 10.1002/1522-2586(200007)12:1<30::AID-JMRI4>3.0.CO;2-S 10.1002/mrm.1910300211 10.1088/0031-9155/41/11/002 10.1016/S1090-7807(02)00198-2 10.1016/j.jmr.2009.11.021 10.1002/1522-2586(200007)12:1<46::AID-JMRI6>3.0.CO;2-D 10.1118/1.595000 10.1088/0031-9155/52/9/001 10.1002/(SICI)1522-2594(199904)41:4<816::AID-MRM22>3.0.CO;2-5 10.1002/mrm.21149 10.1007/BF02368531 10.1259/bjr/21943393 10.1002/mrm.10313 10.1002/jmri.21137 10.1002/mrm.1910030413 10.1016/0022-2364(76)90233-X 10.1259/bjr.71.847.9771379 10.1002/bem.99 10.1098/rspa.1925.0050 10.1038/nature03808 10.1016/j.biochi.2003.09.016 10.1016/j.jmr.2005.07.003 |
ContentType | Journal Article |
Copyright | Copyright © 2012 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2012 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION 7SC 7U5 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cmr.a.21247 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1552-5023 |
EndPage | 294 |
ExternalDocumentID | 10_1002_cmr_a_21247 CMR21247 ark_67375_WNG_K78P5S4V_J |
Genre | article |
GrantInformation_xml | – fundername: Canadian Lung Association – fundername: Natural Sciences and Engineering Research Council of Canada – fundername: British Columbia Advanced Systems Institute |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 24P 31~ 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAMMB AANHP AAONW AAZKR ABCQN ABEML ABIJN ABPVW ACBWZ ACCMX ACGFS ACMXC ACRPL ACSCC ACXQS ACYXJ ADEOM ADIZJ ADNMO AEFGJ AEIMD AENEX AFBPY AFFNX AFKRA AFZJQ AGQPQ AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS AMBMR ATUGU AZBYB AZFZN BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 CCPQU CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DU5 EBS EJD F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA GROUPED_DOAJ HBH HF~ HHZ HVGLF HZ~ IAO ICD ITC IX1 JPC KQQ LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM N04 N05 N9A NNB O66 O9- OK1 P2W P2X P2Z P4B P4D PHGZM PHGZT PIMPY Q.N QB0 QRW R.K RJQFR ROL RX1 RYL SUPJJ UB1 W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WVDHM WXI XG1 XHW XV2 ZCG ~IA ~WT 1OC 33P AAHHS AAJEY ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RHX RWI VQA WRC AAYXX CITATION 7SC 7U5 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3467-d71a5316dcebac224cbfd4330800cd11d081faf76e7680c69535d0ab373c95873 |
IEDL.DBID | DR2 |
ISSN | 1546-6086 |
IngestDate | Fri Sep 05 05:52:44 EDT 2025 Tue Jul 01 01:55:35 EDT 2025 Thu Apr 24 22:58:57 EDT 2025 Wed Jan 22 16:22:24 EST 2025 Tue Sep 09 05:31:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3467-d71a5316dcebac224cbfd4330800cd11d081faf76e7680c69535d0ab373c95873 |
Notes | Natural Sciences and Engineering Research Council of Canada ArticleID:CMR21247 Canadian Lung Association ark:/67375/WNG-K78P5S4V-J British Columbia Advanced Systems Institute istex:80FE4026AAEEABF19E17A35149FCFDEAA4F203AC ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1506360335 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1506360335 crossref_primary_10_1002_cmr_a_21247 crossref_citationtrail_10_1002_cmr_a_21247 wiley_primary_10_1002_cmr_a_21247_CMR21247 istex_primary_ark_67375_WNG_K78P5S4V_J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2012 |
PublicationDateYYYYMMDD | 2012-11-01 |
PublicationDate_xml | – month: 11 year: 2012 text: November 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Concepts in magnetic resonance. Part A, Bridging education and research |
PublicationTitleAlternate | Concepts Magn. Reson |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Shwann HP. 1992. Linear and nonlinear electrode polarization and biological materials. Ann Biomed Eng 20: 269-288. Bottomley PA,Reddington RW,Edelstein WA,Schenk JF. 1985. Estimating radiofrequency power deposition in body NMR imaging. Magn Reson Med 2: 336-349. Terman FE. 1943. Radio Engineer's Handbook. New York: McGraw-Hill Inc. Harpen MD. 1991. Analysis of sample power loss in MRI gradient fields. Med Phys 18: 313-315. Parra-Robles J,Cross AR,Santyr GE. 2005. Theoretical signal-to-noise ratio and spatial resolution dependence on the magnetic field strength for hyperpolarized noble gas magnetic resonance imaging of human lungs. Med Phys 32: 221-229. Bohnert J,Dössel O. 2010. Effects of time varying currents and magnetic fields in the frequency rangeof 1 kHz to 1MHz to the human body-a simulation study. Proc IEEE Eng Med Biol Soc 6805-6808. Darrasse L,Ginefri JC. 2003. Perspectives with cryogenic RF probes in biomedical MRI. Biochimie 85: 915-937. Hayden ME,Hardy WN. 1996. Technique for measuring magnetic filling factors with applications to cryogenic magnetic resonance experiments. Rev Sci Instrum 67: 1905-1911. McKinlay AF,Allen SG,Cox R,Dimbylow PJ,Mann SM,Muirhead CR, et al. 2004. Advice on limiting exposure to electromagnetic fields (0-300 GHz). Documents NRPB 15: 1-39. Bidinosti CP,Chapple EM,Hayden ME. 2007. The sphere in a uniform RF field-revisited. Concept Magn Reson B 31: 191-202. Weizenecker J,Borgert J,Gleich B. 2007. A simulation study on the resolution and sensitivity of magnetic particle imaging. Phys Med Biol 52: 6363-6374. International Commission on Non-ionizing Radiation Protection. 1998. Medical magnetic resonance (MR) procedures: protection of patients. Health Phys 87: 197-216. Macovski A,Conolly SM. 1993. Novel approaches to low-cost MRI. Magn Reson Med 30: 221-230. Cornelis A,Van den Berg T,van den Bergen B,Van de Kamer JB,Raaymakers BW,Kroeze H, et al. 2007. Simultaneous B1 homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil. Magn Reson Med 57: 577-586. Health and Welfare Canada, Environmental Health Directorate, Health Protection Branch. 1987. Guidelines on exposure to electromagnetic fields from magnetic resonance clinical systems-safety code 26. Ottawa Ont, Canada. Report 87-EHD- 127. Buikman D,Helzel T,Roschmann P. 1988. The RF coil as a sensitive motion detector for magnetic-resonance imaging. Magn Reson Imaging 2: 281-289. Bottomley PA,Edelstein WA. 1981. Power deposition in whole-body NMR imaging. Med Phys 8: 510-512. US Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health. 2003. Guidance for industry and FDA staff-criteria for significant risk investigations of magnetic resonance diagnostic devices. Rockville MD, USA. Issued July 14, 2003. Bidinosti CP,Choukiefe J,Tastevin G,Vignaud A,Nacher PJ. 2004. MRI of the lung using hyperpolarized 3He at very low magnetic field (3 mT). Magn Reson Mater Phys 16: 255-258. Waldron RA. 1967. The Theory of Waveguides and Cavities. New York: Gordon and Breach. Edelstein WA,Glover GH,Hardy CJ,Reddington RW. 1986. The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3: 604-618. Mair RW,Hrovat MI,Patz S,Rosen MS,Ruset IC,Topulos GP, et al. 2005. 3He lung imaging in an open access, very-low-field human magnetic resonance imaging system. Magn Reson Med 53: 745-749. Myers W,Slichter D,Hatridge M,Busch S,Möβle M,McDermott R,Trabesinger A,Clarke J. 2007. Calculated signal-to-noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10 μT to 1.5 T. J Magn Reson 186: 182-192. Bidinosti CP,Choukiefe J,Nacher PJ,Tastevin G. 2003. In vivo MRI of hyperpolarized 3He in the human lung at very low magnetic fields. J Magn Reson 162: 122-132. Benscik M,Bowtell R,Bowley R. 2007. Electric fields induced in the human body by time-varying magnetic field gradients in MRI: numerical calculations and correlation analysis. Phys Med Biol 52: 2337-2353. Durand E,Guillot G,Darrasse L,Tastevin G,Nacher PJ,Vignaud A, et al. 2002. CPMG Measurements and ultrafast imaging in human lungs with hyperpolarized Helium-3 at low field (0.1 T). Magn Reson Med 47: 75-87. Li Y,Hand JW,Wills T,Hajnal JV. 2007. Numerically-simulated induced electric field and current density within a human model located close to a z-gradient coil. J Magn Reson Imag 26: 1286-1295. Ghandi OP,Chen XB. 1999. Specific absorption rates and induced current densities for an anatomy-based model of the human for exposure to time-varying magnetic fields of MRI. Magn Reson Med 41: 816-823. Hoult DI,Chen C-N,Sank VJ. 1986. The field dependence of NMR imaging. II. Arguments concerning an optimal field strength. Magn Reson Med 3: 730-746. Hand JW. 2008. Modeling the interaction of electromagnetic fields (10MHz-10 GHz) with the human body: methods and applications. Phys Med Biol 53: R243-R286. International Electrotechnical Commission. 2010. Medical Electrical Equipment-Part 2-33: particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis. Geneva, Switzerland. International Standard IEC 60601-2-33. Hoult DI. 2000. Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imag 12: 46-67. Keevil SF,Gedroyc W,Gowland P,Hill DLG,Leach MO, et al. 2005. Electromagnetic field exposure limitation and the future of MRI. Br J Radiol 78: 973-975. Bidinosti CP,Kravchuk IS,Hayden ME. 2005. Active shielding of cylindrical saddle-shaped coils: application to wire-wound RF coils for very low field NMR and MRI. J Magn Reson 177: 31-43. Perry MP. 1985. Low Frequency Electromagnetic Design. New York: Marcel Dekker Inc. Clarke J,Hatridge M,Möβle M. 2007. SQUID-detected magnetic resonance imaging in microtesla fields. Annu Rev Biomed Eng 9: 389-413. Venkatesh AK,Zhang AX,Mansour J,Kubatina L,Oh C,Blasche G, et al. 2003. MRI of the lung gas-space at very low-field using hyperpolarized noble gases. Magn Reson Imaging 21: 773-776. (The duration TRF of the 25 degree tipping pulses (applied at 484 kHz) reported in Ref. (10) was 0.2 ms). Gleich B,Weizenecker J. 2005. Tomographic imaging using the nonlinear response of magnetic particles. Nature 435: 1214-1217. Gabriel S,Lau RW,Gabriel C. 1996. The dielectric properties of biological tissues. II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41: 2251-2269. Zotev VS,Owens T,Matlashov AN,Savukov IM,Gomez JJ,Espy MA. 2010. Microtesla MRI with dynamic nuclear polarization. J Magn Reson 207: 78-88. Xu SJ,Yashchuk VV,Donaldson MH,Rochester SM,Budker D,Pines A. 2006. Magnetic resonance imaging with an optical atomic magnetometer. Proc Natl Acad Sci USA 103: 12668-12671. Butterworth S. 1925. On the alternating current resistance of solenoidal coils. Proc Roy Soc Lond A 107: 693-715. Liu W,Collins CM,Smith MB. 2005. Calculations of B-1 distribution, specific energy absorption rate, and intrinsic signal-to-noise ratio for a body-size birdcage coil loaded with different human subjects at 64 and 128 MHz. Appl Magn Reson 29: 5-18. Litvak E,Foster KR,Repacholi MH. 2002. Health and safety implications of exposure to electromagnetic fields in the frequency range 300 Hz to 10 MHz. Bioelectromagnetics 23: 68-82. Redpath TW. 1998. Signal-to-noise ratio in MRI. Br J Radiol 71: 704-707. Bidinosti CP,Hayden ME. 2008. Selective passive shielding and the Faraday bracelet. Appl Phys Lett 93: 174102. Resmer F,Seton HC,Hutchison JMS. 2010. Cryogenic receive coil and low noise preamplifier for MRI at 0.01 T. J Magn Reson 203: 57-65. Shellock FG. 2000. Radiofrequency energy-induced heating during MR procedures: a review. J Magn Reson Imaging 12: 30-36. Zhao H,Crozier S,Liu F. 2002. Finite difference time domain (FDTD) method for modeling the effect of switched gradients on the human body in MRI. Magn Reson Med 48: 1037-1042. Hoult DI,Richards RE. 1976. The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24: 71-85. Redpath TW,Hutchison JMS. 1984. Estimating patient dielectric losses in NMR imagers. Magn Reson Imaging 2: 295-300. Harpen MD. 1989. Eddy current distributions in cylindrical samples: effect on equivalent sample resistance. Phys Med Biol 34: 1229-1238. Note that the exponents of B1 and r0 should be 2 and 4, respectively, in Eq. [21] of Ref. (46). Hoult DI,Lauterbur PC. 1979. The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson 34: 425-443. Mead SP. 1923. Wave propagation over parallel tubular conductors: the alternating current resistance. Bell Syst Tech J 4: 327-338. 1991; 18 1979; 34 1976; 24 2005; 177 2007; 186 1999; 41 2007; 31 1998; 87 2005; 29 2002; 47 2002; 48 1989; 34 1923; 4 2001 2000; 12 1986; 3 1993; 30 1987 2003; 162 1943 2007; 9 1985 2005; 32 2003; 85 2005; 78 1996; 67 2007; 26 2010; 207 2010 1985; 2 2010; 203 2005; 435 1981; 8 2003 2007; 52 2008; 53 2008; 93 2007; 57 1988; 2 2004; 16 1984; 2 2002; 23 2004; 15 2005; 53 1996; 41 1998; 71 1992; 20 1925; 107 2003; 21 2006; 103 1967 McKinlay AF (e_1_2_7_4_2) 2004; 15 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_47_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_28_2 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_2 Bohnert J (e_1_2_7_45_2) 2010 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_35_2 e_1_2_7_37_2 US Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health (e_1_2_7_3_2) 2003 e_1_2_7_39_2 Waldron RA (e_1_2_7_22_2) 1967 Health and Welfare Canada, Environmental Health Directorate, Health Protection Branch (e_1_2_7_2_2) 1987 e_1_2_7_8_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_14_2 e_1_2_7_40_2 Terman FE (e_1_2_7_52_2) 1943 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_46_2 e_1_2_7_27_2 e_1_2_7_29_2 International Commission on Non‐ionizing Radiation Protection (e_1_2_7_5_2) 1998; 87 Perry MP (e_1_2_7_48_2) 1985 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_38_2 International Electrotechnical Commission (e_1_2_7_6_2) 2010 |
References_xml | – reference: McKinlay AF,Allen SG,Cox R,Dimbylow PJ,Mann SM,Muirhead CR, et al. 2004. Advice on limiting exposure to electromagnetic fields (0-300 GHz). Documents NRPB 15: 1-39. – reference: Clarke J,Hatridge M,Möβle M. 2007. SQUID-detected magnetic resonance imaging in microtesla fields. Annu Rev Biomed Eng 9: 389-413. – reference: Keevil SF,Gedroyc W,Gowland P,Hill DLG,Leach MO, et al. 2005. Electromagnetic field exposure limitation and the future of MRI. Br J Radiol 78: 973-975. – reference: International Commission on Non-ionizing Radiation Protection. 1998. Medical magnetic resonance (MR) procedures: protection of patients. Health Phys 87: 197-216. – reference: Macovski A,Conolly SM. 1993. Novel approaches to low-cost MRI. Magn Reson Med 30: 221-230. – reference: Bottomley PA,Edelstein WA. 1981. Power deposition in whole-body NMR imaging. Med Phys 8: 510-512. – reference: Weizenecker J,Borgert J,Gleich B. 2007. A simulation study on the resolution and sensitivity of magnetic particle imaging. Phys Med Biol 52: 6363-6374. – reference: US Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health. 2003. Guidance for industry and FDA staff-criteria for significant risk investigations of magnetic resonance diagnostic devices. Rockville MD, USA. Issued July 14, 2003. – reference: Bidinosti CP,Choukiefe J,Tastevin G,Vignaud A,Nacher PJ. 2004. MRI of the lung using hyperpolarized 3He at very low magnetic field (3 mT). Magn Reson Mater Phys 16: 255-258. – reference: Litvak E,Foster KR,Repacholi MH. 2002. Health and safety implications of exposure to electromagnetic fields in the frequency range 300 Hz to 10 MHz. Bioelectromagnetics 23: 68-82. – reference: Cornelis A,Van den Berg T,van den Bergen B,Van de Kamer JB,Raaymakers BW,Kroeze H, et al. 2007. Simultaneous B1 homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil. Magn Reson Med 57: 577-586. – reference: Bohnert J,Dössel O. 2010. Effects of time varying currents and magnetic fields in the frequency rangeof 1 kHz to 1MHz to the human body-a simulation study. Proc IEEE Eng Med Biol Soc 6805-6808. – reference: Hoult DI,Chen C-N,Sank VJ. 1986. The field dependence of NMR imaging. II. Arguments concerning an optimal field strength. Magn Reson Med 3: 730-746. – reference: Health and Welfare Canada, Environmental Health Directorate, Health Protection Branch. 1987. Guidelines on exposure to electromagnetic fields from magnetic resonance clinical systems-safety code 26. Ottawa Ont, Canada. Report 87-EHD- 127. – reference: Bidinosti CP,Choukiefe J,Nacher PJ,Tastevin G. 2003. In vivo MRI of hyperpolarized 3He in the human lung at very low magnetic fields. J Magn Reson 162: 122-132. – reference: Mair RW,Hrovat MI,Patz S,Rosen MS,Ruset IC,Topulos GP, et al. 2005. 3He lung imaging in an open access, very-low-field human magnetic resonance imaging system. Magn Reson Med 53: 745-749. – reference: Liu W,Collins CM,Smith MB. 2005. Calculations of B-1 distribution, specific energy absorption rate, and intrinsic signal-to-noise ratio for a body-size birdcage coil loaded with different human subjects at 64 and 128 MHz. Appl Magn Reson 29: 5-18. – reference: Gabriel S,Lau RW,Gabriel C. 1996. The dielectric properties of biological tissues. II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41: 2251-2269. – reference: Buikman D,Helzel T,Roschmann P. 1988. The RF coil as a sensitive motion detector for magnetic-resonance imaging. Magn Reson Imaging 2: 281-289. – reference: Redpath TW. 1998. Signal-to-noise ratio in MRI. Br J Radiol 71: 704-707. – reference: Shellock FG. 2000. Radiofrequency energy-induced heating during MR procedures: a review. J Magn Reson Imaging 12: 30-36. – reference: Venkatesh AK,Zhang AX,Mansour J,Kubatina L,Oh C,Blasche G, et al. 2003. MRI of the lung gas-space at very low-field using hyperpolarized noble gases. Magn Reson Imaging 21: 773-776. (The duration TRF of the 25 degree tipping pulses (applied at 484 kHz) reported in Ref. (10) was 0.2 ms). – reference: Darrasse L,Ginefri JC. 2003. Perspectives with cryogenic RF probes in biomedical MRI. Biochimie 85: 915-937. – reference: Hand JW. 2008. Modeling the interaction of electromagnetic fields (10MHz-10 GHz) with the human body: methods and applications. Phys Med Biol 53: R243-R286. – reference: Li Y,Hand JW,Wills T,Hajnal JV. 2007. Numerically-simulated induced electric field and current density within a human model located close to a z-gradient coil. J Magn Reson Imag 26: 1286-1295. – reference: Bidinosti CP,Hayden ME. 2008. Selective passive shielding and the Faraday bracelet. Appl Phys Lett 93: 174102. – reference: Myers W,Slichter D,Hatridge M,Busch S,Möβle M,McDermott R,Trabesinger A,Clarke J. 2007. Calculated signal-to-noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10 μT to 1.5 T. J Magn Reson 186: 182-192. – reference: Gleich B,Weizenecker J. 2005. Tomographic imaging using the nonlinear response of magnetic particles. Nature 435: 1214-1217. – reference: Hoult DI,Lauterbur PC. 1979. The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson 34: 425-443. – reference: Shwann HP. 1992. Linear and nonlinear electrode polarization and biological materials. Ann Biomed Eng 20: 269-288. – reference: Zhao H,Crozier S,Liu F. 2002. Finite difference time domain (FDTD) method for modeling the effect of switched gradients on the human body in MRI. Magn Reson Med 48: 1037-1042. – reference: Durand E,Guillot G,Darrasse L,Tastevin G,Nacher PJ,Vignaud A, et al. 2002. CPMG Measurements and ultrafast imaging in human lungs with hyperpolarized Helium-3 at low field (0.1 T). Magn Reson Med 47: 75-87. – reference: Resmer F,Seton HC,Hutchison JMS. 2010. Cryogenic receive coil and low noise preamplifier for MRI at 0.01 T. J Magn Reson 203: 57-65. – reference: Butterworth S. 1925. On the alternating current resistance of solenoidal coils. Proc Roy Soc Lond A 107: 693-715. – reference: Bidinosti CP,Chapple EM,Hayden ME. 2007. The sphere in a uniform RF field-revisited. Concept Magn Reson B 31: 191-202. – reference: Edelstein WA,Glover GH,Hardy CJ,Reddington RW. 1986. The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3: 604-618. – reference: Hoult DI,Richards RE. 1976. The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24: 71-85. – reference: International Electrotechnical Commission. 2010. Medical Electrical Equipment-Part 2-33: particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis. Geneva, Switzerland. International Standard IEC 60601-2-33. – reference: Bottomley PA,Reddington RW,Edelstein WA,Schenk JF. 1985. Estimating radiofrequency power deposition in body NMR imaging. Magn Reson Med 2: 336-349. – reference: Benscik M,Bowtell R,Bowley R. 2007. Electric fields induced in the human body by time-varying magnetic field gradients in MRI: numerical calculations and correlation analysis. Phys Med Biol 52: 2337-2353. – reference: Parra-Robles J,Cross AR,Santyr GE. 2005. Theoretical signal-to-noise ratio and spatial resolution dependence on the magnetic field strength for hyperpolarized noble gas magnetic resonance imaging of human lungs. Med Phys 32: 221-229. – reference: Perry MP. 1985. Low Frequency Electromagnetic Design. New York: Marcel Dekker Inc. – reference: Terman FE. 1943. Radio Engineer's Handbook. New York: McGraw-Hill Inc. – reference: Bidinosti CP,Kravchuk IS,Hayden ME. 2005. Active shielding of cylindrical saddle-shaped coils: application to wire-wound RF coils for very low field NMR and MRI. J Magn Reson 177: 31-43. – reference: Xu SJ,Yashchuk VV,Donaldson MH,Rochester SM,Budker D,Pines A. 2006. Magnetic resonance imaging with an optical atomic magnetometer. Proc Natl Acad Sci USA 103: 12668-12671. – reference: Ghandi OP,Chen XB. 1999. Specific absorption rates and induced current densities for an anatomy-based model of the human for exposure to time-varying magnetic fields of MRI. Magn Reson Med 41: 816-823. – reference: Hoult DI. 2000. Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imag 12: 46-67. – reference: Hayden ME,Hardy WN. 1996. Technique for measuring magnetic filling factors with applications to cryogenic magnetic resonance experiments. Rev Sci Instrum 67: 1905-1911. – reference: Harpen MD. 1991. Analysis of sample power loss in MRI gradient fields. Med Phys 18: 313-315. – reference: Waldron RA. 1967. The Theory of Waveguides and Cavities. New York: Gordon and Breach. – reference: Zotev VS,Owens T,Matlashov AN,Savukov IM,Gomez JJ,Espy MA. 2010. Microtesla MRI with dynamic nuclear polarization. J Magn Reson 207: 78-88. – reference: Mead SP. 1923. Wave propagation over parallel tubular conductors: the alternating current resistance. Bell Syst Tech J 4: 327-338. – reference: Redpath TW,Hutchison JMS. 1984. Estimating patient dielectric losses in NMR imagers. Magn Reson Imaging 2: 295-300. – reference: Harpen MD. 1989. Eddy current distributions in cylindrical samples: effect on equivalent sample resistance. Phys Med Biol 34: 1229-1238. Note that the exponents of B1 and r0 should be 2 and 4, respectively, in Eq. [21] of Ref. (46). – volume: 9 start-page: 389 year: 2007 end-page: 413 article-title: SQUID‐detected magnetic resonance imaging in microtesla fields publication-title: Annu Rev Biomed Eng – year: 1985 – volume: 12 start-page: 46 year: 2000 end-page: 67 article-title: Sensitivity and power deposition in a high‐field imaging experiment publication-title: J Magn Reson Imag – volume: 2 start-page: 336 year: 1985 end-page: 349 article-title: Estimating radiofrequency power deposition in body NMR imaging publication-title: Magn Reson Med – volume: 107 start-page: 693 year: 1925 end-page: 715 article-title: On the alternating current resistance of solenoidal coils publication-title: Proc Roy Soc Lond A – volume: 2 start-page: 295 year: 1984 end-page: 300 article-title: Estimating patient dielectric losses in NMR imagers publication-title: Magn Reson Imaging – volume: 53 start-page: 745 year: 2005 end-page: 749 article-title: He lung imaging in an open access, very‐low‐field human magnetic resonance imaging system publication-title: Magn Reson Med – year: 2001 – volume: 34 start-page: 1229 year: 1989 end-page: 1238 article-title: Eddy current distributions in cylindrical samples: effect on equivalent sample resistance publication-title: Phys Med Biol – volume: 67 start-page: 1905 year: 1996 end-page: 1911 article-title: Technique for measuring magnetic filling factors with applications to cryogenic magnetic resonance experiments publication-title: Rev Sci Instrum – volume: 162 start-page: 122 year: 2003 end-page: 132 article-title: In vivo MRI of hyperpolarized He in the human lung at very low magnetic fields publication-title: J Magn Reson – volume: 12 start-page: 30 year: 2000 end-page: 36 article-title: Radiofrequency energy‐induced heating during MR procedures: a review publication-title: J Magn Reson Imaging – volume: 23 start-page: 68 year: 2002 end-page: 82 article-title: Health and safety implications of exposure to electromagnetic fields in the frequency range 300 Hz to 10 MHz publication-title: Bioelectromagnetics – volume: 47 start-page: 75 year: 2002 end-page: 87 article-title: CPMG Measurements and ultrafast imaging in human lungs with hyperpolarized Helium‐3 at low field (0.1 T) publication-title: Magn Reson Med – volume: 53 start-page: R243 year: 2008 end-page: R286 article-title: Modeling the interaction of electromagnetic fields (10MHz‐10 GHz) with the human body: methods and applications publication-title: Phys Med Biol – volume: 186 start-page: 182 year: 2007 end-page: 192 article-title: Calculated signal‐to‐noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10 μT to 1.5 T publication-title: J Magn Reson – volume: 57 start-page: 577 year: 2007 end-page: 586 article-title: Simultaneous homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil publication-title: Magn Reson Med – volume: 30 start-page: 221 year: 1993 end-page: 230 article-title: Novel approaches to low‐cost MRI publication-title: Magn Reson Med – volume: 8 start-page: 510 year: 1981 end-page: 512 article-title: Power deposition in whole‐body NMR imaging publication-title: Med Phys – volume: 34 start-page: 425 year: 1979 end-page: 443 article-title: The sensitivity of the zeugmatographic experiment involving human samples publication-title: J Magn Reson – volume: 177 start-page: 31 year: 2005 end-page: 43 article-title: Active shielding of cylindrical saddle‐shaped coils: application to wire‐wound RF coils for very low field NMR and MRI publication-title: J Magn Reson – volume: 26 start-page: 1286 year: 2007 end-page: 1295 article-title: Numerically‐simulated induced electric field and current density within a human model located close to a ‐gradient coil publication-title: J Magn Reson Imag – volume: 52 start-page: 6363 year: 2007 end-page: 6374 article-title: A simulation study on the resolution and sensitivity of magnetic particle imaging publication-title: Phys Med Biol – volume: 435 start-page: 1214 year: 2005 end-page: 1217 article-title: Tomographic imaging using the nonlinear response of magnetic particles publication-title: Nature – volume: 71 start-page: 704 year: 1998 end-page: 707 article-title: Signal‐to‐noise ratio in MRI publication-title: Br J Radiol – volume: 29 start-page: 5 year: 2005 end-page: 18 article-title: Calculations of B‐1 distribution, specific energy absorption rate, and intrinsic signal‐to‐noise ratio for a body‐size birdcage coil loaded with different human subjects at 64 and 128 MHz publication-title: Appl Magn Reson – volume: 41 start-page: 2251 year: 1996 end-page: 2269 article-title: The dielectric properties of biological tissues. II. Measurements in the frequency range 10 Hz to 20 GHz publication-title: Phys Med Biol – volume: 21 start-page: 773 year: 2003 end-page: 776 article-title: MRI of the lung gas‐space at very low‐field using hyperpolarized noble gases publication-title: Magn Reson Imaging – volume: 48 start-page: 1037 year: 2002 end-page: 1042 article-title: Finite difference time domain (FDTD) method for modeling the effect of switched gradients on the human body in MRI publication-title: Magn Reson Med – volume: 18 start-page: 313 year: 1991 end-page: 315 article-title: Analysis of sample power loss in MRI gradient fields publication-title: Med Phys – volume: 24 start-page: 71 year: 1976 end-page: 85 article-title: The signal‐to‐noise ratio of the nuclear magnetic resonance experiment publication-title: J Magn Reson – volume: 3 start-page: 730 year: 1986 end-page: 746 article-title: The field dependence of NMR imaging. II. Arguments concerning an optimal field strength publication-title: Magn Reson Med – year: 2003 – volume: 15 start-page: 1 year: 2004 end-page: 39 article-title: Advice on limiting exposure to electromagnetic fields (0–300 GHz) publication-title: Documents NRPB – volume: 52 start-page: 2337 year: 2007 end-page: 2353 article-title: Electric fields induced in the human body by time‐varying magnetic field gradients in MRI: numerical calculations and correlation analysis publication-title: Phys Med Biol – volume: 4 start-page: 327 year: 1923 end-page: 338 article-title: Wave propagation over parallel tubular conductors: the alternating current resistance publication-title: Bell Syst Tech J – volume: 93 start-page: 174102 year: 2008 article-title: Selective passive shielding and the Faraday bracelet publication-title: Appl Phys Lett – volume: 85 start-page: 915 year: 2003 end-page: 937 article-title: Perspectives with cryogenic RF probes in biomedical MRI publication-title: Biochimie – start-page: 127 year: 1987 – volume: 87 start-page: 197 year: 1998 end-page: 216 article-title: Medical magnetic resonance (MR) procedures: protection of patients publication-title: Health Phys – volume: 20 start-page: 269 year: 1992 end-page: 288 article-title: Linear and nonlinear electrode polarization and biological materials publication-title: Ann Biomed Eng – volume: 31 start-page: 191 year: 2007 end-page: 202 article-title: The sphere in a uniform RF field—revisited publication-title: Concept Magn Reson B – start-page: 60601‐2 year: 2010 end-page: 33. – start-page: 6805 year: 2010 end-page: 6808 article-title: Effects of time varying currents and magnetic fields in the frequency rangeof 1 kHz to 1MHz to the human body—a simulation study publication-title: Proc IEEE Eng Med Biol Soc – volume: 103 start-page: 12668 year: 2006 end-page: 12671 article-title: Magnetic resonance imaging with an optical atomic magnetometer publication-title: Proc Natl Acad Sci USA – volume: 41 start-page: 816 year: 1999 end-page: 823 article-title: Specific absorption rates and induced current densities for an anatomy‐based model of the human for exposure to time‐varying magnetic fields of MRI publication-title: Magn Reson Med – volume: 2 start-page: 281 year: 1988 end-page: 289 article-title: The RF coil as a sensitive motion detector for magnetic‐resonance imaging publication-title: Magn Reson Imaging – volume: 3 start-page: 604 year: 1986 end-page: 618 article-title: The intrinsic signal‐to‐noise ratio in NMR imaging publication-title: Magn Reson Med – volume: 207 start-page: 78 year: 2010 end-page: 88 article-title: Microtesla MRI with dynamic nuclear polarization publication-title: J Magn Reson – year: 1967 – volume: 32 start-page: 221 year: 2005 end-page: 229 article-title: Theoretical signal‐to‐noise ratio and spatial resolution dependence on the magnetic field strength for hyperpolarized noble gas magnetic resonance imaging of human lungs publication-title: Med Phys – volume: 78 start-page: 973 year: 2005 end-page: 975 article-title: Electromagnetic field exposure limitation and the future of MRI publication-title: Br J Radiol – volume: 203 start-page: 57 year: 2010 end-page: 65 article-title: Cryogenic receive coil and low noise preamplifier for MRI at 0.01 T publication-title: J Magn Reson – year: 1943 – volume: 16 start-page: 255 year: 2004 end-page: 258 article-title: MRI of the lung using hyperpolarized He at very low magnetic field (3 mT) publication-title: Magn Reson Mater Phys – ident: e_1_2_7_47_2 doi: 10.1088/0031-9155/34/9/008 – ident: e_1_2_7_19_2 doi: 10.1016/0022-2364(79)90019-2 – ident: e_1_2_7_38_2 doi: 10.1016/j.jmr.2007.02.007 – ident: e_1_2_7_30_2 doi: 10.1118/1.596677 – ident: e_1_2_7_28_2 doi: 10.1002/mrm.1910030509 – ident: e_1_2_7_44_2 doi: 10.1088/0031-9155/53/16/R01 – ident: e_1_2_7_25_2 doi: 10.1002/cmr.b.20090 – ident: e_1_2_7_46_2 doi: 10.1016/0730-725X(84)90195-4 – ident: e_1_2_7_16_2 doi: 10.1146/annurev.bioeng.9.060906.152010 – ident: e_1_2_7_26_2 doi: 10.1002/mrm.1910020404 – volume-title: Radio Engineer's Handbook year: 1943 ident: e_1_2_7_52_2 – start-page: 60601‐2 volume-title: Medical Electrical Equipment—Part 2–33: particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis year: 2010 ident: e_1_2_7_6_2 – ident: e_1_2_7_54_2 – ident: e_1_2_7_55_2 doi: 10.1016/0730-725X(88)90403-1 – volume: 15 start-page: 1 year: 2004 ident: e_1_2_7_4_2 article-title: Advice on limiting exposure to electromagnetic fields (0–300 GHz) publication-title: Documents NRPB – ident: e_1_2_7_56_2 doi: 10.1063/1.2998607 – volume-title: The Theory of Waveguides and Cavities year: 1967 ident: e_1_2_7_22_2 – start-page: 127 volume-title: Guidelines on exposure to electromagnetic fields from magnetic resonance clinical systems—safety code 26 year: 1987 ident: e_1_2_7_2_2 – ident: e_1_2_7_13_2 doi: 10.1002/mrm.20456 – ident: e_1_2_7_17_2 doi: 10.1073/pnas.0605396103 – volume: 87 start-page: 197 year: 1998 ident: e_1_2_7_5_2 article-title: Medical magnetic resonance (MR) procedures: protection of patients publication-title: Health Phys – ident: e_1_2_7_15_2 doi: 10.1016/j.jmr.2010.08.015 – ident: e_1_2_7_43_2 doi: 10.1007/BF03166953 – start-page: 6805 year: 2010 ident: e_1_2_7_45_2 article-title: Effects of time varying currents and magnetic fields in the frequency rangeof 1 kHz to 1MHz to the human body—a simulation study publication-title: Proc IEEE Eng Med Biol Soc – ident: e_1_2_7_9_2 doi: 10.1002/mrm.10047 – ident: e_1_2_7_50_2 doi: 10.1002/j.1538-7305.1925.tb00951.x – ident: e_1_2_7_39_2 doi: 10.1118/1.1833593 – ident: e_1_2_7_12_2 doi: 10.1007/s10334-004-0035-y – ident: e_1_2_7_35_2 doi: 10.1088/0031-9155/52/21/001 – volume-title: Low Frequency Electromagnetic Design year: 1985 ident: e_1_2_7_48_2 – ident: e_1_2_7_11_2 doi: 10.1016/S0730-725X(03)00178-4 – ident: e_1_2_7_24_2 doi: 10.1063/1.1146967 – ident: e_1_2_7_7_2 doi: 10.1002/1522-2586(200007)12:1<30::AID-JMRI4>3.0.CO;2-S – ident: e_1_2_7_14_2 doi: 10.1002/mrm.1910300211 – ident: e_1_2_7_18_2 doi: 10.1088/0031-9155/41/11/002 – ident: e_1_2_7_10_2 doi: 10.1016/S1090-7807(02)00198-2 – ident: e_1_2_7_41_2 doi: 10.1016/j.jmr.2009.11.021 – ident: e_1_2_7_29_2 doi: 10.1002/1522-2586(200007)12:1<46::AID-JMRI6>3.0.CO;2-D – ident: e_1_2_7_27_2 doi: 10.1118/1.595000 – ident: e_1_2_7_33_2 doi: 10.1088/0031-9155/52/9/001 – ident: e_1_2_7_42_2 doi: 10.1002/(SICI)1522-2594(199904)41:4<816::AID-MRM22>3.0.CO;2-5 – volume-title: Guidance for industry and FDA staff—criteria for significant risk investigations of magnetic resonance diagnostic devices year: 2003 ident: e_1_2_7_3_2 – ident: e_1_2_7_53_2 doi: 10.1002/mrm.21149 – ident: e_1_2_7_21_2 doi: 10.1007/BF02368531 – ident: e_1_2_7_8_2 doi: 10.1259/bjr/21943393 – ident: e_1_2_7_31_2 doi: 10.1002/mrm.10313 – ident: e_1_2_7_32_2 doi: 10.1002/jmri.21137 – ident: e_1_2_7_36_2 doi: 10.1002/mrm.1910030413 – ident: e_1_2_7_23_2 doi: 10.1016/0022-2364(76)90233-X – ident: e_1_2_7_37_2 doi: 10.1259/bjr.71.847.9771379 – ident: e_1_2_7_20_2 doi: 10.1002/bem.99 – ident: e_1_2_7_51_2 doi: 10.1098/rspa.1925.0050 – ident: e_1_2_7_34_2 doi: 10.1038/nature03808 – ident: e_1_2_7_40_2 doi: 10.1016/j.biochi.2003.09.016 – ident: e_1_2_7_49_2 doi: 10.1016/j.jmr.2005.07.003 |
SSID | ssj0026049 |
Score | 2.0061867 |
Snippet | Coil loading experiments were performed to characterize specific absorption rates (SARs) for adult human subjects in uniform linearly‐polarized time‐varying... Coil loading experiments were performed to characterize specific absorption rates (SARs) for adult human subjects in uniform linearly-polarized time-varying... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 281 |
SubjectTerms | Coiling electromagnetic dosimetry health safety low-field magnetic resonance imaging specific absorption rate |
Title | Specific absorption rates and signal-to-noise ratio limitations for MRI in very-low magnetic fields |
URI | https://api.istex.fr/ark:/67375/WNG-K78P5S4V-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcmr.a.21247 https://www.proquest.com/docview/1506360335 |
Volume | 40A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQERIX_hFLARmp4oCUbbKOnc0RFUop2gotFHqzxmMHrbpN0GZXBU48As_IkzDjpEuLEBJcokiZOI49M_nszHwjxFZlTOpIcZN0jJDkzqcJZLRY0WVVAir0Zsz5zpMDs3eY7x_poz42h3NhOn6I9YYbW0b012zg4NrtX6SheLIYwpA8b8655JkyzJz_fLomjyKgHsEvYQSTGELufXYeXdk-d--F79FlHtrPF8Dmecgavzm717vCqm2kKuRQk-PhaumG-PU3Isf_fp0b4lqPRuWzTn1uikuhviWuxKhQbG-LWaxOX81QUivNInoXydwSrYTaS479gPmPb9-XDR3qZtYGGRVKzjltqtsLlISK5WT6Ss5qSWbzhSTnzak8gY8150_KGELX3hGHuy_e7ewlfW2GBBX7Vl9kQOZrPAYHSDgAXeVzpRiAos8yT1CjgqowgdYzKZpSK-1TILVQWOpxoe6Kjbqpwz0htRtVnBttMgM5pgDB5RiMVw6AGikH4unZDFnsO8_1M-a2o1weWRo7CzaO3UBsrYU_dXwdfxZ7Eqd6LQOLYw5xK7T9cPDSvi7Gb_Tb_L3dH4jHZ7pgyfD4bwrUoVm1lqkZlUmV0tTBOLN_e6DdmUzjyf1_Ed4UVwmgjbrcxwdiY7lYhYcEgpbuUdT1nyzYBmI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BK0QvvCvCc5EqDkhO7ax3HR9RoaSPRCi00Ntq9mEUNbWrOBGPEz-B38gvYWbthBYhJLhYljy217szs9-OZ75lbKtQKjaouFHctxClxsURJLhYkXmRgxXWqT7VOw9HanCc7p_IkzbgRrUwDT_EKuBGlhH8NRk4BaS3f7GG2rNZF7roetPsKltPEWrQ4uvVeEUfhVA9wF9ECSpSiN3b-jy8sn3h5ksz0jp17udLcPMiaA2zzu5NppftbZJNTruLuenar79ROf7_B91iN1pAyl82GnSbXfHlHXYtJIba-i6bhA3qi4nlYOpqFhwMJ3qJmkPpOKV_wPTHt-_zCg9lNak9DzrFp1Q51YQDOQJjPhzv8UnJ0XK-oOS0-sTP4GNJJZQ8ZNHV99jx7uujnUHUbs8QWUHu1WUJoAUrZ70Bi1DAmsKlQhAGtS5JHKKNAopMeVzSxFblUkgXA2qGsLnsZ2KTrZVV6e8zLk2voPJolShIbQzgTWq9csIA4EPyDnuxHCJt28bTFhpT3bAu9zT2nQYd-q7DtlbC5w1lx5_FnoexXsnA7JSy3DKpP4ze6IOs_1a-S9_r_Q57tlQGjbZHP1Sg9NWi1sTOKFQshMQGhqH92wv1znAcTh78i_BTdn1wNDzUh3ujg4dsA_FarymFfMTW5rOFf4yYaG6eBMX_CYOACoE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagFYgL5VWxUMBIFQekbJN17GyOqGXpg11VC4XerPEjaNVtUm12xePET-A38ks646RLixASXKJImSSOPTP-7Mx8w9hmoVRsUHGjuG8hSo2LI0hwsSLzIgcrrFN9yncejtTuUbp_LI_b2BzKhWn4IZYbbmQZwV-TgZ-5YusXaag9nXWhi543za6z1VQhliBMNF6yRyFSD-gXQYKK8LJq0_Pwytalm69MSKvUt1-uoM3LmDVMOoO1prJqHbgKKdbkpLuYm6799huT439_zx12u4Wj_FWjP3fZNV_eYzdCWKit77NJKE9fTCwHU1ez4F44kUvUHErHKfgDpj-__5hXeCirSe150Cg-pbypZjOQIyzmw_Een5Qc7eYrSk6rz_wUPpWUQMlDDF39gB0NXr_f3o3a4gyRFeRcXZYA2q9y1huwCASsKVwqBCFQ65LEIdYooMiUxwVNbFUuhXQxoF4Im8t-JtbZSlmV_iHj0vQKSo5WiYLUxgDepNYrJwwAPiTvsJcXI6Rt23gqoDHVDedyT2PfadCh7zpscyl81hB2_FnsRRjqpQzMTijGLZP64-iNPsj6h_Jd-kHvd9jzC13QaHn0OwVKXy1qTdyMQsVCSGxgGNm_vVBvD8fh5NG_CD9jNw93Bvrt3ujgMbuFYK3X5EFusJX5bOGfICCam6dB7c8Ba_gJMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specific+absorption+rates+and+signal-to-noise+ratio+limitations+for+MRI+in+very-low+magnetic+fields&rft.jtitle=Concepts+in+magnetic+resonance.+Part+A%2C+Bridging+education+and+research&rft.au=Hayden%2C+M.+E.&rft.au=Bidinosti%2C+C.+P.&rft.au=Chapple%2C+E.+M.&rft.date=2012-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1546-6086&rft.eissn=1552-5023&rft.volume=40A&rft.issue=6&rft.spage=281&rft.epage=294&rft_id=info:doi/10.1002%2Fcmr.a.21247&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_K78P5S4V_J |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-6086&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-6086&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-6086&client=summon |