Specific absorption rates and signal-to-noise ratio limitations for MRI in very-low magnetic fields

Coil loading experiments were performed to characterize specific absorption rates (SARs) for adult human subjects in uniform linearly‐polarized time‐varying magnetic fields B from 30 kHz to 1.25 MHz, corresponding to a range of Larmor frequencies f that is relevant to MRI in very‐low magnetic fields...

Full description

Saved in:
Bibliographic Details
Published inConcepts in magnetic resonance. Part A, Bridging education and research Vol. 40A; no. 6; pp. 281 - 294
Main Authors Hayden, M. E., Bidinosti, C. P., Chapple, E. M.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.11.2012
Subjects
Online AccessGet full text
ISSN1546-6086
1552-5023
DOI10.1002/cmr.a.21247

Cover

Abstract Coil loading experiments were performed to characterize specific absorption rates (SARs) for adult human subjects in uniform linearly‐polarized time‐varying magnetic fields B from 30 kHz to 1.25 MHz, corresponding to a range of Larmor frequencies f that is relevant to MRI in very‐low magnetic fields. For oscillating fields directed perpendicular to the sagittal plane of the human body in the standard anatomical position it was found that $ {\rm{SAR}} = 4.3(1) \times 10^{ - 7} (M/L)f^2 B^2 $, where M and L are the mass and height of the subject and all quantities are expressed in SI base units. The average linear density M/L appearing in this expression was observed to be an excellent anthropomorphic index for characterizing the manner in which SAR depends on the average transverse dimension of the subject normal to the applied field. As anticipated, SAR values over this frequency range were low compared to those observed at higher frequencies, indicating that emerging applications requiring high duty‐cycle and/or intense radio‐frequency MR tipping pulses will not lead to excessive heating of tissues. Data from these experiments also corroborate and quantify predictions that significant improvements in signal‐to‐noise‐ratios can be achieved through appropriate receive‐antenna design. © 2012 Wiley Periodicals, Inc. Concepts Magn Reson Part A 40A: 281–294, 2012.
AbstractList Coil loading experiments were performed to characterize specific absorption rates (SARs) for adult human subjects in uniform linearly‐polarized time‐varying magnetic fields B from 30 kHz to 1.25 MHz, corresponding to a range of Larmor frequencies f that is relevant to MRI in very‐low magnetic fields. For oscillating fields directed perpendicular to the sagittal plane of the human body in the standard anatomical position it was found that $ {\rm{SAR}} = 4.3(1) \times 10^{ - 7} (M/L)f^2 B^2 $ , where M and L are the mass and height of the subject and all quantities are expressed in SI base units. The average linear density M / L appearing in this expression was observed to be an excellent anthropomorphic index for characterizing the manner in which SAR depends on the average transverse dimension of the subject normal to the applied field. As anticipated, SAR values over this frequency range were low compared to those observed at higher frequencies, indicating that emerging applications requiring high duty‐cycle and/or intense radio‐frequency MR tipping pulses will not lead to excessive heating of tissues. Data from these experiments also corroborate and quantify predictions that significant improvements in signal‐to‐noise‐ratios can be achieved through appropriate receive‐antenna design. © 2012 Wiley Periodicals, Inc. Concepts Magn Reson Part A 40A: 281–294, 2012.
Coil loading experiments were performed to characterize specific absorption rates (SARs) for adult human subjects in uniform linearly-polarized time-varying magnetic fields B from 30 kHz to 1.25 MHz, corresponding to a range of Larmor frequencies f that is relevant to MRI in very-low magnetic fields. For oscillating fields directed perpendicular to the sagittal plane of the human body in the standard anatomical position it was found that $ {\rm{SAR}} = 4.3(1) \times 10 - 7} (M/L)f arrow up B arrow up $[Imageomitted] , where M and L are the mass and height of the subject and all quantities are expressed in SI base units. The average linear density M/L appearing in this expression was observed to be an excellent anthropomorphic index for characterizing the manner in which SAR depends on the average transverse dimension of the subject normal to the applied field. As anticipated, SAR values over this frequency range were low compared to those observed at higher frequencies, indicating that emerging applications requiring high duty-cycle and/or intense radio-frequency MR tipping pulses will not lead to excessive heating of tissues. Data from these experiments also corroborate and quantify predictions that significant improvements in signal-to-noise-ratios can be achieved through appropriate receive-antenna design. copyright 2012 Wiley Periodicals, Inc. Concepts Magn Reson Part A 40A: 281-294, 2012.
Coil loading experiments were performed to characterize specific absorption rates (SARs) for adult human subjects in uniform linearly‐polarized time‐varying magnetic fields B from 30 kHz to 1.25 MHz, corresponding to a range of Larmor frequencies f that is relevant to MRI in very‐low magnetic fields. For oscillating fields directed perpendicular to the sagittal plane of the human body in the standard anatomical position it was found that $ {\rm{SAR}} = 4.3(1) \times 10^{ - 7} (M/L)f^2 B^2 $, where M and L are the mass and height of the subject and all quantities are expressed in SI base units. The average linear density M/L appearing in this expression was observed to be an excellent anthropomorphic index for characterizing the manner in which SAR depends on the average transverse dimension of the subject normal to the applied field. As anticipated, SAR values over this frequency range were low compared to those observed at higher frequencies, indicating that emerging applications requiring high duty‐cycle and/or intense radio‐frequency MR tipping pulses will not lead to excessive heating of tissues. Data from these experiments also corroborate and quantify predictions that significant improvements in signal‐to‐noise‐ratios can be achieved through appropriate receive‐antenna design. © 2012 Wiley Periodicals, Inc. Concepts Magn Reson Part A 40A: 281–294, 2012.
Author Hayden, M. E.
Chapple, E. M.
Bidinosti, C. P.
Author_xml – sequence: 1
  givenname: M. E.
  surname: Hayden
  fullname: Hayden, M. E.
  email: mhayden@sfu.ca
  organization: Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6 Canada
– sequence: 2
  givenname: C. P.
  surname: Bidinosti
  fullname: Bidinosti, C. P.
  organization: Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6 Canada
– sequence: 3
  givenname: E. M.
  surname: Chapple
  fullname: Chapple, E. M.
  organization: Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6 Canada
BookMark eNp9kMtOAyEUhompiba68gVYmhgqDANMl6bReqmXeF0SyjAGZaDCVO3bO2PVhYuuzknO9_3J-fug54M3AOwRPCQYZ4e6jkM1zEiWiw2wTRjLEMMZ7XV7zhHHBd8C_ZReWpjjfLQN9N3caFtZDdUshThvbPAwqsYkqHwJk332yqEmIB9sMt3FBuhsbZtu8wlWIcLL2zNoPXw3cYlc-IC1evamaTMra1yZdsBmpVwyuz9zAB5Oju_Hp2h6PTkbH02RpjkXqBREMUp4qc1M6SzL9awqc0pxgbEuCSlxQSpVCW4EL7DmI0ZZidWMCqpHrBB0APZXufMY3hYmNbK2SRvnlDdhkSRhmFOOKWUterBCdQwpRVPJebS1iktJsOyqlG2VUsnvKlua_KP1z_9NVNatdz6sM8t18XJ8efvroJVjU2M-_xwVXyUXVDD5dDWRF6K4YXf5ozynXx-VmP8
CitedBy_id crossref_primary_10_1007_s10334_023_01073_3
crossref_primary_10_1016_j_jmr_2017_06_009
crossref_primary_10_1002_cmmi_1579
crossref_primary_10_1021_ac501638p
crossref_primary_10_1016_j_jmr_2013_10_013
crossref_primary_10_1002_chem_201405063
crossref_primary_10_1016_j_jmr_2017_01_014
crossref_primary_10_1021_jp508719n
crossref_primary_10_1016_j_jmr_2019_106622
crossref_primary_10_1063_1_5052646
crossref_primary_10_1016_j_jmmm_2019_166021
crossref_primary_10_1119_1_5034350
crossref_primary_10_1002_slct_201700718
crossref_primary_10_1007_s10334_023_01100_3
Cites_doi 10.1088/0031-9155/34/9/008
10.1016/0022-2364(79)90019-2
10.1016/j.jmr.2007.02.007
10.1118/1.596677
10.1002/mrm.1910030509
10.1088/0031-9155/53/16/R01
10.1002/cmr.b.20090
10.1016/0730-725X(84)90195-4
10.1146/annurev.bioeng.9.060906.152010
10.1002/mrm.1910020404
10.1016/0730-725X(88)90403-1
10.1063/1.2998607
10.1002/mrm.20456
10.1073/pnas.0605396103
10.1016/j.jmr.2010.08.015
10.1007/BF03166953
10.1002/mrm.10047
10.1002/j.1538-7305.1925.tb00951.x
10.1118/1.1833593
10.1007/s10334-004-0035-y
10.1088/0031-9155/52/21/001
10.1016/S0730-725X(03)00178-4
10.1063/1.1146967
10.1002/1522-2586(200007)12:1<30::AID-JMRI4>3.0.CO;2-S
10.1002/mrm.1910300211
10.1088/0031-9155/41/11/002
10.1016/S1090-7807(02)00198-2
10.1016/j.jmr.2009.11.021
10.1002/1522-2586(200007)12:1<46::AID-JMRI6>3.0.CO;2-D
10.1118/1.595000
10.1088/0031-9155/52/9/001
10.1002/(SICI)1522-2594(199904)41:4<816::AID-MRM22>3.0.CO;2-5
10.1002/mrm.21149
10.1007/BF02368531
10.1259/bjr/21943393
10.1002/mrm.10313
10.1002/jmri.21137
10.1002/mrm.1910030413
10.1016/0022-2364(76)90233-X
10.1259/bjr.71.847.9771379
10.1002/bem.99
10.1098/rspa.1925.0050
10.1038/nature03808
10.1016/j.biochi.2003.09.016
10.1016/j.jmr.2005.07.003
ContentType Journal Article
Copyright Copyright © 2012 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2012 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cmr.a.21247
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1552-5023
EndPage 294
ExternalDocumentID 10_1002_cmr_a_21247
CMR21247
ark_67375_WNG_K78P5S4V_J
Genre article
GrantInformation_xml – fundername: Canadian Lung Association
– fundername: Natural Sciences and Engineering Research Council of Canada
– fundername: British Columbia Advanced Systems Institute
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
24P
31~
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAMMB
AANHP
AAONW
AAZKR
ABCQN
ABEML
ABIJN
ABPVW
ACBWZ
ACCMX
ACGFS
ACMXC
ACRPL
ACSCC
ACXQS
ACYXJ
ADEOM
ADIZJ
ADNMO
AEFGJ
AEIMD
AENEX
AFBPY
AFFNX
AFKRA
AFZJQ
AGQPQ
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ATUGU
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
HBH
HF~
HHZ
HVGLF
HZ~
IAO
ICD
ITC
IX1
JPC
KQQ
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
N04
N05
N9A
NNB
O66
O9-
OK1
P2W
P2X
P2Z
P4B
P4D
PHGZM
PHGZT
PIMPY
Q.N
QB0
QRW
R.K
RJQFR
ROL
RX1
RYL
SUPJJ
UB1
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
XG1
XHW
XV2
ZCG
~IA
~WT
1OC
33P
AAHHS
AAJEY
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RHX
RWI
VQA
WRC
AAYXX
CITATION
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3467-d71a5316dcebac224cbfd4330800cd11d081faf76e7680c69535d0ab373c95873
IEDL.DBID DR2
ISSN 1546-6086
IngestDate Fri Sep 05 05:52:44 EDT 2025
Tue Jul 01 01:55:35 EDT 2025
Thu Apr 24 22:58:57 EDT 2025
Wed Jan 22 16:22:24 EST 2025
Tue Sep 09 05:31:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3467-d71a5316dcebac224cbfd4330800cd11d081faf76e7680c69535d0ab373c95873
Notes Natural Sciences and Engineering Research Council of Canada
ArticleID:CMR21247
Canadian Lung Association
ark:/67375/WNG-K78P5S4V-J
British Columbia Advanced Systems Institute
istex:80FE4026AAEEABF19E17A35149FCFDEAA4F203AC
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1506360335
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_1506360335
crossref_primary_10_1002_cmr_a_21247
crossref_citationtrail_10_1002_cmr_a_21247
wiley_primary_10_1002_cmr_a_21247_CMR21247
istex_primary_ark_67375_WNG_K78P5S4V_J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2012
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: November 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concepts in magnetic resonance. Part A, Bridging education and research
PublicationTitleAlternate Concepts Magn. Reson
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Shwann HP. 1992. Linear and nonlinear electrode polarization and biological materials. Ann Biomed Eng 20: 269-288.
Bottomley PA,Reddington RW,Edelstein WA,Schenk JF. 1985. Estimating radiofrequency power deposition in body NMR imaging. Magn Reson Med 2: 336-349.
Terman FE. 1943. Radio Engineer's Handbook. New York: McGraw-Hill Inc.
Harpen MD. 1991. Analysis of sample power loss in MRI gradient fields. Med Phys 18: 313-315.
Parra-Robles J,Cross AR,Santyr GE. 2005. Theoretical signal-to-noise ratio and spatial resolution dependence on the magnetic field strength for hyperpolarized noble gas magnetic resonance imaging of human lungs. Med Phys 32: 221-229.
Bohnert J,Dössel O. 2010. Effects of time varying currents and magnetic fields in the frequency rangeof 1 kHz to 1MHz to the human body-a simulation study. Proc IEEE Eng Med Biol Soc 6805-6808.
Darrasse L,Ginefri JC. 2003. Perspectives with cryogenic RF probes in biomedical MRI. Biochimie 85: 915-937.
Hayden ME,Hardy WN. 1996. Technique for measuring magnetic filling factors with applications to cryogenic magnetic resonance experiments. Rev Sci Instrum 67: 1905-1911.
McKinlay AF,Allen SG,Cox R,Dimbylow PJ,Mann SM,Muirhead CR, et al. 2004. Advice on limiting exposure to electromagnetic fields (0-300 GHz). Documents NRPB 15: 1-39.
Bidinosti CP,Chapple EM,Hayden ME. 2007. The sphere in a uniform RF field-revisited. Concept Magn Reson B 31: 191-202.
Weizenecker J,Borgert J,Gleich B. 2007. A simulation study on the resolution and sensitivity of magnetic particle imaging. Phys Med Biol 52: 6363-6374.
International Commission on Non-ionizing Radiation Protection. 1998. Medical magnetic resonance (MR) procedures: protection of patients. Health Phys 87: 197-216.
Macovski A,Conolly SM. 1993. Novel approaches to low-cost MRI. Magn Reson Med 30: 221-230.
Cornelis A,Van den Berg T,van den Bergen B,Van de Kamer JB,Raaymakers BW,Kroeze H, et al. 2007. Simultaneous B1 homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil. Magn Reson Med 57: 577-586.
Health and Welfare Canada, Environmental Health Directorate, Health Protection Branch. 1987. Guidelines on exposure to electromagnetic fields from magnetic resonance clinical systems-safety code 26. Ottawa Ont, Canada. Report 87-EHD- 127.
Buikman D,Helzel T,Roschmann P. 1988. The RF coil as a sensitive motion detector for magnetic-resonance imaging. Magn Reson Imaging 2: 281-289.
Bottomley PA,Edelstein WA. 1981. Power deposition in whole-body NMR imaging. Med Phys 8: 510-512.
US Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health. 2003. Guidance for industry and FDA staff-criteria for significant risk investigations of magnetic resonance diagnostic devices. Rockville MD, USA. Issued July 14, 2003.
Bidinosti CP,Choukiefe J,Tastevin G,Vignaud A,Nacher PJ. 2004. MRI of the lung using hyperpolarized 3He at very low magnetic field (3 mT). Magn Reson Mater Phys 16: 255-258.
Waldron RA. 1967. The Theory of Waveguides and Cavities. New York: Gordon and Breach.
Edelstein WA,Glover GH,Hardy CJ,Reddington RW. 1986. The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3: 604-618.
Mair RW,Hrovat MI,Patz S,Rosen MS,Ruset IC,Topulos GP, et al. 2005. 3He lung imaging in an open access, very-low-field human magnetic resonance imaging system. Magn Reson Med 53: 745-749.
Myers W,Slichter D,Hatridge M,Busch S,Möβle M,McDermott R,Trabesinger A,Clarke J. 2007. Calculated signal-to-noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10 μT to 1.5 T. J Magn Reson 186: 182-192.
Bidinosti CP,Choukiefe J,Nacher PJ,Tastevin G. 2003. In vivo MRI of hyperpolarized 3He in the human lung at very low magnetic fields. J Magn Reson 162: 122-132.
Benscik M,Bowtell R,Bowley R. 2007. Electric fields induced in the human body by time-varying magnetic field gradients in MRI: numerical calculations and correlation analysis. Phys Med Biol 52: 2337-2353.
Durand E,Guillot G,Darrasse L,Tastevin G,Nacher PJ,Vignaud A, et al. 2002. CPMG Measurements and ultrafast imaging in human lungs with hyperpolarized Helium-3 at low field (0.1 T). Magn Reson Med 47: 75-87.
Li Y,Hand JW,Wills T,Hajnal JV. 2007. Numerically-simulated induced electric field and current density within a human model located close to a z-gradient coil. J Magn Reson Imag 26: 1286-1295.
Ghandi OP,Chen XB. 1999. Specific absorption rates and induced current densities for an anatomy-based model of the human for exposure to time-varying magnetic fields of MRI. Magn Reson Med 41: 816-823.
Hoult DI,Chen C-N,Sank VJ. 1986. The field dependence of NMR imaging. II. Arguments concerning an optimal field strength. Magn Reson Med 3: 730-746.
Hand JW. 2008. Modeling the interaction of electromagnetic fields (10MHz-10 GHz) with the human body: methods and applications. Phys Med Biol 53: R243-R286.
International Electrotechnical Commission. 2010. Medical Electrical Equipment-Part 2-33: particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis. Geneva, Switzerland. International Standard IEC 60601-2-33.
Hoult DI. 2000. Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imag 12: 46-67.
Keevil SF,Gedroyc W,Gowland P,Hill DLG,Leach MO, et al. 2005. Electromagnetic field exposure limitation and the future of MRI. Br J Radiol 78: 973-975.
Bidinosti CP,Kravchuk IS,Hayden ME. 2005. Active shielding of cylindrical saddle-shaped coils: application to wire-wound RF coils for very low field NMR and MRI. J Magn Reson 177: 31-43.
Perry MP. 1985. Low Frequency Electromagnetic Design. New York: Marcel Dekker Inc.
Clarke J,Hatridge M,Möβle M. 2007. SQUID-detected magnetic resonance imaging in microtesla fields. Annu Rev Biomed Eng 9: 389-413.
Venkatesh AK,Zhang AX,Mansour J,Kubatina L,Oh C,Blasche G, et al. 2003. MRI of the lung gas-space at very low-field using hyperpolarized noble gases. Magn Reson Imaging 21: 773-776. (The duration TRF of the 25 degree tipping pulses (applied at 484 kHz) reported in Ref. (10) was 0.2 ms).
Gleich B,Weizenecker J. 2005. Tomographic imaging using the nonlinear response of magnetic particles. Nature 435: 1214-1217.
Gabriel S,Lau RW,Gabriel C. 1996. The dielectric properties of biological tissues. II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41: 2251-2269.
Zotev VS,Owens T,Matlashov AN,Savukov IM,Gomez JJ,Espy MA. 2010. Microtesla MRI with dynamic nuclear polarization. J Magn Reson 207: 78-88.
Xu SJ,Yashchuk VV,Donaldson MH,Rochester SM,Budker D,Pines A. 2006. Magnetic resonance imaging with an optical atomic magnetometer. Proc Natl Acad Sci USA 103: 12668-12671.
Butterworth S. 1925. On the alternating current resistance of solenoidal coils. Proc Roy Soc Lond A 107: 693-715.
Liu W,Collins CM,Smith MB. 2005. Calculations of B-1 distribution, specific energy absorption rate, and intrinsic signal-to-noise ratio for a body-size birdcage coil loaded with different human subjects at 64 and 128 MHz. Appl Magn Reson 29: 5-18.
Litvak E,Foster KR,Repacholi MH. 2002. Health and safety implications of exposure to electromagnetic fields in the frequency range 300 Hz to 10 MHz. Bioelectromagnetics 23: 68-82.
Redpath TW. 1998. Signal-to-noise ratio in MRI. Br J Radiol 71: 704-707.
Bidinosti CP,Hayden ME. 2008. Selective passive shielding and the Faraday bracelet. Appl Phys Lett 93: 174102.
Resmer F,Seton HC,Hutchison JMS. 2010. Cryogenic receive coil and low noise preamplifier for MRI at 0.01 T. J Magn Reson 203: 57-65.
Shellock FG. 2000. Radiofrequency energy-induced heating during MR procedures: a review. J Magn Reson Imaging 12: 30-36.
Zhao H,Crozier S,Liu F. 2002. Finite difference time domain (FDTD) method for modeling the effect of switched gradients on the human body in MRI. Magn Reson Med 48: 1037-1042.
Hoult DI,Richards RE. 1976. The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24: 71-85.
Redpath TW,Hutchison JMS. 1984. Estimating patient dielectric losses in NMR imagers. Magn Reson Imaging 2: 295-300.
Harpen MD. 1989. Eddy current distributions in cylindrical samples: effect on equivalent sample resistance. Phys Med Biol 34: 1229-1238. Note that the exponents of B1 and r0 should be 2 and 4, respectively, in Eq. [21] of Ref. (46).
Hoult DI,Lauterbur PC. 1979. The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson 34: 425-443.
Mead SP. 1923. Wave propagation over parallel tubular conductors: the alternating current resistance. Bell Syst Tech J 4: 327-338.
1991; 18
1979; 34
1976; 24
2005; 177
2007; 186
1999; 41
2007; 31
1998; 87
2005; 29
2002; 47
2002; 48
1989; 34
1923; 4
2001
2000; 12
1986; 3
1993; 30
1987
2003; 162
1943
2007; 9
1985
2005; 32
2003; 85
2005; 78
1996; 67
2007; 26
2010; 207
2010
1985; 2
2010; 203
2005; 435
1981; 8
2003
2007; 52
2008; 53
2008; 93
2007; 57
1988; 2
2004; 16
1984; 2
2002; 23
2004; 15
2005; 53
1996; 41
1998; 71
1992; 20
1925; 107
2003; 21
2006; 103
1967
McKinlay AF (e_1_2_7_4_2) 2004; 15
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
Bohnert J (e_1_2_7_45_2) 2010
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_35_2
e_1_2_7_37_2
US Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health (e_1_2_7_3_2) 2003
e_1_2_7_39_2
Waldron RA (e_1_2_7_22_2) 1967
Health and Welfare Canada, Environmental Health Directorate, Health Protection Branch (e_1_2_7_2_2) 1987
e_1_2_7_8_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_14_2
e_1_2_7_40_2
Terman FE (e_1_2_7_52_2) 1943
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_46_2
e_1_2_7_27_2
e_1_2_7_29_2
International Commission on Non‐ionizing Radiation Protection (e_1_2_7_5_2) 1998; 87
Perry MP (e_1_2_7_48_2) 1985
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_38_2
International Electrotechnical Commission (e_1_2_7_6_2) 2010
References_xml – reference: McKinlay AF,Allen SG,Cox R,Dimbylow PJ,Mann SM,Muirhead CR, et al. 2004. Advice on limiting exposure to electromagnetic fields (0-300 GHz). Documents NRPB 15: 1-39.
– reference: Clarke J,Hatridge M,Möβle M. 2007. SQUID-detected magnetic resonance imaging in microtesla fields. Annu Rev Biomed Eng 9: 389-413.
– reference: Keevil SF,Gedroyc W,Gowland P,Hill DLG,Leach MO, et al. 2005. Electromagnetic field exposure limitation and the future of MRI. Br J Radiol 78: 973-975.
– reference: International Commission on Non-ionizing Radiation Protection. 1998. Medical magnetic resonance (MR) procedures: protection of patients. Health Phys 87: 197-216.
– reference: Macovski A,Conolly SM. 1993. Novel approaches to low-cost MRI. Magn Reson Med 30: 221-230.
– reference: Bottomley PA,Edelstein WA. 1981. Power deposition in whole-body NMR imaging. Med Phys 8: 510-512.
– reference: Weizenecker J,Borgert J,Gleich B. 2007. A simulation study on the resolution and sensitivity of magnetic particle imaging. Phys Med Biol 52: 6363-6374.
– reference: US Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health. 2003. Guidance for industry and FDA staff-criteria for significant risk investigations of magnetic resonance diagnostic devices. Rockville MD, USA. Issued July 14, 2003.
– reference: Bidinosti CP,Choukiefe J,Tastevin G,Vignaud A,Nacher PJ. 2004. MRI of the lung using hyperpolarized 3He at very low magnetic field (3 mT). Magn Reson Mater Phys 16: 255-258.
– reference: Litvak E,Foster KR,Repacholi MH. 2002. Health and safety implications of exposure to electromagnetic fields in the frequency range 300 Hz to 10 MHz. Bioelectromagnetics 23: 68-82.
– reference: Cornelis A,Van den Berg T,van den Bergen B,Van de Kamer JB,Raaymakers BW,Kroeze H, et al. 2007. Simultaneous B1 homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil. Magn Reson Med 57: 577-586.
– reference: Bohnert J,Dössel O. 2010. Effects of time varying currents and magnetic fields in the frequency rangeof 1 kHz to 1MHz to the human body-a simulation study. Proc IEEE Eng Med Biol Soc 6805-6808.
– reference: Hoult DI,Chen C-N,Sank VJ. 1986. The field dependence of NMR imaging. II. Arguments concerning an optimal field strength. Magn Reson Med 3: 730-746.
– reference: Health and Welfare Canada, Environmental Health Directorate, Health Protection Branch. 1987. Guidelines on exposure to electromagnetic fields from magnetic resonance clinical systems-safety code 26. Ottawa Ont, Canada. Report 87-EHD- 127.
– reference: Bidinosti CP,Choukiefe J,Nacher PJ,Tastevin G. 2003. In vivo MRI of hyperpolarized 3He in the human lung at very low magnetic fields. J Magn Reson 162: 122-132.
– reference: Mair RW,Hrovat MI,Patz S,Rosen MS,Ruset IC,Topulos GP, et al. 2005. 3He lung imaging in an open access, very-low-field human magnetic resonance imaging system. Magn Reson Med 53: 745-749.
– reference: Liu W,Collins CM,Smith MB. 2005. Calculations of B-1 distribution, specific energy absorption rate, and intrinsic signal-to-noise ratio for a body-size birdcage coil loaded with different human subjects at 64 and 128 MHz. Appl Magn Reson 29: 5-18.
– reference: Gabriel S,Lau RW,Gabriel C. 1996. The dielectric properties of biological tissues. II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41: 2251-2269.
– reference: Buikman D,Helzel T,Roschmann P. 1988. The RF coil as a sensitive motion detector for magnetic-resonance imaging. Magn Reson Imaging 2: 281-289.
– reference: Redpath TW. 1998. Signal-to-noise ratio in MRI. Br J Radiol 71: 704-707.
– reference: Shellock FG. 2000. Radiofrequency energy-induced heating during MR procedures: a review. J Magn Reson Imaging 12: 30-36.
– reference: Venkatesh AK,Zhang AX,Mansour J,Kubatina L,Oh C,Blasche G, et al. 2003. MRI of the lung gas-space at very low-field using hyperpolarized noble gases. Magn Reson Imaging 21: 773-776. (The duration TRF of the 25 degree tipping pulses (applied at 484 kHz) reported in Ref. (10) was 0.2 ms).
– reference: Darrasse L,Ginefri JC. 2003. Perspectives with cryogenic RF probes in biomedical MRI. Biochimie 85: 915-937.
– reference: Hand JW. 2008. Modeling the interaction of electromagnetic fields (10MHz-10 GHz) with the human body: methods and applications. Phys Med Biol 53: R243-R286.
– reference: Li Y,Hand JW,Wills T,Hajnal JV. 2007. Numerically-simulated induced electric field and current density within a human model located close to a z-gradient coil. J Magn Reson Imag 26: 1286-1295.
– reference: Bidinosti CP,Hayden ME. 2008. Selective passive shielding and the Faraday bracelet. Appl Phys Lett 93: 174102.
– reference: Myers W,Slichter D,Hatridge M,Busch S,Möβle M,McDermott R,Trabesinger A,Clarke J. 2007. Calculated signal-to-noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10 μT to 1.5 T. J Magn Reson 186: 182-192.
– reference: Gleich B,Weizenecker J. 2005. Tomographic imaging using the nonlinear response of magnetic particles. Nature 435: 1214-1217.
– reference: Hoult DI,Lauterbur PC. 1979. The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson 34: 425-443.
– reference: Shwann HP. 1992. Linear and nonlinear electrode polarization and biological materials. Ann Biomed Eng 20: 269-288.
– reference: Zhao H,Crozier S,Liu F. 2002. Finite difference time domain (FDTD) method for modeling the effect of switched gradients on the human body in MRI. Magn Reson Med 48: 1037-1042.
– reference: Durand E,Guillot G,Darrasse L,Tastevin G,Nacher PJ,Vignaud A, et al. 2002. CPMG Measurements and ultrafast imaging in human lungs with hyperpolarized Helium-3 at low field (0.1 T). Magn Reson Med 47: 75-87.
– reference: Resmer F,Seton HC,Hutchison JMS. 2010. Cryogenic receive coil and low noise preamplifier for MRI at 0.01 T. J Magn Reson 203: 57-65.
– reference: Butterworth S. 1925. On the alternating current resistance of solenoidal coils. Proc Roy Soc Lond A 107: 693-715.
– reference: Bidinosti CP,Chapple EM,Hayden ME. 2007. The sphere in a uniform RF field-revisited. Concept Magn Reson B 31: 191-202.
– reference: Edelstein WA,Glover GH,Hardy CJ,Reddington RW. 1986. The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3: 604-618.
– reference: Hoult DI,Richards RE. 1976. The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24: 71-85.
– reference: International Electrotechnical Commission. 2010. Medical Electrical Equipment-Part 2-33: particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis. Geneva, Switzerland. International Standard IEC 60601-2-33.
– reference: Bottomley PA,Reddington RW,Edelstein WA,Schenk JF. 1985. Estimating radiofrequency power deposition in body NMR imaging. Magn Reson Med 2: 336-349.
– reference: Benscik M,Bowtell R,Bowley R. 2007. Electric fields induced in the human body by time-varying magnetic field gradients in MRI: numerical calculations and correlation analysis. Phys Med Biol 52: 2337-2353.
– reference: Parra-Robles J,Cross AR,Santyr GE. 2005. Theoretical signal-to-noise ratio and spatial resolution dependence on the magnetic field strength for hyperpolarized noble gas magnetic resonance imaging of human lungs. Med Phys 32: 221-229.
– reference: Perry MP. 1985. Low Frequency Electromagnetic Design. New York: Marcel Dekker Inc.
– reference: Terman FE. 1943. Radio Engineer's Handbook. New York: McGraw-Hill Inc.
– reference: Bidinosti CP,Kravchuk IS,Hayden ME. 2005. Active shielding of cylindrical saddle-shaped coils: application to wire-wound RF coils for very low field NMR and MRI. J Magn Reson 177: 31-43.
– reference: Xu SJ,Yashchuk VV,Donaldson MH,Rochester SM,Budker D,Pines A. 2006. Magnetic resonance imaging with an optical atomic magnetometer. Proc Natl Acad Sci USA 103: 12668-12671.
– reference: Ghandi OP,Chen XB. 1999. Specific absorption rates and induced current densities for an anatomy-based model of the human for exposure to time-varying magnetic fields of MRI. Magn Reson Med 41: 816-823.
– reference: Hoult DI. 2000. Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imag 12: 46-67.
– reference: Hayden ME,Hardy WN. 1996. Technique for measuring magnetic filling factors with applications to cryogenic magnetic resonance experiments. Rev Sci Instrum 67: 1905-1911.
– reference: Harpen MD. 1991. Analysis of sample power loss in MRI gradient fields. Med Phys 18: 313-315.
– reference: Waldron RA. 1967. The Theory of Waveguides and Cavities. New York: Gordon and Breach.
– reference: Zotev VS,Owens T,Matlashov AN,Savukov IM,Gomez JJ,Espy MA. 2010. Microtesla MRI with dynamic nuclear polarization. J Magn Reson 207: 78-88.
– reference: Mead SP. 1923. Wave propagation over parallel tubular conductors: the alternating current resistance. Bell Syst Tech J 4: 327-338.
– reference: Redpath TW,Hutchison JMS. 1984. Estimating patient dielectric losses in NMR imagers. Magn Reson Imaging 2: 295-300.
– reference: Harpen MD. 1989. Eddy current distributions in cylindrical samples: effect on equivalent sample resistance. Phys Med Biol 34: 1229-1238. Note that the exponents of B1 and r0 should be 2 and 4, respectively, in Eq. [21] of Ref. (46).
– volume: 9
  start-page: 389
  year: 2007
  end-page: 413
  article-title: SQUID‐detected magnetic resonance imaging in microtesla fields
  publication-title: Annu Rev Biomed Eng
– year: 1985
– volume: 12
  start-page: 46
  year: 2000
  end-page: 67
  article-title: Sensitivity and power deposition in a high‐field imaging experiment
  publication-title: J Magn Reson Imag
– volume: 2
  start-page: 336
  year: 1985
  end-page: 349
  article-title: Estimating radiofrequency power deposition in body NMR imaging
  publication-title: Magn Reson Med
– volume: 107
  start-page: 693
  year: 1925
  end-page: 715
  article-title: On the alternating current resistance of solenoidal coils
  publication-title: Proc Roy Soc Lond A
– volume: 2
  start-page: 295
  year: 1984
  end-page: 300
  article-title: Estimating patient dielectric losses in NMR imagers
  publication-title: Magn Reson Imaging
– volume: 53
  start-page: 745
  year: 2005
  end-page: 749
  article-title: He lung imaging in an open access, very‐low‐field human magnetic resonance imaging system
  publication-title: Magn Reson Med
– year: 2001
– volume: 34
  start-page: 1229
  year: 1989
  end-page: 1238
  article-title: Eddy current distributions in cylindrical samples: effect on equivalent sample resistance
  publication-title: Phys Med Biol
– volume: 67
  start-page: 1905
  year: 1996
  end-page: 1911
  article-title: Technique for measuring magnetic filling factors with applications to cryogenic magnetic resonance experiments
  publication-title: Rev Sci Instrum
– volume: 162
  start-page: 122
  year: 2003
  end-page: 132
  article-title: In vivo MRI of hyperpolarized He in the human lung at very low magnetic fields
  publication-title: J Magn Reson
– volume: 12
  start-page: 30
  year: 2000
  end-page: 36
  article-title: Radiofrequency energy‐induced heating during MR procedures: a review
  publication-title: J Magn Reson Imaging
– volume: 23
  start-page: 68
  year: 2002
  end-page: 82
  article-title: Health and safety implications of exposure to electromagnetic fields in the frequency range 300 Hz to 10 MHz
  publication-title: Bioelectromagnetics
– volume: 47
  start-page: 75
  year: 2002
  end-page: 87
  article-title: CPMG Measurements and ultrafast imaging in human lungs with hyperpolarized Helium‐3 at low field (0.1 T)
  publication-title: Magn Reson Med
– volume: 53
  start-page: R243
  year: 2008
  end-page: R286
  article-title: Modeling the interaction of electromagnetic fields (10MHz‐10 GHz) with the human body: methods and applications
  publication-title: Phys Med Biol
– volume: 186
  start-page: 182
  year: 2007
  end-page: 192
  article-title: Calculated signal‐to‐noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10 μT to 1.5 T
  publication-title: J Magn Reson
– volume: 57
  start-page: 577
  year: 2007
  end-page: 586
  article-title: Simultaneous homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil
  publication-title: Magn Reson Med
– volume: 30
  start-page: 221
  year: 1993
  end-page: 230
  article-title: Novel approaches to low‐cost MRI
  publication-title: Magn Reson Med
– volume: 8
  start-page: 510
  year: 1981
  end-page: 512
  article-title: Power deposition in whole‐body NMR imaging
  publication-title: Med Phys
– volume: 34
  start-page: 425
  year: 1979
  end-page: 443
  article-title: The sensitivity of the zeugmatographic experiment involving human samples
  publication-title: J Magn Reson
– volume: 177
  start-page: 31
  year: 2005
  end-page: 43
  article-title: Active shielding of cylindrical saddle‐shaped coils: application to wire‐wound RF coils for very low field NMR and MRI
  publication-title: J Magn Reson
– volume: 26
  start-page: 1286
  year: 2007
  end-page: 1295
  article-title: Numerically‐simulated induced electric field and current density within a human model located close to a ‐gradient coil
  publication-title: J Magn Reson Imag
– volume: 52
  start-page: 6363
  year: 2007
  end-page: 6374
  article-title: A simulation study on the resolution and sensitivity of magnetic particle imaging
  publication-title: Phys Med Biol
– volume: 435
  start-page: 1214
  year: 2005
  end-page: 1217
  article-title: Tomographic imaging using the nonlinear response of magnetic particles
  publication-title: Nature
– volume: 71
  start-page: 704
  year: 1998
  end-page: 707
  article-title: Signal‐to‐noise ratio in MRI
  publication-title: Br J Radiol
– volume: 29
  start-page: 5
  year: 2005
  end-page: 18
  article-title: Calculations of B‐1 distribution, specific energy absorption rate, and intrinsic signal‐to‐noise ratio for a body‐size birdcage coil loaded with different human subjects at 64 and 128 MHz
  publication-title: Appl Magn Reson
– volume: 41
  start-page: 2251
  year: 1996
  end-page: 2269
  article-title: The dielectric properties of biological tissues. II. Measurements in the frequency range 10 Hz to 20 GHz
  publication-title: Phys Med Biol
– volume: 21
  start-page: 773
  year: 2003
  end-page: 776
  article-title: MRI of the lung gas‐space at very low‐field using hyperpolarized noble gases
  publication-title: Magn Reson Imaging
– volume: 48
  start-page: 1037
  year: 2002
  end-page: 1042
  article-title: Finite difference time domain (FDTD) method for modeling the effect of switched gradients on the human body in MRI
  publication-title: Magn Reson Med
– volume: 18
  start-page: 313
  year: 1991
  end-page: 315
  article-title: Analysis of sample power loss in MRI gradient fields
  publication-title: Med Phys
– volume: 24
  start-page: 71
  year: 1976
  end-page: 85
  article-title: The signal‐to‐noise ratio of the nuclear magnetic resonance experiment
  publication-title: J Magn Reson
– volume: 3
  start-page: 730
  year: 1986
  end-page: 746
  article-title: The field dependence of NMR imaging. II. Arguments concerning an optimal field strength
  publication-title: Magn Reson Med
– year: 2003
– volume: 15
  start-page: 1
  year: 2004
  end-page: 39
  article-title: Advice on limiting exposure to electromagnetic fields (0–300 GHz)
  publication-title: Documents NRPB
– volume: 52
  start-page: 2337
  year: 2007
  end-page: 2353
  article-title: Electric fields induced in the human body by time‐varying magnetic field gradients in MRI: numerical calculations and correlation analysis
  publication-title: Phys Med Biol
– volume: 4
  start-page: 327
  year: 1923
  end-page: 338
  article-title: Wave propagation over parallel tubular conductors: the alternating current resistance
  publication-title: Bell Syst Tech J
– volume: 93
  start-page: 174102
  year: 2008
  article-title: Selective passive shielding and the Faraday bracelet
  publication-title: Appl Phys Lett
– volume: 85
  start-page: 915
  year: 2003
  end-page: 937
  article-title: Perspectives with cryogenic RF probes in biomedical MRI
  publication-title: Biochimie
– start-page: 127
  year: 1987
– volume: 87
  start-page: 197
  year: 1998
  end-page: 216
  article-title: Medical magnetic resonance (MR) procedures: protection of patients
  publication-title: Health Phys
– volume: 20
  start-page: 269
  year: 1992
  end-page: 288
  article-title: Linear and nonlinear electrode polarization and biological materials
  publication-title: Ann Biomed Eng
– volume: 31
  start-page: 191
  year: 2007
  end-page: 202
  article-title: The sphere in a uniform RF field—revisited
  publication-title: Concept Magn Reson B
– start-page: 60601‐2
  year: 2010
  end-page: 33.
– start-page: 6805
  year: 2010
  end-page: 6808
  article-title: Effects of time varying currents and magnetic fields in the frequency rangeof 1 kHz to 1MHz to the human body—a simulation study
  publication-title: Proc IEEE Eng Med Biol Soc
– volume: 103
  start-page: 12668
  year: 2006
  end-page: 12671
  article-title: Magnetic resonance imaging with an optical atomic magnetometer
  publication-title: Proc Natl Acad Sci USA
– volume: 41
  start-page: 816
  year: 1999
  end-page: 823
  article-title: Specific absorption rates and induced current densities for an anatomy‐based model of the human for exposure to time‐varying magnetic fields of MRI
  publication-title: Magn Reson Med
– volume: 2
  start-page: 281
  year: 1988
  end-page: 289
  article-title: The RF coil as a sensitive motion detector for magnetic‐resonance imaging
  publication-title: Magn Reson Imaging
– volume: 3
  start-page: 604
  year: 1986
  end-page: 618
  article-title: The intrinsic signal‐to‐noise ratio in NMR imaging
  publication-title: Magn Reson Med
– volume: 207
  start-page: 78
  year: 2010
  end-page: 88
  article-title: Microtesla MRI with dynamic nuclear polarization
  publication-title: J Magn Reson
– year: 1967
– volume: 32
  start-page: 221
  year: 2005
  end-page: 229
  article-title: Theoretical signal‐to‐noise ratio and spatial resolution dependence on the magnetic field strength for hyperpolarized noble gas magnetic resonance imaging of human lungs
  publication-title: Med Phys
– volume: 78
  start-page: 973
  year: 2005
  end-page: 975
  article-title: Electromagnetic field exposure limitation and the future of MRI
  publication-title: Br J Radiol
– volume: 203
  start-page: 57
  year: 2010
  end-page: 65
  article-title: Cryogenic receive coil and low noise preamplifier for MRI at 0.01 T
  publication-title: J Magn Reson
– year: 1943
– volume: 16
  start-page: 255
  year: 2004
  end-page: 258
  article-title: MRI of the lung using hyperpolarized He at very low magnetic field (3 mT)
  publication-title: Magn Reson Mater Phys
– ident: e_1_2_7_47_2
  doi: 10.1088/0031-9155/34/9/008
– ident: e_1_2_7_19_2
  doi: 10.1016/0022-2364(79)90019-2
– ident: e_1_2_7_38_2
  doi: 10.1016/j.jmr.2007.02.007
– ident: e_1_2_7_30_2
  doi: 10.1118/1.596677
– ident: e_1_2_7_28_2
  doi: 10.1002/mrm.1910030509
– ident: e_1_2_7_44_2
  doi: 10.1088/0031-9155/53/16/R01
– ident: e_1_2_7_25_2
  doi: 10.1002/cmr.b.20090
– ident: e_1_2_7_46_2
  doi: 10.1016/0730-725X(84)90195-4
– ident: e_1_2_7_16_2
  doi: 10.1146/annurev.bioeng.9.060906.152010
– ident: e_1_2_7_26_2
  doi: 10.1002/mrm.1910020404
– volume-title: Radio Engineer's Handbook
  year: 1943
  ident: e_1_2_7_52_2
– start-page: 60601‐2
  volume-title: Medical Electrical Equipment—Part 2–33: particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis
  year: 2010
  ident: e_1_2_7_6_2
– ident: e_1_2_7_54_2
– ident: e_1_2_7_55_2
  doi: 10.1016/0730-725X(88)90403-1
– volume: 15
  start-page: 1
  year: 2004
  ident: e_1_2_7_4_2
  article-title: Advice on limiting exposure to electromagnetic fields (0–300 GHz)
  publication-title: Documents NRPB
– ident: e_1_2_7_56_2
  doi: 10.1063/1.2998607
– volume-title: The Theory of Waveguides and Cavities
  year: 1967
  ident: e_1_2_7_22_2
– start-page: 127
  volume-title: Guidelines on exposure to electromagnetic fields from magnetic resonance clinical systems—safety code 26
  year: 1987
  ident: e_1_2_7_2_2
– ident: e_1_2_7_13_2
  doi: 10.1002/mrm.20456
– ident: e_1_2_7_17_2
  doi: 10.1073/pnas.0605396103
– volume: 87
  start-page: 197
  year: 1998
  ident: e_1_2_7_5_2
  article-title: Medical magnetic resonance (MR) procedures: protection of patients
  publication-title: Health Phys
– ident: e_1_2_7_15_2
  doi: 10.1016/j.jmr.2010.08.015
– ident: e_1_2_7_43_2
  doi: 10.1007/BF03166953
– start-page: 6805
  year: 2010
  ident: e_1_2_7_45_2
  article-title: Effects of time varying currents and magnetic fields in the frequency rangeof 1 kHz to 1MHz to the human body—a simulation study
  publication-title: Proc IEEE Eng Med Biol Soc
– ident: e_1_2_7_9_2
  doi: 10.1002/mrm.10047
– ident: e_1_2_7_50_2
  doi: 10.1002/j.1538-7305.1925.tb00951.x
– ident: e_1_2_7_39_2
  doi: 10.1118/1.1833593
– ident: e_1_2_7_12_2
  doi: 10.1007/s10334-004-0035-y
– ident: e_1_2_7_35_2
  doi: 10.1088/0031-9155/52/21/001
– volume-title: Low Frequency Electromagnetic Design
  year: 1985
  ident: e_1_2_7_48_2
– ident: e_1_2_7_11_2
  doi: 10.1016/S0730-725X(03)00178-4
– ident: e_1_2_7_24_2
  doi: 10.1063/1.1146967
– ident: e_1_2_7_7_2
  doi: 10.1002/1522-2586(200007)12:1<30::AID-JMRI4>3.0.CO;2-S
– ident: e_1_2_7_14_2
  doi: 10.1002/mrm.1910300211
– ident: e_1_2_7_18_2
  doi: 10.1088/0031-9155/41/11/002
– ident: e_1_2_7_10_2
  doi: 10.1016/S1090-7807(02)00198-2
– ident: e_1_2_7_41_2
  doi: 10.1016/j.jmr.2009.11.021
– ident: e_1_2_7_29_2
  doi: 10.1002/1522-2586(200007)12:1<46::AID-JMRI6>3.0.CO;2-D
– ident: e_1_2_7_27_2
  doi: 10.1118/1.595000
– ident: e_1_2_7_33_2
  doi: 10.1088/0031-9155/52/9/001
– ident: e_1_2_7_42_2
  doi: 10.1002/(SICI)1522-2594(199904)41:4<816::AID-MRM22>3.0.CO;2-5
– volume-title: Guidance for industry and FDA staff—criteria for significant risk investigations of magnetic resonance diagnostic devices
  year: 2003
  ident: e_1_2_7_3_2
– ident: e_1_2_7_53_2
  doi: 10.1002/mrm.21149
– ident: e_1_2_7_21_2
  doi: 10.1007/BF02368531
– ident: e_1_2_7_8_2
  doi: 10.1259/bjr/21943393
– ident: e_1_2_7_31_2
  doi: 10.1002/mrm.10313
– ident: e_1_2_7_32_2
  doi: 10.1002/jmri.21137
– ident: e_1_2_7_36_2
  doi: 10.1002/mrm.1910030413
– ident: e_1_2_7_23_2
  doi: 10.1016/0022-2364(76)90233-X
– ident: e_1_2_7_37_2
  doi: 10.1259/bjr.71.847.9771379
– ident: e_1_2_7_20_2
  doi: 10.1002/bem.99
– ident: e_1_2_7_51_2
  doi: 10.1098/rspa.1925.0050
– ident: e_1_2_7_34_2
  doi: 10.1038/nature03808
– ident: e_1_2_7_40_2
  doi: 10.1016/j.biochi.2003.09.016
– ident: e_1_2_7_49_2
  doi: 10.1016/j.jmr.2005.07.003
SSID ssj0026049
Score 2.0061867
Snippet Coil loading experiments were performed to characterize specific absorption rates (SARs) for adult human subjects in uniform linearly‐polarized time‐varying...
Coil loading experiments were performed to characterize specific absorption rates (SARs) for adult human subjects in uniform linearly-polarized time-varying...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 281
SubjectTerms Coiling
electromagnetic dosimetry
health safety
low-field magnetic resonance imaging
specific absorption rate
Title Specific absorption rates and signal-to-noise ratio limitations for MRI in very-low magnetic fields
URI https://api.istex.fr/ark:/67375/WNG-K78P5S4V-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcmr.a.21247
https://www.proquest.com/docview/1506360335
Volume 40A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQERIX_hFLARmp4oCUbbKOnc0RFUop2gotFHqzxmMHrbpN0GZXBU48As_IkzDjpEuLEBJcokiZOI49M_nszHwjxFZlTOpIcZN0jJDkzqcJZLRY0WVVAir0Zsz5zpMDs3eY7x_poz42h3NhOn6I9YYbW0b012zg4NrtX6SheLIYwpA8b8655JkyzJz_fLomjyKgHsEvYQSTGELufXYeXdk-d--F79FlHtrPF8Dmecgavzm717vCqm2kKuRQk-PhaumG-PU3Isf_fp0b4lqPRuWzTn1uikuhviWuxKhQbG-LWaxOX81QUivNInoXydwSrYTaS479gPmPb9-XDR3qZtYGGRVKzjltqtsLlISK5WT6Ss5qSWbzhSTnzak8gY8150_KGELX3hGHuy_e7ewlfW2GBBX7Vl9kQOZrPAYHSDgAXeVzpRiAos8yT1CjgqowgdYzKZpSK-1TILVQWOpxoe6Kjbqpwz0htRtVnBttMgM5pgDB5RiMVw6AGikH4unZDFnsO8_1M-a2o1weWRo7CzaO3UBsrYU_dXwdfxZ7Eqd6LQOLYw5xK7T9cPDSvi7Gb_Tb_L3dH4jHZ7pgyfD4bwrUoVm1lqkZlUmV0tTBOLN_e6DdmUzjyf1_Ed4UVwmgjbrcxwdiY7lYhYcEgpbuUdT1nyzYBmI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BK0QvvCvCc5EqDkhO7ax3HR9RoaSPRCi00Ntq9mEUNbWrOBGPEz-B38gvYWbthBYhJLhYljy217szs9-OZ75lbKtQKjaouFHctxClxsURJLhYkXmRgxXWqT7VOw9HanCc7p_IkzbgRrUwDT_EKuBGlhH8NRk4BaS3f7GG2rNZF7roetPsKltPEWrQ4uvVeEUfhVA9wF9ECSpSiN3b-jy8sn3h5ksz0jp17udLcPMiaA2zzu5NppftbZJNTruLuenar79ROf7_B91iN1pAyl82GnSbXfHlHXYtJIba-i6bhA3qi4nlYOpqFhwMJ3qJmkPpOKV_wPTHt-_zCg9lNak9DzrFp1Q51YQDOQJjPhzv8UnJ0XK-oOS0-sTP4GNJJZQ8ZNHV99jx7uujnUHUbs8QWUHu1WUJoAUrZ70Bi1DAmsKlQhAGtS5JHKKNAopMeVzSxFblUkgXA2qGsLnsZ2KTrZVV6e8zLk2voPJolShIbQzgTWq9csIA4EPyDnuxHCJt28bTFhpT3bAu9zT2nQYd-q7DtlbC5w1lx5_FnoexXsnA7JSy3DKpP4ze6IOs_1a-S9_r_Q57tlQGjbZHP1Sg9NWi1sTOKFQshMQGhqH92wv1znAcTh78i_BTdn1wNDzUh3ujg4dsA_FarymFfMTW5rOFf4yYaG6eBMX_CYOACoE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagFYgL5VWxUMBIFQekbJN17GyOqGXpg11VC4XerPEjaNVtUm12xePET-A38ks646RLixASXKJImSSOPTP-7Mx8w9hmoVRsUHGjuG8hSo2LI0hwsSLzIgcrrFN9yncejtTuUbp_LI_b2BzKhWn4IZYbbmQZwV-TgZ-5YusXaag9nXWhi543za6z1VQhliBMNF6yRyFSD-gXQYKK8LJq0_Pwytalm69MSKvUt1-uoM3LmDVMOoO1prJqHbgKKdbkpLuYm6799huT439_zx12u4Wj_FWjP3fZNV_eYzdCWKit77NJKE9fTCwHU1ez4F44kUvUHErHKfgDpj-__5hXeCirSe150Cg-pbypZjOQIyzmw_Een5Qc7eYrSk6rz_wUPpWUQMlDDF39gB0NXr_f3o3a4gyRFeRcXZYA2q9y1huwCASsKVwqBCFQ65LEIdYooMiUxwVNbFUuhXQxoF4Im8t-JtbZSlmV_iHj0vQKSo5WiYLUxgDepNYrJwwAPiTvsJcXI6Rt23gqoDHVDedyT2PfadCh7zpscyl81hB2_FnsRRjqpQzMTijGLZP64-iNPsj6h_Jd-kHvd9jzC13QaHn0OwVKXy1qTdyMQsVCSGxgGNm_vVBvD8fh5NG_CD9jNw93Bvrt3ujgMbuFYK3X5EFusJX5bOGfICCam6dB7c8Ba_gJMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specific+absorption+rates+and+signal-to-noise+ratio+limitations+for+MRI+in+very-low+magnetic+fields&rft.jtitle=Concepts+in+magnetic+resonance.+Part+A%2C+Bridging+education+and+research&rft.au=Hayden%2C+M.+E.&rft.au=Bidinosti%2C+C.+P.&rft.au=Chapple%2C+E.+M.&rft.date=2012-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1546-6086&rft.eissn=1552-5023&rft.volume=40A&rft.issue=6&rft.spage=281&rft.epage=294&rft_id=info:doi/10.1002%2Fcmr.a.21247&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_K78P5S4V_J
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-6086&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-6086&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-6086&client=summon