PB1‐F2 protein of highly pathogenic influenza A (H7N9) virus selectively suppresses RNA‐induced NLRP3 inflammasome activation through inhibition of MAVS‐NLRP3 interaction
Infection with seasonal as well as highly pathogenic avian influenza A virus (IAV) causes significant morbidity and mortality worldwide. As a major virulence factor, PB1‐F2 protein of IAV affects the severity of disease through multiple mechanisms including perturbation of host innate immune respons...
Saved in:
Published in | Journal of leukocyte biology Vol. 108; no. 5; pp. 1655 - 1663 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Infection with seasonal as well as highly pathogenic avian influenza A virus (IAV) causes significant morbidity and mortality worldwide. As a major virulence factor, PB1‐F2 protein of IAV affects the severity of disease through multiple mechanisms including perturbation of host innate immune response. Macrophages are known to phagocytose extracellular PB1‐F2 protein aggregate, leading to hyperactivation of NLRP3 inflammasome and excessive production of IL‐1β and IL‐18. On the other hand, when expressed intracellularly PB1‐F2 suppresses NLRP3 inflammasome maturation. How extracellular and intracellular PB1‐F2 orchestrates to drive viral pathogenesis remains unclear. In this study, we demonstrated the suppression of NLRP3 inflammasome activation and IL‐1β secretion by PB1‐F2 of highly pathogenic influenza A (H7N9) virus in infected human monocyte‐derived macrophages. Mechanistically, H7N9 PB1‐F2 selectively mitigated RNA‐induced NLRP3 inflammasome activation by inhibiting the interaction between NLRP3 and MAVS. Intracellular PB1‐F2 of H7N9 virus did not affect extracellular PB1‐F2‐induced NLRP3 inflammasome maturation. In contrast, PB1‐F2 of WSN laboratory strain of human IAV effectively suppressed IL‐1β processing and secretion induced by various stimuli including NLRP3, AIM2, and pro‐IL‐1β. This subtype‐specific effect of PB1‐F2 on inflammasome activation correlates with the induction of a proinflammatory cytokine storm by H7N9 but not WSN virus. Our findings on selective suppression of MAVS‐dependent activation of NLRP3 inflammasome by H7N9 PB1‐F2 have implications in viral pathogenesis and antiviral development.
Graphical
H7N9 PB1‐F2 selectively suppresses MAVS‐dependent activation of NLRP3 inflammasome by inhibiting the interaction between MAVS and NLRP3. |
---|---|
AbstractList | Infection with seasonal as well as highly pathogenic avian influenza A virus (IAV) causes significant morbidity and mortality worldwide. As a major virulence factor, PB1-F2 protein of IAV affects the severity of disease through multiple mechanisms including perturbation of host innate immune response. Macrophages are known to phagocytose extracellular PB1-F2 protein aggregate, leading to hyperactivation of NLRP3 inflammasome and excessive production of IL-1β and IL-18. On the other hand, when expressed intracellularly PB1-F2 suppresses NLRP3 inflammasome maturation. How extracellular and intracellular PB1-F2 orchestrates to drive viral pathogenesis remains unclear. In this study, we demonstrated the suppression of NLRP3 inflammasome activation and IL-1β secretion by PB1-F2 of highly pathogenic influenza A (H7N9) virus in infected human monocyte-derived macrophages. Mechanistically, H7N9 PB1-F2 selectively mitigated RNA-induced NLRP3 inflammasome activation by inhibiting the interaction between NLRP3 and MAVS. Intracellular PB1-F2 of H7N9 virus did not affect extracellular PB1-F2-induced NLRP3 inflammasome maturation. In contrast, PB1-F2 of WSN laboratory strain of human IAV effectively suppressed IL-1β processing and secretion induced by various stimuli including NLRP3, AIM2, and pro-IL-1β. This subtype-specific effect of PB1-F2 on inflammasome activation correlates with the induction of a proinflammatory cytokine storm by H7N9 but not WSN virus. Our findings on selective suppression of MAVS-dependent activation of NLRP3 inflammasome by H7N9 PB1-F2 have implications in viral pathogenesis and antiviral development.Infection with seasonal as well as highly pathogenic avian influenza A virus (IAV) causes significant morbidity and mortality worldwide. As a major virulence factor, PB1-F2 protein of IAV affects the severity of disease through multiple mechanisms including perturbation of host innate immune response. Macrophages are known to phagocytose extracellular PB1-F2 protein aggregate, leading to hyperactivation of NLRP3 inflammasome and excessive production of IL-1β and IL-18. On the other hand, when expressed intracellularly PB1-F2 suppresses NLRP3 inflammasome maturation. How extracellular and intracellular PB1-F2 orchestrates to drive viral pathogenesis remains unclear. In this study, we demonstrated the suppression of NLRP3 inflammasome activation and IL-1β secretion by PB1-F2 of highly pathogenic influenza A (H7N9) virus in infected human monocyte-derived macrophages. Mechanistically, H7N9 PB1-F2 selectively mitigated RNA-induced NLRP3 inflammasome activation by inhibiting the interaction between NLRP3 and MAVS. Intracellular PB1-F2 of H7N9 virus did not affect extracellular PB1-F2-induced NLRP3 inflammasome maturation. In contrast, PB1-F2 of WSN laboratory strain of human IAV effectively suppressed IL-1β processing and secretion induced by various stimuli including NLRP3, AIM2, and pro-IL-1β. This subtype-specific effect of PB1-F2 on inflammasome activation correlates with the induction of a proinflammatory cytokine storm by H7N9 but not WSN virus. Our findings on selective suppression of MAVS-dependent activation of NLRP3 inflammasome by H7N9 PB1-F2 have implications in viral pathogenesis and antiviral development. Infection with seasonal as well as highly pathogenic avian influenza A virus (IAV) causes significant morbidity and mortality worldwide. As a major virulence factor, PB1‐F2 protein of IAV affects the severity of disease through multiple mechanisms including perturbation of host innate immune response. Macrophages are known to phagocytose extracellular PB1‐F2 protein aggregate, leading to hyperactivation of NLRP3 inflammasome and excessive production of IL‐1β and IL‐18. On the other hand, when expressed intracellularly PB1‐F2 suppresses NLRP3 inflammasome maturation. How extracellular and intracellular PB1‐F2 orchestrates to drive viral pathogenesis remains unclear. In this study, we demonstrated the suppression of NLRP3 inflammasome activation and IL‐1β secretion by PB1‐F2 of highly pathogenic influenza A (H7N9) virus in infected human monocyte‐derived macrophages. Mechanistically, H7N9 PB1‐F2 selectively mitigated RNA‐induced NLRP3 inflammasome activation by inhibiting the interaction between NLRP3 and MAVS. Intracellular PB1‐F2 of H7N9 virus did not affect extracellular PB1‐F2‐induced NLRP3 inflammasome maturation. In contrast, PB1‐F2 of WSN laboratory strain of human IAV effectively suppressed IL‐1β processing and secretion induced by various stimuli including NLRP3, AIM2, and pro‐IL‐1β. This subtype‐specific effect of PB1‐F2 on inflammasome activation correlates with the induction of a proinflammatory cytokine storm by H7N9 but not WSN virus. Our findings on selective suppression of MAVS‐dependent activation of NLRP3 inflammasome by H7N9 PB1‐F2 have implications in viral pathogenesis and antiviral development. Graphical H7N9 PB1‐F2 selectively suppresses MAVS‐dependent activation of NLRP3 inflammasome by inhibiting the interaction between MAVS and NLRP3. Infection with seasonal as well as highly pathogenic avian influenza A virus (IAV) causes significant morbidity and mortality worldwide. As a major virulence factor, PB1-F2 protein of IAV affects the severity of disease through multiple mechanisms including perturbation of host innate immune response. Macrophages are known to phagocytose extracellular PB1-F2 protein aggregate, leading to hyperactivation of NLRP3 inflammasome and excessive production of IL-1β and IL-18. On the other hand, when expressed intracellularly PB1-F2 suppresses NLRP3 inflammasome maturation. How extracellular and intracellular PB1-F2 orchestrates to drive viral pathogenesis remains unclear. In this study, we demonstrated the suppression of NLRP3 inflammasome activation and IL-1β secretion by PB1-F2 of highly pathogenic influenza A (H7N9) virus in infected human monocyte-derived macrophages. Mechanistically, H7N9 PB1-F2 selectively mitigated RNA-induced NLRP3 inflammasome activation by inhibiting the interaction between NLRP3 and MAVS. Intracellular PB1-F2 of H7N9 virus did not affect extracellular PB1-F2-induced NLRP3 inflammasome maturation. In contrast, PB1-F2 of WSN laboratory strain of human IAV effectively suppressed IL-1β processing and secretion induced by various stimuli including NLRP3, AIM2, and pro-IL-1β. This subtype-specific effect of PB1-F2 on inflammasome activation correlates with the induction of a proinflammatory cytokine storm by H7N9 but not WSN virus. Our findings on selective suppression of MAVS-dependent activation of NLRP3 inflammasome by H7N9 PB1-F2 have implications in viral pathogenesis and antiviral development. |
Author | Ye, Zi‐Wei Jin, Dong‐Yan Cheung, Pak‐Hin Hinson Lee, Tak‐Wang Terence Chan, Chi‐Ping Chen, Honglin |
Author_xml | – sequence: 1 givenname: Pak‐Hin Hinson surname: Cheung fullname: Cheung, Pak‐Hin Hinson organization: The University of Hong Kong – sequence: 2 givenname: Zi‐Wei surname: Ye fullname: Ye, Zi‐Wei organization: The University of Hong Kong – sequence: 3 givenname: Tak‐Wang Terence surname: Lee fullname: Lee, Tak‐Wang Terence organization: The University of Hong Kong – sequence: 4 givenname: Honglin surname: Chen fullname: Chen, Honglin organization: The University of Hong Kong – sequence: 5 givenname: Chi‐Ping surname: Chan fullname: Chan, Chi‐Ping email: chancp10@hku.hk organization: The University of Hong Kong – sequence: 6 givenname: Dong‐Yan orcidid: 0000-0002-2778-3530 surname: Jin fullname: Jin, Dong‐Yan email: dyjin@hku.hk organization: The University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32386456$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFPSvkZVmk-C9OssxUlIKGoRp-tpbHuZkYJU5qJ0XDikfgUXgmngTPdGbDAlaW7v3OsX3OGTpxvQOEnlNySQlhr94t5peinBPBSCILsXqEZrTgecJlxk_QjGSCJqkg5BSdhfCVEMKZJE_QKWc8lyKVM_Trdk5___h5zfDg-xGsw32NG7tp2i0e9Nj0G3DWYOvqdgL3XeMSX9xky-Ilvrd-CjhAC2a09xD5MA2DhxAg4NWyjK7WVZOBCi8Xq1u-99Bdp0PfAdY7kR5t7_DY-H7aNHHf2LXdj-Ib3pdfPkaLo3QEv5P07il6XOs2wLPDeY4-X7_-dHWTLD68eXtVLhLDhRSJNFSCyFMGAFle1EWmBTXVOq9pZjRNKTNa5HGTyoJUHCQTFa8yUoucU1kxfo4uHnxjLncThFF1NhhoW-2gn4JiMdZUiCzjEX1xQKd1B5UavO2036pjyhGQD4DxfQgeamXsuP_86LVtFSVqV6eKdapDnWpXZxSSv4RH739IDnd9sy1s_8vvBpRIKfgf3FG1UQ |
CitedBy_id | crossref_primary_10_1016_j_bcp_2020_114316 crossref_primary_10_3390_pathogens9100812 crossref_primary_10_1007_s00011_023_01790_4 crossref_primary_10_3389_fcimb_2024_1438310 crossref_primary_10_3892_mmr_2023_13047 crossref_primary_10_1080_21505594_2022_2040188 crossref_primary_10_1016_j_cell_2023_04_025 crossref_primary_10_1128_jvi_00411_24 crossref_primary_10_1128_CMR_00094_21 crossref_primary_10_1186_s13567_024_01289_8 crossref_primary_10_3390_v14010088 crossref_primary_10_3390_v14122798 crossref_primary_10_3389_fimmu_2023_1157506 crossref_primary_10_1016_j_cyto_2022_155934 crossref_primary_10_3389_fimmu_2021_711997 crossref_primary_10_1080_21505594_2023_2223057 crossref_primary_10_3390_vetsci11110555 crossref_primary_10_3389_fimmu_2022_987453 crossref_primary_10_1261_rna_079016_121 crossref_primary_10_3389_fmicb_2021_807737 crossref_primary_10_1002_jmv_70062 crossref_primary_10_3389_fimmu_2023_1148727 crossref_primary_10_1007_s00018_025_05575_2 crossref_primary_10_3390_pathogens13070561 crossref_primary_10_3390_v14102113 crossref_primary_10_1080_14787210_2024_2400548 crossref_primary_10_1002_jmv_70090 crossref_primary_10_2147_JIR_S295706 crossref_primary_10_3390_v12091033 crossref_primary_10_3389_fimmu_2022_1017401 crossref_primary_10_1111_imr_70003 crossref_primary_10_3390_v12111220 |
Cites_doi | 10.1016/S0140-6736(98)01182-9 10.1016/j.virol.2013.02.025 10.3390/ijms19010096 10.1074/jbc.M607594200 10.1371/journal.ppat.1003392 10.3390/ijms20133328 10.1002/JLB.4MR0320-206R 10.4049/jimmunol.1100719 10.1016/S0140-6736(17)30129-0 10.1016/j.molimm.2017.01.023 10.15252/embr.201845737 10.1128/JVI.00592-10 10.1038/s41467-018-04947-6 10.1007/s00705-009-0479-5 10.1016/j.chom.2011.03.007 10.1016/j.coi.2018.06.005 10.1038/ncomms5713 10.1073/pnas.96.16.9345 10.2147/IDR.S58551 10.1074/jbc.M116.756379 10.1016/j.cell.2013.02.054 10.1371/journal.ppat.1001014 10.1016/S1473-3099(16)00153-5 10.1096/fj.201701361R 10.1016/S0021-9258(17)36591-2 10.1016/j.immuni.2011.05.003 10.4049/jimmunol.1301170 10.1038/s41577-019-0165-0 10.15252/embj.201899475 10.1056/NEJMoa1304459 10.3389/fimmu.2018.00320 10.1038/nri3665 10.1111/imr.12618 10.3390/v4091438 10.1371/journal.pmed.1000049 10.1038/s41419-019-1413-8 10.1016/S1473-3099(13)70167-1 10.1128/MMBR.05015-11 10.1016/j.immuni.2013.11.010 10.4049/jimmunol.1400582 10.1073/pnas.100133697 10.1038/ncomms14751 10.1056/NEJMoa1305584 |
ContentType | Journal Article |
Copyright | 2020 Society for Leukocyte Biology 2020 Society for Leukocyte Biology. |
Copyright_xml | – notice: 2020 Society for Leukocyte Biology – notice: 2020 Society for Leukocyte Biology. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/JLB.4AB0420-694R |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1938-3673 |
EndPage | 1663 |
ExternalDocumentID | 32386456 10_1002_JLB_4AB0420_694R JLB10664 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Hong Kong Health and Medical Research Fund funderid: 15140662; HKM‐15‐M01; 19180812; 19181002 |
GroupedDBID | --- .GJ 0R~ 0VX 18M 1OB 1OC 29K 2WC 33P 4.4 53G 5GY 5RE 5WD AABZA AACZT AAHHS AAPGJ AAPXW AARHZ AASGY AAUAY AAVAP AAWDT AAXRX AAZKR ABCUV ABDFA ABEFU ABEJV ABJNI ABLJU ABMNT ABNHQ ABPQP ABPTD ABWST ABXVV ACAHQ ACCFJ ACCZN ACFRR ACGFO ACGFS ACPOU ACPRK ACUTJ ACXBN ACXQS ACZBC ADBBV ADIPN ADKYN ADOZA ADQBN ADVEK ADVOB ADXAS ADZMN AEEZP AENEX AEQDE AFFNX AFGWE AFRAH AFYAG AGMDO AGQXC AHMMS AI. AIURR AIWBW AJAOE AJBDE AJEEA ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ANFBD APJGH ATGXG AVNTJ BCRHZ C45 CS3 D-I DCZOG DRFUL DRSTM DU5 E3Z EBS EJD EMOBN F5P F9R GX1 H13 HZ~ K-O KOP L7B LATKE LEEKS LUTES LYRES O9- OBOKY OCZFY OJZSN OK1 OPAEJ OVD OWPYF P2P P2W RHI RJQFR ROL ROX SJN SUPJJ TCN TEORI TMA TR2 TSL VH1 W8F WOHZO WOQ YHG ZGI ZXP ZZTAW AAYXX ABGNP ABVGC ABXZS ADGKP ADNBA AGORE AJBYB AJNCP ALXQX CITATION AAMMB ABIME ABPIB ABZEO ACVCV ADMTO AEFGJ AFFQV AGXDD AHGBF AIDQK AIDYY AJDVS CGR CUY CVF ECM EIF NPM NU- OBFPC 7X8 |
ID | FETCH-LOGICAL-c3464-6c16e4852eee789f97a41cdb8f17ca1512ca487895690d3e624d3d70f48316d23 |
ISSN | 0741-5400 1938-3673 |
IngestDate | Fri Jul 11 06:28:23 EDT 2025 Mon Jul 21 06:01:46 EDT 2025 Tue Jul 01 00:31:58 EDT 2025 Thu Apr 24 23:08:29 EDT 2025 Wed Jan 22 16:31:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | inflammasome activation avian influenza A virus NLRP3 H7N9 virus MAVS PB1-F2 virulence factor |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights 2020 Society for Leukocyte Biology. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3464-6c16e4852eee789f97a41cdb8f17ca1512ca487895690d3e624d3d70f48316d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2778-3530 |
PMID | 32386456 |
PQID | 2400544773 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2400544773 pubmed_primary_32386456 crossref_citationtrail_10_1002_JLB_4AB0420_694R crossref_primary_10_1002_JLB_4AB0420_694R wiley_primary_10_1002_JLB_4AB0420_694R_JLB10664 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2020 2020-11-01 2020-11-00 20201101 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of leukocyte biology |
PublicationTitleAlternate | J Leukoc Biol |
PublicationYear | 2020 |
References | 2017; 86 2017; 8 2018; 281 2019; 10 2013; 368 2015; 386 2009; 154 2017; 390 2019; 38 2019; 19 2017; 292 2011; 34 2013; 440 2014; 193 2016; 16 2015; 8 2012; 76 2010; 84 1998; 351 2013; 9 2011; 9 2018; 19 2018; 9 2014; 5 2013; 39 1994; 269 2019; 20 2013; 13 2020 2000; 97 2014; 14 2017; 19 2009; 6 1999; 96 2013; 153 2006; 281 2013; 191 2012; 4 2018; 54 2018; 32 2010; 6 2011; 187 Paules (2023032108060516000_jlb10664-cit-0001) 2017; 390 Kok (2023032108060516000_jlb10664-cit-0032) 2011; 9 Subramanian (2023032108060516000_jlb10664-cit-0035) 2013; 153 Gao (2023032108060516000_jlb10664-cit-0003) 2013; 368 Tisoncik (2023032108060516000_jlb10664-cit-0010) 2012; 76 To (2023032108060516000_jlb10664-cit-0005) 2013; 13 Pinar (2023032108060516000_jlb10664-cit-0023) 2017; 292 Yuen (2023032108060516000_jlb10664-cit-0002) 1998; 351 Chen (2023032108060516000_jlb10664-cit-0042) 2010; 84 Wang (2023032108060516000_jlb10664-cit-0029) 2018; 19 Kamal (2023032108060516000_jlb10664-cit-0019) 2017; 19 Kelley (2023032108060516000_jlb10664-cit-0039) 2019; 20 Huang (2023032108060516000_jlb10664-cit-0027) 2017; 8 Chen (2023032108060516000_jlb10664-cit-0007) 2018; 9 He (2023032108060516000_jlb10664-cit-0028) 2018; 9 Neumann (2023032108060516000_jlb10664-cit-0025) 1999; 96 Gao (2023032108060516000_jlb10664-cit-0004) 2013; 368 Khurana (2023032108060516000_jlb10664-cit-0017) 2009; 6 Tate (2023032108060516000_jlb10664-cit-0016) 2018; 54 Garlanda (2023032108060516000_jlb10664-cit-0014) 2013; 39 Kanneganti (2023032108060516000_jlb10664-cit-0037) 2006; 281 Ng (2023032108060516000_jlb10664-cit-0030) 2011; 187 Chan (2023032108060516000_jlb10664-cit-0031) 2018; 32 Lai (2023032108060516000_jlb10664-cit-0006) 2016; 16 Pulendran (2023032108060516000_jlb10664-cit-0009) 2015; 386 Krejnusová (2023032108060516000_jlb10664-cit-0018) 2009; 154 McAuley (2023032108060516000_jlb10664-cit-0021) 2010; 6 Park (2023032108060516000_jlb10664-cit-0041) 2019; 38 Franchi (2023032108060516000_jlb10664-cit-0034) 2014; 193 Iwasaki (2023032108060516000_jlb10664-cit-0008) 2014; 14 van de Sandt (2023032108060516000_jlb10664-cit-0011) 2012; 4 Park (2023032108060516000_jlb10664-cit-0036) 2013; 191 Radigan (2023032108060516000_jlb10664-cit-0044) 2015; 8 Hoffmann (2023032108060516000_jlb10664-cit-0026) 2000; 97 Loo (2023032108060516000_jlb10664-cit-0043) 2011; 34 Chakrabarti (2023032108060516000_jlb10664-cit-0040) 2013; 440 Swanson (2023032108060516000_jlb10664-cit-0012) 2019; 19 McAuley (2023032108060516000_jlb10664-cit-0022) 2013; 9 Perregaux (2023032108060516000_jlb10664-cit-0038) 1994; 269 Yoshizumi (2023032108060516000_jlb10664-cit-0024) 2014; 5 Kuriakose (2023032108060516000_jlb10664-cit-0015) 2017; 86 Yang (2023032108060516000_jlb10664-cit-0013) 2019; 10 Cheung (2023032108060516000_jlb10664-cit-0020) 2020 Lugrin (2023032108060516000_jlb10664-cit-0033) 2018; 281 |
References_xml | – volume: 9 start-page: 320 year: 2018 end-page: 320 article-title: Host immune response to influenza A virus infection publication-title: Front Immunol – volume: 4 start-page: 1438 year: 2012 end-page: 1476 article-title: Evasion of influenza A viruses from innate and adaptive immune responses publication-title: Viruses – volume: 96 start-page: 9345 year: 1999 end-page: 9350 article-title: Generation of influenza A viruses entirely from cloned cDNAs publication-title: Proc Natl Acad Sci U S A – volume: 10 start-page: 128 year: 2019 article-title: Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors publication-title: Cell Death Dis – volume: 34 start-page: 680 year: 2011 end-page: 692 article-title: Immune signaling by RIG‐I‐like receptors publication-title: Immunity – volume: 14 start-page: 315 year: 2014 end-page: 328 article-title: Innate immunity to influenza virus infection publication-title: Nat Rev Immunol – volume: 6 year: 2010 article-title: PB1‐F2 proteins from H5N1 and 20 century pandemic influenza viruses cause immunopathology publication-title: PLoS Pathog – volume: 8 year: 2017 article-title: An NS‐segment exonic splicing enhancer regulates influenza A virus replication in mammalian cells publication-title: Nat Commun – volume: 9 start-page: 2550 year: 2018 article-title: Oridonin is a covalent NLRP3 inhibitor with strong anti‐inflammasome activity publication-title: Nat Commun – volume: 269 start-page: 15195 year: 1994 end-page: 15203 article-title: Interleukin‐1β maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity publication-title: J Biol Chem – volume: 281 start-page: 36560 year: 2006 end-page: 36568 article-title: Critical role for Cryopyrin/Nalp3 in activation of caspase‐1 in response to viral infection and double‐stranded RNA publication-title: J Biol Chem – volume: 19 start-page: E96 year: 2017 article-title: Evolution and virulence of influenza A virus protein PB1‐F2 publication-title: Int J Mol Sci – volume: 19 year: 2018 article-title: Inhibition of AIM2 inflammasome activation by a novel transcript isoform of IFI16 publication-title: EMBO Rep – volume: 97 start-page: 6108 year: 2000 end-page: 6113 article-title: A DNA transfection system for generation of influenza A virus from eight plasmids publication-title: Proc Natl Acad Sci U S A – volume: 39 start-page: 1003 year: 2013 end-page: 1018 article-title: The interleukin‐1 family: back to the future publication-title: Immunity – volume: 84 start-page: 10051 year: 2010 end-page: 10062 article-title: Differential localization and function of PB1‐F2 derived from different strains of influenza A virus publication-title: J Virol – volume: 8 start-page: 311 year: 2015 end-page: 320 article-title: Modeling human influenza infection in the laboratory publication-title: Infect Drug Resist – volume: 154 start-page: 1599 year: 2009 end-page: 1604 article-title: Antibodies to PB1‐F2 protein are induced in response to influenza A virus infection publication-title: Arch Virol – volume: 54 start-page: 80 year: 2018 end-page: 85 article-title: An update on the NLRP3 inflammasome and influenza: the road to redemption or perdition? publication-title: Curr Opin Immunol – volume: 368 start-page: 2277 year: 2013 end-page: 2285 article-title: Clinical findings in 111 cases of influenza A (H7N9) virus infection publication-title: N Engl J Med – volume: 187 start-page: 6473 year: 2011 end-page: 6482 article-title: MIP‐T3 is a negative regulator of innate type I IFN response publication-title: J Immunol – volume: 5 start-page: 4713 year: 2014 article-title: Influenza A virus protein PB1‐F2 translocates into mitochondria via Tom40 channels and impairs innate immunity publication-title: Nat Commun – volume: 281 start-page: 99 year: 2018 end-page: 114 article-title: The AIM2 inflammasome: sensor of pathogens and cellular perturbations publication-title: Immunol Rev – volume: 153 start-page: 348 year: 2013 end-page: 361 article-title: The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation publication-title: Cell – volume: 351 start-page: 467 year: 1998 end-page: 471 article-title: Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus publication-title: Lancet – volume: 368 start-page: 1888 year: 2013 end-page: 1897 article-title: Human infection with a novel avian‐origin influenza A (H7N9) virus publication-title: N Engl J Med – volume: 292 start-page: 826 year: 2017 end-page: 836 article-title: PB1‐F2 peptide derived from avian influenza A virus H7N9 induces inflammation via activation of the NLRP3 inflammasome publication-title: J Biol Chem – volume: 20 year: 2019 article-title: The NLRP3 inflammasome: an overview of mechanisms of activation and regulation publication-title: Int J Mol Sci – volume: 440 start-page: 97 year: 2013 end-page: 104 article-title: An insight into the PB1F2 protein and its multifunctional role in enhancing the pathogenicity of the influenza A viruses publication-title: Virology – volume: 386 start-page: 23 year: 2015 end-page: 71 article-title: Innate immune sensing and response to influenza publication-title: Curr Top Microbiol Immunol – volume: 19 start-page: 477 year: 2019 end-page: 489 article-title: The NLRP3 inflammasome: molecular activation and regulation to therapeutics publication-title: Nat Rev Immunol – volume: 9 year: 2013 article-title: Activation of the NLRP3 inflammasome by IAV virulence protein PB1‐F2 contributes to severe pathophysiology and disease publication-title: PLoS Pathog – volume: 86 start-page: 56 year: 2017 end-page: 64 article-title: Regulation and functions of NLRP3 inflammasome during influenza virus infection publication-title: Mol Immunol – volume: 193 start-page: 4214 year: 2014 end-page: 4222 article-title: Cytosolic double‐stranded RNA activates the NLRP3 inflammasome via MAVS‐induced membrane permeabilization and K+ efflux publication-title: J Immunol – volume: 9 start-page: 299 year: 2011 end-page: 309 article-title: The double‐stranded RNA‐binding protein PACT functions as a cellular activator of RIG‐I to facilitate innate antiviral response publication-title: Cell Host Microbe – volume: 16 start-page: e108 year: 2016 end-page: e118 article-title: Global epidemiology of avian influenza A H5N1 virus infection in humans, 1997–2015: a systematic review of individual case data publication-title: Lancet Infect Dis – volume: 13 start-page: 809 year: 2013 end-page: 821 article-title: The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities publication-title: Lancet Infect Dis – volume: 38 year: 2019 article-title: Co‐degradation of interferon signaling factor DDX3 by PB1‐F2 as a basis for high virulence of 1918 pandemic influenza publication-title: Embo J – volume: 32 start-page: 4380 year: 2018 end-page: 4393 article-title: Antiviral activity of double‐stranded RNA–binding protein PACT against influenza A virus mediated via suppression of viral RNA polymerase publication-title: FASEB J – volume: 191 start-page: 4358 year: 2013 end-page: 4366 article-title: The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates its inflammasome activity publication-title: J Immunol – year: 2020 article-title: Influenza A virus PB1‐F2 protein: an ambivalent innate immune modulator and virulence factor publication-title: J Leukoc Biol – volume: 390 start-page: 697 year: 2017 end-page: 708 article-title: Influenza publication-title: Lancet – volume: 76 start-page: 16 year: 2012 end-page: 32 article-title: Into the eye of the cytokine storm publication-title: Microbiol Mol Biol Rev – volume: 6 year: 2009 article-title: Antigenic fingerprinting of H5N1 avian influenza using convalescent sera and monoclonal antibodies reveals potential vaccine and diagnostic targets publication-title: PLoS Med – volume: 351 start-page: 467 year: 1998 ident: 2023032108060516000_jlb10664-cit-0002 article-title: Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus publication-title: Lancet doi: 10.1016/S0140-6736(98)01182-9 – volume: 440 start-page: 97 year: 2013 ident: 2023032108060516000_jlb10664-cit-0040 article-title: An insight into the PB1F2 protein and its multifunctional role in enhancing the pathogenicity of the influenza A viruses publication-title: Virology doi: 10.1016/j.virol.2013.02.025 – volume: 19 start-page: E96 year: 2017 ident: 2023032108060516000_jlb10664-cit-0019 article-title: Evolution and virulence of influenza A virus protein PB1-F2 publication-title: Int J Mol Sci doi: 10.3390/ijms19010096 – volume: 281 start-page: 36560 year: 2006 ident: 2023032108060516000_jlb10664-cit-0037 article-title: Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA publication-title: J Biol Chem doi: 10.1074/jbc.M607594200 – volume: 9 start-page: e1003392 year: 2013 ident: 2023032108060516000_jlb10664-cit-0022 article-title: Activation of the NLRP3 inflammasome by IAV virulence protein PB1-F2 contributes to severe pathophysiology and disease publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003392 – volume: 20 year: 2019 ident: 2023032108060516000_jlb10664-cit-0039 article-title: The NLRP3 inflammasome: an overview of mechanisms of activation and regulation publication-title: Int J Mol Sci doi: 10.3390/ijms20133328 – year: 2020 ident: 2023032108060516000_jlb10664-cit-0020 article-title: Influenza A virus PB1-F2 protein: an ambivalent innate immune modulator and virulence factor publication-title: J Leukoc Biol doi: 10.1002/JLB.4MR0320-206R – volume: 187 start-page: 6473 year: 2011 ident: 2023032108060516000_jlb10664-cit-0030 article-title: MIP-T3 is a negative regulator of innate type I IFN response publication-title: J Immunol doi: 10.4049/jimmunol.1100719 – volume: 390 start-page: 697 year: 2017 ident: 2023032108060516000_jlb10664-cit-0001 article-title: Influenza publication-title: Lancet doi: 10.1016/S0140-6736(17)30129-0 – volume: 86 start-page: 56 year: 2017 ident: 2023032108060516000_jlb10664-cit-0015 article-title: Regulation and functions of NLRP3 inflammasome during influenza virus infection publication-title: Mol Immunol doi: 10.1016/j.molimm.2017.01.023 – volume: 19 year: 2018 ident: 2023032108060516000_jlb10664-cit-0029 article-title: Inhibition of AIM2 inflammasome activation by a novel transcript isoform of IFI16 publication-title: EMBO Rep doi: 10.15252/embr.201845737 – volume: 84 start-page: 10051 year: 2010 ident: 2023032108060516000_jlb10664-cit-0042 article-title: Differential localization and function of PB1-F2 derived from different strains of influenza A virus publication-title: J Virol doi: 10.1128/JVI.00592-10 – volume: 9 start-page: 2550 year: 2018 ident: 2023032108060516000_jlb10664-cit-0028 article-title: Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity publication-title: Nat Commun doi: 10.1038/s41467-018-04947-6 – volume: 154 start-page: 1599 year: 2009 ident: 2023032108060516000_jlb10664-cit-0018 article-title: Antibodies to PB1-F2 protein are induced in response to influenza A virus infection publication-title: Arch Virol doi: 10.1007/s00705-009-0479-5 – volume: 9 start-page: 299 year: 2011 ident: 2023032108060516000_jlb10664-cit-0032 article-title: The double-stranded RNA-binding protein PACT functions as a cellular activator of RIG-I to facilitate innate antiviral response publication-title: Cell Host Microbe doi: 10.1016/j.chom.2011.03.007 – volume: 54 start-page: 80 year: 2018 ident: 2023032108060516000_jlb10664-cit-0016 article-title: An update on the NLRP3 inflammasome and influenza: the road to redemption or perdition? publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2018.06.005 – volume: 386 start-page: 23 year: 2015 ident: 2023032108060516000_jlb10664-cit-0009 article-title: Innate immune sensing and response to influenza publication-title: Curr Top Microbiol Immunol – volume: 5 start-page: 4713 year: 2014 ident: 2023032108060516000_jlb10664-cit-0024 article-title: Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity publication-title: Nat Commun doi: 10.1038/ncomms5713 – volume: 96 start-page: 9345 year: 1999 ident: 2023032108060516000_jlb10664-cit-0025 article-title: Generation of influenza A viruses entirely from cloned cDNAs publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.16.9345 – volume: 8 start-page: 311 year: 2015 ident: 2023032108060516000_jlb10664-cit-0044 article-title: Modeling human influenza infection in the laboratory publication-title: Infect Drug Resist doi: 10.2147/IDR.S58551 – volume: 292 start-page: 826 year: 2017 ident: 2023032108060516000_jlb10664-cit-0023 article-title: PB1-F2 peptide derived from avian influenza A virus H7N9 induces inflammation via activation of the NLRP3 inflammasome publication-title: J Biol Chem doi: 10.1074/jbc.M116.756379 – volume: 153 start-page: 348 year: 2013 ident: 2023032108060516000_jlb10664-cit-0035 article-title: The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation publication-title: Cell doi: 10.1016/j.cell.2013.02.054 – volume: 6 start-page: e1001014 year: 2010 ident: 2023032108060516000_jlb10664-cit-0021 article-title: PB1-F2 proteins from H5N1 and 20 century pandemic influenza viruses cause immunopathology publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1001014 – volume: 16 start-page: e108 year: 2016 ident: 2023032108060516000_jlb10664-cit-0006 article-title: Global epidemiology of avian influenza A H5N1 virus infection in humans, 1997–2015: a systematic review of individual case data publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(16)00153-5 – volume: 32 start-page: 4380 year: 2018 ident: 2023032108060516000_jlb10664-cit-0031 article-title: Antiviral activity of double-stranded RNA–binding protein PACT against influenza A virus mediated via suppression of viral RNA polymerase publication-title: FASEB J doi: 10.1096/fj.201701361R – volume: 269 start-page: 15195 year: 1994 ident: 2023032108060516000_jlb10664-cit-0038 article-title: Interleukin-1β maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)36591-2 – volume: 34 start-page: 680 year: 2011 ident: 2023032108060516000_jlb10664-cit-0043 article-title: Immune signaling by RIG-I-like receptors publication-title: Immunity doi: 10.1016/j.immuni.2011.05.003 – volume: 191 start-page: 4358 year: 2013 ident: 2023032108060516000_jlb10664-cit-0036 article-title: The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates its inflammasome activity publication-title: J Immunol doi: 10.4049/jimmunol.1301170 – volume: 19 start-page: 477 year: 2019 ident: 2023032108060516000_jlb10664-cit-0012 article-title: The NLRP3 inflammasome: molecular activation and regulation to therapeutics publication-title: Nat Rev Immunol doi: 10.1038/s41577-019-0165-0 – volume: 38 start-page: e99475 year: 2019 ident: 2023032108060516000_jlb10664-cit-0041 article-title: Co-degradation of interferon signaling factor DDX3 by PB1-F2 as a basis for high virulence of 1918 pandemic influenza publication-title: Embo J doi: 10.15252/embj.201899475 – volume: 368 start-page: 1888 year: 2013 ident: 2023032108060516000_jlb10664-cit-0004 article-title: Human infection with a novel avian-origin influenza A (H7N9) virus publication-title: N Engl J Med doi: 10.1056/NEJMoa1304459 – volume: 9 start-page: 320 year: 2018 ident: 2023032108060516000_jlb10664-cit-0007 article-title: Host immune response to influenza A virus infection publication-title: Front Immunol doi: 10.3389/fimmu.2018.00320 – volume: 14 start-page: 315 year: 2014 ident: 2023032108060516000_jlb10664-cit-0008 article-title: Innate immunity to influenza virus infection publication-title: Nat Rev Immunol doi: 10.1038/nri3665 – volume: 281 start-page: 99 year: 2018 ident: 2023032108060516000_jlb10664-cit-0033 article-title: The AIM2 inflammasome: sensor of pathogens and cellular perturbations publication-title: Immunol Rev doi: 10.1111/imr.12618 – volume: 4 start-page: 1438 year: 2012 ident: 2023032108060516000_jlb10664-cit-0011 article-title: Evasion of influenza A viruses from innate and adaptive immune responses publication-title: Viruses doi: 10.3390/v4091438 – volume: 6 start-page: e1000049 year: 2009 ident: 2023032108060516000_jlb10664-cit-0017 article-title: Antigenic fingerprinting of H5N1 avian influenza using convalescent sera and monoclonal antibodies reveals potential vaccine and diagnostic targets publication-title: PLoS Med doi: 10.1371/journal.pmed.1000049 – volume: 10 start-page: 128 year: 2019 ident: 2023032108060516000_jlb10664-cit-0013 article-title: Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors publication-title: Cell Death Dis doi: 10.1038/s41419-019-1413-8 – volume: 13 start-page: 809 year: 2013 ident: 2023032108060516000_jlb10664-cit-0005 article-title: The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(13)70167-1 – volume: 76 start-page: 16 year: 2012 ident: 2023032108060516000_jlb10664-cit-0010 article-title: Into the eye of the cytokine storm publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.05015-11 – volume: 39 start-page: 1003 year: 2013 ident: 2023032108060516000_jlb10664-cit-0014 article-title: The interleukin-1 family: back to the future publication-title: Immunity doi: 10.1016/j.immuni.2013.11.010 – volume: 193 start-page: 4214 year: 2014 ident: 2023032108060516000_jlb10664-cit-0034 article-title: Cytosolic double-stranded RNA activates the NLRP3 inflammasome via MAVS-induced membrane permeabilization and K+ efflux publication-title: J Immunol doi: 10.4049/jimmunol.1400582 – volume: 97 start-page: 6108 year: 2000 ident: 2023032108060516000_jlb10664-cit-0026 article-title: A DNA transfection system for generation of influenza A virus from eight plasmids publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.100133697 – volume: 8 start-page: 14751 year: 2017 ident: 2023032108060516000_jlb10664-cit-0027 article-title: An NS-segment exonic splicing enhancer regulates influenza A virus replication in mammalian cells publication-title: Nat Commun doi: 10.1038/ncomms14751 – volume: 368 start-page: 2277 year: 2013 ident: 2023032108060516000_jlb10664-cit-0003 article-title: Clinical findings in 111 cases of influenza A (H7N9) virus infection publication-title: N Engl J Med doi: 10.1056/NEJMoa1305584 |
SSID | ssj0003260 |
Score | 2.4840744 |
Snippet | Infection with seasonal as well as highly pathogenic avian influenza A virus (IAV) causes significant morbidity and mortality worldwide. As a major virulence... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1655 |
SubjectTerms | Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - immunology avian influenza A virus H7N9 virus HEK293 Cells Humans inflammasome activation Inflammasomes - genetics Inflammasomes - immunology Influenza A Virus, H7N9 Subtype - genetics Influenza A Virus, H7N9 Subtype - immunology Influenza, Human - genetics Influenza, Human - immunology Influenza, Human - pathology MAVS NLR Family, Pyrin Domain-Containing 3 Protein - genetics NLR Family, Pyrin Domain-Containing 3 Protein - immunology NLRP3 PB1‐F2 virulence factor RNA, Viral - immunology Viral Proteins - genetics Viral Proteins - immunology |
Title | PB1‐F2 protein of highly pathogenic influenza A (H7N9) virus selectively suppresses RNA‐induced NLRP3 inflammasome activation through inhibition of MAVS‐NLRP3 interaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2FJLB.4AB0420-694R https://www.ncbi.nlm.nih.gov/pubmed/32386456 https://www.proquest.com/docview/2400544773 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBIvCDZg5SYjIcRUpcvFuT2maFU1dWUqKetb5CQORKzJtDRI3U_iP_DfOLZz2zrB4CVqndqO9H09Oef4XBB6Z_EaXYnmKLHpUoWElq6ERqQp8I06iUMdTUS7n8ysyYIcL81lr_erE7VUrsNhdHVrXsn_oApjgCvPkv0HZJtFYQA-A75wBYTheieMT0eaMtYHotZCKvU-sLW5vwL0uhympRGPtuJdSK4oiADQJif2zOWegB_pZVkMCtEFBwQezCnKCxEUy4rBfOYpYKuXPDZgNp2fGmIVulrRIl_J-hvSk9u0-Umzb2mY1trniffls1JP5CnOUQP_th58zsrvebRZs0FVEKqNOGCVJAI1V5nwolwiVa1184qTlVQ5Y-mNuCIfJpzR7OvAl9mMnSWFlJ3kPHs567o8wL7VGpeHlNIuSGnDkj1QhuyWsVq0q06Hw2ZHUGuWrA689QaRFWmPp6Mh8UYg0cC4dsm8fVvWEQKzT8F4MZ0G_tHSv4fu62CliFzzZRthBJqxKoMa5JNVp-Sww-HN9a9rRVumznXLSag-_mP0qMIKe5KAT1CPZbtoz8voOl9t8HssoogFdLvogWxuutlDPyU7ccVOnCdYshO37MQNO7GHP3BuHmDBTNxhJm6ZiTvMxIJguMtM3DITV8zELTP5E7TMxB1mPkWL8ZH_caJUnUGUyCAWUaxIsxhxTJ0xZjtu4tqUaFEcOolmR5QrsbxYP9wxLVeNDWbpJDZiW02IY2hWrBvP0E6WZ2wfYcdJCFXDUBQ6dAksFKrMVh3KPQ1M1frosEYmiKqy-bx7y3kgC37rAWAZVFgGHMs-OmhmXMiSMX_47dsa7ADkOj-soxnLyyLgsd0mIbZt9NFzyYJmNQP0bAssH3g2QYu_bsMHNDAuyIs77PcSPWz_dK_QzvqyZK9B816HbwS_fwPy7dU4 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PB1-F2+protein+of+highly+pathogenic+influenza+A+%28H7N9%29+virus+selectively+suppresses+RNA-induced+NLRP3+inflammasome+activation+through+inhibition+of+MAVS-NLRP3+interaction&rft.jtitle=Journal+of+leukocyte+biology&rft.au=Cheung%2C+Pak-Hin+Hinson&rft.au=Ye%2C+Zi-Wei&rft.au=Lee%2C+Tak-Wang+Terence&rft.au=Chen%2C+Honglin&rft.date=2020-11-01&rft.issn=1938-3673&rft.eissn=1938-3673&rft.volume=108&rft.issue=5&rft.spage=1655&rft_id=info:doi/10.1002%2FJLB.4AB0420-694R&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-5400&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-5400&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-5400&client=summon |