Present Status and Future Prospects of Jute in Nanotechnology: A Review
Nanotechnology has transformed the world with its diverse applications, ranging from industrial developments to impacting our daily lives. It has multiple applications throughout financial sectors and enables the development of facilitating scientific endeavors with extensive commercial potentials....
Saved in:
Published in | Chemical record Vol. 21; no. 7; pp. 1631 - 1665 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanotechnology has transformed the world with its diverse applications, ranging from industrial developments to impacting our daily lives. It has multiple applications throughout financial sectors and enables the development of facilitating scientific endeavors with extensive commercial potentials. Nanomaterials, especially the ones which have shown biomedical and other health‐related properties, have added new dimensions to the field of nanotechnology. Recently, the use of bioresources in nanotechnology has gained significant attention from the scientific community due to its 100 % eco‐friendly features, availability, and low costs. In this context, jute offers a considerable potential. Globally, its plant produces the second most common natural cellulose fibers and a large amount of jute sticks as a byproduct. The main chemical compositions of jute fibers and sticks, which have a trace amount of ash content, are cellulose, hemicellulose, and lignin. This makes jute as an ideal source of pure nanocellulose, nano‐lignin, and nanocarbon preparation. It has also been used as a source in the evolution of nanomaterials used in various applications. In addition, hemicellulose and lignin, which are extractable from jute fibers and sticks, could be utilized as a reductant/stabilizer for preparing other nanomaterials. This review highlights the status and prospects of jute in nanotechnology. Different research areas in which jute can be applied, such as in nanocellulose preparation, as scaffolds for other nanomaterials, catalysis, carbon preparation, life sciences, coatings, polymers, energy storage, drug delivery, fertilizer delivery, electrochemistry, reductant, and stabilizer for synthesizing other nanomaterials, petroleum industry, paper industry, polymeric nanocomposites, sensors, coatings, and electronics, have been summarized in detail. We hope that these prospects will serve as a precursor of jute‐based nanotechnology research in the future.
Jute produces the second most common natural cellulose fibers and large amounts of jute sticks as a byproduct. The main chemical composition of jute fibers and sticks, which have a trace amount of ash content, are cellulose, hemicellulose, and lignin. This makes jute an ideal candidate for utilization in nanotechnology and this review presents its latest developments and future potentials in the area. |
---|---|
AbstractList | Nanotechnology has transformed the world with its diverse applications, ranging from industrial developments to impacting our daily lives. It has multiple applications throughout financial sectors and enables the development of facilitating scientific endeavors with extensive commercial potentials. Nanomaterials, especially the ones which have shown biomedical and other health‐related properties, have added new dimensions to the field of nanotechnology. Recently, the use of bioresources in nanotechnology has gained significant attention from the scientific community due to its 100 % eco‐friendly features, availability, and low costs. In this context, jute offers a considerable potential. Globally, its plant produces the second most common natural cellulose fibers and a large amount of jute sticks as a byproduct. The main chemical compositions of jute fibers and sticks, which have a trace amount of ash content, are cellulose, hemicellulose, and lignin. This makes jute as an ideal source of pure nanocellulose, nano‐lignin, and nanocarbon preparation. It has also been used as a source in the evolution of nanomaterials used in various applications. In addition, hemicellulose and lignin, which are extractable from jute fibers and sticks, could be utilized as a reductant/stabilizer for preparing other nanomaterials. This review highlights the status and prospects of jute in nanotechnology. Different research areas in which jute can be applied, such as in nanocellulose preparation, as scaffolds for other nanomaterials, catalysis, carbon preparation, life sciences, coatings, polymers, energy storage, drug delivery, fertilizer delivery, electrochemistry, reductant, and stabilizer for synthesizing other nanomaterials, petroleum industry, paper industry, polymeric nanocomposites, sensors, coatings, and electronics, have been summarized in detail. We hope that these prospects will serve as a precursor of jute‐based nanotechnology research in the future.
Jute produces the second most common natural cellulose fibers and large amounts of jute sticks as a byproduct. The main chemical composition of jute fibers and sticks, which have a trace amount of ash content, are cellulose, hemicellulose, and lignin. This makes jute an ideal candidate for utilization in nanotechnology and this review presents its latest developments and future potentials in the area. Nanotechnology has transformed the world with its diverse applications, ranging from industrial developments to impacting our daily lives. It has multiple applications throughout financial sectors and enables the development of facilitating scientific endeavors with extensive commercial potentials. Nanomaterials, especially the ones which have shown biomedical and other health-related properties, have added new dimensions to the field of nanotechnology. Recently, the use of bioresources in nanotechnology has gained significant attention from the scientific community due to its 100 % eco-friendly features, availability, and low costs. In this context, jute offers a considerable potential. Globally, its plant produces the second most common natural cellulose fibers and a large amount of jute sticks as a byproduct. The main chemical compositions of jute fibers and sticks, which have a trace amount of ash content, are cellulose, hemicellulose, and lignin. This makes jute as an ideal source of pure nanocellulose, nano-lignin, and nanocarbon preparation. It has also been used as a source in the evolution of nanomaterials used in various applications. In addition, hemicellulose and lignin, which are extractable from jute fibers and sticks, could be utilized as a reductant/stabilizer for preparing other nanomaterials. This review highlights the status and prospects of jute in nanotechnology. Different research areas in which jute can be applied, such as in nanocellulose preparation, as scaffolds for other nanomaterials, catalysis, carbon preparation, life sciences, coatings, polymers, energy storage, drug delivery, fertilizer delivery, electrochemistry, reductant, and stabilizer for synthesizing other nanomaterials, petroleum industry, paper industry, polymeric nanocomposites, sensors, coatings, and electronics, have been summarized in detail. We hope that these prospects will serve as a precursor of jute-based nanotechnology research in the future.Nanotechnology has transformed the world with its diverse applications, ranging from industrial developments to impacting our daily lives. It has multiple applications throughout financial sectors and enables the development of facilitating scientific endeavors with extensive commercial potentials. Nanomaterials, especially the ones which have shown biomedical and other health-related properties, have added new dimensions to the field of nanotechnology. Recently, the use of bioresources in nanotechnology has gained significant attention from the scientific community due to its 100 % eco-friendly features, availability, and low costs. In this context, jute offers a considerable potential. Globally, its plant produces the second most common natural cellulose fibers and a large amount of jute sticks as a byproduct. The main chemical compositions of jute fibers and sticks, which have a trace amount of ash content, are cellulose, hemicellulose, and lignin. This makes jute as an ideal source of pure nanocellulose, nano-lignin, and nanocarbon preparation. It has also been used as a source in the evolution of nanomaterials used in various applications. In addition, hemicellulose and lignin, which are extractable from jute fibers and sticks, could be utilized as a reductant/stabilizer for preparing other nanomaterials. This review highlights the status and prospects of jute in nanotechnology. Different research areas in which jute can be applied, such as in nanocellulose preparation, as scaffolds for other nanomaterials, catalysis, carbon preparation, life sciences, coatings, polymers, energy storage, drug delivery, fertilizer delivery, electrochemistry, reductant, and stabilizer for synthesizing other nanomaterials, petroleum industry, paper industry, polymeric nanocomposites, sensors, coatings, and electronics, have been summarized in detail. We hope that these prospects will serve as a precursor of jute-based nanotechnology research in the future. Nanotechnology has transformed the world with its diverse applications, ranging from industrial developments to impacting our daily lives. It has multiple applications throughout financial sectors and enables the development of facilitating scientific endeavors with extensive commercial potentials. Nanomaterials, especially the ones which have shown biomedical and other health‐related properties, have added new dimensions to the field of nanotechnology. Recently, the use of bioresources in nanotechnology has gained significant attention from the scientific community due to its 100 % eco‐friendly features, availability, and low costs. In this context, jute offers a considerable potential. Globally, its plant produces the second most common natural cellulose fibers and a large amount of jute sticks as a byproduct. The main chemical compositions of jute fibers and sticks, which have a trace amount of ash content, are cellulose, hemicellulose, and lignin. This makes jute as an ideal source of pure nanocellulose, nano‐lignin, and nanocarbon preparation. It has also been used as a source in the evolution of nanomaterials used in various applications. In addition, hemicellulose and lignin, which are extractable from jute fibers and sticks, could be utilized as a reductant/stabilizer for preparing other nanomaterials. This review highlights the status and prospects of jute in nanotechnology. Different research areas in which jute can be applied, such as in nanocellulose preparation, as scaffolds for other nanomaterials, catalysis, carbon preparation, life sciences, coatings, polymers, energy storage, drug delivery, fertilizer delivery, electrochemistry, reductant, and stabilizer for synthesizing other nanomaterials, petroleum industry, paper industry, polymeric nanocomposites, sensors, coatings, and electronics, have been summarized in detail. We hope that these prospects will serve as a precursor of jute‐based nanotechnology research in the future. |
Author | Shah, Syed Shaheen Aziz, Md. Abdul Rahman, Mohammad Mizanur Alfasane, Md. Almujaddade Khan, Mohd Yusuf Shaikh, M. Nasiruzzaman |
Author_xml | – sequence: 1 givenname: Syed Shaheen surname: Shah fullname: Shah, Syed Shaheen organization: King Fahd University of Petroleum & Minerals – sequence: 2 givenname: M. Nasiruzzaman surname: Shaikh fullname: Shaikh, M. Nasiruzzaman organization: King Fahd University of Petroleum & Minerals (KFUPM) – sequence: 3 givenname: Mohd Yusuf surname: Khan fullname: Khan, Mohd Yusuf organization: King Fahd University of Petroleum & Minerals (KFUPM) – sequence: 4 givenname: Md. Almujaddade surname: Alfasane fullname: Alfasane, Md. Almujaddade organization: University of Dhaka – sequence: 5 givenname: Mohammad Mizanur surname: Rahman fullname: Rahman, Mohammad Mizanur organization: King Fahd University of Petroleum & Minerals – sequence: 6 givenname: Md. Abdul orcidid: 0000-0002-1537-2785 surname: Aziz fullname: Aziz, Md. Abdul email: maziz@kfupm.edu.sa organization: King Fahd University of Petroleum & Minerals (KFUPM) |
BookMark | eNp90M9LwzAUB_AgCs7p0XvAi5dq0qRJ402GPxk65jyXNHvVjprMJFX23xudKAz0lHf4fB8v3z20bZ0FhA4pOaGE5KfR-JOc5GmmrNhCA1rkZUaEottfs8xKpdQu2gthkQjlUg7Q1cRDABvxQ9SxD1jbOb7sY-8BT7wLSzAxYNfg2z4Cbi2-09ZFMM_Wde5pdYbP8RTeWnjfRzuN7gIcfL9D9Hh5MRtdZ-P7q5vR-TgzjIsiM1A2muqiqYWqCyCsIErSWuRMCgN1XtKaMzU3RFKq5qKkwBnVQoHmWs1LyYboeL136d1rDyFWL20w0HXagutDlRecylIKyhI92qAL13ubrkuqIDkXRPGk2FqZ9N3goalMm6ponY1et11FSfVZbpXKrX7KTalsI7X07Yv2qz-9XPv3toPV_7iajaa_yQ9ZnIvK |
CitedBy_id | crossref_primary_10_1016_j_matlet_2024_136660 crossref_primary_10_1016_j_jddst_2023_105084 crossref_primary_10_1002_asia_202100898 crossref_primary_10_1016_j_advwatres_2024_104819 crossref_primary_10_1007_s10853_022_07248_y crossref_primary_10_1016_j_jallcom_2022_166224 crossref_primary_10_1002_asia_202200869 crossref_primary_10_1007_s10570_023_05481_5 crossref_primary_10_1007_s11947_023_03101_5 crossref_primary_10_1016_j_inoche_2023_111163 crossref_primary_10_1016_j_ijbiomac_2024_136495 crossref_primary_10_1016_j_scp_2023_101101 crossref_primary_10_1002_tcr_202100278 crossref_primary_10_1016_j_dyepig_2023_111725 crossref_primary_10_1016_j_indcrop_2025_120586 crossref_primary_10_1002_tcr_202100230 crossref_primary_10_1016_j_indic_2024_100521 crossref_primary_10_3390_polym14071445 crossref_primary_10_1016_j_susmat_2025_e01266 crossref_primary_10_1016_j_isci_2021_103597 crossref_primary_10_1002_ajoc_202100314 crossref_primary_10_1016_j_jmrt_2024_02_010 crossref_primary_10_3390_ma15144784 crossref_primary_10_1002_asia_202300780 crossref_primary_10_1016_j_est_2022_105944 crossref_primary_10_1016_j_jece_2022_107548 crossref_primary_10_1002_tcr_202200041 crossref_primary_10_1016_j_nexus_2025_100391 crossref_primary_10_1002_ajoc_202300051 crossref_primary_10_1039_D3NA00345K crossref_primary_10_1007_s42823_023_00478_3 crossref_primary_10_1002_tcr_202200039 crossref_primary_10_1016_j_cej_2023_144604 crossref_primary_10_3390_jcs7060242 crossref_primary_10_1002_bte2_70005 crossref_primary_10_1002_smll_202300258 crossref_primary_10_1002_asia_202400074 crossref_primary_10_1002_cssc_202101282 crossref_primary_10_1016_j_indcrop_2024_118599 crossref_primary_10_1021_acs_iecr_3c02096 crossref_primary_10_70749_ijbr_v3i1_507 crossref_primary_10_1016_j_heliyon_2024_e29070 crossref_primary_10_1016_j_jscs_2022_101570 crossref_primary_10_2174_2772434418666230427165013 crossref_primary_10_1016_j_ijbiomac_2024_131737 crossref_primary_10_1016_j_compositesb_2024_111738 crossref_primary_10_3390_jcs7120506 crossref_primary_10_1016_j_est_2022_104278 crossref_primary_10_3390_molecules27041433 crossref_primary_10_1002_tcr_202100219 crossref_primary_10_1016_j_optlastec_2023_109610 crossref_primary_10_1002_asia_202200567 crossref_primary_10_1016_j_carbpol_2024_122423 crossref_primary_10_1002_pls2_10168 crossref_primary_10_1177_00219983231194260 crossref_primary_10_3390_polym14020270 crossref_primary_10_3390_su151914482 crossref_primary_10_1016_j_arabjc_2022_104058 crossref_primary_10_1016_j_electacta_2024_143825 crossref_primary_10_1007_s12221_023_00377_4 crossref_primary_10_1016_j_est_2023_110152 crossref_primary_10_1021_acsaem_4c01828 crossref_primary_10_1002_smll_202306665 crossref_primary_10_1039_D4MH01475H crossref_primary_10_3390_en15030873 crossref_primary_10_3390_polym15173589 crossref_primary_10_3390_horticulturae9030369 crossref_primary_10_1016_j_diamond_2023_110450 crossref_primary_10_1016_j_jssc_2023_123940 crossref_primary_10_1007_s10570_023_05364_9 crossref_primary_10_1002_tcr_202200013 crossref_primary_10_1016_j_ijbiomac_2024_133629 crossref_primary_10_1002_tcr_202200018 crossref_primary_10_1515_revic_2024_0029 crossref_primary_10_1038_s41598_023_46004_3 crossref_primary_10_1007_s12668_024_01444_7 crossref_primary_10_3390_ma18051016 crossref_primary_10_1016_j_cej_2023_142845 crossref_primary_10_1177_00219983231155013 crossref_primary_10_1021_acsnano_3c06824 crossref_primary_10_3390_radiation3010001 crossref_primary_10_1007_s13762_024_06299_9 crossref_primary_10_1016_j_cclet_2023_108533 crossref_primary_10_3390_nano11082029 crossref_primary_10_1002_tcr_202300105 crossref_primary_10_1016_j_jscs_2022_101514 crossref_primary_10_2174_240546150804230228120500 crossref_primary_10_3390_app13116604 crossref_primary_10_1016_j_inoche_2024_113777 crossref_primary_10_3390_en17040798 crossref_primary_10_1016_j_radphyschem_2023_111461 crossref_primary_10_1177_20412479231173113 crossref_primary_10_1016_j_csite_2022_101896 crossref_primary_10_1021_acsnano_3c01062 |
Cites_doi | 10.1016/j.synthmet.2021.116765 10.1016/j.progpolymsci.2006.05.003 10.1002/slct.202003178 10.1109/EMBC.2018.8513229 10.1016/j.arabjc.2020.05.017 10.1002/9783527622115.ch1 10.1021/acssuschemeng.8b05419 10.1016/j.jelechem.2018.11.034 10.1051/rees/2017001 10.1111/j.1551-2916.2007.01484.x 10.1021/jp711431h 10.1016/j.jpowsour.2016.01.030 10.1515/ntrev-2020-0100 10.1002/tcr.202100044 10.1103/PhysRevMaterials.2.085006 10.1016/j.enbuild.2011.05.015 10.1016/j.carbpol.2019.115454 10.1007/s10570-017-1204-2 10.1016/j.nanoen.2016.04.036 10.1039/b714189k 10.1016/j.jmrt.2018.09.011 10.1016/j.est.2020.101562 10.1016/j.physrep.2020.03.001 10.1039/C9TA07466J 10.1016/j.carbpol.2016.02.015 10.1007/s11814-013-0172-y 10.1007/s10853-020-04888-w 10.1002/slct.201700429 10.1002/tcr.202000058 10.1021/acsomega.9b02830 10.1016/j.lfs.2019.117099 10.1002/adma.201606823 10.4236/ojpchem.2019.94006 10.3390/en14082281 10.1016/j.scienta.2009.04.006 10.1038/s41570-020-0173-4 10.1007/s10008-017-3814-x 10.1021/ja076196l 10.1002/smll.201704006 10.1016/j.memsci.2013.06.020 10.1088/1361-6528/aade1e 10.1021/acssuschemeng.8b01405 10.1016/j.carbpol.2020.115842 10.1016/j.compositesb.2012.12.004 10.1002/mame.201300008 10.1021/acsami.0c13715 10.1007/978-3-030-05399-4_35 10.3390/polym2040728 10.1021/jf900815x 10.1016/j.compositesa.2010.06.001 10.1016/j.ica.2009.12.038 10.1016/j.bios.2009.03.001 10.1080/09205063.2019.1612726 10.1016/j.msec.2017.03.196 10.3390/polym9120725 10.1038/s41598-021-86426-5 10.1016/j.carbpol.2015.09.115 10.1021/cr9903048 10.1021/cs300158g 10.1016/j.compositesa.2015.08.038 10.1016/j.porgcoat.2017.01.019 10.1002/app.34918 10.1016/j.copbio.2016.01.002 10.1016/j.crcon.2018.05.004 10.1007/s12039-017-1248-8 10.1016/j.arabjc.2019.12.013 10.1002/adsc.201100725 10.17352/2455-3492.000026 10.1073/pnas.0706508104 10.1016/j.matchemphys.2016.02.030 10.1039/C5EE03404C 10.1016/j.carbpol.2012.06.046 10.1016/j.ijbiomac.2017.09.107 10.1016/j.carbpol.2012.08.073 10.1002/aenm.201600476 10.1111/j.1541-4337.2010.00126.x 10.1590/0001-3765201420140143 10.1002/tcr.202180501 10.1016/j.carbpol.2014.03.045 10.1039/C7CS00790F 10.1002/adfm.201100172 10.1002/adhm.201800334 10.1515/epoly-2020-0015 10.1115/1.4005244 10.2118/58357-PA 10.1002/pc.22663 10.1002/admi.201700604 10.1007/s10570-013-9973-8 10.1016/j.carbpol.2012.10.021 10.1186/2193-1801-2-318 10.1016/j.ijbiomac.2020.02.221 10.1016/B978-0-12-816913-1.00005-2 10.1002/adfm.201304046 10.1039/C4NR03584D 10.1007/s10570-017-1251-8 10.1039/B915436A 10.1016/j.jngse.2020.103156 10.1016/j.est.2020.101908 10.1016/j.jcou.2020.101361 10.1002/tcr.202100043 10.1002/celc.201700602 10.1002/slct.201900891 10.1021/acsami.5b00498 10.1016/j.jclepro.2018.12.184 10.1155/2014/842147 10.1016/j.carbpol.2013.11.055 10.1016/j.matlet.2015.09.022 10.1080/15459624.2016.1177643 10.1021/nn504334u 10.1039/C8RA05270K 10.1039/D0CY00973C 10.1007/s10570-020-03482-2 10.1002/adsu.202000286 10.3390/polym9080335 10.1021/es202223p 10.1007/s11051-010-9995-1 10.1007/s10163-018-0792-8 10.1007/s10854-020-04148-2 10.1021/acs.orglett.6b01999 10.1021/acs.nanolett.6b00771 10.1016/j.matlet.2012.08.043 10.1016/j.cej.2021.129076 10.1021/acsami.6b01243 10.1002/aoc.3129 10.1007/s11814-017-0145-7 10.1007/s10570-015-0747-3 10.1002/smll.201906567 10.1016/j.carbpol.2016.06.025 10.1007/s10570-012-9805-2 10.15406/jteft.2018.04.00126 10.1016/j.tetlet.2007.07.207 10.1007/978-3-319-07578-5_14 10.1039/D0MA00478B 10.1007/s10570-020-03396-z 10.1260/026361706781388950 10.3389/fchem.2020.00392 10.1002/elan.200703934 10.1021/acs.accounts.8b00391 10.1021/acsomega.9b03184 10.1039/C7NR00400A 10.1039/C6NR03054H 10.1016/S0079-6700(97)00039-7 10.1038/s41598-017-15463-w 10.1016/j.carbpol.2011.06.060 10.1016/j.bios.2019.111716 10.1021/nn401818t 10.1038/s41598-017-01319-w 10.1007/s10570-015-0798-5 10.1016/j.carbpol.2011.06.034 10.1007/s10570-017-1627-9 10.1039/C9RA06285H 10.1021/acsami.5b05841 10.1021/jf9033128 10.1088/2053-1591/aaf3d8 10.1007/s10854-019-01979-6 10.1016/j.proeng.2013.03.196 10.1007/978-3-319-65457-7_5 10.1016/j.carbpol.2018.12.010 10.1039/C7GC02835K 10.1016/j.carbon.2006.05.048 10.1002/adma.201004134 10.3390/ma12081226 10.3923/jbs.2001.1001.1004 10.1016/j.petrol.2009.02.014 10.1021/acs.jpcb.5b00715 10.1021/ja411468e 10.1021/acsami.8b13018 10.1016/j.tetlet.2010.02.079 10.1016/j.sbsr.2020.100368 10.1016/j.carbpol.2014.01.057 10.1039/C8NA00090E 10.2991/icmemtc-16.2016.148 10.3389/fmats.2020.00269 10.1021/am507999s 10.1016/j.compositesb.2010.12.017 10.1260/1708-5284.9.1.45 10.1016/j.ijbiomac.2015.08.053 10.3329/bjpt.v27i2.50686 10.1039/C5TA02770E 10.1007/s10570-019-02363-7 10.1016/j.ijbiomac.2019.01.001 10.1007/s12221-013-0133-4 10.1016/j.memsci.2016.09.024 10.1016/j.carbon.2017.11.012 10.1016/j.carbpol.2018.06.045 10.1002/aenm.201600802 10.1016/j.atmosenv.2006.08.009 10.4028/www.scientific.net/AMM.184-185.1428 10.1039/C4RA01104J 10.1016/j.jece.2020.104756 10.1021/om4001956 10.1002/gch2.201800079 10.1142/9789814566469_0013 10.1007/s11356-019-05556-6 10.1002/tcr.202000115 10.1039/C7NJ04103A 10.1021/acssuschemeng.6b00499 10.1039/c2jm32229c 10.1007/978-3-319-49382-4_4 10.1088/1757-899X/254/4/042015 10.1038/29874 10.1002/tcr.202000071 10.1016/j.matchemphys.2018.05.082 10.1039/C5RA25135D 10.3390/md14070128 10.1016/j.matpr.2019.10.110 10.1007/s10570-014-0473-2 10.1016/j.indcrop.2014.03.005 10.1002/chem.202005156 10.1039/C8EE03112F 10.1007/s40725-020-00117-4 10.3390/ma12010002 10.1016/j.electacta.2016.08.020 10.1016/j.micromeso.2018.07.050 10.1021/acs.chemrev.5b00203 10.1016/j.foodhyd.2019.105411 10.1021/acscentsci.6b00032 10.1016/j.progpolymsci.2009.06.002 10.1039/C6MH00500D 10.1002/er.4983 10.1039/C8NA00238J 10.1155/2013/738741 10.1016/j.ensm.2020.03.019 10.3390/polym12071535 10.1039/C7RA07908G 10.1016/j.molliq.2018.12.115 10.1016/j.gee.2016.08.001 10.3390/polym10010063 10.1016/j.colsurfb.2009.09.001 10.1016/j.physe.2012.04.022 10.1021/acs.chemmater.7b00531 10.1021/ie9019984 10.1021/om00047a028 10.1098/rsta.2007.2160 10.1039/C5NR03853G 10.1016/j.nantod.2014.06.011 10.1021/acs.chemrestox.9b00308 10.1016/j.tifs.2018.01.015 10.1016/j.compstruct.2016.11.062 10.1080/03602559.2017.1381253 10.1007/s13204-019-01242-8 10.1016/j.jhazmat.2009.09.072 10.15376/biores.2.4.739-788 10.1021/acs.jafc.9b03110 10.1016/j.jiec.2010.10.006 10.15376/biores.15.4.Safian 10.1109/ESTC.2014.6962740 10.1016/j.aca.2019.01.058 10.3390/coatings9070433 10.1016/j.carbpol.2017.04.008 10.1021/acs.chemmater.7b01170 10.1016/j.tet.2009.11.050 10.1016/j.jpowsour.2016.04.115 10.1021/jp073350h 10.1515/HF.2008.003 10.3390/fib7050040 10.1007/s10853-013-7512-5 10.1016/j.enmm.2017.07.002 10.1002/adma.201504438 10.1002/adfm.201403275 10.1039/C6GC02086K 10.1002/asia.202001342 10.1016/j.jiec.2019.03.032 10.1007/s10853-020-04479-9 10.1002/adfm.201400590 10.1007/s40204-014-0023-x 10.1007/s10570-010-9481-z 10.1016/j.memsci.2014.10.056 10.1016/j.biortech.2008.01.036 10.1021/jp065866r 10.1016/j.diamond.2019.107514 10.1039/C4CC09466B 10.1002/slct.201903423 10.1002/asia.202100309 10.1021/acs.est.8b02772 10.2217/nnm.15.67 |
ContentType | Journal Article |
Copyright | 2021 The Chemical Society of Japan & Wiley‐VCH GmbH 2021 The Chemical Society of Japan & Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 The Chemical Society of Japan & Wiley‐VCH GmbH – notice: 2021 The Chemical Society of Japan & Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7QO 7T7 8FD C1K FR3 P64 7X8 |
DOI | 10.1002/tcr.202100135 |
DatabaseName | CrossRef Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1528-0691 |
EndPage | 1665 |
ExternalDocumentID | 10_1002_tcr_202100135 TCR202100135 |
Genre | reviewArticle |
GroupedDBID | --- .3N .Y3 05W 0R~ 10A 123 1OC 29B 31~ 33P 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5VS 66C 702 7PT 8-1 8UM A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BROTX BRXPI BY8 CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD F5P FEDTE G-S G.N GODZA HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LAW LC2 LC3 LEEKS LH- LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MSFUL MSSTM MXFUL MXSTM MY~ N9A O9- OIG P2W P4D Q11 QB0 QRW R.K ROL RX1 SUPJJ V2E W99 WBKPD WOHZO WQJ WXSBR WYJ WYUIH XG1 XV2 ZZTAW ~IA AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7QO 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3465-ce8fa1a5fb69b5e0350971b62376ceb281b439dc07119d681e431a69ea4a9d873 |
IEDL.DBID | DR2 |
ISSN | 1527-8999 1528-0691 |
IngestDate | Thu Jul 10 21:35:06 EDT 2025 Fri Jul 25 12:18:35 EDT 2025 Tue Jul 01 00:57:29 EDT 2025 Thu Apr 24 23:01:45 EDT 2025 Wed Jan 22 16:28:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3465-ce8fa1a5fb69b5e0350971b62376ceb281b439dc07119d681e431a69ea4a9d873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1537-2785 |
PQID | 2550246094 |
PQPubID | 1006501 |
PageCount | 35 |
ParticipantIDs | proquest_miscellaneous_2541787613 proquest_journals_2550246094 crossref_citationtrail_10_1002_tcr_202100135 crossref_primary_10_1002_tcr_202100135 wiley_primary_10_1002_tcr_202100135_TCR202100135 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Chemical record |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2020; 20 2016; 307 1991; 10 2019; 12 2020; 16 2020; 15 2020; 13 2020; 12 2020; 10 2016; 39 1998; 393 2018; 216 2013; 56 2019; 21 2017; 77 2019; 26 2017; 161 2019; 832 2008; 112 2010; 2 2012; 22 2017; 169 2019; 277 2019; 274 2010; 9 2009; 67 2007; 19 2021; 43 2019; 30 2018; 107 2013; 91 2016; 321 2013; 92 2020; 33 2020; 32 2008; 366 2017; 254 2016; 18 2016; 16 2016; 14 2016; 13 2016; 4 2016; 5 2016; 6 2016; 1 2016; 2 2016; 3 2020; 31 2015; 115 2020; 30 2020; 152 1960; 23 2015; 476 2021; 415 2020; 28 2020; 27 2010; 174 2015; 119 2020; 22 2016; 214 2016; 28 2012; 44 2016; 25 2016; 8 2016; 9 2016; 23 2020; 29 2010; 58 2020; 240 2019; 53 2013; 446 2013; 20 2020; 55 2007; 32 2014; 299 2020; 8 2010; 66 2020; 7 2020; 6 2020; 5 2020; 4 2013; 14 2014; 4 2014; 3 2020; 1 2019; 67 2017; 34 2020; 9 2018; 74 2020; 44 2014; 9 2008; 62 2014; 6 2014; 56 2017; 129 2021; 9 2015; 161 2010; 75 2013; 48 2021; 5 2007; 129 2015; 3 2019; 76 2017; 24 2010; 363 2008 2006 2020; 100 2017; 29 2008; 99 2015; 9 2015; 7 2020; 229 2014; 86 2013; 36 2020; 75 2013; 32 2021 2020 2007; 111 2013; 30 2019 2017 2020; 233 2016 2018; 51 2014 2016; 136 2007; 41 2007; 48 2017; 106 2018; 57 2010; 12 2007; 104 2012; 123 2013; 2 2019; 98 2014; 24 2016; 143 2019; 207 2014; 28 2013; 7 2018; 42 2014; 136 2018; 47 2018; 7 2018; 6 2018; 8 2018; 2 2012; 134 2018; 4 2015; 81 2021; 277 2006; 24 2018; 1 1986 2009; 122 2014; 14 2007; 2 1903; 36 2014; 11 2016; 151 2019; 1059 2019; 8 2019; 7 2018; 29 2019; 9 2019; 4 2019; 3 2015; 51 2019; 1 2007; 90 2014; 2014 2018; 22 2018; 20 2010; 41 2018; 25 2018; 198 2010; 49 2012; 354 2006; 44 2011; 86 2019; 213 2014; 35 2000; 100 2018; 10 2010; 51 2016; 173 2018; 14 2017; 6 2017; 7 2021; 27 2017; 8 2021; 21 2017; 2 2012; 184–185 2017; 4 2018; 127 2019; 126 2011; 13 2011; 17 2011; 18 2017; 9 2009; 57 2011; 21 2016; 83 2011; 23 2017; 522 2009; 24 2015; 10 2008; 15 2020; 860 1999; 4 2008; 10 1998; 23 2019; 145 2009; 34 2021; 14 2021; 16 2014; 105 2015; 25 2012; 90 2012; 2 2014; 109 2021; 11 2015; 22 2011; 42 2011; 43 2011; 45 2001; 1 2012; 89 2012; 88 2014; 103 2012; 9 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_297_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_191_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 Ali H. R. (e_1_2_7_189_1) 2017; 6 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_188_1 e_1_2_7_202_1 e_1_2_7_248_1 e_1_2_7_225_1 Rodeanu M. S. (e_1_2_7_46_1) 2013; 36 e_1_2_7_263_1 e_1_2_7_240_1 Lin X. (e_1_2_7_194_1) 2016; 5 Nayak L. (e_1_2_7_99_1) 2012; 89 e_1_2_7_116_1 e_1_2_7_285_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_56_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_237_1 e_1_2_7_177_1 e_1_2_7_214_1 e_1_2_7_275_1 e_1_2_7_252_1 e_1_2_7_139_1 Ray D. P. (e_1_2_7_30_1) 2017; 4 e_1_2_7_128_1 e_1_2_7_296_1 e_1_2_7_105_1 e_1_2_7_120_1 e_1_2_7_192_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_249_1 e_1_2_7_143_1 e_1_2_7_29_1 e_1_2_7_203_1 e_1_2_7_226_1 e_1_2_7_166_1 e_1_2_7_241_1 e_1_2_7_264_1 Boufi S. (e_1_2_7_129_1) 2014 e_1_2_7_117_1 e_1_2_7_70_1 e_1_2_7_93_1 Debnath S. (e_1_2_7_244_1) 2016 e_1_2_7_181_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_78_1 e_1_2_7_193_1 e_1_2_7_238_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_215_1 e_1_2_7_230_1 e_1_2_7_253_1 e_1_2_7_106_1 e_1_2_7_295_1 e_1_2_7_9_1 e_1_2_7_81_1 e_1_2_7_13_1 e_1_2_7_66_1 e_1_2_7_170_1 e_1_2_7_227_1 e_1_2_7_89_1 e_1_2_7_182_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_204_1 e_1_2_7_265_1 e_1_2_7_242_1 Bacakova L. (e_1_2_7_284_1) 2008 Knoevenagel E. (e_1_2_7_103_1) 1903; 36 e_1_2_7_118_1 e_1_2_7_283_1 Islam M. S. (e_1_2_7_157_1) 2012; 2 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_171_1 e_1_2_7_216_1 e_1_2_7_239_1 e_1_2_7_39_1 Jahan M. I. (e_1_2_7_82_1) 2008; 15 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 e_1_2_7_254_1 e_1_2_7_231_1 Athalye A. (e_1_2_7_31_1) 2018; 2 e_1_2_7_294_1 e_1_2_7_107_1 Panchuk M. (e_1_2_7_246_1) 2016; 3 e_1_2_7_122_1 e_1_2_7_279_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 Pachuau L. (e_1_2_7_280_1) 2017 e_1_2_7_65_1 e_1_2_7_205_1 e_1_2_7_228_1 e_1_2_7_160_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_220_1 e_1_2_7_243_1 e_1_2_7_266_1 e_1_2_7_168_1 e_1_2_7_119_1 e_1_2_7_282_1 e_1_2_7_91_1 e_1_2_7_304_1 e_1_2_7_111_1 e_1_2_7_53_1 e_1_2_7_76_1 Islam M. S. (e_1_2_7_126_1) 2014; 11 Feynman R. P. (e_1_2_7_1_1) 1960; 23 e_1_2_7_172_1 e_1_2_7_195_1 e_1_2_7_217_1 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_232_1 e_1_2_7_255_1 Jose J. (e_1_2_7_221_1) 2019; 4 Padal K. (e_1_2_7_64_1) 2014; 14 e_1_2_7_270_1 e_1_2_7_108_1 e_1_2_7_293_1 e_1_2_7_7_1 e_1_2_7_123_1 e_1_2_7_278_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_87_1 e_1_2_7_161_1 e_1_2_7_184_1 e_1_2_7_206_1 e_1_2_7_26_1 e_1_2_7_229_1 e_1_2_7_49_1 e_1_2_7_267_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_281_1 e_1_2_7_303_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_289_1 Khatoon S. (e_1_2_7_124_1) 2012; 2 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_75_1 e_1_2_7_150_1 e_1_2_7_196_1 e_1_2_7_37_1 e_1_2_7_173_1 e_1_2_7_218_1 e_1_2_7_256_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_233_1 e_1_2_7_210_1 e_1_2_7_271_1 e_1_2_7_292_1 e_1_2_7_109_1 e_1_2_7_8_1 e_1_2_7_277_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 e_1_2_7_86_1 Cerveny L. (e_1_2_7_100_1) 1986 e_1_2_7_185_1 e_1_2_7_207_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_245_1 e_1_2_7_268_1 e_1_2_7_147_1 e_1_2_7_222_1 e_1_2_7_260_1 e_1_2_7_302_1 e_1_2_7_113_1 e_1_2_7_288_1 e_1_2_7_51_1 e_1_2_7_74_1 e_1_2_7_97_1 Usman M. (e_1_2_7_121_1) 2021 Capek I. (e_1_2_7_4_1) 2006 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_219_1 e_1_2_7_197_1 e_1_2_7_234_1 e_1_2_7_257_1 e_1_2_7_136_1 e_1_2_7_211_1 e_1_2_7_159_1 e_1_2_7_272_1 e_1_2_7_291_1 e_1_2_7_5_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_276_1 e_1_2_7_299_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_208_1 e_1_2_7_223_1 e_1_2_7_269_1 e_1_2_7_186_1 Islam M. M. (e_1_2_7_43_1) 2017; 4 e_1_2_7_148_1 e_1_2_7_200_1 e_1_2_7_261_1 e_1_2_7_301_1 Al-Yasiri M. S. (e_1_2_7_18_1) 2015; 3 e_1_2_7_114_1 e_1_2_7_287_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_175_1 e_1_2_7_212_1 e_1_2_7_258_1 e_1_2_7_198_1 e_1_2_7_235_1 e_1_2_7_137_1 e_1_2_7_273_1 e_1_2_7_250_1 e_1_2_7_290_1 e_1_2_7_6_1 e_1_2_7_298_1 Bardet R. (e_1_2_7_259_1) 2014 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_209_1 e_1_2_7_190_1 e_1_2_7_10_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_201_1 e_1_2_7_224_1 e_1_2_7_247_1 e_1_2_7_164_1 e_1_2_7_187_1 e_1_2_7_149_1 e_1_2_7_262_1 e_1_2_7_300_1 e_1_2_7_115_1 e_1_2_7_286_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_199_1 e_1_2_7_213_1 e_1_2_7_236_1 e_1_2_7_138_1 e_1_2_7_274_1 Ghosh R. K. (e_1_2_7_80_1) 2020 e_1_2_7_251_1 |
References_xml | – volume: 26 start-page: 3671 year: 2019 end-page: 3684 publication-title: Cellulose – year: 2020 publication-title: Int. J. Environ. An. Chem. – volume: 6 start-page: 159 year: 2020 end-page: 171 publication-title: Curr. For. Rep. – volume: 174 start-page: 437 year: 2010 end-page: 443 publication-title: J. Hazard. Mater. – volume: 10 start-page: 34502 year: 2018 end-page: 34512 publication-title: ACS Appl. Mater. Interfaces – volume: 9 year: 2021 publication-title: J. Environ. Chem. Eng. – volume: 86 start-page: 1468 year: 2011 end-page: 1475 publication-title: Carbohydr. Polym. – volume: 33 start-page: 1292 year: 2020 end-page: 1311 publication-title: Chem. Res. Toxicol. – volume: 2 start-page: 325 year: 2012 end-page: 333 publication-title: J. Mat. Sci. Eng. B – volume: 34 start-page: 2480 year: 2017 end-page: 2487 publication-title: Korean J. Chem. Eng. – volume: 21 start-page: 204 year: 2021 end-page: 238 publication-title: Chem. Rec. – volume: 8 start-page: 392 year: 2020 publication-title: Front. Chem. – volume: 7 start-page: 40 year: 2019 publication-title: Fibers – volume: 49 start-page: 2775 year: 2010 end-page: 2782 publication-title: Ind. Eng. Chem. Res. – volume: 25 start-page: 464 year: 2015 end-page: 470 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 5006 year: 2015 end-page: 5016 publication-title: ACS Appl. Mater. Interfaces – volume: 107 start-page: 1294 year: 2018 end-page: 1301 publication-title: Int. J. Biol. Macromol. – volume: 299 start-page: 9 year: 2014 end-page: 26 publication-title: Macromol. Mater. Eng. – volume: 58 start-page: 3753 year: 2010 end-page: 3760 publication-title: J. Agric. Food. Chem. – volume: 20 start-page: 191 year: 2013 end-page: 200 publication-title: Cellulose – volume: 9 start-page: 1284 year: 2020 end-page: 1314 publication-title: Nanotech. Rev. – volume: 29 year: 2018 publication-title: Nanotechnology – volume: 27 start-page: 467 year: 2020 end-page: 478 publication-title: Bangladesh J. Plant Taxon. – volume: 34 start-page: 1068 year: 2009 end-page: 1133 publication-title: Prog. Polym. Sci. – start-page: 39 year: 2008 end-page: 107 – volume: 4 year: 2017 publication-title: Adv. Mater. Interfaces – volume: 47 start-page: 2837 year: 2018 end-page: 2872 publication-title: Chem. Soc. Rev. – volume: 76 start-page: 160 year: 2019 end-page: 172 publication-title: J. Ind. Eng. Chem. – volume: 24 start-page: 2967 year: 2009 end-page: 2972 publication-title: Biosens. Bioelectron. – volume: 216 start-page: 491 year: 2018 end-page: 495 publication-title: Mater. Chem. Phys. – volume: 115 start-page: 6621 year: 2015 end-page: 6686 publication-title: Chem. Rev. – volume: 86 start-page: 1549 year: 2011 end-page: 1557 publication-title: Carbohydr. Polym. – volume: 2 start-page: 318 year: 2013 end-page: 318 publication-title: SpringerPlus – volume: 254 year: 2017 publication-title: IOP Conf. Ser.: Mater. Sci. Eng. – volume: 30 start-page: 16087 year: 2019 end-page: 16098 publication-title: J. Mater. Sci. – Mater. Electron. – volume: 4 start-page: 22514 year: 2019 end-page: 22520 publication-title: ACS Omega – volume: 173 start-page: 404 year: 2016 end-page: 411 publication-title: Mater. Chem. Phys. – volume: 4 start-page: 19408 year: 2019 end-page: 19419 publication-title: ACS Omega – volume: 1 start-page: 613 year: 2019 end-page: 626 publication-title: Nanoscale Adv. – volume: 10 start-page: 6544 year: 2020 end-page: 6551 publication-title: Catal. Sci. Technol. – volume: 43 year: 2021 publication-title: J. CO2 Util. – volume: 3 start-page: 15049 year: 2015 end-page: 15056 publication-title: J. Mater. Chem. A – volume: 4 start-page: 2952 year: 2017 end-page: 2958 publication-title: Chemelectrochem – volume: 11 start-page: 6945 year: 2021 publication-title: Sci. Rep. – volume: 3 year: 2019 publication-title: Glob. Chall. – volume: 48 start-page: 7837 year: 2013 end-page: 7846 publication-title: J. Mater. Sci. – volume: 67 start-page: 10954 year: 2019 end-page: 10967 publication-title: J. Agric. Food. Chem. – volume: 8 start-page: 10183 year: 2016 end-page: 10192 publication-title: ACS Appl. Mater. Interfaces – volume: 184–185 start-page: 1428 year: 2012 end-page: 1432 publication-title: Appl. Mech. Mater. – volume: 198 start-page: 249 year: 2018 end-page: 260 publication-title: Carbohydr. Polym. – volume: 7 start-page: 6037 year: 2013 end-page: 6046 publication-title: ACS Nano – volume: 13 start-page: 1557 year: 2011 end-page: 1562 publication-title: J. Nanopart. Res. – year: 2021 publication-title: Chem. Rec. – volume: 35 start-page: 310 year: 2014 end-page: 317 publication-title: Polym. Compos. – volume: 86 start-page: 2137 year: 2014 end-page: 2144 publication-title: An. Acad. Bras. Ciênc. – volume: 103 start-page: 119 year: 2014 end-page: 125 publication-title: Carbohydr. Polym. – volume: 10 start-page: 424 year: 2008 end-page: 432 publication-title: Green Chem. – volume: 354 start-page: 1307 year: 2012 end-page: 1318 publication-title: Adv. Synth. Catal. – volume: 20 start-page: 1074 year: 2020 end-page: 1098 publication-title: Chem. Rec. – volume: 7 start-page: 19809 year: 2015 end-page: 19815 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 1535 year: 2020 publication-title: Polymers – volume: 9 start-page: 28199 year: 2019 end-page: 28206 publication-title: RSC Adv. – start-page: 1001 year: 2019 end-page: 1025 – volume: 17 start-page: 36 year: 2011 end-page: 40 publication-title: J. Ind. Eng. Chem. – volume: 36 start-page: 49 year: 2013 end-page: 53 publication-title: An. Univ. “Dunarea Jos” Galati, Fasc. IX. Metall. Mat. Sci. – volume: 53 start-page: 412 year: 2019 end-page: 421 publication-title: Environ. Sci. Technol. – volume: 25 start-page: 1103 year: 2018 end-page: 1115 publication-title: Cellulose – start-page: 131 year: 2019 end-page: 164 – volume: 51 start-page: 2067 year: 2010 end-page: 2070 publication-title: Tetrahedron Lett. – volume: 321 start-page: 185 year: 2016 end-page: 192 publication-title: J. Power Sources – volume: 274 start-page: 251 year: 2019 end-page: 256 publication-title: Microporous Mesoporous Mater. – volume: 307 start-page: 624 year: 2016 end-page: 633 publication-title: J. Power Sources – volume: 27 start-page: 10077 year: 2020 end-page: 10093 publication-title: Cellulose – volume: 27 start-page: 6973 year: 2021 end-page: 6984 publication-title: Chem. Eur. J. – volume: 8 start-page: 134 year: 2017 end-page: 149 publication-title: Envir. Nanotech. Monit. Manag. – volume: 67 start-page: 48 year: 2009 end-page: 56 publication-title: J. Pet. Sci. Eng. – volume: 161 start-page: 340 year: 2017 end-page: 349 publication-title: Compos. Struct. – volume: 91 start-page: 348 year: 2013 end-page: 355 publication-title: Carbohydr. Polym. – volume: 119 start-page: 5911 year: 2015 end-page: 5917 publication-title: J. Phys. Chem. B. – volume: 30 year: 2020 publication-title: J. Energy Storage – volume: 7 start-page: 20045 year: 2019 end-page: 20074 publication-title: J. Mater. Chem. A – volume: 104 start-page: 13574 year: 2007 end-page: 13577 publication-title: Proc. Natl. Acad. Sci. – volume: 21 start-page: 315 year: 2019 end-page: 325 publication-title: J. Mater. Cycles Waste Manage. – volume: 122 start-page: 77 year: 2009 end-page: 82 publication-title: Sci. Hortic. – volume: 277 start-page: 613 year: 2019 end-page: 623 publication-title: J. Mol. Liq. – volume: 15 start-page: 413 year: 2008 end-page: 416 publication-title: Indian J. Chem. Technol. – volume: 26 start-page: 22656 year: 2019 end-page: 22669 publication-title: Environ. Sci. Pollut. Res. – volume: 21 start-page: 1038 year: 2021 end-page: 1038 publication-title: Chem. Rec. – volume: 7 start-page: 2516 year: 2019 end-page: 2529 publication-title: ACS Sustain. Chem. Eng. – volume: 7 start-page: 1174 year: 2017 publication-title: Sci. Rep. – volume: 89 start-page: 1723 year: 2012 end-page: 1727 publication-title: J. Indian Chem. Soc. – volume: 8 start-page: 31296 year: 2018 end-page: 31302 publication-title: RSC Adv. – volume: 30 start-page: 2228 year: 2013 end-page: 2234 publication-title: Korean J. Chem. Eng. – volume: 169 start-page: 108 year: 2017 end-page: 116 publication-title: Carbohydr. Polym. – volume: 29 year: 2020 publication-title: Sens. Bio-Sens. Res. – volume: 22 start-page: 807 year: 2018 end-page: 816 publication-title: J. Solid State Electrochem. – volume: 32 start-page: 2452 year: 2013 end-page: 2458 publication-title: Organometallics – volume: 24 start-page: 761 year: 2006 end-page: 770 publication-title: Adsorp. Sci. Technol. – volume: 16 year: 2020 publication-title: Small – volume: 860 start-page: 1 year: 2020 end-page: 26 publication-title: Phys. Rep. – volume: 12 start-page: 49992 year: 2020 end-page: 50001 publication-title: ACS Appl. Mater. Interfaces – start-page: 1 year: 2017 end-page: 19 – volume: 41 start-page: 253 year: 2007 end-page: 260 publication-title: Atmos. Environ. – volume: 161 start-page: 476 year: 2015 end-page: 479 publication-title: Mater. Lett. – volume: 51 start-page: 3154 year: 2018 end-page: 3165 publication-title: Acc. Chem. Res. – volume: 5 start-page: 14827 year: 2020 end-page: 14838 publication-title: ChemistrySelect – volume: 151 start-page: 716 year: 2016 end-page: 724 publication-title: Carbohydr. Polym. – volume: 21 start-page: 2150 year: 2011 end-page: 2154 publication-title: Adv. Funct. Mater. – volume: 44 start-page: 2289 year: 2020 end-page: 2297 publication-title: Int. J. Energy Res. – volume: 75 start-page: 1 year: 2010 end-page: 18 publication-title: Colloids Surf. B Biointerfaces – volume: 7 start-page: 3263 year: 2015 end-page: 3271 publication-title: ACS Appl. Mater. Interfaces – volume: 18 start-page: 4250 year: 2016 end-page: 4253 publication-title: Org. Lett. – start-page: 267 year: 2014 end-page: 305 – volume: 10 start-page: 2379 year: 2015 end-page: 2404 publication-title: Nanomedicine – start-page: 69 year: 2017 end-page: 100 – volume: 15 start-page: 9756 year: 2020 end-page: 9785 publication-title: BioResources – volume: 12 start-page: 35 year: 2010 end-page: 38 publication-title: Green Chem. – volume: 6 start-page: 85 year: 2017 end-page: 101 publication-title: Advances Mat. – volume: 16 start-page: 1570 year: 2021 end-page: 1583 publication-title: Chem. Asian J. – volume: 19 start-page: 1787 year: 2007 end-page: 1793 publication-title: Electroanal. – volume: 240 year: 2020 publication-title: Life Sci. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 9 start-page: 552 year: 2010 end-page: 571 publication-title: Compr. Rev. Food Sci. Food Saf. – volume: 22 start-page: 3725 year: 2015 end-page: 3738 publication-title: Cellulose – volume: 22 start-page: 789 year: 2015 end-page: 802 publication-title: Cellulose – volume: 111 start-page: 12243 year: 2007 end-page: 12253 publication-title: J. Phys. Chem. C. – volume: 98 year: 2019 publication-title: Diamond Relat. Mater. – volume: 4 start-page: 368 year: 1999 end-page: 379 publication-title: SPE J. – volume: 90 start-page: 1075 year: 2012 end-page: 1080 publication-title: Carbohydr. Polym. – volume: 24 start-page: 7093 year: 2014 end-page: 7101 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 1400 year: 2019 end-page: 1411 publication-title: J. Mater. Res. Technol. – volume: 9 start-page: 63 year: 2019 end-page: 75 publication-title: Open J. Polym. Chem. – volume: 28 start-page: 293 year: 2020 end-page: 299 publication-title: Energy Storage Mater. – volume: 55 start-page: 6721 year: 2020 end-page: 6753 publication-title: J. Mater. Sci. – volume: 136 start-page: 1738 year: 2014 end-page: 1741 publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 4538 year: 2008 end-page: 4544 publication-title: J. Phys. Chem. C. – volume: 2 start-page: 739 year: 2007 end-page: 788 publication-title: BioResources – volume: 446 start-page: 376 year: 2013 end-page: 382 publication-title: J. Membr. Sci. – volume: 41 start-page: 1329 year: 2010 end-page: 1335 publication-title: Compos. Part A Appl. Sci. Manuf. – volume: 214 start-page: 38 year: 2016 end-page: 48 publication-title: Electrochim. Acta – volume: 2 year: 2018 publication-title: Phys. Rev. Mater. – volume: 12 start-page: 1226 year: 2019 publication-title: Materials – volume: 4 start-page: 181 year: 2017 end-page: 183 publication-title: J. Agro. Nat. Res. Manag. – volume: 4 start-page: 522 year: 2017 end-page: 545 publication-title: Mater. Horiz. – volume: 20 start-page: 1085 year: 2018 end-page: 1094 publication-title: Green Chem. – volume: 48 start-page: 7129 year: 2007 end-page: 7133 publication-title: Tetrahedron Lett. – volume: 11 start-page: 105 year: 2014 end-page: 112 publication-title: Mater. Sci. Indian J. – volume: 13 start-page: 4785 year: 2020 end-page: 4796 publication-title: Arab. J. Chem. – volume: 16 start-page: 296 year: 2021 end-page: 308 publication-title: Chem. Asian J. – volume: 32 year: 2020 publication-title: J. Energy Storage – volume: 66 start-page: 765 year: 2010 end-page: 772 publication-title: Tetrahcdron – volume: 30 start-page: 919 year: 2019 end-page: 946 publication-title: J. Biomater. Sci. Polym. Ed. – volume: 42 start-page: 3415 year: 2018 end-page: 3425 publication-title: New J. Chem. – volume: 9 start-page: 433 year: 2019 publication-title: Coatings – volume: 1 start-page: 1001 year: 2001 end-page: 1004 publication-title: OnLine J. Biol. Sci. – volume: 88 start-page: 132 year: 2012 end-page: 135 publication-title: Mater. Lett. – volume: 14 start-page: 2281 year: 2021 publication-title: Energies – volume: 14 year: 2018 publication-title: Small – volume: 213 start-page: 650 year: 2019 end-page: 658 publication-title: J. Clean. Prod. – volume: 74 start-page: 1 year: 2018 end-page: 11 publication-title: Trends Food Sci. Technol. – volume: 32 start-page: 352 year: 2007 end-page: 418 publication-title: Prog. Polym. Sci. – volume: 31 start-page: 15859 year: 2020 end-page: 15874 publication-title: J. Mater. Sci. - Mater. Electron. – volume: 111 start-page: 6447 year: 2007 end-page: 6453 publication-title: J. Phys. Chem. C. – volume: 2 year: 2018 publication-title: Trend. Text. Fash Design – volume: 9 start-page: 335 year: 2017 publication-title: Polymers – volume: 13 start-page: 6161 year: 2020 end-page: 6173 publication-title: Arab. J. Chem. – volume: 100 start-page: 3009 year: 2000 end-page: 3066 publication-title: Chem. Rev. – volume: 57 start-page: 1377 year: 2018 end-page: 1391 publication-title: Polym. Plast. Technol. Eng. – volume: 36 start-page: 2857 year: 1903 end-page: 2860 publication-title: Eur. J. Inorg. Chem. – volume: 21 start-page: 1039 year: 2021 end-page: 1072 publication-title: Chem. Rec. – year: 1986 – volume: 16 start-page: 3642 year: 2016 end-page: 3649 publication-title: Nano Lett. – volume: 12 start-page: 716 year: 2019 end-page: 726 publication-title: Energy Environ. Sci. – volume: 81 start-page: 768 year: 2015 end-page: 777 publication-title: Int. J. Biol. Macromol. – volume: 105 start-page: 285 year: 2014 end-page: 292 publication-title: Carbohydr. Polym. – volume: 24 start-page: 2215 year: 2017 end-page: 2228 publication-title: Cellulose – volume: 29 start-page: 4609 year: 2017 end-page: 4631 publication-title: Chem. Mater. – volume: 77 start-page: 1363 year: 2017 end-page: 1375 publication-title: Mater. Sci. Eng. C – volume: 1 start-page: 32 year: 2018 end-page: 43 publication-title: Carbon Resour. Convers. – volume: 44 start-page: 1692 year: 2012 end-page: 1696 publication-title: Physica E Low Dimens. Syst. Nanostruct. – volume: 2 start-page: 728 year: 2010 end-page: 765 publication-title: Polymers – volume: 8 start-page: 13131 year: 2016 end-page: 13154 publication-title: Nanoscale – volume: 9 start-page: 405 year: 2014 end-page: 432 publication-title: Nano Today – volume: 9 start-page: 8525 year: 2017 end-page: 8554 publication-title: Nanoscale – volume: 24 start-page: 5104 year: 2014 end-page: 5111 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 14413 year: 2015 end-page: 14421 publication-title: Nanoscale – volume: 6 start-page: 16461 year: 2016 end-page: 16466 publication-title: RSC Adv. – volume: 56 start-page: 782 year: 2013 end-page: 788 publication-title: Procedia Eng. – volume: 83 start-page: 98 year: 2016 end-page: 112 publication-title: Compos. Part A – volume: 23 start-page: 22 year: 1960 end-page: 36 publication-title: Eng. Sci. – volume: 43 start-page: 2549 year: 2011 end-page: 2563 publication-title: Energy and buildings – volume: 4 start-page: 333 year: 2019 end-page: 340 publication-title: J. Sci-Adv. Mater. Dev. – volume: 393 start-page: 15 year: 1998 end-page: 17 publication-title: Nature – volume: 9 start-page: 725 year: 2017 publication-title: Polymers – volume: 7 start-page: 269 year: 2020 publication-title: Front. Mater. – volume: 4 start-page: 13446 year: 2014 end-page: 13452 publication-title: RSC Adv. – volume: 22 start-page: 756 year: 2020 end-page: 758 publication-title: Mat. Today: Proc. – volume: 363 start-page: 1311 year: 2010 end-page: 1315 publication-title: Inorg. Chim. Acta – volume: 90 start-page: 863 year: 2007 end-page: 869 publication-title: J. Am. Ceram. Soc. – volume: 6 year: 2018 publication-title: Mater. Res. Express – volume: 10 start-page: 63 year: 2018 publication-title: Polymers – volume: 20 start-page: 1163 year: 2020 end-page: 1180 publication-title: Chem. Rec. – volume: 13 start-page: D135 year: 2016 end-page: D137 publication-title: J. Occup. Environ. Hyg. – volume: 28 start-page: 332 year: 2014 end-page: 336 publication-title: Appl. Organomet. Chem. – volume: 3 start-page: 23 year: 2014 publication-title: Prog. Biomater. – start-page: 45 year: 2016 end-page: 57 – volume: 2 start-page: 014 year: 2012 end-page: 022 publication-title: Int. J. Manag. Bus. Stud. – volume: 832 start-page: 368 year: 2019 end-page: 379 publication-title: J. Electroanal. Chem. – volume: 233 year: 2020 publication-title: Carbohydr. Polym. – volume: 4 start-page: 014 year: 2018 end-page: 021 publication-title: Int. J. Nanomat. Nanotech. Nanomed. – volume: 14 start-page: 128 year: 2016 publication-title: Mar. Drugs – volume: 10 start-page: 54 year: 1991 end-page: 56 publication-title: Organometallics – volume: 10 start-page: 2705 year: 2020 end-page: 2716 publication-title: Appl. Nanosci. – volume: 143 start-page: 270 year: 2016 end-page: 278 publication-title: Carbohydr. Polym. – volume: 24 start-page: 1563 year: 2017 end-page: 1577 publication-title: Cellulose – volume: 22 start-page: 12468 year: 2012 end-page: 12470 publication-title: J. Mater. Chem. – volume: 1 start-page: 2107 year: 2020 end-page: 2116 publication-title: Mater. Adv. – volume: 9 start-page: 45 year: 2012 end-page: 50 publication-title: World J. Eng. – volume: 4 start-page: 101 year: 2018 end-page: 104 publication-title: J. Textile Eng. Fashion Technol. – volume: 14 start-page: 133 year: 2013 end-page: 137 publication-title: Fiber. Polym. – volume: 48 start-page: 1 year: 2013 end-page: 9 publication-title: Compos. B. Eng. – volume: 21 start-page: 1073 year: 2021 end-page: 1097 publication-title: Chem. Rec. – start-page: 1 year: 2008 end-page: 522 – volume: 152 start-page: 616 year: 2020 end-page: 632 publication-title: Int. J. Biol. Macromol. – volume: 18 start-page: 5930 year: 2016 end-page: 5956 publication-title: Green Chem. – volume: 123 start-page: 2952 year: 2012 end-page: 2958 publication-title: J. Appl. Polym. Sci. – volume: 28 start-page: 1501 year: 2016 end-page: 1509 publication-title: Adv. Mater. – volume: 3 start-page: 41 year: 2015 end-page: 45 publication-title: Am. J. Nano Res. Appl. – volume: 55 start-page: 12249 year: 2020 end-page: 12263 publication-title: J. Mater. Sci. – volume: 25 start-page: 161 year: 2016 end-page: 169 publication-title: Nano Energy – start-page: 1 year: 2006 end-page: 69 – volume: 20 start-page: 1523 year: 2013 end-page: 1545 publication-title: Cellulose – volume: 229 year: 2020 publication-title: Carbohydr. Polym. – volume: 39 start-page: 76 year: 2016 end-page: 88 publication-title: Curr. Opin. Biotechnol. – volume: 136 start-page: 1027 year: 2016 end-page: 1034 publication-title: Carbohydr. Polym. – volume: 7 start-page: 43512 year: 2017 end-page: 43520 publication-title: RSC Adv. – start-page: 71 year: 2017 end-page: 85 – volume: 129 start-page: 13810 year: 2007 end-page: 13811 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 451 year: 2011 end-page: 459 publication-title: Cellulose – volume: 126 start-page: 1213 year: 2019 end-page: 1222 publication-title: Int. J. Biol. Macromol. – volume: 75 year: 2020 publication-title: J. Nat. Gas Sci. Eng. – volume: 5 start-page: 14 year: 2016 end-page: 18 publication-title: J. Microbiol. Biotechnol. – volume: 6 start-page: 10058 year: 2018 end-page: 10068 publication-title: ACS Sustain. Chem. Eng. – volume: 27 start-page: 8725 year: 2020 end-page: 8743 publication-title: Cellulose – volume: 145 year: 2019 publication-title: Biosens. Bioelectron. – volume: 51 start-page: 4572 year: 2015 end-page: 4575 publication-title: Chem. Commun. – volume: 1 start-page: 937 year: 2019 end-page: 947 publication-title: Nanoscale Adv. – volume: 4 start-page: 45 year: 2017 end-page: 57 publication-title: Int. J. Eco. Theo. App. – volume: 1 start-page: 102 year: 2016 end-page: 128 publication-title: Green Energy Environ. – volume: 6 start-page: 11871 year: 2014 end-page: 11881 publication-title: Nanoscale – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 127 start-page: 218 year: 2018 end-page: 227 publication-title: Carbon – volume: 5 year: 2021 publication-title: Adv. Sustain. Syst. – volume: 9 start-page: 663 year: 2016 end-page: 670 publication-title: Energy Environ. Sci. – volume: 4 start-page: 12832 year: 2019 end-page: 12840 publication-title: ChemistrySelect – volume: 134 year: 2012 publication-title: J. Energy Resour. Technol. – volume: 20 start-page: 133 year: 2020 end-page: 143 publication-title: e-Polymers – volume: 1059 start-page: 42 year: 2019 end-page: 48 publication-title: Anal. Chim. Acta – volume: 9 start-page: 1127 year: 2015 end-page: 1136 publication-title: ACS Nano – volume: 2 start-page: 4 year: 2017 publication-title: Ren. Energy Env. Sust. – volume: 2014 year: 2014 publication-title: Int. J. Chem. Eng. – volume: 14 year: 2014 publication-title: Global J. Res. Eng. – volume: 106 start-page: 128 year: 2017 end-page: 136 publication-title: Prog. Org. Coat. – volume: 129 start-page: 397 year: 2017 end-page: 404 publication-title: J. Chem. Sci. – volume: 277 year: 2021 publication-title: Synth. Met. – volume: 2 start-page: 1179 year: 2012 end-page: 1186 publication-title: ACS Catal. – volume: 100 year: 2020 publication-title: Food Hydrocoll. – volume: 42 start-page: 376 year: 2011 end-page: 381 publication-title: Compos. B. Eng. – volume: 3 start-page: 79 year: 2016 end-page: 84 publication-title: J. Hydrocarb. Power Eng. – volume: 476 start-page: 112 year: 2015 end-page: 118 publication-title: J. Membr. Sci. – volume: 4 start-page: 3794 year: 2016 end-page: 3802 publication-title: ACS Sustain. Chem. Eng. – volume: 62 start-page: 15 year: 2008 end-page: 23 publication-title: Holzforschung – volume: 45 start-page: 9101 year: 2011 end-page: 9108 publication-title: Environ. Sci. Technol. – volume: 366 start-page: 189 year: 2008 end-page: 193 publication-title: Philos. Trans. A Math. Phys. Eng. Sci. – volume: 207 start-page: 447 year: 2019 end-page: 459 publication-title: Carbohydr. Polym. – volume: 522 start-page: 216 year: 2017 end-page: 225 publication-title: J. Membr. Sci. – volume: 92 start-page: 1116 year: 2013 end-page: 1123 publication-title: Carbohydr. Polym. – volume: 99 start-page: 6709 year: 2008 end-page: 6724 publication-title: Bioresour. Technol. – volume: 109 start-page: 35 year: 2014 end-page: 43 publication-title: Carbohydr. Polym. – volume: 7 start-page: 15239 year: 2017 publication-title: Sci. Rep. – volume: 7 year: 2018 publication-title: Adv. Healthc. Mater. – volume: 415 year: 2021 publication-title: Chem. Eng. J. – volume: 29 start-page: 5426 year: 2017 end-page: 5446 publication-title: Chem. Mater. – volume: 2 start-page: 281 year: 2016 end-page: 292 publication-title: ACS Cent. Sci. – volume: 56 start-page: 246 year: 2014 end-page: 254 publication-title: Ind. Crops Prod. – volume: 57 start-page: 10271 year: 2009 end-page: 10281 publication-title: J. Agric. Food. Chem. – volume: 23 start-page: 1273 year: 1998 end-page: 1335 publication-title: Prog. Polym. Sci. – volume: 12 start-page: 2 year: 2019 publication-title: Materials – volume: 23 start-page: 93 year: 2016 end-page: 123 publication-title: Cellulose – volume: 4 start-page: 9079 year: 2019 end-page: 9083 publication-title: ChemistrySelect – volume: 2 start-page: 4787 year: 2017 end-page: 4793 publication-title: ChemistrySelect – volume: 23 start-page: 3751 year: 2011 end-page: 3769 publication-title: Adv. Mater. – volume: 44 start-page: 2569 year: 2006 end-page: 2577 publication-title: Carbon – volume: 4 start-page: 243 year: 2020 end-page: 256 publication-title: Nat. Rev. Chem. – start-page: 207 year: 2014 end-page: 232 – ident: e_1_2_7_73_1 doi: 10.1016/j.synthmet.2021.116765 – ident: e_1_2_7_145_1 doi: 10.1016/j.progpolymsci.2006.05.003 – ident: e_1_2_7_94_1 doi: 10.1002/slct.202003178 – ident: e_1_2_7_294_1 doi: 10.1109/EMBC.2018.8513229 – ident: e_1_2_7_10_1 doi: 10.1016/j.arabjc.2020.05.017 – ident: e_1_2_7_101_1 doi: 10.1002/9783527622115.ch1 – ident: e_1_2_7_74_1 doi: 10.1021/acssuschemeng.8b05419 – ident: e_1_2_7_13_1 doi: 10.1016/j.jelechem.2018.11.034 – ident: e_1_2_7_33_1 doi: 10.1051/rees/2017001 – ident: e_1_2_7_96_1 doi: 10.1111/j.1551-2916.2007.01484.x – ident: e_1_2_7_193_1 doi: 10.1021/jp711431h – ident: e_1_2_7_207_1 doi: 10.1016/j.jpowsour.2016.01.030 – ident: e_1_2_7_56_1 – ident: e_1_2_7_159_1 doi: 10.1515/ntrev-2020-0100 – ident: e_1_2_7_200_1 doi: 10.1002/tcr.202100044 – ident: e_1_2_7_21_1 doi: 10.1103/PhysRevMaterials.2.085006 – volume: 6 start-page: 85 year: 2017 ident: e_1_2_7_189_1 publication-title: Advances Mat. – ident: e_1_2_7_243_1 doi: 10.1016/j.enbuild.2011.05.015 – ident: e_1_2_7_245_1 doi: 10.1016/j.carbpol.2019.115454 – ident: e_1_2_7_131_1 doi: 10.1007/s10570-017-1204-2 – ident: e_1_2_7_219_1 doi: 10.1016/j.nanoen.2016.04.036 – ident: e_1_2_7_89_1 doi: 10.1039/b714189k – ident: e_1_2_7_156_1 doi: 10.1016/j.jmrt.2018.09.011 – ident: e_1_2_7_7_1 doi: 10.1016/j.est.2020.101562 – ident: e_1_2_7_3_1 doi: 10.1016/j.physrep.2020.03.001 – ident: e_1_2_7_203_1 doi: 10.1039/C9TA07466J – ident: e_1_2_7_304_1 doi: 10.1016/j.carbpol.2016.02.015 – ident: e_1_2_7_79_1 doi: 10.1007/s11814-013-0172-y – ident: e_1_2_7_206_1 doi: 10.1007/s10853-020-04888-w – ident: e_1_2_7_71_1 doi: 10.1002/slct.201700429 – ident: e_1_2_7_198_1 doi: 10.1002/tcr.202000058 – ident: e_1_2_7_301_1 doi: 10.1021/acsomega.9b02830 – ident: e_1_2_7_25_1 doi: 10.1016/j.lfs.2019.117099 – ident: e_1_2_7_215_1 doi: 10.1002/adma.201606823 – ident: e_1_2_7_296_1 doi: 10.4236/ojpchem.2019.94006 – ident: e_1_2_7_276_1 doi: 10.3390/en14082281 – ident: e_1_2_7_165_1 doi: 10.1016/j.scienta.2009.04.006 – ident: e_1_2_7_54_1 – ident: e_1_2_7_2_1 doi: 10.1038/s41570-020-0173-4 – volume: 2 start-page: 000147 year: 2018 ident: e_1_2_7_31_1 publication-title: Trend. Text. Fash Design – ident: e_1_2_7_208_1 doi: 10.1007/s10008-017-3814-x – ident: e_1_2_7_273_1 doi: 10.1021/ja076196l – ident: e_1_2_7_141_1 doi: 10.1002/smll.201704006 – ident: e_1_2_7_286_1 doi: 10.1016/j.memsci.2013.06.020 – ident: e_1_2_7_23_1 doi: 10.1088/1361-6528/aade1e – ident: e_1_2_7_177_1 doi: 10.1021/acssuschemeng.8b01405 – ident: e_1_2_7_128_1 doi: 10.1016/j.carbpol.2020.115842 – volume: 3 start-page: 79 year: 2016 ident: e_1_2_7_246_1 publication-title: J. Hydrocarb. Power Eng. – ident: e_1_2_7_168_1 doi: 10.1016/j.compositesb.2012.12.004 – ident: e_1_2_7_172_1 doi: 10.1002/mame.201300008 – ident: e_1_2_7_181_1 doi: 10.1021/acsami.0c13715 – ident: e_1_2_7_295_1 doi: 10.1007/978-3-030-05399-4_35 – ident: e_1_2_7_267_1 doi: 10.3390/polym2040728 – ident: e_1_2_7_29_1 doi: 10.1021/jf900815x – ident: e_1_2_7_171_1 doi: 10.1016/j.compositesa.2010.06.001 – ident: e_1_2_7_114_1 doi: 10.1016/j.ica.2009.12.038 – ident: e_1_2_7_272_1 doi: 10.1016/j.bios.2009.03.001 – ident: e_1_2_7_150_1 doi: 10.1080/09205063.2019.1612726 – ident: e_1_2_7_283_1 doi: 10.1016/j.msec.2017.03.196 – ident: e_1_2_7_28_1 doi: 10.3390/polym9120725 – ident: e_1_2_7_72_1 doi: 10.1038/s41598-021-86426-5 – ident: e_1_2_7_140_1 doi: 10.1016/j.carbpol.2015.09.115 – ident: e_1_2_7_110_1 doi: 10.1021/cr9903048 – ident: e_1_2_7_95_1 doi: 10.1021/cs300158g – ident: e_1_2_7_170_1 doi: 10.1016/j.compositesa.2015.08.038 – ident: e_1_2_7_153_1 doi: 10.1016/j.porgcoat.2017.01.019 – ident: e_1_2_7_63_1 doi: 10.1002/app.34918 – ident: e_1_2_7_37_1 doi: 10.1016/j.copbio.2016.01.002 – ident: e_1_2_7_44_1 doi: 10.1016/j.crcon.2018.05.004 – ident: e_1_2_7_86_1 doi: 10.1007/s12039-017-1248-8 – ident: e_1_2_7_5_1 doi: 10.1016/j.arabjc.2019.12.013 – ident: e_1_2_7_123_1 doi: 10.1002/adsc.201100725 – ident: e_1_2_7_149_1 doi: 10.17352/2455-3492.000026 – ident: e_1_2_7_225_1 doi: 10.1073/pnas.0706508104 – volume: 89 start-page: 1723 year: 2012 ident: e_1_2_7_99_1 publication-title: J. Indian Chem. Soc. – volume: 14 start-page: 100704 year: 2014 ident: e_1_2_7_64_1 publication-title: Global J. Res. Eng. – ident: e_1_2_7_122_1 doi: 10.1016/j.matchemphys.2016.02.030 – ident: e_1_2_7_205_1 doi: 10.1039/C5EE03404C – ident: e_1_2_7_57_1 doi: 10.1016/j.carbpol.2012.06.046 – ident: e_1_2_7_59_1 doi: 10.1016/j.ijbiomac.2017.09.107 – ident: e_1_2_7_192_1 doi: 10.1016/j.carbpol.2012.08.073 – volume: 4 start-page: 45 year: 2017 ident: e_1_2_7_43_1 publication-title: Int. J. Eco. Theo. App. – ident: e_1_2_7_204_1 doi: 10.1002/aenm.201600476 – ident: e_1_2_7_178_1 doi: 10.1111/j.1541-4337.2010.00126.x – ident: e_1_2_7_35_1 doi: 10.1590/0001-3765201420140143 – ident: e_1_2_7_201_1 doi: 10.1002/tcr.202180501 – ident: e_1_2_7_58_1 doi: 10.1016/j.carbpol.2014.03.045 – ident: e_1_2_7_16_1 doi: 10.1039/C7CS00790F – ident: e_1_2_7_279_1 doi: 10.1002/adfm.201100172 – ident: e_1_2_7_288_1 doi: 10.1002/adhm.201800334 – ident: e_1_2_7_154_1 doi: 10.1515/epoly-2020-0015 – ident: e_1_2_7_248_1 doi: 10.1115/1.4005244 – ident: e_1_2_7_27_1 doi: 10.2118/58357-PA – year: 2021 ident: e_1_2_7_121_1 publication-title: Chem. Rec. – ident: e_1_2_7_152_1 doi: 10.1002/pc.22663 – volume-title: Studies in Surface Science and Catalysis, Vol. 27 year: 1986 ident: e_1_2_7_100_1 – ident: e_1_2_7_91_1 doi: 10.1002/admi.201700604 – ident: e_1_2_7_233_1 doi: 10.1007/s10570-013-9973-8 – ident: e_1_2_7_42_1 doi: 10.1016/j.carbpol.2012.10.021 – ident: e_1_2_7_195_1 doi: 10.1186/2193-1801-2-318 – ident: e_1_2_7_254_1 doi: 10.1016/j.ijbiomac.2020.02.221 – ident: e_1_2_7_281_1 doi: 10.1016/B978-0-12-816913-1.00005-2 – ident: e_1_2_7_222_1 doi: 10.1002/adfm.201304046 – ident: e_1_2_7_287_1 doi: 10.1039/C4NR03584D – ident: e_1_2_7_302_1 doi: 10.1007/s10570-017-1251-8 – ident: e_1_2_7_113_1 doi: 10.1039/B915436A – ident: e_1_2_7_188_1 doi: 10.1016/j.jngse.2020.103156 – ident: e_1_2_7_8_1 doi: 10.1016/j.est.2020.101908 – ident: e_1_2_7_185_1 doi: 10.1016/j.jcou.2020.101361 – ident: e_1_2_7_199_1 doi: 10.1002/tcr.202100043 – ident: e_1_2_7_220_1 doi: 10.1002/celc.201700602 – ident: e_1_2_7_11_1 doi: 10.1002/slct.201900891 – ident: e_1_2_7_249_1 doi: 10.1021/acsami.5b00498 – ident: e_1_2_7_78_1 doi: 10.1016/j.jclepro.2018.12.184 – ident: e_1_2_7_62_1 doi: 10.1155/2014/842147 – ident: e_1_2_7_45_1 doi: 10.1016/j.carbpol.2013.11.055 – ident: e_1_2_7_160_1 doi: 10.1016/j.matlet.2015.09.022 – ident: e_1_2_7_22_1 doi: 10.1080/15459624.2016.1177643 – ident: e_1_2_7_298_1 doi: 10.1021/nn504334u – ident: e_1_2_7_139_1 – ident: e_1_2_7_224_1 doi: 10.1039/C8RA05270K – ident: e_1_2_7_93_1 doi: 10.1039/D0CY00973C – ident: e_1_2_7_196_1 doi: 10.1007/s10570-020-03482-2 – ident: e_1_2_7_134_1 doi: 10.1002/adsu.202000286 – ident: e_1_2_7_292_1 doi: 10.3390/polym9080335 – ident: e_1_2_7_144_1 doi: 10.1021/es202223p – ident: e_1_2_7_290_1 doi: 10.1007/s11051-010-9995-1 – ident: e_1_2_7_257_1 doi: 10.1007/s10163-018-0792-8 – ident: e_1_2_7_15_1 doi: 10.1007/s10854-020-04148-2 – volume: 2 start-page: 325 year: 2012 ident: e_1_2_7_124_1 publication-title: J. Mat. Sci. Eng. B – ident: e_1_2_7_104_1 doi: 10.1021/acs.orglett.6b01999 – ident: e_1_2_7_253_1 doi: 10.1021/acs.nanolett.6b00771 – ident: e_1_2_7_182_1 doi: 10.1016/j.matlet.2012.08.043 – ident: e_1_2_7_76_1 doi: 10.1016/j.cej.2021.129076 – year: 2020 ident: e_1_2_7_80_1 publication-title: Int. J. Environ. An. Chem. – ident: e_1_2_7_289_1 doi: 10.1021/acsami.6b01243 – start-page: 1 volume-title: Nanocellulose, Nanohydrogel Matrices: Biotechnological, Biomedical Applications year: 2017 ident: e_1_2_7_280_1 – ident: e_1_2_7_109_1 doi: 10.1002/aoc.3129 – ident: e_1_2_7_146_1 doi: 10.1007/s11814-017-0145-7 – ident: e_1_2_7_256_1 doi: 10.1007/s10570-015-0747-3 – ident: e_1_2_7_269_1 doi: 10.1002/smll.201906567 – ident: e_1_2_7_241_1 doi: 10.1016/j.carbpol.2016.06.025 – start-page: 1 volume-title: Nanocomposite Structures and Dispersions, 1st year: 2006 ident: e_1_2_7_4_1 – volume: 23 start-page: 22 year: 1960 ident: e_1_2_7_1_1 publication-title: Eng. Sci. – ident: e_1_2_7_263_1 doi: 10.1007/s10570-012-9805-2 – ident: e_1_2_7_67_1 doi: 10.15406/jteft.2018.04.00126 – ident: e_1_2_7_111_1 doi: 10.1016/j.tetlet.2007.07.207 – start-page: 267 volume-title: Biomass Bioenergy, Vol. 2 year: 2014 ident: e_1_2_7_129_1 doi: 10.1007/978-3-319-07578-5_14 – ident: e_1_2_7_299_1 doi: 10.1039/D0MA00478B – ident: e_1_2_7_303_1 doi: 10.1007/s10570-020-03396-z – ident: e_1_2_7_81_1 doi: 10.1260/026361706781388950 – ident: e_1_2_7_36_1 doi: 10.3389/fchem.2020.00392 – ident: e_1_2_7_262_1 doi: 10.1002/elan.200703934 – ident: e_1_2_7_197_1 doi: 10.1021/acs.accounts.8b00391 – ident: e_1_2_7_133_1 doi: 10.1021/acsomega.9b03184 – ident: e_1_2_7_183_1 doi: 10.1039/C7NR00400A – ident: e_1_2_7_274_1 doi: 10.1039/C6NR03054H – ident: e_1_2_7_179_1 doi: 10.1016/S0079-6700(97)00039-7 – start-page: 39 volume-title: Nanoparticles: New Research year: 2008 ident: e_1_2_7_284_1 – ident: e_1_2_7_161_1 doi: 10.1038/s41598-017-15463-w – ident: e_1_2_7_176_1 doi: 10.1016/j.carbpol.2011.06.060 – volume: 5 start-page: 14 year: 2016 ident: e_1_2_7_194_1 publication-title: J. Microbiol. Biotechnol. – ident: e_1_2_7_270_1 doi: 10.1016/j.bios.2019.111716 – volume: 2 start-page: 014 year: 2012 ident: e_1_2_7_157_1 publication-title: Int. J. Manag. Bus. Stud. – ident: e_1_2_7_226_1 doi: 10.1021/nn401818t – ident: e_1_2_7_88_1 doi: 10.1038/s41598-017-01319-w – ident: e_1_2_7_261_1 doi: 10.1007/s10570-015-0798-5 – ident: e_1_2_7_51_1 doi: 10.1016/j.carbpol.2011.06.034 – ident: e_1_2_7_238_1 doi: 10.1007/s10570-017-1627-9 – ident: e_1_2_7_92_1 doi: 10.1039/C9RA06285H – ident: e_1_2_7_252_1 doi: 10.1021/acsami.5b05841 – ident: e_1_2_7_175_1 doi: 10.1021/jf9033128 – ident: e_1_2_7_229_1 doi: 10.1088/2053-1591/aaf3d8 – ident: e_1_2_7_70_1 doi: 10.1007/s10854-019-01979-6 – ident: e_1_2_7_169_1 doi: 10.1016/j.proeng.2013.03.196 – ident: e_1_2_7_50_1 doi: 10.1007/978-3-319-65457-7_5 – ident: e_1_2_7_17_1 doi: 10.1016/j.carbpol.2018.12.010 – volume: 4 start-page: 181 year: 2017 ident: e_1_2_7_30_1 publication-title: J. Agro. Nat. Res. Manag. – ident: e_1_2_7_90_1 doi: 10.1039/C7GC02835K – ident: e_1_2_7_84_1 doi: 10.1016/j.carbon.2006.05.048 – ident: e_1_2_7_218_1 doi: 10.1002/adma.201004134 – ident: e_1_2_7_151_1 doi: 10.3390/ma12081226 – ident: e_1_2_7_68_1 doi: 10.3923/jbs.2001.1001.1004 – ident: e_1_2_7_26_1 doi: 10.1016/j.petrol.2009.02.014 – ident: e_1_2_7_242_1 doi: 10.1021/acs.jpcb.5b00715 – ident: e_1_2_7_120_1 doi: 10.1021/ja411468e – ident: e_1_2_7_130_1 doi: 10.1021/acsami.8b13018 – ident: e_1_2_7_115_1 doi: 10.1016/j.tetlet.2010.02.079 – ident: e_1_2_7_271_1 doi: 10.1016/j.sbsr.2020.100368 – ident: e_1_2_7_166_1 doi: 10.1016/j.carbpol.2014.01.057 – ident: e_1_2_7_6_1 doi: 10.1039/C8NA00090E – ident: e_1_2_7_39_1 doi: 10.2991/icmemtc-16.2016.148 – ident: e_1_2_7_202_1 doi: 10.3389/fmats.2020.00269 – ident: e_1_2_7_228_1 doi: 10.1021/am507999s – ident: e_1_2_7_61_1 doi: 10.1016/j.compositesb.2010.12.017 – volume: 15 start-page: 413 year: 2008 ident: e_1_2_7_82_1 publication-title: Indian J. Chem. Technol. – ident: e_1_2_7_48_1 doi: 10.1260/1708-5284.9.1.45 – ident: e_1_2_7_52_1 doi: 10.1016/j.ijbiomac.2015.08.053 – ident: e_1_2_7_12_1 doi: 10.3329/bjpt.v27i2.50686 – ident: e_1_2_7_230_1 doi: 10.1039/C5TA02770E – ident: e_1_2_7_60_1 doi: 10.1007/s10570-019-02363-7 – ident: e_1_2_7_265_1 doi: 10.1016/j.ijbiomac.2019.01.001 – ident: e_1_2_7_55_1 – ident: e_1_2_7_66_1 doi: 10.1007/s12221-013-0133-4 – volume: 36 start-page: 49 year: 2013 ident: e_1_2_7_46_1 publication-title: An. Univ. “Dunarea Jos” Galati, Fasc. IX. Metall. Mat. Sci. – ident: e_1_2_7_187_1 doi: 10.1016/j.memsci.2016.09.024 – ident: e_1_2_7_231_1 doi: 10.1016/j.carbon.2017.11.012 – ident: e_1_2_7_237_1 doi: 10.1016/j.carbpol.2018.06.045 – ident: e_1_2_7_211_1 doi: 10.1002/aenm.201600802 – ident: e_1_2_7_251_1 doi: 10.1016/j.atmosenv.2006.08.009 – ident: e_1_2_7_83_1 doi: 10.4028/www.scientific.net/AMM.184-185.1428 – ident: e_1_2_7_98_1 doi: 10.1039/C4RA01104J – ident: e_1_2_7_186_1 doi: 10.1016/j.jece.2020.104756 – ident: e_1_2_7_112_1 doi: 10.1021/om4001956 – ident: e_1_2_7_264_1 doi: 10.1002/gch2.201800079 – start-page: 207 volume-title: Handbook of Green Materials, Vol. 5 year: 2014 ident: e_1_2_7_259_1 doi: 10.1142/9789814566469_0013 – ident: e_1_2_7_34_1 doi: 10.1007/s11356-019-05556-6 – ident: e_1_2_7_212_1 doi: 10.1002/tcr.202000115 – ident: e_1_2_7_190_1 doi: 10.1039/C7NJ04103A – ident: e_1_2_7_232_1 doi: 10.1021/acssuschemeng.6b00499 – ident: e_1_2_7_105_1 doi: 10.1039/c2jm32229c – ident: e_1_2_7_138_1 doi: 10.1007/978-3-319-49382-4_4 – volume: 11 start-page: 105 year: 2014 ident: e_1_2_7_126_1 publication-title: Mater. Sci. Indian J. – ident: e_1_2_7_69_1 doi: 10.1088/1757-899X/254/4/042015 – ident: e_1_2_7_277_1 doi: 10.1038/29874 – ident: e_1_2_7_20_1 doi: 10.1002/tcr.202000071 – ident: e_1_2_7_32_1 doi: 10.1016/j.matchemphys.2018.05.082 – ident: e_1_2_7_117_1 doi: 10.1039/C5RA25135D – ident: e_1_2_7_285_1 doi: 10.3390/md14070128 – ident: e_1_2_7_173_1 doi: 10.1016/j.matpr.2019.10.110 – ident: e_1_2_7_260_1 doi: 10.1007/s10570-014-0473-2 – ident: e_1_2_7_163_1 doi: 10.1016/j.indcrop.2014.03.005 – ident: e_1_2_7_210_1 doi: 10.1002/chem.202005156 – ident: e_1_2_7_143_1 doi: 10.1039/C8EE03112F – ident: e_1_2_7_167_1 doi: 10.1007/s40725-020-00117-4 – ident: e_1_2_7_234_1 doi: 10.3390/ma12010002 – ident: e_1_2_7_239_1 doi: 10.1016/j.electacta.2016.08.020 – ident: e_1_2_7_85_1 doi: 10.1016/j.micromeso.2018.07.050 – ident: e_1_2_7_102_1 doi: 10.1021/acs.chemrev.5b00203 – ident: e_1_2_7_136_1 doi: 10.1016/j.foodhyd.2019.105411 – start-page: 45 volume-title: Insulation Materials in Context of Sustainability year: 2016 ident: e_1_2_7_244_1 – ident: e_1_2_7_108_1 doi: 10.1021/acscentsci.6b00032 – ident: e_1_2_7_148_1 doi: 10.1016/j.progpolymsci.2009.06.002 – ident: e_1_2_7_216_1 doi: 10.1039/C6MH00500D – ident: e_1_2_7_75_1 doi: 10.1002/er.4983 – ident: e_1_2_7_38_1 doi: 10.1039/C8NA00238J – ident: e_1_2_7_65_1 doi: 10.1155/2013/738741 – ident: e_1_2_7_209_1 doi: 10.1016/j.ensm.2020.03.019 – ident: e_1_2_7_147_1 doi: 10.3390/polym12071535 – ident: e_1_2_7_223_1 doi: 10.1039/C7RA07908G – ident: e_1_2_7_116_1 doi: 10.1016/j.molliq.2018.12.115 – volume: 36 start-page: 2857 year: 1903 ident: e_1_2_7_103_1 publication-title: Eur. J. Inorg. Chem. – ident: e_1_2_7_180_1 doi: 10.1016/j.gee.2016.08.001 – ident: e_1_2_7_132_1 doi: 10.3390/polym10010063 – ident: e_1_2_7_282_1 doi: 10.1016/j.colsurfb.2009.09.001 – ident: e_1_2_7_191_1 doi: 10.1016/j.physe.2012.04.022 – ident: e_1_2_7_300_1 doi: 10.1021/acs.chemmater.7b00531 – ident: e_1_2_7_40_1 doi: 10.1021/ie9019984 – ident: e_1_2_7_106_1 doi: 10.1021/om00047a028 – ident: e_1_2_7_278_1 doi: 10.1098/rsta.2007.2160 – ident: e_1_2_7_293_1 doi: 10.1039/C5NR03853G – volume: 3 start-page: 41 year: 2015 ident: e_1_2_7_18_1 publication-title: Am. J. Nano Res. Appl. – ident: e_1_2_7_213_1 doi: 10.1016/j.nantod.2014.06.011 – ident: e_1_2_7_9_1 doi: 10.1021/acs.chemrestox.9b00308 – ident: e_1_2_7_174_1 doi: 10.1016/j.tifs.2018.01.015 – ident: e_1_2_7_49_1 doi: 10.1016/j.compstruct.2016.11.062 – ident: e_1_2_7_162_1 doi: 10.1080/03602559.2017.1381253 – ident: e_1_2_7_297_1 doi: 10.1007/s13204-019-01242-8 – ident: e_1_2_7_77_1 doi: 10.1016/j.jhazmat.2009.09.072 – ident: e_1_2_7_258_1 doi: 10.15376/biores.2.4.739-788 – ident: e_1_2_7_135_1 doi: 10.1021/acs.jafc.9b03110 – ident: e_1_2_7_164_1 doi: 10.1016/j.jiec.2010.10.006 – ident: e_1_2_7_158_1 doi: 10.15376/biores.15.4.Safian – ident: e_1_2_7_240_1 doi: 10.1109/ESTC.2014.6962740 – ident: e_1_2_7_268_1 doi: 10.1016/j.aca.2019.01.058 – ident: e_1_2_7_155_1 doi: 10.3390/coatings9070433 – ident: e_1_2_7_137_1 doi: 10.1016/j.carbpol.2017.04.008 – ident: e_1_2_7_266_1 doi: 10.1021/acs.chemmater.7b01170 – ident: e_1_2_7_118_1 doi: 10.1016/j.tet.2009.11.050 – ident: e_1_2_7_235_1 doi: 10.1016/j.jpowsour.2016.04.115 – ident: e_1_2_7_107_1 doi: 10.1021/jp073350h – ident: e_1_2_7_47_1 doi: 10.1515/HF.2008.003 – ident: e_1_2_7_184_1 doi: 10.3390/fib7050040 – volume: 4 start-page: 333 year: 2019 ident: e_1_2_7_221_1 publication-title: J. Sci-Adv. Mater. Dev. – ident: e_1_2_7_41_1 doi: 10.1007/s10853-013-7512-5 – ident: e_1_2_7_255_1 doi: 10.1016/j.enmm.2017.07.002 – ident: e_1_2_7_275_1 doi: 10.1002/adma.201504438 – ident: e_1_2_7_24_1 doi: 10.1002/adfm.201403275 – ident: e_1_2_7_217_1 doi: 10.1039/C6GC02086K – ident: e_1_2_7_14_1 doi: 10.1002/asia.202001342 – ident: e_1_2_7_19_1 doi: 10.1016/j.jiec.2019.03.032 – ident: e_1_2_7_247_1 doi: 10.1007/s10853-020-04479-9 – ident: e_1_2_7_227_1 doi: 10.1002/adfm.201400590 – ident: e_1_2_7_127_1 doi: 10.1007/s40204-014-0023-x – ident: e_1_2_7_53_1 doi: 10.1007/s10570-010-9481-z – ident: e_1_2_7_236_1 doi: 10.1016/j.memsci.2014.10.056 – ident: e_1_2_7_250_1 doi: 10.1016/j.biortech.2008.01.036 – ident: e_1_2_7_119_1 doi: 10.1021/jp065866r – ident: e_1_2_7_87_1 doi: 10.1016/j.diamond.2019.107514 – ident: e_1_2_7_97_1 doi: 10.1039/C4CC09466B – ident: e_1_2_7_125_1 doi: 10.1002/slct.201903423 – ident: e_1_2_7_214_1 doi: 10.1002/asia.202100309 – ident: e_1_2_7_142_1 doi: 10.1021/acs.est.8b02772 – ident: e_1_2_7_291_1 doi: 10.2217/nnm.15.67 |
SSID | ssj0011477 |
Score | 2.5942252 |
SecondaryResourceType | review_article |
Snippet | Nanotechnology has transformed the world with its diverse applications, ranging from industrial developments to impacting our daily lives. It has multiple... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1631 |
SubjectTerms | carbon Catalysis Cellulose Cellulose fibers Chemical composition Coatings Drug delivery Electrochemistry Energy storage Fibers Hemicellulose Jute Lignin nanocellulose Nanocomposites Nanomaterials Nanotechnology Petroleum industry Polymers Pulp & paper industry Reducing agents Stabilizers (agents) |
Title | Present Status and Future Prospects of Jute in Nanotechnology: A Review |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202100135 https://www.proquest.com/docview/2550246094 https://www.proquest.com/docview/2541787613 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-yF33xW6xOiSA-2a2faePbGM4xUMbYYG81SVMQpZW1ffGv99K0nRMUxLeWJrS9JJff5e5-h9C1TbgVC4eYxBKu6XHumDShvunYMghhv0iSyl3w-ETGC2-y9Jd1nVOVC6P5IdoDN7UyKn2tFjjjeX9NGgqKCsw7R3EIuSrJXMVrKVA0a-mjAOpXlRdV5VYT7Apac2xC__5G7809aQ00v8LVar8Z7aHn5kt1mMlrryx4T3x8I3H8x6_so90ai-KBnjwHaEumh2h72JSAO0IPU52chBUkLXPM0hiPKhISPF1lVZJmjrMET8pC4pcUg6rOivas_g4PsHY9HKPF6H4-HJt15QVTuB7xTSHDhNnMTzih3JfK-0gDmxMVQiPAFgesC0AmFoBPbBqT0JaAQxihknmMxmHgnqBOmqXyFOEw9ETAXVArYEsyKaiVMEVhw-OY0dAVBrptZB-JmpZcVcd4izShshOBdKJWOga6aZu_az6Onxp2m4GM6mWZR2A_ASYhYNIa6Kp9DEJVXhKWyqxUbTwbtBjAHANZ1aj9_qJoPpy1N2d_73KOdtS1DgHuok6xKuUFAJ2CX1az-RNmyvKU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58HPTiW1xdNYJ6su72lW0ED8vquj4RWcFbTdIURGnFbRH9Vf4V_5GTvnyAggcPHtumbZpJZr7pTL4BWDepaAbSogZtSttwhLAMFjLXsEzV8tBehGEWLjg9o71L5-jKvRqCl3IvTM4PUf1w0ysj09d6gesf0o131lDUVOjfWZpEyC7TKo_V0yM6bYPdwz2U8IZldff7nZ5R1BUwpO1Q15DKC7nJ3VBQJlylY2usZQqqE0QkepqI5NBMBxKtr8kC6pkKrSynTHGHs8Br2fjcYRjVVcQ1W__eRUVYhc5FVutR14o10JNhBasndrjxqbufreA7tP0IkDML152E13Js8sSW2-00Edvy-Qtt5H8avCmYKOA2aefrYxqGVDQDY52yyt0sHJzn-6-IRt3pgPAoIN2MZ4WcP8TZPtQBiUNylCaK3EQErVGcVOGIHdImeXRlDi7_5DvmYSSKI7UAxPMc2RI2ak50l7mSrBlyzdIjgoAzz5Y12CqF7cuCeV0XALnzc85oy0dp-JU0arBZNb_PKUe-a1gvZ45faJ6Bjy4iwi6KXnsN1qrLOKg6EMQjFae6jWOiokYkV4NmNk1-fpHf71xUB4u_v2UVxnr90xP_5PDseAnG9fk847kOI8lDqpYR1yViJVtKBK7_evq9ATduT2g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8QwFH64gHpxF8c1gnqy2jXTCB5kxnGXQRS81SRNQZRWnBbRP-Vf8Sf50s0FFDx48Ng2bdO8ve_lewCrFhVmKG1qUFM6hiuEbbCIeYZtqaaP9iKK8nTB6Rk9uHSPrryrPnip9sIU-BD1DzctGbm-1gJ-H0Zb76ChqKgwvLM1hpBTVVUeq6dHjNl6O4dtJPCabXf2LloHRtlWwJCOSz1DKj_iFvciQZnwlE6tsaYlqK4PkRhooiOHVjqUaHwtFlLfUmhkOWWKu5yFftPB5_bDoEtNpntFtM9rvCqMLfJWj7pVrIGBDCtBPXHCW5-m-9kIvnu2H_3j3MB1xuC1WpqiruV2M0vFpnz-ghr5j9ZuHEZLZ5vsFtIxAX0qnoThVtXjbgr2u8XuK6J97qxHeBySTo6yQroPSb4LtUeSiBxlqSI3MUFblKR1MmKb7JIitzINl3_yHTMwECexmgXi-65sCgf1JgbLXElmRlxj9Igw5Mx3ZAM2KloHssRd1-0_7oICMdoOkBpBTY0GrNfD7wvAke8GLlSME5R6pxdggIhOF3Km24CV-jIuqk4D8VglmR7jWqim0Y9rgJlzyc8vCi5a5_XB3O9vWYahbrsTnByeHc_DiD5dlDsvwED6kKlFdOpSsZQLEoHrv-a-N8y1Thc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Present+Status+and+Future+Prospects+of+Jute+in+Nanotechnology%3A+A+Review&rft.jtitle=Chemical+record&rft.au=Shah%2C+Syed+Shaheen&rft.au=Shaikh%2C+M+Nasiruzzaman&rft.au=Khan%2C+Mohd+Yusuf&rft.au=Alfasane%2C+Md+Almujaddade&rft.date=2021-07-01&rft.issn=1528-0691&rft.eissn=1528-0691&rft.volume=21&rft.issue=7&rft.spage=1631&rft_id=info:doi/10.1002%2Ftcr.202100135&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon |