Elemental Two‐Dimensional Materials for Li/Na‐Ion Battery Anode Applications

Two‐dimensional (2D) nanostructure is currently the subject in the fields of new energy storage and devices. During the past years, a broad range of 2D materials represented by graphene have been developed and endow with excellent electrochemical properties. Among them, elemental 2D materials (Xenes...

Full description

Saved in:
Bibliographic Details
Published inChemical record Vol. 22; no. 10; pp. e202200123 - n/a
Main Authors Tian, Yahui, Chen, Ya, Liu, Yaoda, Li, Hui, Dai, Zhengfei
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two‐dimensional (2D) nanostructure is currently the subject in the fields of new energy storage and devices. During the past years, a broad range of 2D materials represented by graphene have been developed and endow with excellent electrochemical properties. Among them, elemental 2D materials (Xenes) are an emerged material family for Li/Na‐ion battery (LIB/SIB) anodes. Compared with other 2D materials and bulk materials, Xenes may exhibit some great superiorities for Li/Na storage, including excellent conductivity, fast ion diffusion and large active sites exposure. In this review, we provide a systematic summary of the recent progress and achievements of Xenes as well as their applications in LIBs/SIBs. The broad categorization of Xenes from group IIIA to VIA has been concisely outlined, and the related details in syntheses, structures and Li/Na‐ion storage properties are reviewed. Further, the latest research progress of Xenes in Li/Na ion batteries are summarized, together with mechanism discussions. Finally, the challenges and prospects of Xenes applied to Li/Na ion battery are proposed based on its current developments. In this review, elemental 2D materials and their applications in Li/Na storage have been concisely outlined and systematically summarized from group IIIA to VIA. Preparation methods and structures are described and compared. Latest research progress of elemental 2D materials in Li/Na ion batteries are summarized and discussed with future challenges and prospects for elemental 2D materials in Li/Na‐ion batteries.
AbstractList Two‐dimensional (2D) nanostructure is currently the subject in the fields of new energy storage and devices. During the past years, a broad range of 2D materials represented by graphene have been developed and endow with excellent electrochemical properties. Among them, elemental 2D materials (Xenes) are an emerged material family for Li/Na‐ion battery (LIB/SIB) anodes. Compared with other 2D materials and bulk materials, Xenes may exhibit some great superiorities for Li/Na storage, including excellent conductivity, fast ion diffusion and large active sites exposure. In this review, we provide a systematic summary of the recent progress and achievements of Xenes as well as their applications in LIBs/SIBs. The broad categorization of Xenes from group IIIA to VIA has been concisely outlined, and the related details in syntheses, structures and Li/Na‐ion storage properties are reviewed. Further, the latest research progress of Xenes in Li/Na ion batteries are summarized, together with mechanism discussions. Finally, the challenges and prospects of Xenes applied to Li/Na ion battery are proposed based on its current developments.
Two-dimensional (2D) nanostructure is currently the subject in the fields of new energy storage and devices. During the past years, a broad range of 2D materials represented by graphene have been developed and endow with excellent electrochemical properties. Among them, elemental 2D materials (Xenes) are an emerged material family for Li/Na-ion battery (LIB/SIB) anodes. Compared with other 2D materials and bulk materials, Xenes may exhibit some great superiorities for Li/Na storage, including excellent conductivity, fast ion diffusion and large active sites exposure. In this review, we provide a systematic summary of the recent progress and achievements of Xenes as well as their applications in LIBs/SIBs. The broad categorization of Xenes from group IIIA to VIA has been concisely outlined, and the related details in syntheses, structures and Li/Na-ion storage properties are reviewed. Further, the latest research progress of Xenes in Li/Na ion batteries are summarized, together with mechanism discussions. Finally, the challenges and prospects of Xenes applied to Li/Na ion battery are proposed based on its current developments.Two-dimensional (2D) nanostructure is currently the subject in the fields of new energy storage and devices. During the past years, a broad range of 2D materials represented by graphene have been developed and endow with excellent electrochemical properties. Among them, elemental 2D materials (Xenes) are an emerged material family for Li/Na-ion battery (LIB/SIB) anodes. Compared with other 2D materials and bulk materials, Xenes may exhibit some great superiorities for Li/Na storage, including excellent conductivity, fast ion diffusion and large active sites exposure. In this review, we provide a systematic summary of the recent progress and achievements of Xenes as well as their applications in LIBs/SIBs. The broad categorization of Xenes from group IIIA to VIA has been concisely outlined, and the related details in syntheses, structures and Li/Na-ion storage properties are reviewed. Further, the latest research progress of Xenes in Li/Na ion batteries are summarized, together with mechanism discussions. Finally, the challenges and prospects of Xenes applied to Li/Na ion battery are proposed based on its current developments.
Two‐dimensional (2D) nanostructure is currently the subject in the fields of new energy storage and devices. During the past years, a broad range of 2D materials represented by graphene have been developed and endow with excellent electrochemical properties. Among them, elemental 2D materials (Xenes) are an emerged material family for Li/Na‐ion battery (LIB/SIB) anodes. Compared with other 2D materials and bulk materials, Xenes may exhibit some great superiorities for Li/Na storage, including excellent conductivity, fast ion diffusion and large active sites exposure. In this review, we provide a systematic summary of the recent progress and achievements of Xenes as well as their applications in LIBs/SIBs. The broad categorization of Xenes from group IIIA to VIA has been concisely outlined, and the related details in syntheses, structures and Li/Na‐ion storage properties are reviewed. Further, the latest research progress of Xenes in Li/Na ion batteries are summarized, together with mechanism discussions. Finally, the challenges and prospects of Xenes applied to Li/Na ion battery are proposed based on its current developments. In this review, elemental 2D materials and their applications in Li/Na storage have been concisely outlined and systematically summarized from group IIIA to VIA. Preparation methods and structures are described and compared. Latest research progress of elemental 2D materials in Li/Na ion batteries are summarized and discussed with future challenges and prospects for elemental 2D materials in Li/Na‐ion batteries.
Author Chen, Ya
Liu, Yaoda
Li, Hui
Dai, Zhengfei
Tian, Yahui
Author_xml – sequence: 1
  givenname: Yahui
  orcidid: 0000-0001-9567-3387
  surname: Tian
  fullname: Tian, Yahui
  organization: Anhui University
– sequence: 2
  givenname: Ya
  surname: Chen
  fullname: Chen, Ya
  organization: Xi'an Jiaotong University
– sequence: 3
  givenname: Yaoda
  orcidid: 0000-0002-7566-4069
  surname: Liu
  fullname: Liu, Yaoda
  organization: Anhui University
– sequence: 4
  givenname: Hui
  surname: Li
  fullname: Li, Hui
  email: huili@ahu.edu.cn
  organization: Anhui University
– sequence: 5
  givenname: Zhengfei
  surname: Dai
  fullname: Dai, Zhengfei
  email: sensdai@mail.xjtu.edu.cn
  organization: Kunming University of Science and Technology
BookMark eNp90MtKAzEYBeAgFWyrS_cDbtxMm8tMMlnWWrVQL0hdD5lMBlLSSU1SSnc-gs_okxhbUSjoKrfvBP7TA53WtgqAcwQHCEI8DNINMMQYQoTJEeiiHBcppBx1dnuWFpzzE9DzfhEJyhjrgqeJUUvVBmGS-cZ-vL1f63j02rbx5l4E5bQwPmmsS2Z6-CCimNo2uRIhPm2TUWtrlYxWK6OlCDHlT8FxExPq7Hvtg5ebyXx8l84eb6fj0SyVJKMk5YTBHEHMWSWhgDivJKtpQbNC5RmhStYV5JUUVVPxvGlwXmNVY0gJFzVSIiN9cLn_d-Xs61r5UC61l8oY0Sq79iWmBcoyTDiN9OKALuzaxQGjYjhnEGY0j4rslXTWe6eaUuqwmyk4oU2JYPnVchlbLn9ajqn0ILVyeinc9k_P9n6jjdr-j8v5-Pk3-QmobpGM
CitedBy_id crossref_primary_10_1016_j_jallcom_2023_168828
crossref_primary_10_1063_5_0247586
crossref_primary_10_1039_D2NR05410H
crossref_primary_10_1002_smll_202403736
crossref_primary_10_1002_tcr_202300155
crossref_primary_10_1007_s11467_023_1374_3
crossref_primary_10_1039_D3DT03675H
crossref_primary_10_1021_acsami_3c05169
crossref_primary_10_1016_j_est_2024_115205
crossref_primary_10_1016_j_flatc_2023_100549
crossref_primary_10_1039_D4NR01132E
crossref_primary_10_1016_j_jpowsour_2025_236567
crossref_primary_10_1080_10408436_2023_2273465
crossref_primary_10_3390_molecules28020537
crossref_primary_10_1016_j_jpcs_2024_112344
crossref_primary_10_1016_j_mtchem_2024_102407
crossref_primary_10_1002_advs_202304465
Cites_doi 10.1002/adma.201605407
10.1126/sciadv.1701373
10.1002/slct.201601489
10.1103/PhysRevB.94.014115
10.1016/j.scib.2018.02.006
10.1021/acsnano.7b03942
10.1038/nchem.2491
10.1039/C6NR00913A
10.1002/smll.201701349
10.1002/ange.201705071
10.1039/C5NR06856H
10.1021/acsnano.8b07006
10.1002/adma.201602128
10.1021/acs.jpcc.9b02399
10.1039/C9CP03230D
10.1021/acsnano.7b08714
10.1007/s11581-017-2345-x
10.1021/nl501617j
10.1126/science.1249625
10.1021/acsnano.5b01143
10.1039/C8TA02590H
10.1016/j.nanoen.2020.105366
10.7567/APEX.8.055201
10.1016/j.nanoen.2016.03.013
10.1039/C9NR02342A
10.1002/adma.201606716
10.1088/0953-8984/27/44/443002
10.1021/acs.jpcc.0c08143
10.1039/C9NR03701B
10.1126/science.aam8774
10.1039/C8NR06797J
10.1002/ange.201808846
10.1039/C6TC01328G
10.1007/s40820-021-00745-w
10.1016/j.electacta.2016.08.027
10.1039/C8TA11218E
10.1007/s11433-015-5665-8
10.1016/j.carbon.2020.03.004
10.1021/acsnano.1c04961
10.1002/anie.201507568
10.1038/s41563-018-0134-1
10.1021/nl504336h
10.1021/acs.nanolett.8b04417
10.1126/science.aai8142
10.1039/C8CP04069A
10.1002/ange.201801818
10.1039/C9TA09429F
10.1021/acsami.0c05236
10.1038/s41467-019-13993-7
10.1063/1.4789635
10.1002/ange.201710038
10.1016/j.electacta.2019.03.149
10.1038/nmat4792
10.1016/j.ensm.2019.12.014
10.1002/aenm.201700447
10.1021/acsami.6b00255
10.1103/PhysRevB.89.174301
10.1038/natrevmats.2016.52
10.1039/b922733d
10.1039/C8TA01716F
10.1149/2.F05103if
10.1002/ange.201507568
10.1002/adfm.201807004
10.1038/nnano.2014.207
10.1039/D1TA03676A
10.1002/adma.201807874
10.1063/1.4963179
10.1038/natrevmats.2018.13
10.1039/C8TC04718A
10.1038/nature.2015.18113
10.1002/adfm.201200691
10.1002/anie.201808050
10.1039/C9CC00332K
10.1021/acs.chemrev.1c00165
10.1002/adfm.202005471
10.1103/PhysRevB.92.081112
10.1103/PhysRevLett.119.106101
10.1002/anie.201808846
10.1002/adma.201903790
10.1007/s41918-019-00056-0
10.1038/natrevmats.2016.98
10.1002/adma.201802858
10.1063/1.4930139
10.1002/advs.201600168
10.1021/acs.chemrev.6b00558
10.1021/acs.jpcc.5b02130
10.1088/1367-2630/17/8/083014
10.1021/acs.nanolett.7b02111
10.1039/C8TA09327J
10.1002/ange.201808050
10.1016/j.elecom.2017.05.011
10.1088/2053-1583/aaba3a
10.1002/aenm.201200026
10.1038/natrevmats.2016.61
10.1002/adom.201700884
10.1103/PhysRevB.92.045436
10.1126/science.1212741
10.1039/c3ta14041e
10.1021/acsnano.7b04786
10.1039/C6TC00115G
10.1103/PhysRevLett.111.136804
10.1002/ange.201411246
10.1007/s11434-016-1118-7
10.1016/j.electacta.2018.01.012
10.1038/s41467-016-0009-6
10.1088/1367-2630/18/7/073016
10.1002/adma.201400909
10.1039/C5RA25773E
10.1002/sstr.202100041
10.1002/ange.201804886
10.1021/acsnano.8b03424
10.1038/nmat4384
10.1016/j.apsusc.2017.02.238
10.1039/D0CC08261A
10.1016/j.nanoen.2014.11.036
10.1039/D0MH01167C
10.1021/jp512411g
10.1103/PhysRevB.93.125428
10.1039/C9NR06011A
10.1021/acs.nanolett.7b01029
10.1016/j.elecom.2021.107025
10.1039/C8TC01421C
10.1038/451652a
10.1149/1945-7111/ab717a
10.1002/celc.201900119
10.1103/PhysRevB.95.125113
10.1038/nnano.2015.194
10.1002/aenm.201602528
10.1002/adfm.201700840
10.1021/acs.chemrev.8b00642
10.1021/acsmaterialslett.0c00280
10.1002/smtd.202001213
10.1002/adfm.202002885
10.1021/cr300263a
10.1088/2053-1583/ab185d
10.1038/ncomms5458
10.1021/acs.nanolett.8b00429
10.1039/C6TA09730H
10.1103/PhysRevMaterials.5.024006
10.1080/21663831.2016.1174163
10.1039/C6NR04186H
10.1039/C4TA06467D
10.1149/2.0751809jes
10.1016/j.cplett.2015.10.072
10.1021/acs.nanolett.7b01717
10.1016/j.scib.2018.01.010
10.1134/S2075113317010117
10.1002/aenm.202003248
10.1007/s12274-016-1148-0
10.1021/acs.jpcb.6b09302
10.1016/j.apsusc.2018.08.010
10.1016/j.vacuum.2020.109402
10.1039/C9CS00551J
10.1021/acsami.8b01823
10.1002/adma.201800838
10.1039/C9NR00736A
10.1126/science.aad1080
ContentType Journal Article
Copyright 2022 The Chemical Society of Japan & Wiley‐VCH GmbH
2022 The Chemical Society of Japan & Wiley-VCH GmbH.
Copyright_xml – notice: 2022 The Chemical Society of Japan & Wiley‐VCH GmbH
– notice: 2022 The Chemical Society of Japan & Wiley-VCH GmbH.
DBID AAYXX
CITATION
7QO
7T7
8FD
C1K
FR3
P64
7X8
DOI 10.1002/tcr.202200123
DatabaseName CrossRef
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
Engineering Research Database
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1528-0691
EndPage n/a
ExternalDocumentID 10_1002_tcr_202200123
TCR202200123
Genre reviewArticle
GrantInformation_xml – fundername: Natural Science Foundation of Shaanxi Province
  funderid: 2020JM-032
– fundername: Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials
  funderid: LHG-2020-0003
GroupedDBID ---
.3N
.Y3
05W
0R~
10A
123
1OC
29B
31~
33P
3WU
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5VS
66C
702
7PT
8-1
8UM
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BROTX
BRXPI
BY8
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F5P
FEDTE
G-S
G.N
GODZA
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
LATKE
LAW
LC2
LC3
LEEKS
LH-
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MSFUL
MSSTM
MXFUL
MXSTM
MY~
N9A
O9-
OIG
P2W
P4D
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
V2E
W99
WBKPD
WOHZO
WQJ
WXSBR
WYJ
WYUIH
XG1
XV2
ZZTAW
~IA
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QO
7T7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c3463-9370510297bc0a025bc7d68648e5436ecdb09bcabfb95ff25d2ed20639ad1ea43
IEDL.DBID DR2
ISSN 1527-8999
1528-0691
IngestDate Fri Jul 11 04:31:09 EDT 2025
Fri Jul 25 10:33:35 EDT 2025
Tue Jul 01 02:40:10 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Wed Jan 22 16:22:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3463-9370510297bc0a025bc7d68648e5436ecdb09bcabfb95ff25d2ed20639ad1ea43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7566-4069
0000-0001-9567-3387
PQID 2725700465
PQPubID 1006501
PageCount 20
ParticipantIDs proquest_miscellaneous_2681442396
proquest_journals_2725700465
crossref_citationtrail_10_1002_tcr_202200123
crossref_primary_10_1002_tcr_202200123
wiley_primary_10_1002_tcr_202200123_TCR202200123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Chemical record
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 165
2017; 81
2020; 162
2010; 19
2019; 11
2014; 26
2019; 19
2020; 12
2020; 167
2020; 11
2018; 6
2018; 3
2018; 5
2018; 4
2019; 21
2013; 111
2014; 14
2013; 113
2019; 29
2020; 177
2018; 30
2019; 7
2015; 58
2018; 462
2019; 6
2019; 31
2015; 127
2015; 641
2016; 94
2016; 93
2020; 32
2015; 524
2016; 18
2018; 20
2018; 24
2015; 350
2016; 4
2021; 57
2016; 6
2018; 18
2018; 17
2016; 1
2010; 46
2020; 30
2020; 27
2015; 119
2015; 118
2016; 213
2018; 12
2016; 28
2018; 10
2016; 8
2016; 9
2016; 23
2018; 13
2017; 5
2017; 119
2017; 7
2017; 8
2017; 2
2017; 4
2016; 109
2019; 55
2021; 126
2013; 23
2020; 124
2017; 356
2017; 357
2019; 123
2017; 117
2022; 122
2018; 130
2017; 409
2014; 5
2020; 3
2021; 31
2020; 2
2014; 2
2018 2018; 57 130
2020; 49
2019; 119
2017; 121
2014; 9
2017; 129
2018; 263
2021; 9
2021; 8
2011; 334
2015; 15
2015; 14
2021; 5
2015; 17
2015; 3
2021; 2
2015; 92
2017; 27
2019; 309
2015; 11
2015; 10
2018; 63
2020; 78
2017; 29
2015; 9
2015; 8
2014; 89
2019 2019; 58 131
2017; 95
2021; 15
2012; 2
2015; 27
2016 2016; 55 128
2021; 11
2022
2021
2017; 17
2017; 16
2017; 11
2017; 13
2016; 61
2008; 451
2014; 343
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_159_2
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_57_2
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
Sengupta A. (e_1_2_8_129_1) 2017; 5
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_156_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_163_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
Fan F. R. (e_1_2_8_23_1) 2021
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Jariwala D. (e_1_2_8_25_1) 2018; 13
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_135_2
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_123_2
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 78
  year: 2020
  publication-title: Nano Energy
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 21
  start-page: 19951
  year: 2019
  end-page: 19962
  publication-title: Phys. Chem. Chem. Phys.
– volume: 14
  start-page: 4573
  year: 2014
  end-page: 4580
  publication-title: Nano Lett.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 8
  publication-title: Nat. Commun.
– volume: 23
  start-page: 97
  year: 2016
  end-page: 104
  publication-title: Nano Energy
– volume: 8
  start-page: 60
  year: 2017
  end-page: 67
  publication-title: Appl. Mater. Res.
– volume: 6
  start-page: 6153
  year: 2018
  end-page: 6163
  publication-title: J. Mater. Chem. C
– volume: 17
  start-page: 3965
  year: 2017
  end-page: 3973
  publication-title: Nano Lett.
– volume: 343
  start-page: 1210
  year: 2014
  publication-title: Science
– volume: 6
  start-page: 8006
  year: 2016
  end-page: 8014
  publication-title: RSC Adv.
– volume: 26
  start-page: 4820
  year: 2014
  end-page: 4824
  publication-title: Adv. Mater.
– volume: 16
  start-page: 182
  year: 2017
  end-page: 194
  publication-title: Nat. Mater.
– volume: 11
  start-page: 14698
  year: 2019
  end-page: 14706
  publication-title: Nanoscale
– year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 58 131
  start-page: 134 140
  year: 2019 2019
  end-page: 138 144
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 10222
  year: 2017
  end-page: 10229
  publication-title: ACS Nano
– volume: 5
  year: 2021
  publication-title: Phys. Rev. Mater.
– volume: 11
  start-page: 7476
  year: 2017
  end-page: 7484
  publication-title: ACS Nano
– volume: 6
  start-page: 1525
  year: 2019
  end-page: 1535
  publication-title: ChemElectroChem
– volume: 129
  start-page: 14910
  year: 2017
  end-page: 14914
  publication-title: Angew. Chem. Int. Ed.
– volume: 118
  year: 2015
  publication-title: J. Appl. Phys.
– volume: 117
  start-page: 6225
  year: 2017
  end-page: 6331
  publication-title: Chem. Rev.
– volume: 357
  start-page: 287
  year: 2017
  end-page: 290
  publication-title: Science
– volume: 18
  year: 2016
  publication-title: New J. Phys.
– volume: 49
  start-page: 263
  year: 2020
  end-page: 285
  publication-title: Chem. Soc. Rev.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 127
  year: 2020
  end-page: 154
  publication-title: Electrochem. Energy Rev.
– volume: 177
  year: 2020
  publication-title: Vacuum
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 124
  start-page: 28074
  year: 2020
  end-page: 28082
  publication-title: J. Phys. Chem. C
– volume: 61
  start-page: 1138
  year: 2016
  end-page: 1144
  publication-title: Sci. Bull.
– volume: 7
  start-page: 3238
  year: 2019
  end-page: 3243
  publication-title: J. Mater. Chem. A
– volume: 127
  start-page: 3155
  year: 2015
  end-page: 3158
  publication-title: Angew. Chem. Int. Ed.
– volume: 129
  start-page: 10579
  year: 2017
  end-page: 10581
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 7272
  year: 2016
  end-page: 7277
  publication-title: Nanoscale
– volume: 119
  start-page: 5416
  year: 2019
  end-page: 5460
  publication-title: Chem. Rev.
– volume: 213
  start-page: 865
  year: 2016
  end-page: 870
  publication-title: Electrochim. Acta
– volume: 123
  start-page: 15777
  year: 2019
  end-page: 15786
  publication-title: J. Phys. Chem. C
– volume: 162
  start-page: 579
  year: 2020
  end-page: 585
  publication-title: Carbon
– volume: 5
  year: 2018
  publication-title: 2D Mater.
– volume: 524
  start-page: 18
  year: 2015
  publication-title: Nature
– volume: 126
  year: 2021
  publication-title: Electrochem. Commun.
– volume: 12
  start-page: 7253
  year: 2018
  end-page: 7263
  publication-title: ACS Nano
– volume: 19
  start-page: 49
  year: 2010
  end-page: 53
  publication-title: Electrochem. Soc. Interface
– volume: 28
  start-page: 6332
  year: 2016
  end-page: 6336
  publication-title: Adv. Mater.
– volume: 130
  start-page: 7860
  year: 2018
  end-page: 7863
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 26326
  year: 2019
  end-page: 26333
  publication-title: J. Mater. Chem. A
– volume: 122
  start-page: 1127
  year: 2022
  end-page: 1207
  publication-title: Chem. Rev.
– volume: 121
  start-page: 35
  year: 2017
  end-page: 46
  publication-title: J. Phys. Chem. B
– volume: 109
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: 1691
  year: 2015
  end-page: 1697
  publication-title: Nano Lett.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 11
  start-page: 17058
  year: 2019
  end-page: 17064
  publication-title: Nanoscale
– volume: 9
  start-page: 768
  year: 2014
  end-page: 779
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 8467
  year: 2016
  end-page: 8473
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  start-page: 783
  year: 2018
  end-page: 788
  publication-title: Nat. Mater.
– volume: 11
  start-page: 18758
  year: 2019
  end-page: 18768
  publication-title: Nanoscale
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 1
  year: 2016
  end-page: 16
  publication-title: Nat. Rev. Mater.
– volume: 5
  start-page: 4458
  year: 2014
  publication-title: Nat. Commun.
– volume: 119
  start-page: 8662
  year: 2015
  end-page: 8670
  publication-title: J. Phys. Chem. C
– volume: 119
  start-page: 6923
  year: 2015
  end-page: 6928
  publication-title: J. Phys. Chem. C
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 5
  year: 2021
  publication-title: Small Methods
– volume: 2
  year: 2021
  publication-title: Small Structures
– volume: 8
  start-page: 12
  year: 2021
  end-page: 32
  publication-title: Mater. Horiz.
– volume: 8
  start-page: 15340
  year: 2016
  end-page: 15347
  publication-title: Nanoscale
– volume: 2
  start-page: 3856
  year: 2014
  end-page: 3864
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 3596
  year: 2015
  end-page: 3604
  publication-title: ACS Nano
– volume: 409
  start-page: 85
  year: 2017
  end-page: 90
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 783
  year: 2019
  end-page: 790
  publication-title: J. Mater. Chem. A
– volume: 92
  year: 2015
  publication-title: Phys. Rev. B
– volume: 17
  year: 2015
  publication-title: New J. Phys.
– volume: 15
  start-page: 17327
  year: 2021
  end-page: 17336
  publication-title: ACS Nano
– volume: 13
  year: 2017
  publication-title: Small
– volume: 8
  start-page: 4001
  year: 2016
  end-page: 4006
  publication-title: Nanoscale
– volume: 55
  start-page: 3983
  year: 2019
  end-page: 3986
  publication-title: Chem. Commun.
– volume: 6
  start-page: 10121
  year: 2018
  end-page: 10134
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 1
  year: 2017
  end-page: 17
  publication-title: Nat. Rev. Mater.
– volume: 1
  start-page: 1
  year: 2016
  end-page: 15
  publication-title: Nat. Rev. Mater.
– volume: 10
  start-page: 21106
  year: 2018
  end-page: 21115
  publication-title: Nanoscale
– volume: 89
  year: 2014
  publication-title: Phys. Rev. B
– volume: 350
  start-page: 1513
  year: 2015
  end-page: 1516
  publication-title: Science
– volume: 11
  start-page: 6235
  year: 2019
  end-page: 6242
  publication-title: Nanoscale
– volume: 23
  start-page: 947
  year: 2013
  end-page: 958
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 1
  year: 2018
  end-page: 11
  publication-title: Nat. Rev. Mater.
– volume: 18
  start-page: 2133
  year: 2018
  end-page: 2139
  publication-title: Nano Lett.
– volume: 11
  start-page: 2608
  year: 2019
  end-page: 2617
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  year: 2015
  publication-title: Appl. Phys. Express
– volume: 17
  start-page: 4619
  year: 2017
  end-page: 4623
  publication-title: Nano Lett.
– volume: 63
  start-page: 282
  year: 2018
  end-page: 286
  publication-title: Sci. Bull.
– volume: 46
  start-page: 3256
  year: 2010
  end-page: 3258
  publication-title: Chem. Commun.
– start-page: 14
  year: 2022
  publication-title: Nano-Micro Lett.
– volume: 6
  start-page: 7933
  year: 2018
  end-page: 7941
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 347
  year: 2017
  end-page: 354
  publication-title: Mater. Today
– volume: 17
  start-page: 4970
  year: 2017
  end-page: 4975
  publication-title: Nano Lett.
– volume: 94
  year: 2016
  publication-title: Phys. Rev. B
– volume: 309
  start-page: 264
  year: 2019
  end-page: 273
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 710
  year: 2012
  end-page: 721
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 23370
  year: 2020
  end-page: 23377
  publication-title: ACS Appl. Mater. Interfaces
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 8
  start-page: 1
  year: 2017
  end-page: 9
  publication-title: Nat. Commun.
– volume: 130
  start-page: 8804
  year: 2018
  end-page: 8809
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 57
  start-page: 2396
  year: 2021
  end-page: 2399
  publication-title: Chem. Commun.
– volume: 451
  start-page: 652
  year: 2008
  end-page: 657
  publication-title: Nature
– volume: 12
  start-page: 11632
  year: 2018
  end-page: 11637
  publication-title: ACS Nano
– volume: 20
  start-page: 24250
  year: 2018
  end-page: 24256
  publication-title: Phys. Chem. Chem. Phys.
– volume: 113
  year: 2013
  publication-title: J. Appl. Phys.
– volume: 11
  start-page: 481
  year: 2015
  end-page: 489
  publication-title: Nano Energy
– volume: 641
  start-page: 169
  year: 2015
  end-page: 172
  publication-title: Chem. Phys. Lett.
– volume: 5
  start-page: 2328
  year: 2017
  end-page: 2338
  publication-title: J. Mater. Chem. A
– volume: 356
  start-page: 1120
  year: 2017
  publication-title: Science
– volume: 113
  start-page: 3766
  year: 2013
  end-page: 3798
  publication-title: Chem. Rev.
– volume: 13
  start-page: 2
  year: 2018
  publication-title: Mater. Matters
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 111
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 2666
  year: 2019
  end-page: 2675
  publication-title: J. Mater. Chem. C
– volume: 24
  start-page: 1603
  year: 2018
  end-page: 1615
  publication-title: Ionics
– volume: 95
  year: 2017
  publication-title: Phys. Rev. B
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 12
  start-page: 1887
  year: 2018
  end-page: 1893
  publication-title: ACS Nano
– volume: 4
  start-page: 204
  year: 2016
  end-page: 211
  publication-title: Mater. Res. Lett.
– volume: 8
  start-page: 563
  year: 2016
  end-page: 568
  publication-title: Nat. Chem.
– volume: 119
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 334
  start-page: 928
  year: 2011
  end-page: 935
  publication-title: Science
– volume: 27
  year: 2015
  publication-title: J. Phys. Condens. Matter
– volume: 4
  start-page: 3592
  year: 2016
  end-page: 3598
  publication-title: J. Mater. Chem. C
– volume: 263
  start-page: 272
  year: 2018
  end-page: 276
  publication-title: Electrochim. Acta
– volume: 6
  year: 2019
  publication-title: 2D Mater.
– volume: 10
  start-page: 980
  year: 2015
  end-page: 985
  publication-title: Nat. Nanotechnol.
– volume: 57 130
  start-page: 13533 13721
  year: 2018 2018
  end-page: 13537 13725
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 81
  start-page: 10
  year: 2017
  end-page: 13
  publication-title: Electrochem. Commun.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  start-page: 6380
  year: 2016
  end-page: 6385
  publication-title: J. Mater. Chem. C
– volume: 462
  start-page: 270
  year: 2018
  end-page: 275
  publication-title: Appl. Surf. Sci.
– volume: 5
  year: 2017
  publication-title: Adv. Opt. Mater.
– volume: 93
  start-page: 25428
  year: 2016
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 18793
  year: 2021
  end-page: 18817
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 2616
  year: 2016
  end-page: 2622
  publication-title: Nano Res.
– volume: 3
  start-page: 9353
  year: 2015
  end-page: 9378
  publication-title: J. Mater. Chem. A
– volume: 58
  start-page: 87301
  year: 2015
  publication-title: Sci. China: Phys., Mech. Astron.
– volume: 55 128
  start-page: 1666 1698
  year: 2016 2016
  end-page: 1669 1701
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 19
  start-page: 1118
  year: 2019
  end-page: 1123
  publication-title: Nano Lett.
– volume: 1
  start-page: 5579
  year: 2016
  end-page: 5583
  publication-title: ChemistrySelect
– volume: 63
  start-page: 159
  year: 2018
  end-page: 168
  publication-title: Sci. Bull.
– volume: 27
  start-page: 522
  year: 2020
  end-page: 554
  publication-title: Energy Storage Mater.
– volume: 14
  start-page: 1020
  year: 2015
  end-page: 1025
  publication-title: Nat. Mater.
– volume: 2
  start-page: 1148
  year: 2020
  end-page: 1172
  publication-title: ACS Materials Lett.
– volume: 165
  start-page: A1788
  year: 2018
  publication-title: J. Electrochem. Soc.
– ident: e_1_2_8_139_1
  doi: 10.1002/adma.201605407
– ident: e_1_2_8_81_1
  doi: 10.1126/sciadv.1701373
– ident: e_1_2_8_103_1
  doi: 10.1002/slct.201601489
– ident: e_1_2_8_56_1
  doi: 10.1103/PhysRevB.94.014115
– ident: e_1_2_8_60_1
  doi: 10.1016/j.scib.2018.02.006
– ident: e_1_2_8_97_1
  doi: 10.1021/acsnano.7b03942
– ident: e_1_2_8_59_1
  doi: 10.1038/nchem.2491
– ident: e_1_2_8_102_1
  doi: 10.1039/C6NR00913A
– ident: e_1_2_8_136_1
  doi: 10.1002/smll.201701349
– ident: e_1_2_8_44_1
  doi: 10.1002/ange.201705071
– ident: e_1_2_8_117_1
  doi: 10.1039/C5NR06856H
– ident: e_1_2_8_99_1
  doi: 10.1021/acsnano.8b07006
– ident: e_1_2_8_42_1
  doi: 10.1002/adma.201602128
– ident: e_1_2_8_125_1
  doi: 10.1021/acs.jpcc.9b02399
– ident: e_1_2_8_127_1
  doi: 10.1039/C9CP03230D
– ident: e_1_2_8_144_1
  doi: 10.1021/acsnano.7b08714
– ident: e_1_2_8_74_1
  doi: 10.1007/s11581-017-2345-x
– ident: e_1_2_8_118_1
  doi: 10.1021/nl501617j
– ident: e_1_2_8_3_1
  doi: 10.1126/science.1249625
– ident: e_1_2_8_43_1
  doi: 10.1021/acsnano.5b01143
– ident: e_1_2_8_109_1
  doi: 10.1039/C8TA02590H
– ident: e_1_2_8_17_1
  doi: 10.1016/j.nanoen.2020.105366
– ident: e_1_2_8_124_1
  doi: 10.7567/APEX.8.055201
– ident: e_1_2_8_38_1
  doi: 10.1016/j.nanoen.2016.03.013
– ident: e_1_2_8_47_1
  doi: 10.1039/C9NR02342A
– ident: e_1_2_8_93_1
  doi: 10.1002/adma.201606716
– ident: e_1_2_8_34_1
  doi: 10.1088/0953-8984/27/44/443002
– ident: e_1_2_8_161_1
  doi: 10.1021/acs.jpcc.0c08143
– ident: e_1_2_8_35_1
  doi: 10.1039/C9NR03701B
– ident: e_1_2_8_41_1
  doi: 10.1126/science.aam8774
– ident: e_1_2_8_134_1
  doi: 10.1039/C8NR06797J
– ident: e_1_2_8_135_2
  doi: 10.1002/ange.201808846
– ident: e_1_2_8_64_1
  doi: 10.1039/C6TC01328G
– ident: e_1_2_8_131_1
  doi: 10.1002/adma.201602128
– ident: e_1_2_8_6_1
  doi: 10.1007/s40820-021-00745-w
– ident: e_1_2_8_101_1
  doi: 10.1016/j.electacta.2016.08.027
– ident: e_1_2_8_142_1
  doi: 10.1039/C8TA11218E
– ident: e_1_2_8_121_1
  doi: 10.1007/s11433-015-5665-8
– ident: e_1_2_8_92_1
  doi: 10.1016/j.carbon.2020.03.004
– ident: e_1_2_8_52_1
  doi: 10.1088/0953-8984/27/44/443002
– ident: e_1_2_8_77_1
  doi: 10.1021/acsnano.1c04961
– ident: e_1_2_8_123_1
  doi: 10.1002/anie.201507568
– ident: e_1_2_8_63_1
  doi: 10.1038/s41563-018-0134-1
– ident: e_1_2_8_116_1
  doi: 10.1021/nl504336h
– ident: e_1_2_8_147_1
  doi: 10.1021/acs.nanolett.8b04417
– ident: e_1_2_8_140_1
  doi: 10.1126/science.aai8142
– ident: e_1_2_8_155_1
  doi: 10.1039/C8CP04069A
– ident: e_1_2_8_7_1
  doi: 10.1002/ange.201801818
– ident: e_1_2_8_33_1
  doi: 10.1039/C9TA09429F
– ident: e_1_2_8_78_1
  doi: 10.1021/acsami.0c05236
– ident: e_1_2_8_46_1
  doi: 10.1038/s41467-019-13993-7
– ident: e_1_2_8_87_1
  doi: 10.1063/1.4789635
– ident: e_1_2_8_133_1
  doi: 10.1002/ange.201710038
– ident: e_1_2_8_112_1
  doi: 10.1016/j.electacta.2019.03.149
– ident: e_1_2_8_26_1
  doi: 10.1038/nmat4792
– ident: e_1_2_8_15_1
  doi: 10.1016/j.ensm.2019.12.014
– year: 2021
  ident: e_1_2_8_23_1
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_8_143_1
  doi: 10.1002/aenm.201700447
– ident: e_1_2_8_89_1
  doi: 10.1021/acsami.6b00255
– ident: e_1_2_8_69_1
  doi: 10.1103/PhysRevB.89.174301
– ident: e_1_2_8_50_1
  doi: 10.1126/sciadv.1701373
– ident: e_1_2_8_22_1
  doi: 10.1038/natrevmats.2016.52
– ident: e_1_2_8_86_1
  doi: 10.1039/b922733d
– ident: e_1_2_8_106_1
  doi: 10.1039/C8TA01716F
– ident: e_1_2_8_4_1
  doi: 10.1149/2.F05103if
– ident: e_1_2_8_57_2
  doi: 10.1002/ange.201507568
– ident: e_1_2_8_126_1
  doi: 10.1002/adfm.201807004
– ident: e_1_2_8_24_1
  doi: 10.1038/nnano.2014.207
– ident: e_1_2_8_164_1
  doi: 10.1039/D1TA03676A
– ident: e_1_2_8_148_1
  doi: 10.1002/adma.201807874
– ident: e_1_2_8_67_1
  doi: 10.1063/1.4963179
– ident: e_1_2_8_10_1
  doi: 10.1038/natrevmats.2018.13
– ident: e_1_2_8_79_1
  doi: 10.1039/C8TC04718A
– ident: e_1_2_8_105_1
  doi: 10.1038/nature.2015.18113
– ident: e_1_2_8_9_1
  doi: 10.1002/adfm.201200691
– ident: e_1_2_8_159_1
  doi: 10.1002/anie.201808050
– ident: e_1_2_8_108_1
  doi: 10.1039/C9CC00332K
– ident: e_1_2_8_119_1
  doi: 10.1021/acs.chemrev.1c00165
– ident: e_1_2_8_37_1
  doi: 10.1002/adfm.202005471
– ident: e_1_2_8_29_1
  doi: 10.1103/PhysRevB.92.081112
– ident: e_1_2_8_57_1
  doi: 10.1002/anie.201507568
– ident: e_1_2_8_98_1
  doi: 10.1103/PhysRevB.92.081112
– ident: e_1_2_8_150_1
  doi: 10.1103/PhysRevLett.119.106101
– ident: e_1_2_8_135_1
  doi: 10.1002/anie.201808846
– ident: e_1_2_8_5_1
  doi: 10.1002/adma.201903790
– ident: e_1_2_8_18_1
  doi: 10.1007/s41918-019-00056-0
– ident: e_1_2_8_21_1
  doi: 10.1038/natrevmats.2016.98
– ident: e_1_2_8_141_1
  doi: 10.1002/adma.201802858
– ident: e_1_2_8_31_1
  doi: 10.1063/1.4930139
– ident: e_1_2_8_16_1
  doi: 10.1002/advs.201600168
– ident: e_1_2_8_27_1
  doi: 10.1021/acs.chemrev.6b00558
– ident: e_1_2_8_115_1
  doi: 10.1021/acs.jpcc.5b02130
– ident: e_1_2_8_49_1
  doi: 10.1088/1367-2630/17/8/083014
– ident: e_1_2_8_137_1
  doi: 10.1021/acs.nanolett.7b02111
– ident: e_1_2_8_111_1
  doi: 10.1039/C8TA09327J
– ident: e_1_2_8_159_2
  doi: 10.1002/ange.201808050
– ident: e_1_2_8_40_1
  doi: 10.1016/j.elecom.2017.05.011
– ident: e_1_2_8_83_1
  doi: 10.1088/2053-1583/aaba3a
– ident: e_1_2_8_36_1
  doi: 10.1103/PhysRevB.94.014115
– ident: e_1_2_8_8_1
  doi: 10.1002/aenm.201200026
– ident: e_1_2_8_32_1
  doi: 10.1038/natrevmats.2016.61
– ident: e_1_2_8_157_1
  doi: 10.1002/adom.201700884
– ident: e_1_2_8_55_1
  doi: 10.1103/PhysRevB.92.045436
– ident: e_1_2_8_2_1
  doi: 10.1126/science.1212741
– ident: e_1_2_8_72_1
  doi: 10.1039/c3ta14041e
– ident: e_1_2_8_156_1
  doi: 10.1021/acsnano.7b04786
– ident: e_1_2_8_65_1
  doi: 10.1039/C6TC00115G
– ident: e_1_2_8_30_1
  doi: 10.1103/PhysRevLett.111.136804
– ident: e_1_2_8_128_1
  doi: 10.1002/ange.201411246
– ident: e_1_2_8_71_1
  doi: 10.1007/s11434-016-1118-7
– ident: e_1_2_8_110_1
  doi: 10.1016/j.electacta.2018.01.012
– ident: e_1_2_8_12_1
  doi: 10.1038/s41467-016-0009-6
– ident: e_1_2_8_66_1
  doi: 10.1088/1367-2630/18/7/073016
– ident: e_1_2_8_100_1
  doi: 10.1002/adma.201400909
– ident: e_1_2_8_51_1
  doi: 10.1039/C5RA25773E
– ident: e_1_2_8_104_1
  doi: 10.1002/sstr.202100041
– ident: e_1_2_8_132_1
  doi: 10.1002/ange.201804886
– ident: e_1_2_8_163_1
  doi: 10.1002/adfm.202005471
– ident: e_1_2_8_154_1
  doi: 10.1021/acsnano.8b03424
– ident: e_1_2_8_53_1
  doi: 10.1038/nmat4384
– ident: e_1_2_8_48_1
  doi: 10.1016/j.apsusc.2017.02.238
– ident: e_1_2_8_149_1
  doi: 10.1039/D0CC08261A
– ident: e_1_2_8_88_1
  doi: 10.1016/j.nanoen.2014.11.036
– ident: e_1_2_8_13_1
  doi: 10.1039/D0MH01167C
– ident: e_1_2_8_70_1
  doi: 10.1021/jp512411g
– ident: e_1_2_8_80_1
  doi: 10.1103/PhysRevB.93.125428
– ident: e_1_2_8_19_1
  doi: 10.1039/C9NR06011A
– volume: 5
  start-page: 347
  year: 2017
  ident: e_1_2_8_129_1
  publication-title: Mater. Today
– ident: e_1_2_8_152_1
  doi: 10.1021/acs.nanolett.7b01029
– ident: e_1_2_8_145_1
  doi: 10.1016/j.elecom.2021.107025
– ident: e_1_2_8_153_1
  doi: 10.1039/C8TC01421C
– ident: e_1_2_8_1_1
  doi: 10.1038/451652a
– ident: e_1_2_8_96_1
  doi: 10.1149/1945-7111/ab717a
– ident: e_1_2_8_95_1
  doi: 10.1002/celc.201900119
– ident: e_1_2_8_54_1
  doi: 10.1103/PhysRevB.95.125113
– ident: e_1_2_8_113_1
  doi: 10.1038/nnano.2015.194
– ident: e_1_2_8_107_1
  doi: 10.1002/aenm.201602528
– ident: e_1_2_8_123_2
  doi: 10.1002/ange.201507568
– ident: e_1_2_8_85_1
  doi: 10.1002/adfm.201700840
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.chemrev.8b00642
– ident: e_1_2_8_82_1
  doi: 10.1021/acsmaterialslett.0c00280
– ident: e_1_2_8_45_1
  doi: 10.1002/smtd.202001213
– ident: e_1_2_8_120_1
  doi: 10.1002/adfm.202002885
– ident: e_1_2_8_28_1
  doi: 10.1021/cr300263a
– ident: e_1_2_8_90_1
  doi: 10.1088/2053-1583/ab185d
– ident: e_1_2_8_114_1
  doi: 10.1038/ncomms5458
– ident: e_1_2_8_138_1
  doi: 10.1021/acs.nanolett.8b00429
– ident: e_1_2_8_73_1
  doi: 10.1039/C6TA09730H
– ident: e_1_2_8_84_1
  doi: 10.1103/PhysRevMaterials.5.024006
– ident: e_1_2_8_62_1
  doi: 10.1080/21663831.2016.1174163
– ident: e_1_2_8_76_1
  doi: 10.1039/C6NR04186H
– ident: e_1_2_8_11_1
  doi: 10.1039/C4TA06467D
– ident: e_1_2_8_94_1
  doi: 10.1149/2.0751809jes
– ident: e_1_2_8_58_1
  doi: 10.1016/j.cplett.2015.10.072
– ident: e_1_2_8_160_1
  doi: 10.1021/acs.nanolett.7b01717
– ident: e_1_2_8_158_1
  doi: 10.1016/j.scib.2018.01.010
– ident: e_1_2_8_75_1
  doi: 10.1134/S2075113317010117
– ident: e_1_2_8_162_1
  doi: 10.1002/aenm.202003248
– ident: e_1_2_8_68_1
  doi: 10.1007/s12274-016-1148-0
– ident: e_1_2_8_122_1
  doi: 10.1021/acs.jpcb.6b09302
– ident: e_1_2_8_130_1
  doi: 10.1016/j.apsusc.2018.08.010
– ident: e_1_2_8_20_1
  doi: 10.1016/j.vacuum.2020.109402
– ident: e_1_2_8_146_1
  doi: 10.1039/C9CS00551J
– volume: 13
  start-page: 2
  year: 2018
  ident: e_1_2_8_25_1
  publication-title: Mater. Matters
– ident: e_1_2_8_91_1
  doi: 10.1021/acsami.8b01823
– ident: e_1_2_8_39_1
  doi: 10.1002/adma.201800838
– ident: e_1_2_8_151_1
  doi: 10.1039/C9NR00736A
– ident: e_1_2_8_61_1
  doi: 10.1126/science.aad1080
SSID ssj0011477
Score 2.416867
SecondaryResourceType review_article
Snippet Two‐dimensional (2D) nanostructure is currently the subject in the fields of new energy storage and devices. During the past years, a broad range of 2D...
Two-dimensional (2D) nanostructure is currently the subject in the fields of new energy storage and devices. During the past years, a broad range of 2D...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202200123
SubjectTerms 2D materials
Anodes
Diffusion rate
Electrochemical analysis
Electrochemistry
Energy storage
Graphene
Graphical representations
Ion diffusion
Ion storage
lithium-ion batteries
Rechargeable batteries
single element
Sodium
Sodium-ion batteries
Two dimensional materials
Title Elemental Two‐Dimensional Materials for Li/Na‐Ion Battery Anode Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202200123
https://www.proquest.com/docview/2725700465
https://www.proquest.com/docview/2681442396
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA2yF33xW6xOiSA-2a1L03R5HHNjihsyNthbTZoUxNGK6xB98if4G_0lJk3bbYKC-NbSG9p83OTc5PYcAM6p5NgXwrO1OLeNPRrZjHJsR1Ji34244zO9od8fkN4Y30y8Sa5zqv-FMfwQ5Yab9oxsvtYOzvisviANVROVCu8QylCBmoN1vpYGRcOSPkpB_Ux5USu32iquoDnHpipfXym9uiYtgOYyXM3Wm-4WuC--1KSZPNbmKa-Fb99IHP9RlW2wmWNR2DKDZwesyXgXrLcLCbg9cNfJk8uncPSSfL5_XGktAMPjAfssNaMXKtwLbx_qA6YsrpMYGs7OV9iKEyFha-mIfB-Mu51Ru2fnEgx26GLi2gq8aK9F1OehwxQ-4qEvSJPgpvSwS2QouEN5yHjEqRdFyBNICqRhDxMNybB7ACpxEstDADmWbkOiiCOXY8Ioow7X9HWISBF6PrbAZdEJQZjzk2uZjGlgmJVRoJopKJvJAhel-ZMh5vjJsFr0aJD75yxAPsqI_YlngbPysWpdfVzCYpnMlQ1pqmgTuZRYwMm67_cXBaP2sLw5-nuRY7Chr02mYBVU0ue5PFGIJ-Wn2bD-Aia0-NE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3ofNAXv8Xp1Ajik3VdmqbL45gbU7chMsG3kjQpiKMV3RB98if4G_0lJk1XN0FBfGx704-b3OTcJD0H4IgpQQIpfceIczvEZ7HDmSBOrBQJvFi4ATcT-r0-7dyQi1v_duovfssPUUy4mcjI-msT4GZCuvrFGqp7Kp3fYZzBgnlYMKreWVJ1XRBIabCfaS8a7VZHZxYsZ9nUN6jOFJ8dlb6g5jRgzUac9grwybvajSb3p-OROI1ev9E4_udjVmE5h6OoYdvPGsypZB0WmxMVuA24auX7y4do8Jx-vL2fGTkAS-WBenxkGzDS0Bd176p9ri3O0wRZ2s4X1EhSqVBjapV8E27arUGz4-QqDE7kEeo5Gr-YwMUsEJHLNUQSUSBpnZK68olHVSSFy0TERSyYH8fYl1hJbJAPlzXFibcFpSRN1DYgQZRXUzgW2BOEcsaZKwyDHaZKRn5AynAyqYUwyinKjVLGMLTkyjjUbgoLN5XhuDB_sNwcPxlWJlUa5iH6FOIAZ9z-1C_DYXFZe9esmPBEpWNtQ-s64cQeo2Vws_r7_UHhoHldHOz8vcgBLHYGvW7YPe9f7sKSOW83DlagNHocqz0NgEZiP2vjn7iP_Ow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54AfXFuzivEcQn67o0TZfHsQtexxgTfKtJk4I42qEbok_-BH-jv8Sk6eoUFMTHtie9nJyTfLn0-wAOmRIkkNJ3jDi3Q3wWO5wJ4sRKkcCLhRtwM6F_1aan1-T8xr_JdU7NvzCWH6KYcDOZkbXXJsEHMi5_kobqhkoP7zDOUME0zBLqVk1YN7oFf5TG-pn0opFudfTAguUkm_oG5S_Fv3ZKn0hzEq9mHU5rCW7Hr2r3mdyfjIbiJHr5xuL4j29ZhsUcjKKajZ4VmFLJKszXxxpwa9Bp5rvL-6j3lL6_vjWMGIAl8kBXfGjDF2ngiy7vym2uLc7SBFnSzmdUS1KpUG1ijXwdrlvNXv3UyTUYnMgj1HM0ejFpi1kgIpdrgCSiQNIqJVXlE4-qSAqXiYiLWDA_jrEvsZLY4B4uK4oTbwNmkjRRm4AEUV5F4VhgTxDKGWeuMPx1mCoZ-QEpwfG4EsIoJyg3Ohn90FIr41C7KSzcVIKjwnxgmTl-MtwZ12iYJ-hjiAOcMftTvwQHxWXtXbNewhOVjrQNrerhJvYYLYGbVd_vDwp79W5xsPX3Ivsw12m0wsuz9sU2LJjTdtfgDswMH0ZqV6OfodjLIvwD2s_7pA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elemental+Two%E2%80%90Dimensional+Materials+for+Li%2FNa%E2%80%90Ion+Battery+Anode+Applications&rft.jtitle=Chemical+record&rft.au=Tian%2C+Yahui&rft.au=Chen%2C+Ya&rft.au=Liu%2C+Yaoda&rft.au=Li%2C+Hui&rft.date=2022-10-01&rft.issn=1527-8999&rft.eissn=1528-0691&rft.volume=22&rft.issue=10&rft_id=info:doi/10.1002%2Ftcr.202200123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_tcr_202200123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon