Elemental Two‐Dimensional Materials for Li/Na‐Ion Battery Anode Applications
Two‐dimensional (2D) nanostructure is currently the subject in the fields of new energy storage and devices. During the past years, a broad range of 2D materials represented by graphene have been developed and endow with excellent electrochemical properties. Among them, elemental 2D materials (Xenes...
Saved in:
Published in | Chemical record Vol. 22; no. 10; pp. e202200123 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two‐dimensional (2D) nanostructure is currently the subject in the fields of new energy storage and devices. During the past years, a broad range of 2D materials represented by graphene have been developed and endow with excellent electrochemical properties. Among them, elemental 2D materials (Xenes) are an emerged material family for Li/Na‐ion battery (LIB/SIB) anodes. Compared with other 2D materials and bulk materials, Xenes may exhibit some great superiorities for Li/Na storage, including excellent conductivity, fast ion diffusion and large active sites exposure. In this review, we provide a systematic summary of the recent progress and achievements of Xenes as well as their applications in LIBs/SIBs. The broad categorization of Xenes from group IIIA to VIA has been concisely outlined, and the related details in syntheses, structures and Li/Na‐ion storage properties are reviewed. Further, the latest research progress of Xenes in Li/Na ion batteries are summarized, together with mechanism discussions. Finally, the challenges and prospects of Xenes applied to Li/Na ion battery are proposed based on its current developments.
In this review, elemental 2D materials and their applications in Li/Na storage have been concisely outlined and systematically summarized from group IIIA to VIA. Preparation methods and structures are described and compared. Latest research progress of elemental 2D materials in Li/Na ion batteries are summarized and discussed with future challenges and prospects for elemental 2D materials in Li/Na‐ion batteries. |
---|---|
AbstractList | Two‐dimensional (2D) nanostructure is currently the subject in the fields of new energy storage and devices. During the past years, a broad range of 2D materials represented by graphene have been developed and endow with excellent electrochemical properties. Among them, elemental 2D materials (Xenes) are an emerged material family for Li/Na‐ion battery (LIB/SIB) anodes. Compared with other 2D materials and bulk materials, Xenes may exhibit some great superiorities for Li/Na storage, including excellent conductivity, fast ion diffusion and large active sites exposure. In this review, we provide a systematic summary of the recent progress and achievements of Xenes as well as their applications in LIBs/SIBs. The broad categorization of Xenes from group IIIA to VIA has been concisely outlined, and the related details in syntheses, structures and Li/Na‐ion storage properties are reviewed. Further, the latest research progress of Xenes in Li/Na ion batteries are summarized, together with mechanism discussions. Finally, the challenges and prospects of Xenes applied to Li/Na ion battery are proposed based on its current developments. Two-dimensional (2D) nanostructure is currently the subject in the fields of new energy storage and devices. During the past years, a broad range of 2D materials represented by graphene have been developed and endow with excellent electrochemical properties. Among them, elemental 2D materials (Xenes) are an emerged material family for Li/Na-ion battery (LIB/SIB) anodes. Compared with other 2D materials and bulk materials, Xenes may exhibit some great superiorities for Li/Na storage, including excellent conductivity, fast ion diffusion and large active sites exposure. In this review, we provide a systematic summary of the recent progress and achievements of Xenes as well as their applications in LIBs/SIBs. The broad categorization of Xenes from group IIIA to VIA has been concisely outlined, and the related details in syntheses, structures and Li/Na-ion storage properties are reviewed. Further, the latest research progress of Xenes in Li/Na ion batteries are summarized, together with mechanism discussions. Finally, the challenges and prospects of Xenes applied to Li/Na ion battery are proposed based on its current developments.Two-dimensional (2D) nanostructure is currently the subject in the fields of new energy storage and devices. During the past years, a broad range of 2D materials represented by graphene have been developed and endow with excellent electrochemical properties. Among them, elemental 2D materials (Xenes) are an emerged material family for Li/Na-ion battery (LIB/SIB) anodes. Compared with other 2D materials and bulk materials, Xenes may exhibit some great superiorities for Li/Na storage, including excellent conductivity, fast ion diffusion and large active sites exposure. In this review, we provide a systematic summary of the recent progress and achievements of Xenes as well as their applications in LIBs/SIBs. The broad categorization of Xenes from group IIIA to VIA has been concisely outlined, and the related details in syntheses, structures and Li/Na-ion storage properties are reviewed. Further, the latest research progress of Xenes in Li/Na ion batteries are summarized, together with mechanism discussions. Finally, the challenges and prospects of Xenes applied to Li/Na ion battery are proposed based on its current developments. Two‐dimensional (2D) nanostructure is currently the subject in the fields of new energy storage and devices. During the past years, a broad range of 2D materials represented by graphene have been developed and endow with excellent electrochemical properties. Among them, elemental 2D materials (Xenes) are an emerged material family for Li/Na‐ion battery (LIB/SIB) anodes. Compared with other 2D materials and bulk materials, Xenes may exhibit some great superiorities for Li/Na storage, including excellent conductivity, fast ion diffusion and large active sites exposure. In this review, we provide a systematic summary of the recent progress and achievements of Xenes as well as their applications in LIBs/SIBs. The broad categorization of Xenes from group IIIA to VIA has been concisely outlined, and the related details in syntheses, structures and Li/Na‐ion storage properties are reviewed. Further, the latest research progress of Xenes in Li/Na ion batteries are summarized, together with mechanism discussions. Finally, the challenges and prospects of Xenes applied to Li/Na ion battery are proposed based on its current developments. In this review, elemental 2D materials and their applications in Li/Na storage have been concisely outlined and systematically summarized from group IIIA to VIA. Preparation methods and structures are described and compared. Latest research progress of elemental 2D materials in Li/Na ion batteries are summarized and discussed with future challenges and prospects for elemental 2D materials in Li/Na‐ion batteries. |
Author | Chen, Ya Liu, Yaoda Li, Hui Dai, Zhengfei Tian, Yahui |
Author_xml | – sequence: 1 givenname: Yahui orcidid: 0000-0001-9567-3387 surname: Tian fullname: Tian, Yahui organization: Anhui University – sequence: 2 givenname: Ya surname: Chen fullname: Chen, Ya organization: Xi'an Jiaotong University – sequence: 3 givenname: Yaoda orcidid: 0000-0002-7566-4069 surname: Liu fullname: Liu, Yaoda organization: Anhui University – sequence: 4 givenname: Hui surname: Li fullname: Li, Hui email: huili@ahu.edu.cn organization: Anhui University – sequence: 5 givenname: Zhengfei surname: Dai fullname: Dai, Zhengfei email: sensdai@mail.xjtu.edu.cn organization: Kunming University of Science and Technology |
BookMark | eNp90MtKAzEYBeAgFWyrS_cDbtxMm8tMMlnWWrVQL0hdD5lMBlLSSU1SSnc-gs_okxhbUSjoKrfvBP7TA53WtgqAcwQHCEI8DNINMMQYQoTJEeiiHBcppBx1dnuWFpzzE9DzfhEJyhjrgqeJUUvVBmGS-cZ-vL1f63j02rbx5l4E5bQwPmmsS2Z6-CCimNo2uRIhPm2TUWtrlYxWK6OlCDHlT8FxExPq7Hvtg5ebyXx8l84eb6fj0SyVJKMk5YTBHEHMWSWhgDivJKtpQbNC5RmhStYV5JUUVVPxvGlwXmNVY0gJFzVSIiN9cLn_d-Xs61r5UC61l8oY0Sq79iWmBcoyTDiN9OKALuzaxQGjYjhnEGY0j4rslXTWe6eaUuqwmyk4oU2JYPnVchlbLn9ajqn0ILVyeinc9k_P9n6jjdr-j8v5-Pk3-QmobpGM |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2023_168828 crossref_primary_10_1063_5_0247586 crossref_primary_10_1039_D2NR05410H crossref_primary_10_1002_smll_202403736 crossref_primary_10_1002_tcr_202300155 crossref_primary_10_1007_s11467_023_1374_3 crossref_primary_10_1039_D3DT03675H crossref_primary_10_1021_acsami_3c05169 crossref_primary_10_1016_j_est_2024_115205 crossref_primary_10_1016_j_flatc_2023_100549 crossref_primary_10_1039_D4NR01132E crossref_primary_10_1016_j_jpowsour_2025_236567 crossref_primary_10_1080_10408436_2023_2273465 crossref_primary_10_3390_molecules28020537 crossref_primary_10_1016_j_jpcs_2024_112344 crossref_primary_10_1016_j_mtchem_2024_102407 crossref_primary_10_1002_advs_202304465 |
Cites_doi | 10.1002/adma.201605407 10.1126/sciadv.1701373 10.1002/slct.201601489 10.1103/PhysRevB.94.014115 10.1016/j.scib.2018.02.006 10.1021/acsnano.7b03942 10.1038/nchem.2491 10.1039/C6NR00913A 10.1002/smll.201701349 10.1002/ange.201705071 10.1039/C5NR06856H 10.1021/acsnano.8b07006 10.1002/adma.201602128 10.1021/acs.jpcc.9b02399 10.1039/C9CP03230D 10.1021/acsnano.7b08714 10.1007/s11581-017-2345-x 10.1021/nl501617j 10.1126/science.1249625 10.1021/acsnano.5b01143 10.1039/C8TA02590H 10.1016/j.nanoen.2020.105366 10.7567/APEX.8.055201 10.1016/j.nanoen.2016.03.013 10.1039/C9NR02342A 10.1002/adma.201606716 10.1088/0953-8984/27/44/443002 10.1021/acs.jpcc.0c08143 10.1039/C9NR03701B 10.1126/science.aam8774 10.1039/C8NR06797J 10.1002/ange.201808846 10.1039/C6TC01328G 10.1007/s40820-021-00745-w 10.1016/j.electacta.2016.08.027 10.1039/C8TA11218E 10.1007/s11433-015-5665-8 10.1016/j.carbon.2020.03.004 10.1021/acsnano.1c04961 10.1002/anie.201507568 10.1038/s41563-018-0134-1 10.1021/nl504336h 10.1021/acs.nanolett.8b04417 10.1126/science.aai8142 10.1039/C8CP04069A 10.1002/ange.201801818 10.1039/C9TA09429F 10.1021/acsami.0c05236 10.1038/s41467-019-13993-7 10.1063/1.4789635 10.1002/ange.201710038 10.1016/j.electacta.2019.03.149 10.1038/nmat4792 10.1016/j.ensm.2019.12.014 10.1002/aenm.201700447 10.1021/acsami.6b00255 10.1103/PhysRevB.89.174301 10.1038/natrevmats.2016.52 10.1039/b922733d 10.1039/C8TA01716F 10.1149/2.F05103if 10.1002/ange.201507568 10.1002/adfm.201807004 10.1038/nnano.2014.207 10.1039/D1TA03676A 10.1002/adma.201807874 10.1063/1.4963179 10.1038/natrevmats.2018.13 10.1039/C8TC04718A 10.1038/nature.2015.18113 10.1002/adfm.201200691 10.1002/anie.201808050 10.1039/C9CC00332K 10.1021/acs.chemrev.1c00165 10.1002/adfm.202005471 10.1103/PhysRevB.92.081112 10.1103/PhysRevLett.119.106101 10.1002/anie.201808846 10.1002/adma.201903790 10.1007/s41918-019-00056-0 10.1038/natrevmats.2016.98 10.1002/adma.201802858 10.1063/1.4930139 10.1002/advs.201600168 10.1021/acs.chemrev.6b00558 10.1021/acs.jpcc.5b02130 10.1088/1367-2630/17/8/083014 10.1021/acs.nanolett.7b02111 10.1039/C8TA09327J 10.1002/ange.201808050 10.1016/j.elecom.2017.05.011 10.1088/2053-1583/aaba3a 10.1002/aenm.201200026 10.1038/natrevmats.2016.61 10.1002/adom.201700884 10.1103/PhysRevB.92.045436 10.1126/science.1212741 10.1039/c3ta14041e 10.1021/acsnano.7b04786 10.1039/C6TC00115G 10.1103/PhysRevLett.111.136804 10.1002/ange.201411246 10.1007/s11434-016-1118-7 10.1016/j.electacta.2018.01.012 10.1038/s41467-016-0009-6 10.1088/1367-2630/18/7/073016 10.1002/adma.201400909 10.1039/C5RA25773E 10.1002/sstr.202100041 10.1002/ange.201804886 10.1021/acsnano.8b03424 10.1038/nmat4384 10.1016/j.apsusc.2017.02.238 10.1039/D0CC08261A 10.1016/j.nanoen.2014.11.036 10.1039/D0MH01167C 10.1021/jp512411g 10.1103/PhysRevB.93.125428 10.1039/C9NR06011A 10.1021/acs.nanolett.7b01029 10.1016/j.elecom.2021.107025 10.1039/C8TC01421C 10.1038/451652a 10.1149/1945-7111/ab717a 10.1002/celc.201900119 10.1103/PhysRevB.95.125113 10.1038/nnano.2015.194 10.1002/aenm.201602528 10.1002/adfm.201700840 10.1021/acs.chemrev.8b00642 10.1021/acsmaterialslett.0c00280 10.1002/smtd.202001213 10.1002/adfm.202002885 10.1021/cr300263a 10.1088/2053-1583/ab185d 10.1038/ncomms5458 10.1021/acs.nanolett.8b00429 10.1039/C6TA09730H 10.1103/PhysRevMaterials.5.024006 10.1080/21663831.2016.1174163 10.1039/C6NR04186H 10.1039/C4TA06467D 10.1149/2.0751809jes 10.1016/j.cplett.2015.10.072 10.1021/acs.nanolett.7b01717 10.1016/j.scib.2018.01.010 10.1134/S2075113317010117 10.1002/aenm.202003248 10.1007/s12274-016-1148-0 10.1021/acs.jpcb.6b09302 10.1016/j.apsusc.2018.08.010 10.1016/j.vacuum.2020.109402 10.1039/C9CS00551J 10.1021/acsami.8b01823 10.1002/adma.201800838 10.1039/C9NR00736A 10.1126/science.aad1080 |
ContentType | Journal Article |
Copyright | 2022 The Chemical Society of Japan & Wiley‐VCH GmbH 2022 The Chemical Society of Japan & Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 The Chemical Society of Japan & Wiley‐VCH GmbH – notice: 2022 The Chemical Society of Japan & Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7QO 7T7 8FD C1K FR3 P64 7X8 |
DOI | 10.1002/tcr.202200123 |
DatabaseName | CrossRef Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef Engineering Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1528-0691 |
EndPage | n/a |
ExternalDocumentID | 10_1002_tcr_202200123 TCR202200123 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Natural Science Foundation of Shaanxi Province funderid: 2020JM-032 – fundername: Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials funderid: LHG-2020-0003 |
GroupedDBID | --- .3N .Y3 05W 0R~ 10A 123 1OC 29B 31~ 33P 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5VS 66C 702 7PT 8-1 8UM A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BROTX BRXPI BY8 CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD F5P FEDTE G-S G.N GODZA HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LAW LC2 LC3 LEEKS LH- LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MSFUL MSSTM MXFUL MXSTM MY~ N9A O9- OIG P2W P4D Q11 QB0 QRW R.K ROL RX1 SUPJJ V2E W99 WBKPD WOHZO WQJ WXSBR WYJ WYUIH XG1 XV2 ZZTAW ~IA AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7QO 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3463-9370510297bc0a025bc7d68648e5436ecdb09bcabfb95ff25d2ed20639ad1ea43 |
IEDL.DBID | DR2 |
ISSN | 1527-8999 1528-0691 |
IngestDate | Fri Jul 11 04:31:09 EDT 2025 Fri Jul 25 10:33:35 EDT 2025 Tue Jul 01 02:40:10 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Wed Jan 22 16:22:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3463-9370510297bc0a025bc7d68648e5436ecdb09bcabfb95ff25d2ed20639ad1ea43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7566-4069 0000-0001-9567-3387 |
PQID | 2725700465 |
PQPubID | 1006501 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2681442396 proquest_journals_2725700465 crossref_citationtrail_10_1002_tcr_202200123 crossref_primary_10_1002_tcr_202200123 wiley_primary_10_1002_tcr_202200123_TCR202200123 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Chemical record |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 165 2017; 81 2020; 162 2010; 19 2019; 11 2014; 26 2019; 19 2020; 12 2020; 167 2020; 11 2018; 6 2018; 3 2018; 5 2018; 4 2019; 21 2013; 111 2014; 14 2013; 113 2019; 29 2020; 177 2018; 30 2019; 7 2015; 58 2018; 462 2019; 6 2019; 31 2015; 127 2015; 641 2016; 94 2016; 93 2020; 32 2015; 524 2016; 18 2018; 20 2018; 24 2015; 350 2016; 4 2021; 57 2016; 6 2018; 18 2018; 17 2016; 1 2010; 46 2020; 30 2020; 27 2015; 119 2015; 118 2016; 213 2018; 12 2016; 28 2018; 10 2016; 8 2016; 9 2016; 23 2018; 13 2017; 5 2017; 119 2017; 7 2017; 8 2017; 2 2017; 4 2016; 109 2019; 55 2021; 126 2013; 23 2020; 124 2017; 356 2017; 357 2019; 123 2017; 117 2022; 122 2018; 130 2017; 409 2014; 5 2020; 3 2021; 31 2020; 2 2014; 2 2018 2018; 57 130 2020; 49 2019; 119 2017; 121 2014; 9 2017; 129 2018; 263 2021; 9 2021; 8 2011; 334 2015; 15 2015; 14 2021; 5 2015; 17 2015; 3 2021; 2 2015; 92 2017; 27 2019; 309 2015; 11 2015; 10 2018; 63 2020; 78 2017; 29 2015; 9 2015; 8 2014; 89 2019 2019; 58 131 2017; 95 2021; 15 2012; 2 2015; 27 2016 2016; 55 128 2021; 11 2022 2021 2017; 17 2017; 16 2017; 11 2017; 13 2016; 61 2008; 451 2014; 343 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_159_2 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_57_2 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 Sengupta A. (e_1_2_8_129_1) 2017; 5 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_156_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_163_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 Fan F. R. (e_1_2_8_23_1) 2021 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Jariwala D. (e_1_2_8_25_1) 2018; 13 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_135_2 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_123_2 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
References_xml | – volume: 78 year: 2020 publication-title: Nano Energy – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 21 start-page: 19951 year: 2019 end-page: 19962 publication-title: Phys. Chem. Chem. Phys. – volume: 14 start-page: 4573 year: 2014 end-page: 4580 publication-title: Nano Lett. – volume: 11 start-page: 1 year: 2020 end-page: 8 publication-title: Nat. Commun. – volume: 23 start-page: 97 year: 2016 end-page: 104 publication-title: Nano Energy – volume: 8 start-page: 60 year: 2017 end-page: 67 publication-title: Appl. Mater. Res. – volume: 6 start-page: 6153 year: 2018 end-page: 6163 publication-title: J. Mater. Chem. C – volume: 17 start-page: 3965 year: 2017 end-page: 3973 publication-title: Nano Lett. – volume: 343 start-page: 1210 year: 2014 publication-title: Science – volume: 6 start-page: 8006 year: 2016 end-page: 8014 publication-title: RSC Adv. – volume: 26 start-page: 4820 year: 2014 end-page: 4824 publication-title: Adv. Mater. – volume: 16 start-page: 182 year: 2017 end-page: 194 publication-title: Nat. Mater. – volume: 11 start-page: 14698 year: 2019 end-page: 14706 publication-title: Nanoscale – year: 2021 publication-title: Chem. Soc. Rev. – volume: 58 131 start-page: 134 140 year: 2019 2019 end-page: 138 144 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 10222 year: 2017 end-page: 10229 publication-title: ACS Nano – volume: 5 year: 2021 publication-title: Phys. Rev. Mater. – volume: 11 start-page: 7476 year: 2017 end-page: 7484 publication-title: ACS Nano – volume: 6 start-page: 1525 year: 2019 end-page: 1535 publication-title: ChemElectroChem – volume: 129 start-page: 14910 year: 2017 end-page: 14914 publication-title: Angew. Chem. Int. Ed. – volume: 118 year: 2015 publication-title: J. Appl. Phys. – volume: 117 start-page: 6225 year: 2017 end-page: 6331 publication-title: Chem. Rev. – volume: 357 start-page: 287 year: 2017 end-page: 290 publication-title: Science – volume: 18 year: 2016 publication-title: New J. Phys. – volume: 49 start-page: 263 year: 2020 end-page: 285 publication-title: Chem. Soc. Rev. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 127 year: 2020 end-page: 154 publication-title: Electrochem. Energy Rev. – volume: 177 year: 2020 publication-title: Vacuum – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 124 start-page: 28074 year: 2020 end-page: 28082 publication-title: J. Phys. Chem. C – volume: 61 start-page: 1138 year: 2016 end-page: 1144 publication-title: Sci. Bull. – volume: 7 start-page: 3238 year: 2019 end-page: 3243 publication-title: J. Mater. Chem. A – volume: 127 start-page: 3155 year: 2015 end-page: 3158 publication-title: Angew. Chem. Int. Ed. – volume: 129 start-page: 10579 year: 2017 end-page: 10581 publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 7272 year: 2016 end-page: 7277 publication-title: Nanoscale – volume: 119 start-page: 5416 year: 2019 end-page: 5460 publication-title: Chem. Rev. – volume: 213 start-page: 865 year: 2016 end-page: 870 publication-title: Electrochim. Acta – volume: 123 start-page: 15777 year: 2019 end-page: 15786 publication-title: J. Phys. Chem. C – volume: 162 start-page: 579 year: 2020 end-page: 585 publication-title: Carbon – volume: 5 year: 2018 publication-title: 2D Mater. – volume: 524 start-page: 18 year: 2015 publication-title: Nature – volume: 126 year: 2021 publication-title: Electrochem. Commun. – volume: 12 start-page: 7253 year: 2018 end-page: 7263 publication-title: ACS Nano – volume: 19 start-page: 49 year: 2010 end-page: 53 publication-title: Electrochem. Soc. Interface – volume: 28 start-page: 6332 year: 2016 end-page: 6336 publication-title: Adv. Mater. – volume: 130 start-page: 7860 year: 2018 end-page: 7863 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 26326 year: 2019 end-page: 26333 publication-title: J. Mater. Chem. A – volume: 122 start-page: 1127 year: 2022 end-page: 1207 publication-title: Chem. Rev. – volume: 121 start-page: 35 year: 2017 end-page: 46 publication-title: J. Phys. Chem. B – volume: 109 year: 2016 publication-title: Appl. Phys. Lett. – volume: 15 start-page: 1691 year: 2015 end-page: 1697 publication-title: Nano Lett. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 11 start-page: 17058 year: 2019 end-page: 17064 publication-title: Nanoscale – volume: 9 start-page: 768 year: 2014 end-page: 779 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 8467 year: 2016 end-page: 8473 publication-title: ACS Appl. Mater. Interfaces – volume: 17 start-page: 783 year: 2018 end-page: 788 publication-title: Nat. Mater. – volume: 11 start-page: 18758 year: 2019 end-page: 18768 publication-title: Nanoscale – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 1 start-page: 1 year: 2016 end-page: 16 publication-title: Nat. Rev. Mater. – volume: 5 start-page: 4458 year: 2014 publication-title: Nat. Commun. – volume: 119 start-page: 8662 year: 2015 end-page: 8670 publication-title: J. Phys. Chem. C – volume: 119 start-page: 6923 year: 2015 end-page: 6928 publication-title: J. Phys. Chem. C – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 5 year: 2021 publication-title: Small Methods – volume: 2 year: 2021 publication-title: Small Structures – volume: 8 start-page: 12 year: 2021 end-page: 32 publication-title: Mater. Horiz. – volume: 8 start-page: 15340 year: 2016 end-page: 15347 publication-title: Nanoscale – volume: 2 start-page: 3856 year: 2014 end-page: 3864 publication-title: J. Mater. Chem. A – volume: 9 start-page: 3596 year: 2015 end-page: 3604 publication-title: ACS Nano – volume: 409 start-page: 85 year: 2017 end-page: 90 publication-title: Appl. Surf. Sci. – volume: 7 start-page: 783 year: 2019 end-page: 790 publication-title: J. Mater. Chem. A – volume: 92 year: 2015 publication-title: Phys. Rev. B – volume: 17 year: 2015 publication-title: New J. Phys. – volume: 15 start-page: 17327 year: 2021 end-page: 17336 publication-title: ACS Nano – volume: 13 year: 2017 publication-title: Small – volume: 8 start-page: 4001 year: 2016 end-page: 4006 publication-title: Nanoscale – volume: 55 start-page: 3983 year: 2019 end-page: 3986 publication-title: Chem. Commun. – volume: 6 start-page: 10121 year: 2018 end-page: 10134 publication-title: J. Mater. Chem. A – volume: 2 start-page: 1 year: 2017 end-page: 17 publication-title: Nat. Rev. Mater. – volume: 1 start-page: 1 year: 2016 end-page: 15 publication-title: Nat. Rev. Mater. – volume: 10 start-page: 21106 year: 2018 end-page: 21115 publication-title: Nanoscale – volume: 89 year: 2014 publication-title: Phys. Rev. B – volume: 350 start-page: 1513 year: 2015 end-page: 1516 publication-title: Science – volume: 11 start-page: 6235 year: 2019 end-page: 6242 publication-title: Nanoscale – volume: 23 start-page: 947 year: 2013 end-page: 958 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 1 year: 2018 end-page: 11 publication-title: Nat. Rev. Mater. – volume: 18 start-page: 2133 year: 2018 end-page: 2139 publication-title: Nano Lett. – volume: 11 start-page: 2608 year: 2019 end-page: 2617 publication-title: ACS Appl. Mater. Interfaces – volume: 8 year: 2015 publication-title: Appl. Phys. Express – volume: 17 start-page: 4619 year: 2017 end-page: 4623 publication-title: Nano Lett. – volume: 63 start-page: 282 year: 2018 end-page: 286 publication-title: Sci. Bull. – volume: 46 start-page: 3256 year: 2010 end-page: 3258 publication-title: Chem. Commun. – start-page: 14 year: 2022 publication-title: Nano-Micro Lett. – volume: 6 start-page: 7933 year: 2018 end-page: 7941 publication-title: J. Mater. Chem. A – volume: 5 start-page: 347 year: 2017 end-page: 354 publication-title: Mater. Today – volume: 17 start-page: 4970 year: 2017 end-page: 4975 publication-title: Nano Lett. – volume: 94 year: 2016 publication-title: Phys. Rev. B – volume: 309 start-page: 264 year: 2019 end-page: 273 publication-title: Electrochim. Acta – volume: 2 start-page: 710 year: 2012 end-page: 721 publication-title: Adv. Energy Mater. – volume: 12 start-page: 23370 year: 2020 end-page: 23377 publication-title: ACS Appl. Mater. Interfaces – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 8 start-page: 1 year: 2017 end-page: 9 publication-title: Nat. Commun. – volume: 130 start-page: 8804 year: 2018 end-page: 8809 publication-title: Angew. Chem. Int. Ed. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 57 start-page: 2396 year: 2021 end-page: 2399 publication-title: Chem. Commun. – volume: 451 start-page: 652 year: 2008 end-page: 657 publication-title: Nature – volume: 12 start-page: 11632 year: 2018 end-page: 11637 publication-title: ACS Nano – volume: 20 start-page: 24250 year: 2018 end-page: 24256 publication-title: Phys. Chem. Chem. Phys. – volume: 113 year: 2013 publication-title: J. Appl. Phys. – volume: 11 start-page: 481 year: 2015 end-page: 489 publication-title: Nano Energy – volume: 641 start-page: 169 year: 2015 end-page: 172 publication-title: Chem. Phys. Lett. – volume: 5 start-page: 2328 year: 2017 end-page: 2338 publication-title: J. Mater. Chem. A – volume: 356 start-page: 1120 year: 2017 publication-title: Science – volume: 113 start-page: 3766 year: 2013 end-page: 3798 publication-title: Chem. Rev. – volume: 13 start-page: 2 year: 2018 publication-title: Mater. Matters – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 111 year: 2013 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 2666 year: 2019 end-page: 2675 publication-title: J. Mater. Chem. C – volume: 24 start-page: 1603 year: 2018 end-page: 1615 publication-title: Ionics – volume: 95 year: 2017 publication-title: Phys. Rev. B – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 12 start-page: 1887 year: 2018 end-page: 1893 publication-title: ACS Nano – volume: 4 start-page: 204 year: 2016 end-page: 211 publication-title: Mater. Res. Lett. – volume: 8 start-page: 563 year: 2016 end-page: 568 publication-title: Nat. Chem. – volume: 119 year: 2017 publication-title: Phys. Rev. Lett. – volume: 334 start-page: 928 year: 2011 end-page: 935 publication-title: Science – volume: 27 year: 2015 publication-title: J. Phys. Condens. Matter – volume: 4 start-page: 3592 year: 2016 end-page: 3598 publication-title: J. Mater. Chem. C – volume: 263 start-page: 272 year: 2018 end-page: 276 publication-title: Electrochim. Acta – volume: 6 year: 2019 publication-title: 2D Mater. – volume: 10 start-page: 980 year: 2015 end-page: 985 publication-title: Nat. Nanotechnol. – volume: 57 130 start-page: 13533 13721 year: 2018 2018 end-page: 13537 13725 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 81 start-page: 10 year: 2017 end-page: 13 publication-title: Electrochem. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 4 start-page: 6380 year: 2016 end-page: 6385 publication-title: J. Mater. Chem. C – volume: 462 start-page: 270 year: 2018 end-page: 275 publication-title: Appl. Surf. Sci. – volume: 5 year: 2017 publication-title: Adv. Opt. Mater. – volume: 93 start-page: 25428 year: 2016 publication-title: Phys. Rev. B – volume: 9 start-page: 18793 year: 2021 end-page: 18817 publication-title: J. Mater. Chem. A – volume: 9 start-page: 2616 year: 2016 end-page: 2622 publication-title: Nano Res. – volume: 3 start-page: 9353 year: 2015 end-page: 9378 publication-title: J. Mater. Chem. A – volume: 58 start-page: 87301 year: 2015 publication-title: Sci. China: Phys., Mech. Astron. – volume: 55 128 start-page: 1666 1698 year: 2016 2016 end-page: 1669 1701 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 19 start-page: 1118 year: 2019 end-page: 1123 publication-title: Nano Lett. – volume: 1 start-page: 5579 year: 2016 end-page: 5583 publication-title: ChemistrySelect – volume: 63 start-page: 159 year: 2018 end-page: 168 publication-title: Sci. Bull. – volume: 27 start-page: 522 year: 2020 end-page: 554 publication-title: Energy Storage Mater. – volume: 14 start-page: 1020 year: 2015 end-page: 1025 publication-title: Nat. Mater. – volume: 2 start-page: 1148 year: 2020 end-page: 1172 publication-title: ACS Materials Lett. – volume: 165 start-page: A1788 year: 2018 publication-title: J. Electrochem. Soc. – ident: e_1_2_8_139_1 doi: 10.1002/adma.201605407 – ident: e_1_2_8_81_1 doi: 10.1126/sciadv.1701373 – ident: e_1_2_8_103_1 doi: 10.1002/slct.201601489 – ident: e_1_2_8_56_1 doi: 10.1103/PhysRevB.94.014115 – ident: e_1_2_8_60_1 doi: 10.1016/j.scib.2018.02.006 – ident: e_1_2_8_97_1 doi: 10.1021/acsnano.7b03942 – ident: e_1_2_8_59_1 doi: 10.1038/nchem.2491 – ident: e_1_2_8_102_1 doi: 10.1039/C6NR00913A – ident: e_1_2_8_136_1 doi: 10.1002/smll.201701349 – ident: e_1_2_8_44_1 doi: 10.1002/ange.201705071 – ident: e_1_2_8_117_1 doi: 10.1039/C5NR06856H – ident: e_1_2_8_99_1 doi: 10.1021/acsnano.8b07006 – ident: e_1_2_8_42_1 doi: 10.1002/adma.201602128 – ident: e_1_2_8_125_1 doi: 10.1021/acs.jpcc.9b02399 – ident: e_1_2_8_127_1 doi: 10.1039/C9CP03230D – ident: e_1_2_8_144_1 doi: 10.1021/acsnano.7b08714 – ident: e_1_2_8_74_1 doi: 10.1007/s11581-017-2345-x – ident: e_1_2_8_118_1 doi: 10.1021/nl501617j – ident: e_1_2_8_3_1 doi: 10.1126/science.1249625 – ident: e_1_2_8_43_1 doi: 10.1021/acsnano.5b01143 – ident: e_1_2_8_109_1 doi: 10.1039/C8TA02590H – ident: e_1_2_8_17_1 doi: 10.1016/j.nanoen.2020.105366 – ident: e_1_2_8_124_1 doi: 10.7567/APEX.8.055201 – ident: e_1_2_8_38_1 doi: 10.1016/j.nanoen.2016.03.013 – ident: e_1_2_8_47_1 doi: 10.1039/C9NR02342A – ident: e_1_2_8_93_1 doi: 10.1002/adma.201606716 – ident: e_1_2_8_34_1 doi: 10.1088/0953-8984/27/44/443002 – ident: e_1_2_8_161_1 doi: 10.1021/acs.jpcc.0c08143 – ident: e_1_2_8_35_1 doi: 10.1039/C9NR03701B – ident: e_1_2_8_41_1 doi: 10.1126/science.aam8774 – ident: e_1_2_8_134_1 doi: 10.1039/C8NR06797J – ident: e_1_2_8_135_2 doi: 10.1002/ange.201808846 – ident: e_1_2_8_64_1 doi: 10.1039/C6TC01328G – ident: e_1_2_8_131_1 doi: 10.1002/adma.201602128 – ident: e_1_2_8_6_1 doi: 10.1007/s40820-021-00745-w – ident: e_1_2_8_101_1 doi: 10.1016/j.electacta.2016.08.027 – ident: e_1_2_8_142_1 doi: 10.1039/C8TA11218E – ident: e_1_2_8_121_1 doi: 10.1007/s11433-015-5665-8 – ident: e_1_2_8_92_1 doi: 10.1016/j.carbon.2020.03.004 – ident: e_1_2_8_52_1 doi: 10.1088/0953-8984/27/44/443002 – ident: e_1_2_8_77_1 doi: 10.1021/acsnano.1c04961 – ident: e_1_2_8_123_1 doi: 10.1002/anie.201507568 – ident: e_1_2_8_63_1 doi: 10.1038/s41563-018-0134-1 – ident: e_1_2_8_116_1 doi: 10.1021/nl504336h – ident: e_1_2_8_147_1 doi: 10.1021/acs.nanolett.8b04417 – ident: e_1_2_8_140_1 doi: 10.1126/science.aai8142 – ident: e_1_2_8_155_1 doi: 10.1039/C8CP04069A – ident: e_1_2_8_7_1 doi: 10.1002/ange.201801818 – ident: e_1_2_8_33_1 doi: 10.1039/C9TA09429F – ident: e_1_2_8_78_1 doi: 10.1021/acsami.0c05236 – ident: e_1_2_8_46_1 doi: 10.1038/s41467-019-13993-7 – ident: e_1_2_8_87_1 doi: 10.1063/1.4789635 – ident: e_1_2_8_133_1 doi: 10.1002/ange.201710038 – ident: e_1_2_8_112_1 doi: 10.1016/j.electacta.2019.03.149 – ident: e_1_2_8_26_1 doi: 10.1038/nmat4792 – ident: e_1_2_8_15_1 doi: 10.1016/j.ensm.2019.12.014 – year: 2021 ident: e_1_2_8_23_1 publication-title: Chem. Soc. Rev. – ident: e_1_2_8_143_1 doi: 10.1002/aenm.201700447 – ident: e_1_2_8_89_1 doi: 10.1021/acsami.6b00255 – ident: e_1_2_8_69_1 doi: 10.1103/PhysRevB.89.174301 – ident: e_1_2_8_50_1 doi: 10.1126/sciadv.1701373 – ident: e_1_2_8_22_1 doi: 10.1038/natrevmats.2016.52 – ident: e_1_2_8_86_1 doi: 10.1039/b922733d – ident: e_1_2_8_106_1 doi: 10.1039/C8TA01716F – ident: e_1_2_8_4_1 doi: 10.1149/2.F05103if – ident: e_1_2_8_57_2 doi: 10.1002/ange.201507568 – ident: e_1_2_8_126_1 doi: 10.1002/adfm.201807004 – ident: e_1_2_8_24_1 doi: 10.1038/nnano.2014.207 – ident: e_1_2_8_164_1 doi: 10.1039/D1TA03676A – ident: e_1_2_8_148_1 doi: 10.1002/adma.201807874 – ident: e_1_2_8_67_1 doi: 10.1063/1.4963179 – ident: e_1_2_8_10_1 doi: 10.1038/natrevmats.2018.13 – ident: e_1_2_8_79_1 doi: 10.1039/C8TC04718A – ident: e_1_2_8_105_1 doi: 10.1038/nature.2015.18113 – ident: e_1_2_8_9_1 doi: 10.1002/adfm.201200691 – ident: e_1_2_8_159_1 doi: 10.1002/anie.201808050 – ident: e_1_2_8_108_1 doi: 10.1039/C9CC00332K – ident: e_1_2_8_119_1 doi: 10.1021/acs.chemrev.1c00165 – ident: e_1_2_8_37_1 doi: 10.1002/adfm.202005471 – ident: e_1_2_8_29_1 doi: 10.1103/PhysRevB.92.081112 – ident: e_1_2_8_57_1 doi: 10.1002/anie.201507568 – ident: e_1_2_8_98_1 doi: 10.1103/PhysRevB.92.081112 – ident: e_1_2_8_150_1 doi: 10.1103/PhysRevLett.119.106101 – ident: e_1_2_8_135_1 doi: 10.1002/anie.201808846 – ident: e_1_2_8_5_1 doi: 10.1002/adma.201903790 – ident: e_1_2_8_18_1 doi: 10.1007/s41918-019-00056-0 – ident: e_1_2_8_21_1 doi: 10.1038/natrevmats.2016.98 – ident: e_1_2_8_141_1 doi: 10.1002/adma.201802858 – ident: e_1_2_8_31_1 doi: 10.1063/1.4930139 – ident: e_1_2_8_16_1 doi: 10.1002/advs.201600168 – ident: e_1_2_8_27_1 doi: 10.1021/acs.chemrev.6b00558 – ident: e_1_2_8_115_1 doi: 10.1021/acs.jpcc.5b02130 – ident: e_1_2_8_49_1 doi: 10.1088/1367-2630/17/8/083014 – ident: e_1_2_8_137_1 doi: 10.1021/acs.nanolett.7b02111 – ident: e_1_2_8_111_1 doi: 10.1039/C8TA09327J – ident: e_1_2_8_159_2 doi: 10.1002/ange.201808050 – ident: e_1_2_8_40_1 doi: 10.1016/j.elecom.2017.05.011 – ident: e_1_2_8_83_1 doi: 10.1088/2053-1583/aaba3a – ident: e_1_2_8_36_1 doi: 10.1103/PhysRevB.94.014115 – ident: e_1_2_8_8_1 doi: 10.1002/aenm.201200026 – ident: e_1_2_8_32_1 doi: 10.1038/natrevmats.2016.61 – ident: e_1_2_8_157_1 doi: 10.1002/adom.201700884 – ident: e_1_2_8_55_1 doi: 10.1103/PhysRevB.92.045436 – ident: e_1_2_8_2_1 doi: 10.1126/science.1212741 – ident: e_1_2_8_72_1 doi: 10.1039/c3ta14041e – ident: e_1_2_8_156_1 doi: 10.1021/acsnano.7b04786 – ident: e_1_2_8_65_1 doi: 10.1039/C6TC00115G – ident: e_1_2_8_30_1 doi: 10.1103/PhysRevLett.111.136804 – ident: e_1_2_8_128_1 doi: 10.1002/ange.201411246 – ident: e_1_2_8_71_1 doi: 10.1007/s11434-016-1118-7 – ident: e_1_2_8_110_1 doi: 10.1016/j.electacta.2018.01.012 – ident: e_1_2_8_12_1 doi: 10.1038/s41467-016-0009-6 – ident: e_1_2_8_66_1 doi: 10.1088/1367-2630/18/7/073016 – ident: e_1_2_8_100_1 doi: 10.1002/adma.201400909 – ident: e_1_2_8_51_1 doi: 10.1039/C5RA25773E – ident: e_1_2_8_104_1 doi: 10.1002/sstr.202100041 – ident: e_1_2_8_132_1 doi: 10.1002/ange.201804886 – ident: e_1_2_8_163_1 doi: 10.1002/adfm.202005471 – ident: e_1_2_8_154_1 doi: 10.1021/acsnano.8b03424 – ident: e_1_2_8_53_1 doi: 10.1038/nmat4384 – ident: e_1_2_8_48_1 doi: 10.1016/j.apsusc.2017.02.238 – ident: e_1_2_8_149_1 doi: 10.1039/D0CC08261A – ident: e_1_2_8_88_1 doi: 10.1016/j.nanoen.2014.11.036 – ident: e_1_2_8_13_1 doi: 10.1039/D0MH01167C – ident: e_1_2_8_70_1 doi: 10.1021/jp512411g – ident: e_1_2_8_80_1 doi: 10.1103/PhysRevB.93.125428 – ident: e_1_2_8_19_1 doi: 10.1039/C9NR06011A – volume: 5 start-page: 347 year: 2017 ident: e_1_2_8_129_1 publication-title: Mater. Today – ident: e_1_2_8_152_1 doi: 10.1021/acs.nanolett.7b01029 – ident: e_1_2_8_145_1 doi: 10.1016/j.elecom.2021.107025 – ident: e_1_2_8_153_1 doi: 10.1039/C8TC01421C – ident: e_1_2_8_1_1 doi: 10.1038/451652a – ident: e_1_2_8_96_1 doi: 10.1149/1945-7111/ab717a – ident: e_1_2_8_95_1 doi: 10.1002/celc.201900119 – ident: e_1_2_8_54_1 doi: 10.1103/PhysRevB.95.125113 – ident: e_1_2_8_113_1 doi: 10.1038/nnano.2015.194 – ident: e_1_2_8_107_1 doi: 10.1002/aenm.201602528 – ident: e_1_2_8_123_2 doi: 10.1002/ange.201507568 – ident: e_1_2_8_85_1 doi: 10.1002/adfm.201700840 – ident: e_1_2_8_14_1 doi: 10.1021/acs.chemrev.8b00642 – ident: e_1_2_8_82_1 doi: 10.1021/acsmaterialslett.0c00280 – ident: e_1_2_8_45_1 doi: 10.1002/smtd.202001213 – ident: e_1_2_8_120_1 doi: 10.1002/adfm.202002885 – ident: e_1_2_8_28_1 doi: 10.1021/cr300263a – ident: e_1_2_8_90_1 doi: 10.1088/2053-1583/ab185d – ident: e_1_2_8_114_1 doi: 10.1038/ncomms5458 – ident: e_1_2_8_138_1 doi: 10.1021/acs.nanolett.8b00429 – ident: e_1_2_8_73_1 doi: 10.1039/C6TA09730H – ident: e_1_2_8_84_1 doi: 10.1103/PhysRevMaterials.5.024006 – ident: e_1_2_8_62_1 doi: 10.1080/21663831.2016.1174163 – ident: e_1_2_8_76_1 doi: 10.1039/C6NR04186H – ident: e_1_2_8_11_1 doi: 10.1039/C4TA06467D – ident: e_1_2_8_94_1 doi: 10.1149/2.0751809jes – ident: e_1_2_8_58_1 doi: 10.1016/j.cplett.2015.10.072 – ident: e_1_2_8_160_1 doi: 10.1021/acs.nanolett.7b01717 – ident: e_1_2_8_158_1 doi: 10.1016/j.scib.2018.01.010 – ident: e_1_2_8_75_1 doi: 10.1134/S2075113317010117 – ident: e_1_2_8_162_1 doi: 10.1002/aenm.202003248 – ident: e_1_2_8_68_1 doi: 10.1007/s12274-016-1148-0 – ident: e_1_2_8_122_1 doi: 10.1021/acs.jpcb.6b09302 – ident: e_1_2_8_130_1 doi: 10.1016/j.apsusc.2018.08.010 – ident: e_1_2_8_20_1 doi: 10.1016/j.vacuum.2020.109402 – ident: e_1_2_8_146_1 doi: 10.1039/C9CS00551J – volume: 13 start-page: 2 year: 2018 ident: e_1_2_8_25_1 publication-title: Mater. Matters – ident: e_1_2_8_91_1 doi: 10.1021/acsami.8b01823 – ident: e_1_2_8_39_1 doi: 10.1002/adma.201800838 – ident: e_1_2_8_151_1 doi: 10.1039/C9NR00736A – ident: e_1_2_8_61_1 doi: 10.1126/science.aad1080 |
SSID | ssj0011477 |
Score | 2.416867 |
SecondaryResourceType | review_article |
Snippet | Two‐dimensional (2D) nanostructure is currently the subject in the fields of new energy storage and devices. During the past years, a broad range of 2D... Two-dimensional (2D) nanostructure is currently the subject in the fields of new energy storage and devices. During the past years, a broad range of 2D... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202200123 |
SubjectTerms | 2D materials Anodes Diffusion rate Electrochemical analysis Electrochemistry Energy storage Graphene Graphical representations Ion diffusion Ion storage lithium-ion batteries Rechargeable batteries single element Sodium Sodium-ion batteries Two dimensional materials |
Title | Elemental Two‐Dimensional Materials for Li/Na‐Ion Battery Anode Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202200123 https://www.proquest.com/docview/2725700465 https://www.proquest.com/docview/2681442396 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA2yF33xW6xOiSA-2a1L03R5HHNjihsyNthbTZoUxNGK6xB98if4G_0lJk3bbYKC-NbSG9p83OTc5PYcAM6p5NgXwrO1OLeNPRrZjHJsR1Ji34244zO9od8fkN4Y30y8Sa5zqv-FMfwQ5Yab9oxsvtYOzvisviANVROVCu8QylCBmoN1vpYGRcOSPkpB_Ux5USu32iquoDnHpipfXym9uiYtgOYyXM3Wm-4WuC--1KSZPNbmKa-Fb99IHP9RlW2wmWNR2DKDZwesyXgXrLcLCbg9cNfJk8uncPSSfL5_XGktAMPjAfssNaMXKtwLbx_qA6YsrpMYGs7OV9iKEyFha-mIfB-Mu51Ru2fnEgx26GLi2gq8aK9F1OehwxQ-4qEvSJPgpvSwS2QouEN5yHjEqRdFyBNICqRhDxMNybB7ACpxEstDADmWbkOiiCOXY8Ioow7X9HWISBF6PrbAZdEJQZjzk2uZjGlgmJVRoJopKJvJAhel-ZMh5vjJsFr0aJD75yxAPsqI_YlngbPysWpdfVzCYpnMlQ1pqmgTuZRYwMm67_cXBaP2sLw5-nuRY7Chr02mYBVU0ue5PFGIJ-Wn2bD-Aia0-NE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3ofNAXv8Xp1Ajik3VdmqbL45gbU7chMsG3kjQpiKMV3RB98if4G_0lJk1XN0FBfGx704-b3OTcJD0H4IgpQQIpfceIczvEZ7HDmSBOrBQJvFi4ATcT-r0-7dyQi1v_duovfssPUUy4mcjI-msT4GZCuvrFGqp7Kp3fYZzBgnlYMKreWVJ1XRBIabCfaS8a7VZHZxYsZ9nUN6jOFJ8dlb6g5jRgzUac9grwybvajSb3p-OROI1ev9E4_udjVmE5h6OoYdvPGsypZB0WmxMVuA24auX7y4do8Jx-vL2fGTkAS-WBenxkGzDS0Bd176p9ri3O0wRZ2s4X1EhSqVBjapV8E27arUGz4-QqDE7kEeo5Gr-YwMUsEJHLNUQSUSBpnZK68olHVSSFy0TERSyYH8fYl1hJbJAPlzXFibcFpSRN1DYgQZRXUzgW2BOEcsaZKwyDHaZKRn5AynAyqYUwyinKjVLGMLTkyjjUbgoLN5XhuDB_sNwcPxlWJlUa5iH6FOIAZ9z-1C_DYXFZe9esmPBEpWNtQ-s64cQeo2Vws_r7_UHhoHldHOz8vcgBLHYGvW7YPe9f7sKSOW83DlagNHocqz0NgEZiP2vjn7iP_Ow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54AfXFuzivEcQn67o0TZfHsQtexxgTfKtJk4I42qEbok_-BH-jv8Sk6eoUFMTHtie9nJyTfLn0-wAOmRIkkNJ3jDi3Q3wWO5wJ4sRKkcCLhRtwM6F_1aan1-T8xr_JdU7NvzCWH6KYcDOZkbXXJsEHMi5_kobqhkoP7zDOUME0zBLqVk1YN7oFf5TG-pn0opFudfTAguUkm_oG5S_Fv3ZKn0hzEq9mHU5rCW7Hr2r3mdyfjIbiJHr5xuL4j29ZhsUcjKKajZ4VmFLJKszXxxpwa9Bp5rvL-6j3lL6_vjWMGIAl8kBXfGjDF2ngiy7vym2uLc7SBFnSzmdUS1KpUG1ijXwdrlvNXv3UyTUYnMgj1HM0ejFpi1kgIpdrgCSiQNIqJVXlE4-qSAqXiYiLWDA_jrEvsZLY4B4uK4oTbwNmkjRRm4AEUV5F4VhgTxDKGWeuMPx1mCoZ-QEpwfG4EsIoJyg3Ohn90FIr41C7KSzcVIKjwnxgmTl-MtwZ12iYJ-hjiAOcMftTvwQHxWXtXbNewhOVjrQNrerhJvYYLYGbVd_vDwp79W5xsPX3Ivsw12m0wsuz9sU2LJjTdtfgDswMH0ZqV6OfodjLIvwD2s_7pA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elemental+Two%E2%80%90Dimensional+Materials+for+Li%2FNa%E2%80%90Ion+Battery+Anode+Applications&rft.jtitle=Chemical+record&rft.au=Tian%2C+Yahui&rft.au=Chen%2C+Ya&rft.au=Liu%2C+Yaoda&rft.au=Li%2C+Hui&rft.date=2022-10-01&rft.issn=1527-8999&rft.eissn=1528-0691&rft.volume=22&rft.issue=10&rft_id=info:doi/10.1002%2Ftcr.202200123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_tcr_202200123 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon |