Present Status and Future Prospects of Jute in Nanotechnology: A Review

Nanotechnology has transformed the world with its diverse applications, ranging from industrial developments to impacting our daily lives. It has multiple applications throughout financial sectors and enables the development of facilitating scientific endeavors with extensive commercial potentials....

Full description

Saved in:
Bibliographic Details
Published inChemical record Vol. 21; no. 7; pp. 1631 - 1665
Main Authors Shah, Syed Shaheen, Shaikh, M. Nasiruzzaman, Khan, Mohd Yusuf, Alfasane, Md. Almujaddade, Rahman, Mohammad Mizanur, Aziz, Md. Abdul
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanotechnology has transformed the world with its diverse applications, ranging from industrial developments to impacting our daily lives. It has multiple applications throughout financial sectors and enables the development of facilitating scientific endeavors with extensive commercial potentials. Nanomaterials, especially the ones which have shown biomedical and other health‐related properties, have added new dimensions to the field of nanotechnology. Recently, the use of bioresources in nanotechnology has gained significant attention from the scientific community due to its 100 % eco‐friendly features, availability, and low costs. In this context, jute offers a considerable potential. Globally, its plant produces the second most common natural cellulose fibers and a large amount of jute sticks as a byproduct. The main chemical compositions of jute fibers and sticks, which have a trace amount of ash content, are cellulose, hemicellulose, and lignin. This makes jute as an ideal source of pure nanocellulose, nano‐lignin, and nanocarbon preparation. It has also been used as a source in the evolution of nanomaterials used in various applications. In addition, hemicellulose and lignin, which are extractable from jute fibers and sticks, could be utilized as a reductant/stabilizer for preparing other nanomaterials. This review highlights the status and prospects of jute in nanotechnology. Different research areas in which jute can be applied, such as in nanocellulose preparation, as scaffolds for other nanomaterials, catalysis, carbon preparation, life sciences, coatings, polymers, energy storage, drug delivery, fertilizer delivery, electrochemistry, reductant, and stabilizer for synthesizing other nanomaterials, petroleum industry, paper industry, polymeric nanocomposites, sensors, coatings, and electronics, have been summarized in detail. We hope that these prospects will serve as a precursor of jute‐based nanotechnology research in the future. Jute produces the second most common natural cellulose fibers and large amounts of jute sticks as a byproduct. The main chemical composition of jute fibers and sticks, which have a trace amount of ash content, are cellulose, hemicellulose, and lignin. This makes jute an ideal candidate for utilization in nanotechnology and this review presents its latest developments and future potentials in the area.
AbstractList Nanotechnology has transformed the world with its diverse applications, ranging from industrial developments to impacting our daily lives. It has multiple applications throughout financial sectors and enables the development of facilitating scientific endeavors with extensive commercial potentials. Nanomaterials, especially the ones which have shown biomedical and other health‐related properties, have added new dimensions to the field of nanotechnology. Recently, the use of bioresources in nanotechnology has gained significant attention from the scientific community due to its 100 % eco‐friendly features, availability, and low costs. In this context, jute offers a considerable potential. Globally, its plant produces the second most common natural cellulose fibers and a large amount of jute sticks as a byproduct. The main chemical compositions of jute fibers and sticks, which have a trace amount of ash content, are cellulose, hemicellulose, and lignin. This makes jute as an ideal source of pure nanocellulose, nano‐lignin, and nanocarbon preparation. It has also been used as a source in the evolution of nanomaterials used in various applications. In addition, hemicellulose and lignin, which are extractable from jute fibers and sticks, could be utilized as a reductant/stabilizer for preparing other nanomaterials. This review highlights the status and prospects of jute in nanotechnology. Different research areas in which jute can be applied, such as in nanocellulose preparation, as scaffolds for other nanomaterials, catalysis, carbon preparation, life sciences, coatings, polymers, energy storage, drug delivery, fertilizer delivery, electrochemistry, reductant, and stabilizer for synthesizing other nanomaterials, petroleum industry, paper industry, polymeric nanocomposites, sensors, coatings, and electronics, have been summarized in detail. We hope that these prospects will serve as a precursor of jute‐based nanotechnology research in the future. Jute produces the second most common natural cellulose fibers and large amounts of jute sticks as a byproduct. The main chemical composition of jute fibers and sticks, which have a trace amount of ash content, are cellulose, hemicellulose, and lignin. This makes jute an ideal candidate for utilization in nanotechnology and this review presents its latest developments and future potentials in the area.
Nanotechnology has transformed the world with its diverse applications, ranging from industrial developments to impacting our daily lives. It has multiple applications throughout financial sectors and enables the development of facilitating scientific endeavors with extensive commercial potentials. Nanomaterials, especially the ones which have shown biomedical and other health-related properties, have added new dimensions to the field of nanotechnology. Recently, the use of bioresources in nanotechnology has gained significant attention from the scientific community due to its 100 % eco-friendly features, availability, and low costs. In this context, jute offers a considerable potential. Globally, its plant produces the second most common natural cellulose fibers and a large amount of jute sticks as a byproduct. The main chemical compositions of jute fibers and sticks, which have a trace amount of ash content, are cellulose, hemicellulose, and lignin. This makes jute as an ideal source of pure nanocellulose, nano-lignin, and nanocarbon preparation. It has also been used as a source in the evolution of nanomaterials used in various applications. In addition, hemicellulose and lignin, which are extractable from jute fibers and sticks, could be utilized as a reductant/stabilizer for preparing other nanomaterials. This review highlights the status and prospects of jute in nanotechnology. Different research areas in which jute can be applied, such as in nanocellulose preparation, as scaffolds for other nanomaterials, catalysis, carbon preparation, life sciences, coatings, polymers, energy storage, drug delivery, fertilizer delivery, electrochemistry, reductant, and stabilizer for synthesizing other nanomaterials, petroleum industry, paper industry, polymeric nanocomposites, sensors, coatings, and electronics, have been summarized in detail. We hope that these prospects will serve as a precursor of jute-based nanotechnology research in the future.Nanotechnology has transformed the world with its diverse applications, ranging from industrial developments to impacting our daily lives. It has multiple applications throughout financial sectors and enables the development of facilitating scientific endeavors with extensive commercial potentials. Nanomaterials, especially the ones which have shown biomedical and other health-related properties, have added new dimensions to the field of nanotechnology. Recently, the use of bioresources in nanotechnology has gained significant attention from the scientific community due to its 100 % eco-friendly features, availability, and low costs. In this context, jute offers a considerable potential. Globally, its plant produces the second most common natural cellulose fibers and a large amount of jute sticks as a byproduct. The main chemical compositions of jute fibers and sticks, which have a trace amount of ash content, are cellulose, hemicellulose, and lignin. This makes jute as an ideal source of pure nanocellulose, nano-lignin, and nanocarbon preparation. It has also been used as a source in the evolution of nanomaterials used in various applications. In addition, hemicellulose and lignin, which are extractable from jute fibers and sticks, could be utilized as a reductant/stabilizer for preparing other nanomaterials. This review highlights the status and prospects of jute in nanotechnology. Different research areas in which jute can be applied, such as in nanocellulose preparation, as scaffolds for other nanomaterials, catalysis, carbon preparation, life sciences, coatings, polymers, energy storage, drug delivery, fertilizer delivery, electrochemistry, reductant, and stabilizer for synthesizing other nanomaterials, petroleum industry, paper industry, polymeric nanocomposites, sensors, coatings, and electronics, have been summarized in detail. We hope that these prospects will serve as a precursor of jute-based nanotechnology research in the future.
Nanotechnology has transformed the world with its diverse applications, ranging from industrial developments to impacting our daily lives. It has multiple applications throughout financial sectors and enables the development of facilitating scientific endeavors with extensive commercial potentials. Nanomaterials, especially the ones which have shown biomedical and other health‐related properties, have added new dimensions to the field of nanotechnology. Recently, the use of bioresources in nanotechnology has gained significant attention from the scientific community due to its 100 % eco‐friendly features, availability, and low costs. In this context, jute offers a considerable potential. Globally, its plant produces the second most common natural cellulose fibers and a large amount of jute sticks as a byproduct. The main chemical compositions of jute fibers and sticks, which have a trace amount of ash content, are cellulose, hemicellulose, and lignin. This makes jute as an ideal source of pure nanocellulose, nano‐lignin, and nanocarbon preparation. It has also been used as a source in the evolution of nanomaterials used in various applications. In addition, hemicellulose and lignin, which are extractable from jute fibers and sticks, could be utilized as a reductant/stabilizer for preparing other nanomaterials. This review highlights the status and prospects of jute in nanotechnology. Different research areas in which jute can be applied, such as in nanocellulose preparation, as scaffolds for other nanomaterials, catalysis, carbon preparation, life sciences, coatings, polymers, energy storage, drug delivery, fertilizer delivery, electrochemistry, reductant, and stabilizer for synthesizing other nanomaterials, petroleum industry, paper industry, polymeric nanocomposites, sensors, coatings, and electronics, have been summarized in detail. We hope that these prospects will serve as a precursor of jute‐based nanotechnology research in the future.
Author Shah, Syed Shaheen
Aziz, Md. Abdul
Rahman, Mohammad Mizanur
Alfasane, Md. Almujaddade
Khan, Mohd Yusuf
Shaikh, M. Nasiruzzaman
Author_xml – sequence: 1
  givenname: Syed Shaheen
  surname: Shah
  fullname: Shah, Syed Shaheen
  organization: King Fahd University of Petroleum & Minerals
– sequence: 2
  givenname: M. Nasiruzzaman
  surname: Shaikh
  fullname: Shaikh, M. Nasiruzzaman
  organization: King Fahd University of Petroleum & Minerals (KFUPM)
– sequence: 3
  givenname: Mohd Yusuf
  surname: Khan
  fullname: Khan, Mohd Yusuf
  organization: King Fahd University of Petroleum & Minerals (KFUPM)
– sequence: 4
  givenname: Md. Almujaddade
  surname: Alfasane
  fullname: Alfasane, Md. Almujaddade
  organization: University of Dhaka
– sequence: 5
  givenname: Mohammad Mizanur
  surname: Rahman
  fullname: Rahman, Mohammad Mizanur
  organization: King Fahd University of Petroleum & Minerals
– sequence: 6
  givenname: Md. Abdul
  orcidid: 0000-0002-1537-2785
  surname: Aziz
  fullname: Aziz, Md. Abdul
  email: maziz@kfupm.edu.sa
  organization: King Fahd University of Petroleum & Minerals (KFUPM)
BookMark eNp90M9LwzAUB_AgCs7p0XvAi5dq0qRJ402GPxk65jyXNHvVjprMJFX23xudKAz0lHf4fB8v3z20bZ0FhA4pOaGE5KfR-JOc5GmmrNhCA1rkZUaEottfs8xKpdQu2gthkQjlUg7Q1cRDABvxQ9SxD1jbOb7sY-8BT7wLSzAxYNfg2z4Cbi2-09ZFMM_Wde5pdYbP8RTeWnjfRzuN7gIcfL9D9Hh5MRtdZ-P7q5vR-TgzjIsiM1A2muqiqYWqCyCsIErSWuRMCgN1XtKaMzU3RFKq5qKkwBnVQoHmWs1LyYboeL136d1rDyFWL20w0HXagutDlRecylIKyhI92qAL13ubrkuqIDkXRPGk2FqZ9N3goalMm6ponY1et11FSfVZbpXKrX7KTalsI7X07Yv2qz-9XPv3toPV_7iajaa_yQ9ZnIvK
CitedBy_id crossref_primary_10_1016_j_matlet_2024_136660
crossref_primary_10_1016_j_jddst_2023_105084
crossref_primary_10_1002_asia_202100898
crossref_primary_10_1016_j_advwatres_2024_104819
crossref_primary_10_1007_s10853_022_07248_y
crossref_primary_10_1016_j_jallcom_2022_166224
crossref_primary_10_1002_asia_202200869
crossref_primary_10_1007_s10570_023_05481_5
crossref_primary_10_1007_s11947_023_03101_5
crossref_primary_10_1016_j_inoche_2023_111163
crossref_primary_10_1016_j_ijbiomac_2024_136495
crossref_primary_10_1016_j_scp_2023_101101
crossref_primary_10_1002_tcr_202100278
crossref_primary_10_1016_j_dyepig_2023_111725
crossref_primary_10_1016_j_indcrop_2025_120586
crossref_primary_10_1002_tcr_202100230
crossref_primary_10_1016_j_indic_2024_100521
crossref_primary_10_3390_polym14071445
crossref_primary_10_1016_j_susmat_2025_e01266
crossref_primary_10_1016_j_isci_2021_103597
crossref_primary_10_1002_ajoc_202100314
crossref_primary_10_1016_j_jmrt_2024_02_010
crossref_primary_10_3390_ma15144784
crossref_primary_10_1002_asia_202300780
crossref_primary_10_1016_j_est_2022_105944
crossref_primary_10_1016_j_jece_2022_107548
crossref_primary_10_1002_tcr_202200041
crossref_primary_10_1016_j_nexus_2025_100391
crossref_primary_10_1002_ajoc_202300051
crossref_primary_10_1039_D3NA00345K
crossref_primary_10_1007_s42823_023_00478_3
crossref_primary_10_1002_tcr_202200039
crossref_primary_10_1016_j_cej_2023_144604
crossref_primary_10_3390_jcs7060242
crossref_primary_10_1002_bte2_70005
crossref_primary_10_1002_smll_202300258
crossref_primary_10_1002_asia_202400074
crossref_primary_10_1002_cssc_202101282
crossref_primary_10_1016_j_indcrop_2024_118599
crossref_primary_10_1021_acs_iecr_3c02096
crossref_primary_10_70749_ijbr_v3i1_507
crossref_primary_10_1016_j_heliyon_2024_e29070
crossref_primary_10_1016_j_jscs_2022_101570
crossref_primary_10_2174_2772434418666230427165013
crossref_primary_10_1016_j_ijbiomac_2024_131737
crossref_primary_10_1016_j_compositesb_2024_111738
crossref_primary_10_3390_jcs7120506
crossref_primary_10_1016_j_est_2022_104278
crossref_primary_10_3390_molecules27041433
crossref_primary_10_1002_tcr_202100219
crossref_primary_10_1016_j_optlastec_2023_109610
crossref_primary_10_1002_asia_202200567
crossref_primary_10_1016_j_carbpol_2024_122423
crossref_primary_10_1002_pls2_10168
crossref_primary_10_1177_00219983231194260
crossref_primary_10_3390_polym14020270
crossref_primary_10_3390_su151914482
crossref_primary_10_1016_j_arabjc_2022_104058
crossref_primary_10_1016_j_electacta_2024_143825
crossref_primary_10_1007_s12221_023_00377_4
crossref_primary_10_1016_j_est_2023_110152
crossref_primary_10_1021_acsaem_4c01828
crossref_primary_10_1002_smll_202306665
crossref_primary_10_1039_D4MH01475H
crossref_primary_10_3390_en15030873
crossref_primary_10_3390_polym15173589
crossref_primary_10_3390_horticulturae9030369
crossref_primary_10_1016_j_diamond_2023_110450
crossref_primary_10_1016_j_jssc_2023_123940
crossref_primary_10_1007_s10570_023_05364_9
crossref_primary_10_1002_tcr_202200013
crossref_primary_10_1016_j_ijbiomac_2024_133629
crossref_primary_10_1002_tcr_202200018
crossref_primary_10_1515_revic_2024_0029
crossref_primary_10_1038_s41598_023_46004_3
crossref_primary_10_1007_s12668_024_01444_7
crossref_primary_10_3390_ma18051016
crossref_primary_10_1016_j_cej_2023_142845
crossref_primary_10_1177_00219983231155013
crossref_primary_10_1021_acsnano_3c06824
crossref_primary_10_3390_radiation3010001
crossref_primary_10_1007_s13762_024_06299_9
crossref_primary_10_1016_j_cclet_2023_108533
crossref_primary_10_3390_nano11082029
crossref_primary_10_1002_tcr_202300105
crossref_primary_10_1016_j_jscs_2022_101514
crossref_primary_10_2174_240546150804230228120500
crossref_primary_10_3390_app13116604
crossref_primary_10_1016_j_inoche_2024_113777
crossref_primary_10_3390_en17040798
crossref_primary_10_1016_j_radphyschem_2023_111461
crossref_primary_10_1177_20412479231173113
crossref_primary_10_1016_j_csite_2022_101896
crossref_primary_10_1021_acsnano_3c01062
Cites_doi 10.1016/j.synthmet.2021.116765
10.1016/j.progpolymsci.2006.05.003
10.1002/slct.202003178
10.1109/EMBC.2018.8513229
10.1016/j.arabjc.2020.05.017
10.1002/9783527622115.ch1
10.1021/acssuschemeng.8b05419
10.1016/j.jelechem.2018.11.034
10.1051/rees/2017001
10.1111/j.1551-2916.2007.01484.x
10.1021/jp711431h
10.1016/j.jpowsour.2016.01.030
10.1515/ntrev-2020-0100
10.1002/tcr.202100044
10.1103/PhysRevMaterials.2.085006
10.1016/j.enbuild.2011.05.015
10.1016/j.carbpol.2019.115454
10.1007/s10570-017-1204-2
10.1016/j.nanoen.2016.04.036
10.1039/b714189k
10.1016/j.jmrt.2018.09.011
10.1016/j.est.2020.101562
10.1016/j.physrep.2020.03.001
10.1039/C9TA07466J
10.1016/j.carbpol.2016.02.015
10.1007/s11814-013-0172-y
10.1007/s10853-020-04888-w
10.1002/slct.201700429
10.1002/tcr.202000058
10.1021/acsomega.9b02830
10.1016/j.lfs.2019.117099
10.1002/adma.201606823
10.4236/ojpchem.2019.94006
10.3390/en14082281
10.1016/j.scienta.2009.04.006
10.1038/s41570-020-0173-4
10.1007/s10008-017-3814-x
10.1021/ja076196l
10.1002/smll.201704006
10.1016/j.memsci.2013.06.020
10.1088/1361-6528/aade1e
10.1021/acssuschemeng.8b01405
10.1016/j.carbpol.2020.115842
10.1016/j.compositesb.2012.12.004
10.1002/mame.201300008
10.1021/acsami.0c13715
10.1007/978-3-030-05399-4_35
10.3390/polym2040728
10.1021/jf900815x
10.1016/j.compositesa.2010.06.001
10.1016/j.ica.2009.12.038
10.1016/j.bios.2009.03.001
10.1080/09205063.2019.1612726
10.1016/j.msec.2017.03.196
10.3390/polym9120725
10.1038/s41598-021-86426-5
10.1016/j.carbpol.2015.09.115
10.1021/cr9903048
10.1021/cs300158g
10.1016/j.compositesa.2015.08.038
10.1016/j.porgcoat.2017.01.019
10.1002/app.34918
10.1016/j.copbio.2016.01.002
10.1016/j.crcon.2018.05.004
10.1007/s12039-017-1248-8
10.1016/j.arabjc.2019.12.013
10.1002/adsc.201100725
10.17352/2455-3492.000026
10.1073/pnas.0706508104
10.1016/j.matchemphys.2016.02.030
10.1039/C5EE03404C
10.1016/j.carbpol.2012.06.046
10.1016/j.ijbiomac.2017.09.107
10.1016/j.carbpol.2012.08.073
10.1002/aenm.201600476
10.1111/j.1541-4337.2010.00126.x
10.1590/0001-3765201420140143
10.1002/tcr.202180501
10.1016/j.carbpol.2014.03.045
10.1039/C7CS00790F
10.1002/adfm.201100172
10.1002/adhm.201800334
10.1515/epoly-2020-0015
10.1115/1.4005244
10.2118/58357-PA
10.1002/pc.22663
10.1002/admi.201700604
10.1007/s10570-013-9973-8
10.1016/j.carbpol.2012.10.021
10.1186/2193-1801-2-318
10.1016/j.ijbiomac.2020.02.221
10.1016/B978-0-12-816913-1.00005-2
10.1002/adfm.201304046
10.1039/C4NR03584D
10.1007/s10570-017-1251-8
10.1039/B915436A
10.1016/j.jngse.2020.103156
10.1016/j.est.2020.101908
10.1016/j.jcou.2020.101361
10.1002/tcr.202100043
10.1002/celc.201700602
10.1002/slct.201900891
10.1021/acsami.5b00498
10.1016/j.jclepro.2018.12.184
10.1155/2014/842147
10.1016/j.carbpol.2013.11.055
10.1016/j.matlet.2015.09.022
10.1080/15459624.2016.1177643
10.1021/nn504334u
10.1039/C8RA05270K
10.1039/D0CY00973C
10.1007/s10570-020-03482-2
10.1002/adsu.202000286
10.3390/polym9080335
10.1021/es202223p
10.1007/s11051-010-9995-1
10.1007/s10163-018-0792-8
10.1007/s10854-020-04148-2
10.1021/acs.orglett.6b01999
10.1021/acs.nanolett.6b00771
10.1016/j.matlet.2012.08.043
10.1016/j.cej.2021.129076
10.1021/acsami.6b01243
10.1002/aoc.3129
10.1007/s11814-017-0145-7
10.1007/s10570-015-0747-3
10.1002/smll.201906567
10.1016/j.carbpol.2016.06.025
10.1007/s10570-012-9805-2
10.15406/jteft.2018.04.00126
10.1016/j.tetlet.2007.07.207
10.1007/978-3-319-07578-5_14
10.1039/D0MA00478B
10.1007/s10570-020-03396-z
10.1260/026361706781388950
10.3389/fchem.2020.00392
10.1002/elan.200703934
10.1021/acs.accounts.8b00391
10.1021/acsomega.9b03184
10.1039/C7NR00400A
10.1039/C6NR03054H
10.1016/S0079-6700(97)00039-7
10.1038/s41598-017-15463-w
10.1016/j.carbpol.2011.06.060
10.1016/j.bios.2019.111716
10.1021/nn401818t
10.1038/s41598-017-01319-w
10.1007/s10570-015-0798-5
10.1016/j.carbpol.2011.06.034
10.1007/s10570-017-1627-9
10.1039/C9RA06285H
10.1021/acsami.5b05841
10.1021/jf9033128
10.1088/2053-1591/aaf3d8
10.1007/s10854-019-01979-6
10.1016/j.proeng.2013.03.196
10.1007/978-3-319-65457-7_5
10.1016/j.carbpol.2018.12.010
10.1039/C7GC02835K
10.1016/j.carbon.2006.05.048
10.1002/adma.201004134
10.3390/ma12081226
10.3923/jbs.2001.1001.1004
10.1016/j.petrol.2009.02.014
10.1021/acs.jpcb.5b00715
10.1021/ja411468e
10.1021/acsami.8b13018
10.1016/j.tetlet.2010.02.079
10.1016/j.sbsr.2020.100368
10.1016/j.carbpol.2014.01.057
10.1039/C8NA00090E
10.2991/icmemtc-16.2016.148
10.3389/fmats.2020.00269
10.1021/am507999s
10.1016/j.compositesb.2010.12.017
10.1260/1708-5284.9.1.45
10.1016/j.ijbiomac.2015.08.053
10.3329/bjpt.v27i2.50686
10.1039/C5TA02770E
10.1007/s10570-019-02363-7
10.1016/j.ijbiomac.2019.01.001
10.1007/s12221-013-0133-4
10.1016/j.memsci.2016.09.024
10.1016/j.carbon.2017.11.012
10.1016/j.carbpol.2018.06.045
10.1002/aenm.201600802
10.1016/j.atmosenv.2006.08.009
10.4028/www.scientific.net/AMM.184-185.1428
10.1039/C4RA01104J
10.1016/j.jece.2020.104756
10.1021/om4001956
10.1002/gch2.201800079
10.1142/9789814566469_0013
10.1007/s11356-019-05556-6
10.1002/tcr.202000115
10.1039/C7NJ04103A
10.1021/acssuschemeng.6b00499
10.1039/c2jm32229c
10.1007/978-3-319-49382-4_4
10.1088/1757-899X/254/4/042015
10.1038/29874
10.1002/tcr.202000071
10.1016/j.matchemphys.2018.05.082
10.1039/C5RA25135D
10.3390/md14070128
10.1016/j.matpr.2019.10.110
10.1007/s10570-014-0473-2
10.1016/j.indcrop.2014.03.005
10.1002/chem.202005156
10.1039/C8EE03112F
10.1007/s40725-020-00117-4
10.3390/ma12010002
10.1016/j.electacta.2016.08.020
10.1016/j.micromeso.2018.07.050
10.1021/acs.chemrev.5b00203
10.1016/j.foodhyd.2019.105411
10.1021/acscentsci.6b00032
10.1016/j.progpolymsci.2009.06.002
10.1039/C6MH00500D
10.1002/er.4983
10.1039/C8NA00238J
10.1155/2013/738741
10.1016/j.ensm.2020.03.019
10.3390/polym12071535
10.1039/C7RA07908G
10.1016/j.molliq.2018.12.115
10.1016/j.gee.2016.08.001
10.3390/polym10010063
10.1016/j.colsurfb.2009.09.001
10.1016/j.physe.2012.04.022
10.1021/acs.chemmater.7b00531
10.1021/ie9019984
10.1021/om00047a028
10.1098/rsta.2007.2160
10.1039/C5NR03853G
10.1016/j.nantod.2014.06.011
10.1021/acs.chemrestox.9b00308
10.1016/j.tifs.2018.01.015
10.1016/j.compstruct.2016.11.062
10.1080/03602559.2017.1381253
10.1007/s13204-019-01242-8
10.1016/j.jhazmat.2009.09.072
10.15376/biores.2.4.739-788
10.1021/acs.jafc.9b03110
10.1016/j.jiec.2010.10.006
10.15376/biores.15.4.Safian
10.1109/ESTC.2014.6962740
10.1016/j.aca.2019.01.058
10.3390/coatings9070433
10.1016/j.carbpol.2017.04.008
10.1021/acs.chemmater.7b01170
10.1016/j.tet.2009.11.050
10.1016/j.jpowsour.2016.04.115
10.1021/jp073350h
10.1515/HF.2008.003
10.3390/fib7050040
10.1007/s10853-013-7512-5
10.1016/j.enmm.2017.07.002
10.1002/adma.201504438
10.1002/adfm.201403275
10.1039/C6GC02086K
10.1002/asia.202001342
10.1016/j.jiec.2019.03.032
10.1007/s10853-020-04479-9
10.1002/adfm.201400590
10.1007/s40204-014-0023-x
10.1007/s10570-010-9481-z
10.1016/j.memsci.2014.10.056
10.1016/j.biortech.2008.01.036
10.1021/jp065866r
10.1016/j.diamond.2019.107514
10.1039/C4CC09466B
10.1002/slct.201903423
10.1002/asia.202100309
10.1021/acs.est.8b02772
10.2217/nnm.15.67
ContentType Journal Article
Copyright 2021 The Chemical Society of Japan & Wiley‐VCH GmbH
2021 The Chemical Society of Japan & Wiley-VCH GmbH.
Copyright_xml – notice: 2021 The Chemical Society of Japan & Wiley‐VCH GmbH
– notice: 2021 The Chemical Society of Japan & Wiley-VCH GmbH.
DBID AAYXX
CITATION
7QO
7T7
8FD
C1K
FR3
P64
7X8
DOI 10.1002/tcr.202100135
DatabaseName CrossRef
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Engineering Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1528-0691
EndPage 1665
ExternalDocumentID 10_1002_tcr_202100135
TCR202100135
Genre reviewArticle
GroupedDBID ---
.3N
.Y3
05W
0R~
10A
123
1OC
29B
31~
33P
3WU
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5VS
66C
702
7PT
8-1
8UM
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BROTX
BRXPI
BY8
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F5P
FEDTE
G-S
G.N
GODZA
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
LATKE
LAW
LC2
LC3
LEEKS
LH-
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MSFUL
MSSTM
MXFUL
MXSTM
MY~
N9A
O9-
OIG
P2W
P4D
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
V2E
W99
WBKPD
WOHZO
WQJ
WXSBR
WYJ
WYUIH
XG1
XV2
ZZTAW
~IA
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QO
7T7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c3465-ce8fa1a5fb69b5e0350971b62376ceb281b439dc07119d681e431a69ea4a9d873
IEDL.DBID DR2
ISSN 1527-8999
1528-0691
IngestDate Thu Jul 10 21:35:06 EDT 2025
Fri Jul 25 12:18:35 EDT 2025
Tue Jul 01 00:57:29 EDT 2025
Thu Apr 24 23:01:45 EDT 2025
Wed Jan 22 16:28:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3465-ce8fa1a5fb69b5e0350971b62376ceb281b439dc07119d681e431a69ea4a9d873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1537-2785
PQID 2550246094
PQPubID 1006501
PageCount 35
ParticipantIDs proquest_miscellaneous_2541787613
proquest_journals_2550246094
crossref_citationtrail_10_1002_tcr_202100135
crossref_primary_10_1002_tcr_202100135
wiley_primary_10_1002_tcr_202100135_TCR202100135
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Chemical record
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020; 20
2016; 307
1991; 10
2019; 12
2020; 16
2020; 15
2020; 13
2020; 12
2020; 10
2016; 39
1998; 393
2018; 216
2013; 56
2019; 21
2017; 77
2019; 26
2017; 161
2019; 832
2008; 112
2010; 2
2012; 22
2017; 169
2019; 277
2019; 274
2010; 9
2009; 67
2007; 19
2021; 43
2019; 30
2018; 107
2013; 91
2016; 321
2013; 92
2020; 33
2020; 32
2008; 366
2017; 254
2016; 18
2016; 16
2016; 14
2016; 13
2016; 4
2016; 5
2016; 6
2016; 1
2016; 2
2016; 3
2020; 31
2015; 115
2020; 30
2020; 152
1960; 23
2015; 476
2021; 415
2020; 28
2020; 27
2010; 174
2015; 119
2020; 22
2016; 214
2016; 28
2012; 44
2016; 25
2016; 8
2016; 9
2016; 23
2020; 29
2010; 58
2020; 240
2019; 53
2013; 446
2013; 20
2020; 55
2007; 32
2014; 299
2020; 8
2010; 66
2020; 7
2020; 6
2020; 5
2020; 4
2013; 14
2014; 4
2014; 3
2020; 1
2019; 67
2017; 34
2020; 9
2018; 74
2020; 44
2014; 9
2008; 62
2014; 6
2014; 56
2017; 129
2021; 9
2015; 161
2010; 75
2013; 48
2021; 5
2007; 129
2015; 3
2019; 76
2017; 24
2010; 363
2008
2006
2020; 100
2017; 29
2008; 99
2015; 9
2015; 7
2020; 229
2014; 86
2013; 36
2020; 75
2013; 32
2021
2020
2007; 111
2013; 30
2019
2017
2020; 233
2016
2018; 51
2014
2016; 136
2007; 41
2007; 48
2017; 106
2018; 57
2010; 12
2007; 104
2012; 123
2013; 2
2019; 98
2014; 24
2016; 143
2019; 207
2014; 28
2013; 7
2018; 42
2014; 136
2018; 47
2018; 7
2018; 6
2018; 8
2018; 2
2012; 134
2018; 4
2015; 81
2021; 277
2006; 24
2018; 1
1986
2009; 122
2014; 14
2007; 2
1903; 36
2014; 11
2016; 151
2019; 1059
2019; 8
2019; 7
2018; 29
2019; 9
2019; 4
2019; 3
2015; 51
2019; 1
2007; 90
2014; 2014
2018; 22
2018; 20
2010; 41
2018; 25
2018; 198
2010; 49
2012; 354
2006; 44
2011; 86
2019; 213
2014; 35
2000; 100
2018; 10
2010; 51
2016; 173
2018; 14
2017; 6
2017; 7
2021; 27
2017; 8
2021; 21
2017; 2
2012; 184–185
2017; 4
2018; 127
2019; 126
2011; 13
2011; 17
2011; 18
2017; 9
2009; 57
2011; 21
2016; 83
2011; 23
2017; 522
2009; 24
2015; 10
2008; 15
2020; 860
1999; 4
2008; 10
1998; 23
2019; 145
2009; 34
2021; 14
2021; 16
2014; 105
2015; 25
2012; 90
2012; 2
2014; 109
2021; 11
2015; 22
2011; 42
2011; 43
2011; 45
2001; 1
2012; 89
2012; 88
2014; 103
2012; 9
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_297_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_191_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
Ali H. R. (e_1_2_7_189_1) 2017; 6
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_188_1
e_1_2_7_202_1
e_1_2_7_248_1
e_1_2_7_225_1
Rodeanu M. S. (e_1_2_7_46_1) 2013; 36
e_1_2_7_263_1
e_1_2_7_240_1
Lin X. (e_1_2_7_194_1) 2016; 5
Nayak L. (e_1_2_7_99_1) 2012; 89
e_1_2_7_116_1
e_1_2_7_285_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_180_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_56_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_237_1
e_1_2_7_177_1
e_1_2_7_214_1
e_1_2_7_275_1
e_1_2_7_252_1
e_1_2_7_139_1
Ray D. P. (e_1_2_7_30_1) 2017; 4
e_1_2_7_128_1
e_1_2_7_296_1
e_1_2_7_105_1
e_1_2_7_120_1
e_1_2_7_192_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_249_1
e_1_2_7_143_1
e_1_2_7_29_1
e_1_2_7_203_1
e_1_2_7_226_1
e_1_2_7_166_1
e_1_2_7_241_1
e_1_2_7_264_1
Boufi S. (e_1_2_7_129_1) 2014
e_1_2_7_117_1
e_1_2_7_70_1
e_1_2_7_93_1
Debnath S. (e_1_2_7_244_1) 2016
e_1_2_7_181_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_78_1
e_1_2_7_193_1
e_1_2_7_238_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_178_1
e_1_2_7_215_1
e_1_2_7_230_1
e_1_2_7_253_1
e_1_2_7_106_1
e_1_2_7_295_1
e_1_2_7_9_1
e_1_2_7_81_1
e_1_2_7_13_1
e_1_2_7_66_1
e_1_2_7_170_1
e_1_2_7_227_1
e_1_2_7_89_1
e_1_2_7_182_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_204_1
e_1_2_7_265_1
e_1_2_7_242_1
Bacakova L. (e_1_2_7_284_1) 2008
Knoevenagel E. (e_1_2_7_103_1) 1903; 36
e_1_2_7_118_1
e_1_2_7_283_1
Islam M. S. (e_1_2_7_157_1) 2012; 2
e_1_2_7_110_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_171_1
e_1_2_7_216_1
e_1_2_7_239_1
e_1_2_7_39_1
Jahan M. I. (e_1_2_7_82_1) 2008; 15
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_179_1
e_1_2_7_254_1
e_1_2_7_231_1
Athalye A. (e_1_2_7_31_1) 2018; 2
e_1_2_7_294_1
e_1_2_7_107_1
Panchuk M. (e_1_2_7_246_1) 2016; 3
e_1_2_7_122_1
e_1_2_7_279_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
Pachuau L. (e_1_2_7_280_1) 2017
e_1_2_7_65_1
e_1_2_7_205_1
e_1_2_7_228_1
e_1_2_7_160_1
e_1_2_7_183_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_220_1
e_1_2_7_243_1
e_1_2_7_266_1
e_1_2_7_168_1
e_1_2_7_119_1
e_1_2_7_282_1
e_1_2_7_91_1
e_1_2_7_304_1
e_1_2_7_111_1
e_1_2_7_53_1
e_1_2_7_76_1
Islam M. S. (e_1_2_7_126_1) 2014; 11
Feynman R. P. (e_1_2_7_1_1) 1960; 23
e_1_2_7_172_1
e_1_2_7_195_1
e_1_2_7_217_1
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_232_1
e_1_2_7_255_1
Jose J. (e_1_2_7_221_1) 2019; 4
Padal K. (e_1_2_7_64_1) 2014; 14
e_1_2_7_270_1
e_1_2_7_108_1
e_1_2_7_293_1
e_1_2_7_7_1
e_1_2_7_123_1
e_1_2_7_278_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_87_1
e_1_2_7_161_1
e_1_2_7_184_1
e_1_2_7_206_1
e_1_2_7_26_1
e_1_2_7_229_1
e_1_2_7_49_1
e_1_2_7_267_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_281_1
e_1_2_7_303_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_289_1
Khatoon S. (e_1_2_7_124_1) 2012; 2
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_75_1
e_1_2_7_150_1
e_1_2_7_196_1
e_1_2_7_37_1
e_1_2_7_173_1
e_1_2_7_218_1
e_1_2_7_256_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_233_1
e_1_2_7_210_1
e_1_2_7_271_1
e_1_2_7_292_1
e_1_2_7_109_1
e_1_2_7_8_1
e_1_2_7_277_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_63_1
e_1_2_7_86_1
Cerveny L. (e_1_2_7_100_1) 1986
e_1_2_7_185_1
e_1_2_7_207_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_245_1
e_1_2_7_268_1
e_1_2_7_147_1
e_1_2_7_222_1
e_1_2_7_260_1
e_1_2_7_302_1
e_1_2_7_113_1
e_1_2_7_288_1
e_1_2_7_51_1
e_1_2_7_74_1
e_1_2_7_97_1
Usman M. (e_1_2_7_121_1) 2021
Capek I. (e_1_2_7_4_1) 2006
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_219_1
e_1_2_7_197_1
e_1_2_7_234_1
e_1_2_7_257_1
e_1_2_7_136_1
e_1_2_7_211_1
e_1_2_7_159_1
e_1_2_7_272_1
e_1_2_7_291_1
e_1_2_7_5_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_276_1
e_1_2_7_299_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_208_1
e_1_2_7_223_1
e_1_2_7_269_1
e_1_2_7_186_1
Islam M. M. (e_1_2_7_43_1) 2017; 4
e_1_2_7_148_1
e_1_2_7_200_1
e_1_2_7_261_1
e_1_2_7_301_1
Al-Yasiri M. S. (e_1_2_7_18_1) 2015; 3
e_1_2_7_114_1
e_1_2_7_287_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_175_1
e_1_2_7_212_1
e_1_2_7_258_1
e_1_2_7_198_1
e_1_2_7_235_1
e_1_2_7_137_1
e_1_2_7_273_1
e_1_2_7_250_1
e_1_2_7_290_1
e_1_2_7_6_1
e_1_2_7_298_1
Bardet R. (e_1_2_7_259_1) 2014
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_209_1
e_1_2_7_190_1
e_1_2_7_10_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_201_1
e_1_2_7_224_1
e_1_2_7_247_1
e_1_2_7_164_1
e_1_2_7_187_1
e_1_2_7_149_1
e_1_2_7_262_1
e_1_2_7_300_1
e_1_2_7_115_1
e_1_2_7_286_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_199_1
e_1_2_7_213_1
e_1_2_7_236_1
e_1_2_7_138_1
e_1_2_7_274_1
Ghosh R. K. (e_1_2_7_80_1) 2020
e_1_2_7_251_1
References_xml – volume: 26
  start-page: 3671
  year: 2019
  end-page: 3684
  publication-title: Cellulose
– year: 2020
  publication-title: Int. J. Environ. An. Chem.
– volume: 6
  start-page: 159
  year: 2020
  end-page: 171
  publication-title: Curr. For. Rep.
– volume: 174
  start-page: 437
  year: 2010
  end-page: 443
  publication-title: J. Hazard. Mater.
– volume: 10
  start-page: 34502
  year: 2018
  end-page: 34512
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  year: 2021
  publication-title: J. Environ. Chem. Eng.
– volume: 86
  start-page: 1468
  year: 2011
  end-page: 1475
  publication-title: Carbohydr. Polym.
– volume: 33
  start-page: 1292
  year: 2020
  end-page: 1311
  publication-title: Chem. Res. Toxicol.
– volume: 2
  start-page: 325
  year: 2012
  end-page: 333
  publication-title: J. Mat. Sci. Eng. B
– volume: 34
  start-page: 2480
  year: 2017
  end-page: 2487
  publication-title: Korean J. Chem. Eng.
– volume: 21
  start-page: 204
  year: 2021
  end-page: 238
  publication-title: Chem. Rec.
– volume: 8
  start-page: 392
  year: 2020
  publication-title: Front. Chem.
– volume: 7
  start-page: 40
  year: 2019
  publication-title: Fibers
– volume: 49
  start-page: 2775
  year: 2010
  end-page: 2782
  publication-title: Ind. Eng. Chem. Res.
– volume: 25
  start-page: 464
  year: 2015
  end-page: 470
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 5006
  year: 2015
  end-page: 5016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 107
  start-page: 1294
  year: 2018
  end-page: 1301
  publication-title: Int. J. Biol. Macromol.
– volume: 299
  start-page: 9
  year: 2014
  end-page: 26
  publication-title: Macromol. Mater. Eng.
– volume: 58
  start-page: 3753
  year: 2010
  end-page: 3760
  publication-title: J. Agric. Food. Chem.
– volume: 20
  start-page: 191
  year: 2013
  end-page: 200
  publication-title: Cellulose
– volume: 9
  start-page: 1284
  year: 2020
  end-page: 1314
  publication-title: Nanotech. Rev.
– volume: 29
  year: 2018
  publication-title: Nanotechnology
– volume: 27
  start-page: 467
  year: 2020
  end-page: 478
  publication-title: Bangladesh J. Plant Taxon.
– volume: 34
  start-page: 1068
  year: 2009
  end-page: 1133
  publication-title: Prog. Polym. Sci.
– start-page: 39
  year: 2008
  end-page: 107
– volume: 4
  year: 2017
  publication-title: Adv. Mater. Interfaces
– volume: 47
  start-page: 2837
  year: 2018
  end-page: 2872
  publication-title: Chem. Soc. Rev.
– volume: 76
  start-page: 160
  year: 2019
  end-page: 172
  publication-title: J. Ind. Eng. Chem.
– volume: 24
  start-page: 2967
  year: 2009
  end-page: 2972
  publication-title: Biosens. Bioelectron.
– volume: 216
  start-page: 491
  year: 2018
  end-page: 495
  publication-title: Mater. Chem. Phys.
– volume: 115
  start-page: 6621
  year: 2015
  end-page: 6686
  publication-title: Chem. Rev.
– volume: 86
  start-page: 1549
  year: 2011
  end-page: 1557
  publication-title: Carbohydr. Polym.
– volume: 2
  start-page: 318
  year: 2013
  end-page: 318
  publication-title: SpringerPlus
– volume: 254
  year: 2017
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
– volume: 30
  start-page: 16087
  year: 2019
  end-page: 16098
  publication-title: J. Mater. Sci. – Mater. Electron.
– volume: 4
  start-page: 22514
  year: 2019
  end-page: 22520
  publication-title: ACS Omega
– volume: 173
  start-page: 404
  year: 2016
  end-page: 411
  publication-title: Mater. Chem. Phys.
– volume: 4
  start-page: 19408
  year: 2019
  end-page: 19419
  publication-title: ACS Omega
– volume: 1
  start-page: 613
  year: 2019
  end-page: 626
  publication-title: Nanoscale Adv.
– volume: 10
  start-page: 6544
  year: 2020
  end-page: 6551
  publication-title: Catal. Sci. Technol.
– volume: 43
  year: 2021
  publication-title: J. CO2 Util.
– volume: 3
  start-page: 15049
  year: 2015
  end-page: 15056
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 2952
  year: 2017
  end-page: 2958
  publication-title: Chemelectrochem
– volume: 11
  start-page: 6945
  year: 2021
  publication-title: Sci. Rep.
– volume: 3
  year: 2019
  publication-title: Glob. Chall.
– volume: 48
  start-page: 7837
  year: 2013
  end-page: 7846
  publication-title: J. Mater. Sci.
– volume: 67
  start-page: 10954
  year: 2019
  end-page: 10967
  publication-title: J. Agric. Food. Chem.
– volume: 8
  start-page: 10183
  year: 2016
  end-page: 10192
  publication-title: ACS Appl. Mater. Interfaces
– volume: 184–185
  start-page: 1428
  year: 2012
  end-page: 1432
  publication-title: Appl. Mech. Mater.
– volume: 198
  start-page: 249
  year: 2018
  end-page: 260
  publication-title: Carbohydr. Polym.
– volume: 7
  start-page: 6037
  year: 2013
  end-page: 6046
  publication-title: ACS Nano
– volume: 13
  start-page: 1557
  year: 2011
  end-page: 1562
  publication-title: J. Nanopart. Res.
– year: 2021
  publication-title: Chem. Rec.
– volume: 35
  start-page: 310
  year: 2014
  end-page: 317
  publication-title: Polym. Compos.
– volume: 86
  start-page: 2137
  year: 2014
  end-page: 2144
  publication-title: An. Acad. Bras. Ciênc.
– volume: 103
  start-page: 119
  year: 2014
  end-page: 125
  publication-title: Carbohydr. Polym.
– volume: 10
  start-page: 424
  year: 2008
  end-page: 432
  publication-title: Green Chem.
– volume: 354
  start-page: 1307
  year: 2012
  end-page: 1318
  publication-title: Adv. Synth. Catal.
– volume: 20
  start-page: 1074
  year: 2020
  end-page: 1098
  publication-title: Chem. Rec.
– volume: 7
  start-page: 19809
  year: 2015
  end-page: 19815
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 1535
  year: 2020
  publication-title: Polymers
– volume: 9
  start-page: 28199
  year: 2019
  end-page: 28206
  publication-title: RSC Adv.
– start-page: 1001
  year: 2019
  end-page: 1025
– volume: 17
  start-page: 36
  year: 2011
  end-page: 40
  publication-title: J. Ind. Eng. Chem.
– volume: 36
  start-page: 49
  year: 2013
  end-page: 53
  publication-title: An. Univ. “Dunarea Jos” Galati, Fasc. IX. Metall. Mat. Sci.
– volume: 53
  start-page: 412
  year: 2019
  end-page: 421
  publication-title: Environ. Sci. Technol.
– volume: 25
  start-page: 1103
  year: 2018
  end-page: 1115
  publication-title: Cellulose
– start-page: 131
  year: 2019
  end-page: 164
– volume: 51
  start-page: 2067
  year: 2010
  end-page: 2070
  publication-title: Tetrahedron Lett.
– volume: 321
  start-page: 185
  year: 2016
  end-page: 192
  publication-title: J. Power Sources
– volume: 274
  start-page: 251
  year: 2019
  end-page: 256
  publication-title: Microporous Mesoporous Mater.
– volume: 307
  start-page: 624
  year: 2016
  end-page: 633
  publication-title: J. Power Sources
– volume: 27
  start-page: 10077
  year: 2020
  end-page: 10093
  publication-title: Cellulose
– volume: 27
  start-page: 6973
  year: 2021
  end-page: 6984
  publication-title: Chem. Eur. J.
– volume: 8
  start-page: 134
  year: 2017
  end-page: 149
  publication-title: Envir. Nanotech. Monit. Manag.
– volume: 67
  start-page: 48
  year: 2009
  end-page: 56
  publication-title: J. Pet. Sci. Eng.
– volume: 161
  start-page: 340
  year: 2017
  end-page: 349
  publication-title: Compos. Struct.
– volume: 91
  start-page: 348
  year: 2013
  end-page: 355
  publication-title: Carbohydr. Polym.
– volume: 119
  start-page: 5911
  year: 2015
  end-page: 5917
  publication-title: J. Phys. Chem. B.
– volume: 30
  year: 2020
  publication-title: J. Energy Storage
– volume: 7
  start-page: 20045
  year: 2019
  end-page: 20074
  publication-title: J. Mater. Chem. A
– volume: 104
  start-page: 13574
  year: 2007
  end-page: 13577
  publication-title: Proc. Natl. Acad. Sci.
– volume: 21
  start-page: 315
  year: 2019
  end-page: 325
  publication-title: J. Mater. Cycles Waste Manage.
– volume: 122
  start-page: 77
  year: 2009
  end-page: 82
  publication-title: Sci. Hortic.
– volume: 277
  start-page: 613
  year: 2019
  end-page: 623
  publication-title: J. Mol. Liq.
– volume: 15
  start-page: 413
  year: 2008
  end-page: 416
  publication-title: Indian J. Chem. Technol.
– volume: 26
  start-page: 22656
  year: 2019
  end-page: 22669
  publication-title: Environ. Sci. Pollut. Res.
– volume: 21
  start-page: 1038
  year: 2021
  end-page: 1038
  publication-title: Chem. Rec.
– volume: 7
  start-page: 2516
  year: 2019
  end-page: 2529
  publication-title: ACS Sustain. Chem. Eng.
– volume: 7
  start-page: 1174
  year: 2017
  publication-title: Sci. Rep.
– volume: 89
  start-page: 1723
  year: 2012
  end-page: 1727
  publication-title: J. Indian Chem. Soc.
– volume: 8
  start-page: 31296
  year: 2018
  end-page: 31302
  publication-title: RSC Adv.
– volume: 30
  start-page: 2228
  year: 2013
  end-page: 2234
  publication-title: Korean J. Chem. Eng.
– volume: 169
  start-page: 108
  year: 2017
  end-page: 116
  publication-title: Carbohydr. Polym.
– volume: 29
  year: 2020
  publication-title: Sens. Bio-Sens. Res.
– volume: 22
  start-page: 807
  year: 2018
  end-page: 816
  publication-title: J. Solid State Electrochem.
– volume: 32
  start-page: 2452
  year: 2013
  end-page: 2458
  publication-title: Organometallics
– volume: 24
  start-page: 761
  year: 2006
  end-page: 770
  publication-title: Adsorp. Sci. Technol.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 860
  start-page: 1
  year: 2020
  end-page: 26
  publication-title: Phys. Rep.
– volume: 12
  start-page: 49992
  year: 2020
  end-page: 50001
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 1
  year: 2017
  end-page: 19
– volume: 41
  start-page: 253
  year: 2007
  end-page: 260
  publication-title: Atmos. Environ.
– volume: 161
  start-page: 476
  year: 2015
  end-page: 479
  publication-title: Mater. Lett.
– volume: 51
  start-page: 3154
  year: 2018
  end-page: 3165
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 14827
  year: 2020
  end-page: 14838
  publication-title: ChemistrySelect
– volume: 151
  start-page: 716
  year: 2016
  end-page: 724
  publication-title: Carbohydr. Polym.
– volume: 21
  start-page: 2150
  year: 2011
  end-page: 2154
  publication-title: Adv. Funct. Mater.
– volume: 44
  start-page: 2289
  year: 2020
  end-page: 2297
  publication-title: Int. J. Energy Res.
– volume: 75
  start-page: 1
  year: 2010
  end-page: 18
  publication-title: Colloids Surf. B Biointerfaces
– volume: 7
  start-page: 3263
  year: 2015
  end-page: 3271
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  start-page: 4250
  year: 2016
  end-page: 4253
  publication-title: Org. Lett.
– start-page: 267
  year: 2014
  end-page: 305
– volume: 10
  start-page: 2379
  year: 2015
  end-page: 2404
  publication-title: Nanomedicine
– start-page: 69
  year: 2017
  end-page: 100
– volume: 15
  start-page: 9756
  year: 2020
  end-page: 9785
  publication-title: BioResources
– volume: 12
  start-page: 35
  year: 2010
  end-page: 38
  publication-title: Green Chem.
– volume: 6
  start-page: 85
  year: 2017
  end-page: 101
  publication-title: Advances Mat.
– volume: 16
  start-page: 1570
  year: 2021
  end-page: 1583
  publication-title: Chem. Asian J.
– volume: 19
  start-page: 1787
  year: 2007
  end-page: 1793
  publication-title: Electroanal.
– volume: 240
  year: 2020
  publication-title: Life Sci.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  start-page: 552
  year: 2010
  end-page: 571
  publication-title: Compr. Rev. Food Sci. Food Saf.
– volume: 22
  start-page: 3725
  year: 2015
  end-page: 3738
  publication-title: Cellulose
– volume: 22
  start-page: 789
  year: 2015
  end-page: 802
  publication-title: Cellulose
– volume: 111
  start-page: 12243
  year: 2007
  end-page: 12253
  publication-title: J. Phys. Chem. C.
– volume: 98
  year: 2019
  publication-title: Diamond Relat. Mater.
– volume: 4
  start-page: 368
  year: 1999
  end-page: 379
  publication-title: SPE J.
– volume: 90
  start-page: 1075
  year: 2012
  end-page: 1080
  publication-title: Carbohydr. Polym.
– volume: 24
  start-page: 7093
  year: 2014
  end-page: 7101
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 1400
  year: 2019
  end-page: 1411
  publication-title: J. Mater. Res. Technol.
– volume: 9
  start-page: 63
  year: 2019
  end-page: 75
  publication-title: Open J. Polym. Chem.
– volume: 28
  start-page: 293
  year: 2020
  end-page: 299
  publication-title: Energy Storage Mater.
– volume: 55
  start-page: 6721
  year: 2020
  end-page: 6753
  publication-title: J. Mater. Sci.
– volume: 136
  start-page: 1738
  year: 2014
  end-page: 1741
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 4538
  year: 2008
  end-page: 4544
  publication-title: J. Phys. Chem. C.
– volume: 2
  start-page: 739
  year: 2007
  end-page: 788
  publication-title: BioResources
– volume: 446
  start-page: 376
  year: 2013
  end-page: 382
  publication-title: J. Membr. Sci.
– volume: 41
  start-page: 1329
  year: 2010
  end-page: 1335
  publication-title: Compos. Part A Appl. Sci. Manuf.
– volume: 214
  start-page: 38
  year: 2016
  end-page: 48
  publication-title: Electrochim. Acta
– volume: 2
  year: 2018
  publication-title: Phys. Rev. Mater.
– volume: 12
  start-page: 1226
  year: 2019
  publication-title: Materials
– volume: 4
  start-page: 181
  year: 2017
  end-page: 183
  publication-title: J. Agro. Nat. Res. Manag.
– volume: 4
  start-page: 522
  year: 2017
  end-page: 545
  publication-title: Mater. Horiz.
– volume: 20
  start-page: 1085
  year: 2018
  end-page: 1094
  publication-title: Green Chem.
– volume: 48
  start-page: 7129
  year: 2007
  end-page: 7133
  publication-title: Tetrahedron Lett.
– volume: 11
  start-page: 105
  year: 2014
  end-page: 112
  publication-title: Mater. Sci. Indian J.
– volume: 13
  start-page: 4785
  year: 2020
  end-page: 4796
  publication-title: Arab. J. Chem.
– volume: 16
  start-page: 296
  year: 2021
  end-page: 308
  publication-title: Chem. Asian J.
– volume: 32
  year: 2020
  publication-title: J. Energy Storage
– volume: 66
  start-page: 765
  year: 2010
  end-page: 772
  publication-title: Tetrahcdron
– volume: 30
  start-page: 919
  year: 2019
  end-page: 946
  publication-title: J. Biomater. Sci. Polym. Ed.
– volume: 42
  start-page: 3415
  year: 2018
  end-page: 3425
  publication-title: New J. Chem.
– volume: 9
  start-page: 433
  year: 2019
  publication-title: Coatings
– volume: 1
  start-page: 1001
  year: 2001
  end-page: 1004
  publication-title: OnLine J. Biol. Sci.
– volume: 88
  start-page: 132
  year: 2012
  end-page: 135
  publication-title: Mater. Lett.
– volume: 14
  start-page: 2281
  year: 2021
  publication-title: Energies
– volume: 14
  year: 2018
  publication-title: Small
– volume: 213
  start-page: 650
  year: 2019
  end-page: 658
  publication-title: J. Clean. Prod.
– volume: 74
  start-page: 1
  year: 2018
  end-page: 11
  publication-title: Trends Food Sci. Technol.
– volume: 32
  start-page: 352
  year: 2007
  end-page: 418
  publication-title: Prog. Polym. Sci.
– volume: 31
  start-page: 15859
  year: 2020
  end-page: 15874
  publication-title: J. Mater. Sci. - Mater. Electron.
– volume: 111
  start-page: 6447
  year: 2007
  end-page: 6453
  publication-title: J. Phys. Chem. C.
– volume: 2
  year: 2018
  publication-title: Trend. Text. Fash Design
– volume: 9
  start-page: 335
  year: 2017
  publication-title: Polymers
– volume: 13
  start-page: 6161
  year: 2020
  end-page: 6173
  publication-title: Arab. J. Chem.
– volume: 100
  start-page: 3009
  year: 2000
  end-page: 3066
  publication-title: Chem. Rev.
– volume: 57
  start-page: 1377
  year: 2018
  end-page: 1391
  publication-title: Polym. Plast. Technol. Eng.
– volume: 36
  start-page: 2857
  year: 1903
  end-page: 2860
  publication-title: Eur. J. Inorg. Chem.
– volume: 21
  start-page: 1039
  year: 2021
  end-page: 1072
  publication-title: Chem. Rec.
– year: 1986
– volume: 16
  start-page: 3642
  year: 2016
  end-page: 3649
  publication-title: Nano Lett.
– volume: 12
  start-page: 716
  year: 2019
  end-page: 726
  publication-title: Energy Environ. Sci.
– volume: 81
  start-page: 768
  year: 2015
  end-page: 777
  publication-title: Int. J. Biol. Macromol.
– volume: 105
  start-page: 285
  year: 2014
  end-page: 292
  publication-title: Carbohydr. Polym.
– volume: 24
  start-page: 2215
  year: 2017
  end-page: 2228
  publication-title: Cellulose
– volume: 29
  start-page: 4609
  year: 2017
  end-page: 4631
  publication-title: Chem. Mater.
– volume: 77
  start-page: 1363
  year: 2017
  end-page: 1375
  publication-title: Mater. Sci. Eng. C
– volume: 1
  start-page: 32
  year: 2018
  end-page: 43
  publication-title: Carbon Resour. Convers.
– volume: 44
  start-page: 1692
  year: 2012
  end-page: 1696
  publication-title: Physica E Low Dimens. Syst. Nanostruct.
– volume: 2
  start-page: 728
  year: 2010
  end-page: 765
  publication-title: Polymers
– volume: 8
  start-page: 13131
  year: 2016
  end-page: 13154
  publication-title: Nanoscale
– volume: 9
  start-page: 405
  year: 2014
  end-page: 432
  publication-title: Nano Today
– volume: 9
  start-page: 8525
  year: 2017
  end-page: 8554
  publication-title: Nanoscale
– volume: 24
  start-page: 5104
  year: 2014
  end-page: 5111
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 14413
  year: 2015
  end-page: 14421
  publication-title: Nanoscale
– volume: 6
  start-page: 16461
  year: 2016
  end-page: 16466
  publication-title: RSC Adv.
– volume: 56
  start-page: 782
  year: 2013
  end-page: 788
  publication-title: Procedia Eng.
– volume: 83
  start-page: 98
  year: 2016
  end-page: 112
  publication-title: Compos. Part A
– volume: 23
  start-page: 22
  year: 1960
  end-page: 36
  publication-title: Eng. Sci.
– volume: 43
  start-page: 2549
  year: 2011
  end-page: 2563
  publication-title: Energy and buildings
– volume: 4
  start-page: 333
  year: 2019
  end-page: 340
  publication-title: J. Sci-Adv. Mater. Dev.
– volume: 393
  start-page: 15
  year: 1998
  end-page: 17
  publication-title: Nature
– volume: 9
  start-page: 725
  year: 2017
  publication-title: Polymers
– volume: 7
  start-page: 269
  year: 2020
  publication-title: Front. Mater.
– volume: 4
  start-page: 13446
  year: 2014
  end-page: 13452
  publication-title: RSC Adv.
– volume: 22
  start-page: 756
  year: 2020
  end-page: 758
  publication-title: Mat. Today: Proc.
– volume: 363
  start-page: 1311
  year: 2010
  end-page: 1315
  publication-title: Inorg. Chim. Acta
– volume: 90
  start-page: 863
  year: 2007
  end-page: 869
  publication-title: J. Am. Ceram. Soc.
– volume: 6
  year: 2018
  publication-title: Mater. Res. Express
– volume: 10
  start-page: 63
  year: 2018
  publication-title: Polymers
– volume: 20
  start-page: 1163
  year: 2020
  end-page: 1180
  publication-title: Chem. Rec.
– volume: 13
  start-page: D135
  year: 2016
  end-page: D137
  publication-title: J. Occup. Environ. Hyg.
– volume: 28
  start-page: 332
  year: 2014
  end-page: 336
  publication-title: Appl. Organomet. Chem.
– volume: 3
  start-page: 23
  year: 2014
  publication-title: Prog. Biomater.
– start-page: 45
  year: 2016
  end-page: 57
– volume: 2
  start-page: 014
  year: 2012
  end-page: 022
  publication-title: Int. J. Manag. Bus. Stud.
– volume: 832
  start-page: 368
  year: 2019
  end-page: 379
  publication-title: J. Electroanal. Chem.
– volume: 233
  year: 2020
  publication-title: Carbohydr. Polym.
– volume: 4
  start-page: 014
  year: 2018
  end-page: 021
  publication-title: Int. J. Nanomat. Nanotech. Nanomed.
– volume: 14
  start-page: 128
  year: 2016
  publication-title: Mar. Drugs
– volume: 10
  start-page: 54
  year: 1991
  end-page: 56
  publication-title: Organometallics
– volume: 10
  start-page: 2705
  year: 2020
  end-page: 2716
  publication-title: Appl. Nanosci.
– volume: 143
  start-page: 270
  year: 2016
  end-page: 278
  publication-title: Carbohydr. Polym.
– volume: 24
  start-page: 1563
  year: 2017
  end-page: 1577
  publication-title: Cellulose
– volume: 22
  start-page: 12468
  year: 2012
  end-page: 12470
  publication-title: J. Mater. Chem.
– volume: 1
  start-page: 2107
  year: 2020
  end-page: 2116
  publication-title: Mater. Adv.
– volume: 9
  start-page: 45
  year: 2012
  end-page: 50
  publication-title: World J. Eng.
– volume: 4
  start-page: 101
  year: 2018
  end-page: 104
  publication-title: J. Textile Eng. Fashion Technol.
– volume: 14
  start-page: 133
  year: 2013
  end-page: 137
  publication-title: Fiber. Polym.
– volume: 48
  start-page: 1
  year: 2013
  end-page: 9
  publication-title: Compos. B. Eng.
– volume: 21
  start-page: 1073
  year: 2021
  end-page: 1097
  publication-title: Chem. Rec.
– start-page: 1
  year: 2008
  end-page: 522
– volume: 152
  start-page: 616
  year: 2020
  end-page: 632
  publication-title: Int. J. Biol. Macromol.
– volume: 18
  start-page: 5930
  year: 2016
  end-page: 5956
  publication-title: Green Chem.
– volume: 123
  start-page: 2952
  year: 2012
  end-page: 2958
  publication-title: J. Appl. Polym. Sci.
– volume: 28
  start-page: 1501
  year: 2016
  end-page: 1509
  publication-title: Adv. Mater.
– volume: 3
  start-page: 41
  year: 2015
  end-page: 45
  publication-title: Am. J. Nano Res. Appl.
– volume: 55
  start-page: 12249
  year: 2020
  end-page: 12263
  publication-title: J. Mater. Sci.
– volume: 25
  start-page: 161
  year: 2016
  end-page: 169
  publication-title: Nano Energy
– start-page: 1
  year: 2006
  end-page: 69
– volume: 20
  start-page: 1523
  year: 2013
  end-page: 1545
  publication-title: Cellulose
– volume: 229
  year: 2020
  publication-title: Carbohydr. Polym.
– volume: 39
  start-page: 76
  year: 2016
  end-page: 88
  publication-title: Curr. Opin. Biotechnol.
– volume: 136
  start-page: 1027
  year: 2016
  end-page: 1034
  publication-title: Carbohydr. Polym.
– volume: 7
  start-page: 43512
  year: 2017
  end-page: 43520
  publication-title: RSC Adv.
– start-page: 71
  year: 2017
  end-page: 85
– volume: 129
  start-page: 13810
  year: 2007
  end-page: 13811
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 451
  year: 2011
  end-page: 459
  publication-title: Cellulose
– volume: 126
  start-page: 1213
  year: 2019
  end-page: 1222
  publication-title: Int. J. Biol. Macromol.
– volume: 75
  year: 2020
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 5
  start-page: 14
  year: 2016
  end-page: 18
  publication-title: J. Microbiol. Biotechnol.
– volume: 6
  start-page: 10058
  year: 2018
  end-page: 10068
  publication-title: ACS Sustain. Chem. Eng.
– volume: 27
  start-page: 8725
  year: 2020
  end-page: 8743
  publication-title: Cellulose
– volume: 145
  year: 2019
  publication-title: Biosens. Bioelectron.
– volume: 51
  start-page: 4572
  year: 2015
  end-page: 4575
  publication-title: Chem. Commun.
– volume: 1
  start-page: 937
  year: 2019
  end-page: 947
  publication-title: Nanoscale Adv.
– volume: 4
  start-page: 45
  year: 2017
  end-page: 57
  publication-title: Int. J. Eco. Theo. App.
– volume: 1
  start-page: 102
  year: 2016
  end-page: 128
  publication-title: Green Energy Environ.
– volume: 6
  start-page: 11871
  year: 2014
  end-page: 11881
  publication-title: Nanoscale
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 127
  start-page: 218
  year: 2018
  end-page: 227
  publication-title: Carbon
– volume: 5
  year: 2021
  publication-title: Adv. Sustain. Syst.
– volume: 9
  start-page: 663
  year: 2016
  end-page: 670
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 12832
  year: 2019
  end-page: 12840
  publication-title: ChemistrySelect
– volume: 134
  year: 2012
  publication-title: J. Energy Resour. Technol.
– volume: 20
  start-page: 133
  year: 2020
  end-page: 143
  publication-title: e-Polymers
– volume: 1059
  start-page: 42
  year: 2019
  end-page: 48
  publication-title: Anal. Chim. Acta
– volume: 9
  start-page: 1127
  year: 2015
  end-page: 1136
  publication-title: ACS Nano
– volume: 2
  start-page: 4
  year: 2017
  publication-title: Ren. Energy Env. Sust.
– volume: 2014
  year: 2014
  publication-title: Int. J. Chem. Eng.
– volume: 14
  year: 2014
  publication-title: Global J. Res. Eng.
– volume: 106
  start-page: 128
  year: 2017
  end-page: 136
  publication-title: Prog. Org. Coat.
– volume: 129
  start-page: 397
  year: 2017
  end-page: 404
  publication-title: J. Chem. Sci.
– volume: 277
  year: 2021
  publication-title: Synth. Met.
– volume: 2
  start-page: 1179
  year: 2012
  end-page: 1186
  publication-title: ACS Catal.
– volume: 100
  year: 2020
  publication-title: Food Hydrocoll.
– volume: 42
  start-page: 376
  year: 2011
  end-page: 381
  publication-title: Compos. B. Eng.
– volume: 3
  start-page: 79
  year: 2016
  end-page: 84
  publication-title: J. Hydrocarb. Power Eng.
– volume: 476
  start-page: 112
  year: 2015
  end-page: 118
  publication-title: J. Membr. Sci.
– volume: 4
  start-page: 3794
  year: 2016
  end-page: 3802
  publication-title: ACS Sustain. Chem. Eng.
– volume: 62
  start-page: 15
  year: 2008
  end-page: 23
  publication-title: Holzforschung
– volume: 45
  start-page: 9101
  year: 2011
  end-page: 9108
  publication-title: Environ. Sci. Technol.
– volume: 366
  start-page: 189
  year: 2008
  end-page: 193
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci.
– volume: 207
  start-page: 447
  year: 2019
  end-page: 459
  publication-title: Carbohydr. Polym.
– volume: 522
  start-page: 216
  year: 2017
  end-page: 225
  publication-title: J. Membr. Sci.
– volume: 92
  start-page: 1116
  year: 2013
  end-page: 1123
  publication-title: Carbohydr. Polym.
– volume: 99
  start-page: 6709
  year: 2008
  end-page: 6724
  publication-title: Bioresour. Technol.
– volume: 109
  start-page: 35
  year: 2014
  end-page: 43
  publication-title: Carbohydr. Polym.
– volume: 7
  start-page: 15239
  year: 2017
  publication-title: Sci. Rep.
– volume: 7
  year: 2018
  publication-title: Adv. Healthc. Mater.
– volume: 415
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 29
  start-page: 5426
  year: 2017
  end-page: 5446
  publication-title: Chem. Mater.
– volume: 2
  start-page: 281
  year: 2016
  end-page: 292
  publication-title: ACS Cent. Sci.
– volume: 56
  start-page: 246
  year: 2014
  end-page: 254
  publication-title: Ind. Crops Prod.
– volume: 57
  start-page: 10271
  year: 2009
  end-page: 10281
  publication-title: J. Agric. Food. Chem.
– volume: 23
  start-page: 1273
  year: 1998
  end-page: 1335
  publication-title: Prog. Polym. Sci.
– volume: 12
  start-page: 2
  year: 2019
  publication-title: Materials
– volume: 23
  start-page: 93
  year: 2016
  end-page: 123
  publication-title: Cellulose
– volume: 4
  start-page: 9079
  year: 2019
  end-page: 9083
  publication-title: ChemistrySelect
– volume: 2
  start-page: 4787
  year: 2017
  end-page: 4793
  publication-title: ChemistrySelect
– volume: 23
  start-page: 3751
  year: 2011
  end-page: 3769
  publication-title: Adv. Mater.
– volume: 44
  start-page: 2569
  year: 2006
  end-page: 2577
  publication-title: Carbon
– volume: 4
  start-page: 243
  year: 2020
  end-page: 256
  publication-title: Nat. Rev. Chem.
– start-page: 207
  year: 2014
  end-page: 232
– ident: e_1_2_7_73_1
  doi: 10.1016/j.synthmet.2021.116765
– ident: e_1_2_7_145_1
  doi: 10.1016/j.progpolymsci.2006.05.003
– ident: e_1_2_7_94_1
  doi: 10.1002/slct.202003178
– ident: e_1_2_7_294_1
  doi: 10.1109/EMBC.2018.8513229
– ident: e_1_2_7_10_1
  doi: 10.1016/j.arabjc.2020.05.017
– ident: e_1_2_7_101_1
  doi: 10.1002/9783527622115.ch1
– ident: e_1_2_7_74_1
  doi: 10.1021/acssuschemeng.8b05419
– ident: e_1_2_7_13_1
  doi: 10.1016/j.jelechem.2018.11.034
– ident: e_1_2_7_33_1
  doi: 10.1051/rees/2017001
– ident: e_1_2_7_96_1
  doi: 10.1111/j.1551-2916.2007.01484.x
– ident: e_1_2_7_193_1
  doi: 10.1021/jp711431h
– ident: e_1_2_7_207_1
  doi: 10.1016/j.jpowsour.2016.01.030
– ident: e_1_2_7_56_1
– ident: e_1_2_7_159_1
  doi: 10.1515/ntrev-2020-0100
– ident: e_1_2_7_200_1
  doi: 10.1002/tcr.202100044
– ident: e_1_2_7_21_1
  doi: 10.1103/PhysRevMaterials.2.085006
– volume: 6
  start-page: 85
  year: 2017
  ident: e_1_2_7_189_1
  publication-title: Advances Mat.
– ident: e_1_2_7_243_1
  doi: 10.1016/j.enbuild.2011.05.015
– ident: e_1_2_7_245_1
  doi: 10.1016/j.carbpol.2019.115454
– ident: e_1_2_7_131_1
  doi: 10.1007/s10570-017-1204-2
– ident: e_1_2_7_219_1
  doi: 10.1016/j.nanoen.2016.04.036
– ident: e_1_2_7_89_1
  doi: 10.1039/b714189k
– ident: e_1_2_7_156_1
  doi: 10.1016/j.jmrt.2018.09.011
– ident: e_1_2_7_7_1
  doi: 10.1016/j.est.2020.101562
– ident: e_1_2_7_3_1
  doi: 10.1016/j.physrep.2020.03.001
– ident: e_1_2_7_203_1
  doi: 10.1039/C9TA07466J
– ident: e_1_2_7_304_1
  doi: 10.1016/j.carbpol.2016.02.015
– ident: e_1_2_7_79_1
  doi: 10.1007/s11814-013-0172-y
– ident: e_1_2_7_206_1
  doi: 10.1007/s10853-020-04888-w
– ident: e_1_2_7_71_1
  doi: 10.1002/slct.201700429
– ident: e_1_2_7_198_1
  doi: 10.1002/tcr.202000058
– ident: e_1_2_7_301_1
  doi: 10.1021/acsomega.9b02830
– ident: e_1_2_7_25_1
  doi: 10.1016/j.lfs.2019.117099
– ident: e_1_2_7_215_1
  doi: 10.1002/adma.201606823
– ident: e_1_2_7_296_1
  doi: 10.4236/ojpchem.2019.94006
– ident: e_1_2_7_276_1
  doi: 10.3390/en14082281
– ident: e_1_2_7_165_1
  doi: 10.1016/j.scienta.2009.04.006
– ident: e_1_2_7_54_1
– ident: e_1_2_7_2_1
  doi: 10.1038/s41570-020-0173-4
– volume: 2
  start-page: 000147
  year: 2018
  ident: e_1_2_7_31_1
  publication-title: Trend. Text. Fash Design
– ident: e_1_2_7_208_1
  doi: 10.1007/s10008-017-3814-x
– ident: e_1_2_7_273_1
  doi: 10.1021/ja076196l
– ident: e_1_2_7_141_1
  doi: 10.1002/smll.201704006
– ident: e_1_2_7_286_1
  doi: 10.1016/j.memsci.2013.06.020
– ident: e_1_2_7_23_1
  doi: 10.1088/1361-6528/aade1e
– ident: e_1_2_7_177_1
  doi: 10.1021/acssuschemeng.8b01405
– ident: e_1_2_7_128_1
  doi: 10.1016/j.carbpol.2020.115842
– volume: 3
  start-page: 79
  year: 2016
  ident: e_1_2_7_246_1
  publication-title: J. Hydrocarb. Power Eng.
– ident: e_1_2_7_168_1
  doi: 10.1016/j.compositesb.2012.12.004
– ident: e_1_2_7_172_1
  doi: 10.1002/mame.201300008
– ident: e_1_2_7_181_1
  doi: 10.1021/acsami.0c13715
– ident: e_1_2_7_295_1
  doi: 10.1007/978-3-030-05399-4_35
– ident: e_1_2_7_267_1
  doi: 10.3390/polym2040728
– ident: e_1_2_7_29_1
  doi: 10.1021/jf900815x
– ident: e_1_2_7_171_1
  doi: 10.1016/j.compositesa.2010.06.001
– ident: e_1_2_7_114_1
  doi: 10.1016/j.ica.2009.12.038
– ident: e_1_2_7_272_1
  doi: 10.1016/j.bios.2009.03.001
– ident: e_1_2_7_150_1
  doi: 10.1080/09205063.2019.1612726
– ident: e_1_2_7_283_1
  doi: 10.1016/j.msec.2017.03.196
– ident: e_1_2_7_28_1
  doi: 10.3390/polym9120725
– ident: e_1_2_7_72_1
  doi: 10.1038/s41598-021-86426-5
– ident: e_1_2_7_140_1
  doi: 10.1016/j.carbpol.2015.09.115
– ident: e_1_2_7_110_1
  doi: 10.1021/cr9903048
– ident: e_1_2_7_95_1
  doi: 10.1021/cs300158g
– ident: e_1_2_7_170_1
  doi: 10.1016/j.compositesa.2015.08.038
– ident: e_1_2_7_153_1
  doi: 10.1016/j.porgcoat.2017.01.019
– ident: e_1_2_7_63_1
  doi: 10.1002/app.34918
– ident: e_1_2_7_37_1
  doi: 10.1016/j.copbio.2016.01.002
– ident: e_1_2_7_44_1
  doi: 10.1016/j.crcon.2018.05.004
– ident: e_1_2_7_86_1
  doi: 10.1007/s12039-017-1248-8
– ident: e_1_2_7_5_1
  doi: 10.1016/j.arabjc.2019.12.013
– ident: e_1_2_7_123_1
  doi: 10.1002/adsc.201100725
– ident: e_1_2_7_149_1
  doi: 10.17352/2455-3492.000026
– ident: e_1_2_7_225_1
  doi: 10.1073/pnas.0706508104
– volume: 89
  start-page: 1723
  year: 2012
  ident: e_1_2_7_99_1
  publication-title: J. Indian Chem. Soc.
– volume: 14
  start-page: 100704
  year: 2014
  ident: e_1_2_7_64_1
  publication-title: Global J. Res. Eng.
– ident: e_1_2_7_122_1
  doi: 10.1016/j.matchemphys.2016.02.030
– ident: e_1_2_7_205_1
  doi: 10.1039/C5EE03404C
– ident: e_1_2_7_57_1
  doi: 10.1016/j.carbpol.2012.06.046
– ident: e_1_2_7_59_1
  doi: 10.1016/j.ijbiomac.2017.09.107
– ident: e_1_2_7_192_1
  doi: 10.1016/j.carbpol.2012.08.073
– volume: 4
  start-page: 45
  year: 2017
  ident: e_1_2_7_43_1
  publication-title: Int. J. Eco. Theo. App.
– ident: e_1_2_7_204_1
  doi: 10.1002/aenm.201600476
– ident: e_1_2_7_178_1
  doi: 10.1111/j.1541-4337.2010.00126.x
– ident: e_1_2_7_35_1
  doi: 10.1590/0001-3765201420140143
– ident: e_1_2_7_201_1
  doi: 10.1002/tcr.202180501
– ident: e_1_2_7_58_1
  doi: 10.1016/j.carbpol.2014.03.045
– ident: e_1_2_7_16_1
  doi: 10.1039/C7CS00790F
– ident: e_1_2_7_279_1
  doi: 10.1002/adfm.201100172
– ident: e_1_2_7_288_1
  doi: 10.1002/adhm.201800334
– ident: e_1_2_7_154_1
  doi: 10.1515/epoly-2020-0015
– ident: e_1_2_7_248_1
  doi: 10.1115/1.4005244
– ident: e_1_2_7_27_1
  doi: 10.2118/58357-PA
– year: 2021
  ident: e_1_2_7_121_1
  publication-title: Chem. Rec.
– ident: e_1_2_7_152_1
  doi: 10.1002/pc.22663
– volume-title: Studies in Surface Science and Catalysis, Vol. 27
  year: 1986
  ident: e_1_2_7_100_1
– ident: e_1_2_7_91_1
  doi: 10.1002/admi.201700604
– ident: e_1_2_7_233_1
  doi: 10.1007/s10570-013-9973-8
– ident: e_1_2_7_42_1
  doi: 10.1016/j.carbpol.2012.10.021
– ident: e_1_2_7_195_1
  doi: 10.1186/2193-1801-2-318
– ident: e_1_2_7_254_1
  doi: 10.1016/j.ijbiomac.2020.02.221
– ident: e_1_2_7_281_1
  doi: 10.1016/B978-0-12-816913-1.00005-2
– ident: e_1_2_7_222_1
  doi: 10.1002/adfm.201304046
– ident: e_1_2_7_287_1
  doi: 10.1039/C4NR03584D
– ident: e_1_2_7_302_1
  doi: 10.1007/s10570-017-1251-8
– ident: e_1_2_7_113_1
  doi: 10.1039/B915436A
– ident: e_1_2_7_188_1
  doi: 10.1016/j.jngse.2020.103156
– ident: e_1_2_7_8_1
  doi: 10.1016/j.est.2020.101908
– ident: e_1_2_7_185_1
  doi: 10.1016/j.jcou.2020.101361
– ident: e_1_2_7_199_1
  doi: 10.1002/tcr.202100043
– ident: e_1_2_7_220_1
  doi: 10.1002/celc.201700602
– ident: e_1_2_7_11_1
  doi: 10.1002/slct.201900891
– ident: e_1_2_7_249_1
  doi: 10.1021/acsami.5b00498
– ident: e_1_2_7_78_1
  doi: 10.1016/j.jclepro.2018.12.184
– ident: e_1_2_7_62_1
  doi: 10.1155/2014/842147
– ident: e_1_2_7_45_1
  doi: 10.1016/j.carbpol.2013.11.055
– ident: e_1_2_7_160_1
  doi: 10.1016/j.matlet.2015.09.022
– ident: e_1_2_7_22_1
  doi: 10.1080/15459624.2016.1177643
– ident: e_1_2_7_298_1
  doi: 10.1021/nn504334u
– ident: e_1_2_7_139_1
– ident: e_1_2_7_224_1
  doi: 10.1039/C8RA05270K
– ident: e_1_2_7_93_1
  doi: 10.1039/D0CY00973C
– ident: e_1_2_7_196_1
  doi: 10.1007/s10570-020-03482-2
– ident: e_1_2_7_134_1
  doi: 10.1002/adsu.202000286
– ident: e_1_2_7_292_1
  doi: 10.3390/polym9080335
– ident: e_1_2_7_144_1
  doi: 10.1021/es202223p
– ident: e_1_2_7_290_1
  doi: 10.1007/s11051-010-9995-1
– ident: e_1_2_7_257_1
  doi: 10.1007/s10163-018-0792-8
– ident: e_1_2_7_15_1
  doi: 10.1007/s10854-020-04148-2
– volume: 2
  start-page: 325
  year: 2012
  ident: e_1_2_7_124_1
  publication-title: J. Mat. Sci. Eng. B
– ident: e_1_2_7_104_1
  doi: 10.1021/acs.orglett.6b01999
– ident: e_1_2_7_253_1
  doi: 10.1021/acs.nanolett.6b00771
– ident: e_1_2_7_182_1
  doi: 10.1016/j.matlet.2012.08.043
– ident: e_1_2_7_76_1
  doi: 10.1016/j.cej.2021.129076
– year: 2020
  ident: e_1_2_7_80_1
  publication-title: Int. J. Environ. An. Chem.
– ident: e_1_2_7_289_1
  doi: 10.1021/acsami.6b01243
– start-page: 1
  volume-title: Nanocellulose, Nanohydrogel Matrices: Biotechnological, Biomedical Applications
  year: 2017
  ident: e_1_2_7_280_1
– ident: e_1_2_7_109_1
  doi: 10.1002/aoc.3129
– ident: e_1_2_7_146_1
  doi: 10.1007/s11814-017-0145-7
– ident: e_1_2_7_256_1
  doi: 10.1007/s10570-015-0747-3
– ident: e_1_2_7_269_1
  doi: 10.1002/smll.201906567
– ident: e_1_2_7_241_1
  doi: 10.1016/j.carbpol.2016.06.025
– start-page: 1
  volume-title: Nanocomposite Structures and Dispersions, 1st
  year: 2006
  ident: e_1_2_7_4_1
– volume: 23
  start-page: 22
  year: 1960
  ident: e_1_2_7_1_1
  publication-title: Eng. Sci.
– ident: e_1_2_7_263_1
  doi: 10.1007/s10570-012-9805-2
– ident: e_1_2_7_67_1
  doi: 10.15406/jteft.2018.04.00126
– ident: e_1_2_7_111_1
  doi: 10.1016/j.tetlet.2007.07.207
– start-page: 267
  volume-title: Biomass Bioenergy, Vol. 2
  year: 2014
  ident: e_1_2_7_129_1
  doi: 10.1007/978-3-319-07578-5_14
– ident: e_1_2_7_299_1
  doi: 10.1039/D0MA00478B
– ident: e_1_2_7_303_1
  doi: 10.1007/s10570-020-03396-z
– ident: e_1_2_7_81_1
  doi: 10.1260/026361706781388950
– ident: e_1_2_7_36_1
  doi: 10.3389/fchem.2020.00392
– ident: e_1_2_7_262_1
  doi: 10.1002/elan.200703934
– ident: e_1_2_7_197_1
  doi: 10.1021/acs.accounts.8b00391
– ident: e_1_2_7_133_1
  doi: 10.1021/acsomega.9b03184
– ident: e_1_2_7_183_1
  doi: 10.1039/C7NR00400A
– ident: e_1_2_7_274_1
  doi: 10.1039/C6NR03054H
– ident: e_1_2_7_179_1
  doi: 10.1016/S0079-6700(97)00039-7
– start-page: 39
  volume-title: Nanoparticles: New Research
  year: 2008
  ident: e_1_2_7_284_1
– ident: e_1_2_7_161_1
  doi: 10.1038/s41598-017-15463-w
– ident: e_1_2_7_176_1
  doi: 10.1016/j.carbpol.2011.06.060
– volume: 5
  start-page: 14
  year: 2016
  ident: e_1_2_7_194_1
  publication-title: J. Microbiol. Biotechnol.
– ident: e_1_2_7_270_1
  doi: 10.1016/j.bios.2019.111716
– volume: 2
  start-page: 014
  year: 2012
  ident: e_1_2_7_157_1
  publication-title: Int. J. Manag. Bus. Stud.
– ident: e_1_2_7_226_1
  doi: 10.1021/nn401818t
– ident: e_1_2_7_88_1
  doi: 10.1038/s41598-017-01319-w
– ident: e_1_2_7_261_1
  doi: 10.1007/s10570-015-0798-5
– ident: e_1_2_7_51_1
  doi: 10.1016/j.carbpol.2011.06.034
– ident: e_1_2_7_238_1
  doi: 10.1007/s10570-017-1627-9
– ident: e_1_2_7_92_1
  doi: 10.1039/C9RA06285H
– ident: e_1_2_7_252_1
  doi: 10.1021/acsami.5b05841
– ident: e_1_2_7_175_1
  doi: 10.1021/jf9033128
– ident: e_1_2_7_229_1
  doi: 10.1088/2053-1591/aaf3d8
– ident: e_1_2_7_70_1
  doi: 10.1007/s10854-019-01979-6
– ident: e_1_2_7_169_1
  doi: 10.1016/j.proeng.2013.03.196
– ident: e_1_2_7_50_1
  doi: 10.1007/978-3-319-65457-7_5
– ident: e_1_2_7_17_1
  doi: 10.1016/j.carbpol.2018.12.010
– volume: 4
  start-page: 181
  year: 2017
  ident: e_1_2_7_30_1
  publication-title: J. Agro. Nat. Res. Manag.
– ident: e_1_2_7_90_1
  doi: 10.1039/C7GC02835K
– ident: e_1_2_7_84_1
  doi: 10.1016/j.carbon.2006.05.048
– ident: e_1_2_7_218_1
  doi: 10.1002/adma.201004134
– ident: e_1_2_7_151_1
  doi: 10.3390/ma12081226
– ident: e_1_2_7_68_1
  doi: 10.3923/jbs.2001.1001.1004
– ident: e_1_2_7_26_1
  doi: 10.1016/j.petrol.2009.02.014
– ident: e_1_2_7_242_1
  doi: 10.1021/acs.jpcb.5b00715
– ident: e_1_2_7_120_1
  doi: 10.1021/ja411468e
– ident: e_1_2_7_130_1
  doi: 10.1021/acsami.8b13018
– ident: e_1_2_7_115_1
  doi: 10.1016/j.tetlet.2010.02.079
– ident: e_1_2_7_271_1
  doi: 10.1016/j.sbsr.2020.100368
– ident: e_1_2_7_166_1
  doi: 10.1016/j.carbpol.2014.01.057
– ident: e_1_2_7_6_1
  doi: 10.1039/C8NA00090E
– ident: e_1_2_7_39_1
  doi: 10.2991/icmemtc-16.2016.148
– ident: e_1_2_7_202_1
  doi: 10.3389/fmats.2020.00269
– ident: e_1_2_7_228_1
  doi: 10.1021/am507999s
– ident: e_1_2_7_61_1
  doi: 10.1016/j.compositesb.2010.12.017
– volume: 15
  start-page: 413
  year: 2008
  ident: e_1_2_7_82_1
  publication-title: Indian J. Chem. Technol.
– ident: e_1_2_7_48_1
  doi: 10.1260/1708-5284.9.1.45
– ident: e_1_2_7_52_1
  doi: 10.1016/j.ijbiomac.2015.08.053
– ident: e_1_2_7_12_1
  doi: 10.3329/bjpt.v27i2.50686
– ident: e_1_2_7_230_1
  doi: 10.1039/C5TA02770E
– ident: e_1_2_7_60_1
  doi: 10.1007/s10570-019-02363-7
– ident: e_1_2_7_265_1
  doi: 10.1016/j.ijbiomac.2019.01.001
– ident: e_1_2_7_55_1
– ident: e_1_2_7_66_1
  doi: 10.1007/s12221-013-0133-4
– volume: 36
  start-page: 49
  year: 2013
  ident: e_1_2_7_46_1
  publication-title: An. Univ. “Dunarea Jos” Galati, Fasc. IX. Metall. Mat. Sci.
– ident: e_1_2_7_187_1
  doi: 10.1016/j.memsci.2016.09.024
– ident: e_1_2_7_231_1
  doi: 10.1016/j.carbon.2017.11.012
– ident: e_1_2_7_237_1
  doi: 10.1016/j.carbpol.2018.06.045
– ident: e_1_2_7_211_1
  doi: 10.1002/aenm.201600802
– ident: e_1_2_7_251_1
  doi: 10.1016/j.atmosenv.2006.08.009
– ident: e_1_2_7_83_1
  doi: 10.4028/www.scientific.net/AMM.184-185.1428
– ident: e_1_2_7_98_1
  doi: 10.1039/C4RA01104J
– ident: e_1_2_7_186_1
  doi: 10.1016/j.jece.2020.104756
– ident: e_1_2_7_112_1
  doi: 10.1021/om4001956
– ident: e_1_2_7_264_1
  doi: 10.1002/gch2.201800079
– start-page: 207
  volume-title: Handbook of Green Materials, Vol. 5
  year: 2014
  ident: e_1_2_7_259_1
  doi: 10.1142/9789814566469_0013
– ident: e_1_2_7_34_1
  doi: 10.1007/s11356-019-05556-6
– ident: e_1_2_7_212_1
  doi: 10.1002/tcr.202000115
– ident: e_1_2_7_190_1
  doi: 10.1039/C7NJ04103A
– ident: e_1_2_7_232_1
  doi: 10.1021/acssuschemeng.6b00499
– ident: e_1_2_7_105_1
  doi: 10.1039/c2jm32229c
– ident: e_1_2_7_138_1
  doi: 10.1007/978-3-319-49382-4_4
– volume: 11
  start-page: 105
  year: 2014
  ident: e_1_2_7_126_1
  publication-title: Mater. Sci. Indian J.
– ident: e_1_2_7_69_1
  doi: 10.1088/1757-899X/254/4/042015
– ident: e_1_2_7_277_1
  doi: 10.1038/29874
– ident: e_1_2_7_20_1
  doi: 10.1002/tcr.202000071
– ident: e_1_2_7_32_1
  doi: 10.1016/j.matchemphys.2018.05.082
– ident: e_1_2_7_117_1
  doi: 10.1039/C5RA25135D
– ident: e_1_2_7_285_1
  doi: 10.3390/md14070128
– ident: e_1_2_7_173_1
  doi: 10.1016/j.matpr.2019.10.110
– ident: e_1_2_7_260_1
  doi: 10.1007/s10570-014-0473-2
– ident: e_1_2_7_163_1
  doi: 10.1016/j.indcrop.2014.03.005
– ident: e_1_2_7_210_1
  doi: 10.1002/chem.202005156
– ident: e_1_2_7_143_1
  doi: 10.1039/C8EE03112F
– ident: e_1_2_7_167_1
  doi: 10.1007/s40725-020-00117-4
– ident: e_1_2_7_234_1
  doi: 10.3390/ma12010002
– ident: e_1_2_7_239_1
  doi: 10.1016/j.electacta.2016.08.020
– ident: e_1_2_7_85_1
  doi: 10.1016/j.micromeso.2018.07.050
– ident: e_1_2_7_102_1
  doi: 10.1021/acs.chemrev.5b00203
– ident: e_1_2_7_136_1
  doi: 10.1016/j.foodhyd.2019.105411
– start-page: 45
  volume-title: Insulation Materials in Context of Sustainability
  year: 2016
  ident: e_1_2_7_244_1
– ident: e_1_2_7_108_1
  doi: 10.1021/acscentsci.6b00032
– ident: e_1_2_7_148_1
  doi: 10.1016/j.progpolymsci.2009.06.002
– ident: e_1_2_7_216_1
  doi: 10.1039/C6MH00500D
– ident: e_1_2_7_75_1
  doi: 10.1002/er.4983
– ident: e_1_2_7_38_1
  doi: 10.1039/C8NA00238J
– ident: e_1_2_7_65_1
  doi: 10.1155/2013/738741
– ident: e_1_2_7_209_1
  doi: 10.1016/j.ensm.2020.03.019
– ident: e_1_2_7_147_1
  doi: 10.3390/polym12071535
– ident: e_1_2_7_223_1
  doi: 10.1039/C7RA07908G
– ident: e_1_2_7_116_1
  doi: 10.1016/j.molliq.2018.12.115
– volume: 36
  start-page: 2857
  year: 1903
  ident: e_1_2_7_103_1
  publication-title: Eur. J. Inorg. Chem.
– ident: e_1_2_7_180_1
  doi: 10.1016/j.gee.2016.08.001
– ident: e_1_2_7_132_1
  doi: 10.3390/polym10010063
– ident: e_1_2_7_282_1
  doi: 10.1016/j.colsurfb.2009.09.001
– ident: e_1_2_7_191_1
  doi: 10.1016/j.physe.2012.04.022
– ident: e_1_2_7_300_1
  doi: 10.1021/acs.chemmater.7b00531
– ident: e_1_2_7_40_1
  doi: 10.1021/ie9019984
– ident: e_1_2_7_106_1
  doi: 10.1021/om00047a028
– ident: e_1_2_7_278_1
  doi: 10.1098/rsta.2007.2160
– ident: e_1_2_7_293_1
  doi: 10.1039/C5NR03853G
– volume: 3
  start-page: 41
  year: 2015
  ident: e_1_2_7_18_1
  publication-title: Am. J. Nano Res. Appl.
– ident: e_1_2_7_213_1
  doi: 10.1016/j.nantod.2014.06.011
– ident: e_1_2_7_9_1
  doi: 10.1021/acs.chemrestox.9b00308
– ident: e_1_2_7_174_1
  doi: 10.1016/j.tifs.2018.01.015
– ident: e_1_2_7_49_1
  doi: 10.1016/j.compstruct.2016.11.062
– ident: e_1_2_7_162_1
  doi: 10.1080/03602559.2017.1381253
– ident: e_1_2_7_297_1
  doi: 10.1007/s13204-019-01242-8
– ident: e_1_2_7_77_1
  doi: 10.1016/j.jhazmat.2009.09.072
– ident: e_1_2_7_258_1
  doi: 10.15376/biores.2.4.739-788
– ident: e_1_2_7_135_1
  doi: 10.1021/acs.jafc.9b03110
– ident: e_1_2_7_164_1
  doi: 10.1016/j.jiec.2010.10.006
– ident: e_1_2_7_158_1
  doi: 10.15376/biores.15.4.Safian
– ident: e_1_2_7_240_1
  doi: 10.1109/ESTC.2014.6962740
– ident: e_1_2_7_268_1
  doi: 10.1016/j.aca.2019.01.058
– ident: e_1_2_7_155_1
  doi: 10.3390/coatings9070433
– ident: e_1_2_7_137_1
  doi: 10.1016/j.carbpol.2017.04.008
– ident: e_1_2_7_266_1
  doi: 10.1021/acs.chemmater.7b01170
– ident: e_1_2_7_118_1
  doi: 10.1016/j.tet.2009.11.050
– ident: e_1_2_7_235_1
  doi: 10.1016/j.jpowsour.2016.04.115
– ident: e_1_2_7_107_1
  doi: 10.1021/jp073350h
– ident: e_1_2_7_47_1
  doi: 10.1515/HF.2008.003
– ident: e_1_2_7_184_1
  doi: 10.3390/fib7050040
– volume: 4
  start-page: 333
  year: 2019
  ident: e_1_2_7_221_1
  publication-title: J. Sci-Adv. Mater. Dev.
– ident: e_1_2_7_41_1
  doi: 10.1007/s10853-013-7512-5
– ident: e_1_2_7_255_1
  doi: 10.1016/j.enmm.2017.07.002
– ident: e_1_2_7_275_1
  doi: 10.1002/adma.201504438
– ident: e_1_2_7_24_1
  doi: 10.1002/adfm.201403275
– ident: e_1_2_7_217_1
  doi: 10.1039/C6GC02086K
– ident: e_1_2_7_14_1
  doi: 10.1002/asia.202001342
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jiec.2019.03.032
– ident: e_1_2_7_247_1
  doi: 10.1007/s10853-020-04479-9
– ident: e_1_2_7_227_1
  doi: 10.1002/adfm.201400590
– ident: e_1_2_7_127_1
  doi: 10.1007/s40204-014-0023-x
– ident: e_1_2_7_53_1
  doi: 10.1007/s10570-010-9481-z
– ident: e_1_2_7_236_1
  doi: 10.1016/j.memsci.2014.10.056
– ident: e_1_2_7_250_1
  doi: 10.1016/j.biortech.2008.01.036
– ident: e_1_2_7_119_1
  doi: 10.1021/jp065866r
– ident: e_1_2_7_87_1
  doi: 10.1016/j.diamond.2019.107514
– ident: e_1_2_7_97_1
  doi: 10.1039/C4CC09466B
– ident: e_1_2_7_125_1
  doi: 10.1002/slct.201903423
– ident: e_1_2_7_214_1
  doi: 10.1002/asia.202100309
– ident: e_1_2_7_142_1
  doi: 10.1021/acs.est.8b02772
– ident: e_1_2_7_291_1
  doi: 10.2217/nnm.15.67
SSID ssj0011477
Score 2.5942252
SecondaryResourceType review_article
Snippet Nanotechnology has transformed the world with its diverse applications, ranging from industrial developments to impacting our daily lives. It has multiple...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1631
SubjectTerms carbon
Catalysis
Cellulose
Cellulose fibers
Chemical composition
Coatings
Drug delivery
Electrochemistry
Energy storage
Fibers
Hemicellulose
Jute
Lignin
nanocellulose
Nanocomposites
Nanomaterials
Nanotechnology
Petroleum industry
Polymers
Pulp & paper industry
Reducing agents
Stabilizers (agents)
Title Present Status and Future Prospects of Jute in Nanotechnology: A Review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202100135
https://www.proquest.com/docview/2550246094
https://www.proquest.com/docview/2541787613
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-yF33xW6xOiSA-2a2faePbGM4xUMbYYG81SVMQpZW1ffGv99K0nRMUxLeWJrS9JJff5e5-h9C1TbgVC4eYxBKu6XHumDShvunYMghhv0iSyl3w-ETGC2-y9Jd1nVOVC6P5IdoDN7UyKn2tFjjjeX9NGgqKCsw7R3EIuSrJXMVrKVA0a-mjAOpXlRdV5VYT7Apac2xC__5G7809aQ00v8LVar8Z7aHn5kt1mMlrryx4T3x8I3H8x6_so90ai-KBnjwHaEumh2h72JSAO0IPU52chBUkLXPM0hiPKhISPF1lVZJmjrMET8pC4pcUg6rOivas_g4PsHY9HKPF6H4-HJt15QVTuB7xTSHDhNnMTzih3JfK-0gDmxMVQiPAFgesC0AmFoBPbBqT0JaAQxihknmMxmHgnqBOmqXyFOEw9ETAXVArYEsyKaiVMEVhw-OY0dAVBrptZB-JmpZcVcd4izShshOBdKJWOga6aZu_az6Onxp2m4GM6mWZR2A_ASYhYNIa6Kp9DEJVXhKWyqxUbTwbtBjAHANZ1aj9_qJoPpy1N2d_73KOdtS1DgHuok6xKuUFAJ2CX1az-RNmyvKU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58HPTiW1xdNYJ6su72lW0ED8vquj4RWcFbTdIURGnFbRH9Vf4V_5GTvnyAggcPHtumbZpJZr7pTL4BWDepaAbSogZtSttwhLAMFjLXsEzV8tBehGEWLjg9o71L5-jKvRqCl3IvTM4PUf1w0ysj09d6gesf0o131lDUVOjfWZpEyC7TKo_V0yM6bYPdwz2U8IZldff7nZ5R1BUwpO1Q15DKC7nJ3VBQJlylY2usZQqqE0QkepqI5NBMBxKtr8kC6pkKrSynTHGHs8Br2fjcYRjVVcQ1W__eRUVYhc5FVutR14o10JNhBasndrjxqbufreA7tP0IkDML152E13Js8sSW2-00Edvy-Qtt5H8avCmYKOA2aefrYxqGVDQDY52yyt0sHJzn-6-IRt3pgPAoIN2MZ4WcP8TZPtQBiUNylCaK3EQErVGcVOGIHdImeXRlDi7_5DvmYSSKI7UAxPMc2RI2ak50l7mSrBlyzdIjgoAzz5Y12CqF7cuCeV0XALnzc85oy0dp-JU0arBZNb_PKUe-a1gvZ45faJ6Bjy4iwi6KXnsN1qrLOKg6EMQjFae6jWOiokYkV4NmNk1-fpHf71xUB4u_v2UVxnr90xP_5PDseAnG9fk847kOI8lDqpYR1yViJVtKBK7_evq9ATduT2g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8QwFH64gHpxF8c1gnqy2jXTCB5kxnGXQRS81SRNQZRWnBbRP-Vf8Sf50s0FFDx48Ng2bdO8ve_lewCrFhVmKG1qUFM6hiuEbbCIeYZtqaaP9iKK8nTB6Rk9uHSPrryrPnip9sIU-BD1DzctGbm-1gJ-H0Zb76ChqKgwvLM1hpBTVVUeq6dHjNl6O4dtJPCabXf2LloHRtlWwJCOSz1DKj_iFvciQZnwlE6tsaYlqK4PkRhooiOHVjqUaHwtFlLfUmhkOWWKu5yFftPB5_bDoEtNpntFtM9rvCqMLfJWj7pVrIGBDCtBPXHCW5-m-9kIvnu2H_3j3MB1xuC1WpqiruV2M0vFpnz-ghr5j9ZuHEZLZ5vsFtIxAX0qnoThVtXjbgr2u8XuK6J97qxHeBySTo6yQroPSb4LtUeSiBxlqSI3MUFblKR1MmKb7JIitzINl3_yHTMwECexmgXi-65sCgf1JgbLXElmRlxj9Igw5Mx3ZAM2KloHssRd1-0_7oICMdoOkBpBTY0GrNfD7wvAke8GLlSME5R6pxdggIhOF3Km24CV-jIuqk4D8VglmR7jWqim0Y9rgJlzyc8vCi5a5_XB3O9vWYahbrsTnByeHc_DiD5dlDsvwED6kKlFdOpSsZQLEoHrv-a-N8y1Thc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Present+Status+and+Future+Prospects+of+Jute+in+Nanotechnology%3A+A+Review&rft.jtitle=Chemical+record&rft.au=Shah%2C+Syed+Shaheen&rft.au=Shaikh%2C+M+Nasiruzzaman&rft.au=Khan%2C+Mohd+Yusuf&rft.au=Alfasane%2C+Md+Almujaddade&rft.date=2021-07-01&rft.issn=1528-0691&rft.eissn=1528-0691&rft.volume=21&rft.issue=7&rft.spage=1631&rft_id=info:doi/10.1002%2Ftcr.202100135&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon