Optimal operation of compressor units in gas networks to provide flexibility to power systems
Compressor stations play a crucial role in natural gas networks to maintain required pressure levels for transporting gas. Centrifugal compressors commonly used in high pressure gas transmission networks could be driven by gas turbines or electric motors. Including compressor units powered via diffe...
Saved in:
Published in | Applied energy Vol. 290; p. 116740 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Compressor stations play a crucial role in natural gas networks to maintain required pressure levels for transporting gas. Centrifugal compressors commonly used in high pressure gas transmission networks could be driven by gas turbines or electric motors. Including compressor units powered via different fuels in a compressor station allows switching between fuels required by compressors to achieve a set outlet pressure and flow throughput. In this paper, an optimisation model of gas network was developed considering reasonably detailed representation of a compressor station to investigate flexibility provision from the compressor station to the power system. The model was formulated as a mixed integer linear programming (MILP) problem by linearising the nonlinear equations governing gas flow along pipes and compressor power consumption. The model was tested on the gas transmission system in South Wales, UK. The operation of compressors was optimised in response to gas and electricity price subject to meeting operational limits of the gas network. The results showed that the compressors can provide flexibility to the power system through shifting their electricity energy consumption in time or switching between gas- and electric-driven compressor units. It was found that the allowable range for variation of linepack plays a key role in the magnitude and duration of flexibility provision from compressor units.
•An optimisation model was proposed for operation of compressors in the gas networks.•Flexibility from coordinated operation of gas- and electric-driven compressor units were quantified.•The value of linepack in providing flexibility to power systems was investigated. |
---|---|
AbstractList | Compressor stations play a crucial role in natural gas networks to maintain required pressure levels for transporting gas. Centrifugal compressors commonly used in high pressure gas transmission networks could be driven by gas turbines or electric motors. Including compressor units powered via different fuels in a compressor station allows switching between fuels required by compressors to achieve a set outlet pressure and flow throughput. In this paper, an optimisation model of gas network was developed considering reasonably detailed representation of a compressor station to investigate flexibility provision from the compressor station to the power system. The model was formulated as a mixed integer linear programming (MILP) problem by linearising the nonlinear equations governing gas flow along pipes and compressor power consumption. The model was tested on the gas transmission system in South Wales, UK. The operation of compressors was optimised in response to gas and electricity price subject to meeting operational limits of the gas network. The results showed that the compressors can provide flexibility to the power system through shifting their electricity energy consumption in time or switching between gas- and electric-driven compressor units. It was found that the allowable range for variation of linepack plays a key role in the magnitude and duration of flexibility provision from compressor units.
•An optimisation model was proposed for operation of compressors in the gas networks.•Flexibility from coordinated operation of gas- and electric-driven compressor units were quantified.•The value of linepack in providing flexibility to power systems was investigated. Compressor stations play a crucial role in natural gas networks to maintain required pressure levels for transporting gas. Centrifugal compressors commonly used in high pressure gas transmission networks could be driven by gas turbines or electric motors. Including compressor units powered via different fuels in a compressor station allows switching between fuels required by compressors to achieve a set outlet pressure and flow throughput. In this paper, an optimisation model of gas network was developed considering reasonably detailed representation of a compressor station to investigate flexibility provision from the compressor station to the power system. The model was formulated as a mixed integer linear programming (MILP) problem by linearising the nonlinear equations governing gas flow along pipes and compressor power consumption. The model was tested on the gas transmission system in South Wales, UK. The operation of compressors was optimised in response to gas and electricity price subject to meeting operational limits of the gas network. The results showed that the compressors can provide flexibility to the power system through shifting their electricity energy consumption in time or switching between gas- and electric-driven compressor units. It was found that the allowable range for variation of linepack plays a key role in the magnitude and duration of flexibility provision from compressor units. |
ArticleNumber | 116740 |
Author | Zhao, Yongning Qadrdan, Meysam Wu, Jianzhong Xu, Xiandong |
Author_xml | – sequence: 1 givenname: Yongning orcidid: 0000-0001-6361-6839 surname: Zhao fullname: Zhao, Yongning organization: School of Engineering, Cardiff University, Cardiff CF24 3AA, UK – sequence: 2 givenname: Xiandong surname: Xu fullname: Xu, Xiandong organization: School of Engineering, Cardiff University, Cardiff CF24 3AA, UK – sequence: 3 givenname: Meysam surname: Qadrdan fullname: Qadrdan, Meysam email: qadrdanm@cardiff.ac.uk organization: School of Engineering, Cardiff University, Cardiff CF24 3AA, UK – sequence: 4 givenname: Jianzhong surname: Wu fullname: Wu, Jianzhong organization: School of Engineering, Cardiff University, Cardiff CF24 3AA, UK |
BookMark | eNqF0E1LAzEQBuAgCrbVvyA5etmaj-1uFzwoxS8oeNGjhGwyW1K3yZpJW_vv3Vq9ePE0MLzvMDxDcuyDB0IuOBtzxour5Vh34CEudmPBBB9zXpQ5OyIDPi1FVnE-PSYDJlmRiYJXp2SIuGSsTwo2IG_PXXIr3dLQQdTJBU9DQ01YdREQQ6Rr7xJS5-lCI_WQtiG-I02BdjFsnAXatPDpate6tPtehy1EijtMsMIzctLoFuH8Z47I6_3dy-wxmz8_PM1u55mR-SRljS5AMyPAgp02E-C1qKWtqwkII0QFdWlZk0NuS14WIp_mtgEDAiRIIUFXckQuD3f7pz7WgEmtHBpoW-0hrFGJSZlL2XOwPlocoiYGxAiN6mIPEHeKM7X3VEv166n2nurg2Rev_xSNS99iKWrX_l-_OdShd9g4iAqNA2_AuggmKRvcfye-APpDm30 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3227859 crossref_primary_10_3390_en16010489 crossref_primary_10_1016_j_energy_2024_131866 crossref_primary_10_1016_j_applthermaleng_2023_121908 crossref_primary_10_1051_matecconf_202438900004 crossref_primary_10_1177_09576509241283612 crossref_primary_10_1016_j_apenergy_2024_124565 crossref_primary_10_1016_j_energy_2022_125976 crossref_primary_10_1016_j_energy_2023_128427 crossref_primary_10_1016_j_petsci_2022_09_025 crossref_primary_10_1109_TEMPR_2023_3276308 crossref_primary_10_59277_RRST_EE_2023_68_2_11 crossref_primary_10_1016_j_apenergy_2023_121972 crossref_primary_10_1016_j_ins_2024_121593 crossref_primary_10_1016_j_energy_2022_126104 crossref_primary_10_29109_gujsc_1578067 crossref_primary_10_3390_en17092187 crossref_primary_10_1016_j_rico_2023_100226 crossref_primary_10_1016_j_ijhydene_2025_02_194 crossref_primary_10_1016_j_ijepes_2023_109259 crossref_primary_10_1016_j_apenergy_2024_124052 crossref_primary_10_1109_ACCESS_2024_3424890 crossref_primary_10_1016_j_ijepes_2024_110230 crossref_primary_10_1016_j_ijepes_2024_110134 crossref_primary_10_1016_j_seta_2024_104092 crossref_primary_10_1016_j_apenergy_2021_117673 crossref_primary_10_1109_TSG_2022_3203485 crossref_primary_10_1016_j_egyai_2024_100434 |
Cites_doi | 10.1016/j.ejor.2018.06.036 10.1109/TSTE.2016.2595486 10.1016/j.energy.2017.04.138 10.1109/TSG.2019.2938553 10.1109/TSTE.2015.2424885 10.1007/s40565-017-0275-2 10.1016/j.apenergy.2017.05.132 10.1016/j.rser.2015.01.057 10.1109/MPE.2019.2931054 10.1109/TSG.2018.2825103 10.1109/TPWRS.2011.2177280 10.1109/TCNS.2014.2367360 10.1109/TSTE.2017.2764004 10.1109/TPWRS.2014.2372013 10.1109/PTC.2019.8810632 10.1109/TSTE.2018.2791679 10.1016/j.compchemeng.2016.01.012 10.1109/TPWRS.2015.2425833 10.1016/j.ejor.2018.01.033 10.1016/j.ijhydene.2015.03.004 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apenergy.2021.116740 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-9118 |
ExternalDocumentID | 10_1016_j_apenergy_2021_116740 S030626192100252X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABTAH ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SEW SSH WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c345t-fa6ea0c2eded8f5e1b2b3db95e2c229eb7d0f4e4d71762484dfece2e3e323ea93 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Fri Jul 11 16:17:02 EDT 2025 Tue Jul 01 02:53:59 EDT 2025 Thu Apr 24 23:08:39 EDT 2025 Fri Feb 23 02:46:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gas network Compressors Operation Optimisation Flexibility Linepack |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-fa6ea0c2eded8f5e1b2b3db95e2c229eb7d0f4e4d71762484dfece2e3e323ea93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6361-6839 |
PQID | 2574338720 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2574338720 crossref_primary_10_1016_j_apenergy_2021_116740 crossref_citationtrail_10_1016_j_apenergy_2021_116740 elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_116740 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-15 |
PublicationDateYYYYMMDD | 2021-05-15 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Applied energy |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Santos (b26) 2004 Osiadacz (b23) 1987 Manshadi, Khodayar (b27) 2019; 10 Sirvent, Kanelakis, GEIßLER., Biskas (b25) 2017; 5 Mokhatab, Poe, Mak (b24) 2019 Schwele A, Ordoudis C, Kazempour J, Pinson P. Coordination of power and natural gas systems: Convexification approaches for linepack modeling. In: 2019 IEEE milan PowerTech. Milan, Italy: 2019. p. 1–6. Tran, French, Ashman, Kent (b11) 2018; 268 Lannoye, Flynn, O’Malley (b7) 2012; 27 Cortinovis, Mercangöz, Zovadelli, Pareschi, De Marco, Bittanti (b20) 2016; 88 Lund, Lindgren, Mikkola, Salpakari (b6) 2015; 45 Kopiske, Spieker, Tsatsaronis (b3) 2017; 137 Hermans, Bruninx, Delarue (b9) 2018; 9 European Parliament and Council (b22) 2021 Ordoudis, Pinson, Morales (b15) 2019; 272 Correa-Posada, Sanchez-Martin (b16) 2015; 30 National Grid (b21) 2021 Qadrdan, Abeysekera, Chaudry, Wu, Jenkins (b14) 2015; 40 Shao, Wang, Shahidehpour, Wang, Wang (b18) 2017; 8 National Grid Electricity System Operator (b2) 2021 Morales-Espana, Correa-Posada, Ramos (b8) 2016; 31 Ameli, Qadrdan, Strbac (b4) 2017; 202 He, Shahidehpour, Li, Guo, Zhu (b12) 2018; 9 Orths (b1) 2019; 17 He, Zhang, Liu, Wu, Shahidehpour (b5) 2018; 5 Yang, Xu, Sun, Zhao (b17) 2020; 11 National Grid Electricity System Operator (b28) 2021 Clegg, Mancarella (b13) 2015; 6 Misra, Fisher, Backhaus, Bent, Chertkov, Pan (b19) 2015; 2 National Grid Electricity System Operator (10.1016/j.apenergy.2021.116740_b2) 2021 Cortinovis (10.1016/j.apenergy.2021.116740_b20) 2016; 88 National Grid (10.1016/j.apenergy.2021.116740_b21) 2021 Santos (10.1016/j.apenergy.2021.116740_b26) 2004 Correa-Posada (10.1016/j.apenergy.2021.116740_b16) 2015; 30 Manshadi (10.1016/j.apenergy.2021.116740_b27) 2019; 10 Orths (10.1016/j.apenergy.2021.116740_b1) 2019; 17 Morales-Espana (10.1016/j.apenergy.2021.116740_b8) 2016; 31 Misra (10.1016/j.apenergy.2021.116740_b19) 2015; 2 He (10.1016/j.apenergy.2021.116740_b5) 2018; 5 Yang (10.1016/j.apenergy.2021.116740_b17) 2020; 11 Shao (10.1016/j.apenergy.2021.116740_b18) 2017; 8 10.1016/j.apenergy.2021.116740_b10 Lannoye (10.1016/j.apenergy.2021.116740_b7) 2012; 27 Ordoudis (10.1016/j.apenergy.2021.116740_b15) 2019; 272 Clegg (10.1016/j.apenergy.2021.116740_b13) 2015; 6 Qadrdan (10.1016/j.apenergy.2021.116740_b14) 2015; 40 Osiadacz (10.1016/j.apenergy.2021.116740_b23) 1987 Kopiske (10.1016/j.apenergy.2021.116740_b3) 2017; 137 Mokhatab (10.1016/j.apenergy.2021.116740_b24) 2019 Lund (10.1016/j.apenergy.2021.116740_b6) 2015; 45 Tran (10.1016/j.apenergy.2021.116740_b11) 2018; 268 He (10.1016/j.apenergy.2021.116740_b12) 2018; 9 Sirvent (10.1016/j.apenergy.2021.116740_b25) 2017; 5 Ameli (10.1016/j.apenergy.2021.116740_b4) 2017; 202 Hermans (10.1016/j.apenergy.2021.116740_b9) 2018; 9 National Grid Electricity System Operator (10.1016/j.apenergy.2021.116740_b28) 2021 European Parliament and Council (10.1016/j.apenergy.2021.116740_b22) 2021 |
References_xml | – volume: 9 start-page: 1061 year: 2018 end-page: 1071 ident: b12 article-title: Robust constrained operation of integrated electricity-natural gas system considering distributed natural gas storage publication-title: IEEE Trans Sustain Energy – volume: 17 start-page: 67 year: 2019 end-page: 78 ident: b1 article-title: Flexibility from energy systems integration: supporting synergies among sectors publication-title: IEEE Power Energy Mag – volume: 8 start-page: 239 year: 2017 end-page: 248 ident: b18 article-title: An MILP-based optimal power flow in multicarrier energy systems publication-title: IEEE Trans Sustain Energy – volume: 88 start-page: 145 year: 2016 end-page: 156 ident: b20 article-title: Online performance tracking and load sharing optimization for parallel operation of gas compressors publication-title: Comput Chem Eng – volume: 31 start-page: 1350 year: 2016 end-page: 1359 ident: b8 article-title: Tight and compact MIP formulation of configuration-based combined-cycle units publication-title: IEEE Trans Power Syst – year: 1987 ident: b23 article-title: Simulation and analysis of gas networks – volume: 5 start-page: 23 year: 2018 end-page: 36 ident: b5 article-title: Coordination of interdependent electricity grid and natural gas network—a review publication-title: Curr Sustain Renew Energy Rep – volume: 40 start-page: 5763 year: 2015 end-page: 5775 ident: b14 article-title: Role of power-to-gas in an integrated gas and electricity system in Great Britain publication-title: Int J Hydrogen Energy – volume: 10 start-page: 3342 year: 2019 end-page: 3354 ident: b27 article-title: Coordinated operation of electricity and natural gas systems: A convex relaxation approach publication-title: IEEE Trans Smart Grid – year: 2021 ident: b21 article-title: Compressor emissions compliance strategy – year: 2019 ident: b24 article-title: Handbook of natural gas transmission and processing: principles and practices – volume: 6 start-page: 1234 year: 2015 end-page: 1244 ident: b13 article-title: Integrated modeling and assessment of the operational impact of power-to-gas (P2G) on electrical and gas transmission networks publication-title: IEEE Trans Sustain Energy – reference: Schwele A, Ordoudis C, Kazempour J, Pinson P. Coordination of power and natural gas systems: Convexification approaches for linepack modeling. In: 2019 IEEE milan PowerTech. Milan, Italy: 2019. p. 1–6. – year: 2004 ident: b26 article-title: Series or parallel arrangement for a compressor station?-a recurring question that needs a convincing answer publication-title: PSIG annual meeting – volume: 30 start-page: 3347 year: 2015 end-page: 3355 ident: b16 article-title: Integrated power and natural gas model for energy adequacy in short-term operation publication-title: IEEE Trans Power Syst – volume: 9 start-page: 1468 year: 2018 end-page: 1476 ident: b9 article-title: Impact of CCGT start-up flexibility and cycling costs toward renewables integration publication-title: IEEE Trans Sustain Energy – volume: 5 start-page: 364 year: 2017 end-page: 374 ident: b25 article-title: Linearized model for optimization of coupled electricity and natural gas systems publication-title: J Mod Power Syst Clean Energy – volume: 2 start-page: 47 year: 2015 end-page: 56 ident: b19 article-title: Optimal compression in natural gas networks: A geometric programming approach publication-title: IEEE Trans Control Netw Syst – volume: 268 start-page: 688 year: 2018 end-page: 702 ident: b11 article-title: Linepack planning models for gas transmission network under uncertainty publication-title: European J Oper Res – volume: 272 start-page: 642 year: 2019 end-page: 654 ident: b15 article-title: An integrated market for electricity and natural gas systems with stochastic power producers publication-title: European J Oper Res – year: 2021 ident: b2 article-title: Future energy scenarios 2019 – year: 2021 ident: b22 article-title: Industrial emissions directive – year: 2021 ident: b28 article-title: Post tender report - TR15 July 2019 – volume: 27 start-page: 922 year: 2012 end-page: 931 ident: b7 article-title: Evaluation of power system flexibility publication-title: IEEE Trans Power Syst – volume: 202 start-page: 571 year: 2017 end-page: 580 ident: b4 article-title: Value of gas network infrastructure flexibility in supporting cost effective operation of power systems publication-title: Appl Energy – volume: 137 start-page: 823 year: 2017 end-page: 833 ident: b3 article-title: Value of power plant flexibility in power systems with high shares of variable renewables: A scenario outlook for Germany 2035 publication-title: Energy – volume: 11 start-page: 1465 year: 2020 end-page: 1475 ident: b17 article-title: Two-stage convexification-based optimal electricity-gas flow publication-title: IEEE Trans Smart Grid – volume: 45 start-page: 785 year: 2015 end-page: 807 ident: b6 article-title: Review of energy system flexibility measures to enable high levels of variable renewable electricity publication-title: Renew Sustain Energy Rev – year: 2019 ident: 10.1016/j.apenergy.2021.116740_b24 – year: 1987 ident: 10.1016/j.apenergy.2021.116740_b23 – volume: 272 start-page: 642 issue: 2 year: 2019 ident: 10.1016/j.apenergy.2021.116740_b15 article-title: An integrated market for electricity and natural gas systems with stochastic power producers publication-title: European J Oper Res doi: 10.1016/j.ejor.2018.06.036 – volume: 8 start-page: 239 issue: 1 year: 2017 ident: 10.1016/j.apenergy.2021.116740_b18 article-title: An MILP-based optimal power flow in multicarrier energy systems publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2016.2595486 – year: 2021 ident: 10.1016/j.apenergy.2021.116740_b21 – year: 2021 ident: 10.1016/j.apenergy.2021.116740_b22 – volume: 137 start-page: 823 year: 2017 ident: 10.1016/j.apenergy.2021.116740_b3 article-title: Value of power plant flexibility in power systems with high shares of variable renewables: A scenario outlook for Germany 2035 publication-title: Energy doi: 10.1016/j.energy.2017.04.138 – volume: 11 start-page: 1465 issue: 2 year: 2020 ident: 10.1016/j.apenergy.2021.116740_b17 article-title: Two-stage convexification-based optimal electricity-gas flow publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2019.2938553 – volume: 6 start-page: 1234 issue: 4 year: 2015 ident: 10.1016/j.apenergy.2021.116740_b13 article-title: Integrated modeling and assessment of the operational impact of power-to-gas (P2G) on electrical and gas transmission networks publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2015.2424885 – year: 2021 ident: 10.1016/j.apenergy.2021.116740_b2 – volume: 5 start-page: 364 issue: 3 year: 2017 ident: 10.1016/j.apenergy.2021.116740_b25 article-title: Linearized model for optimization of coupled electricity and natural gas systems publication-title: J Mod Power Syst Clean Energy doi: 10.1007/s40565-017-0275-2 – volume: 202 start-page: 571 year: 2017 ident: 10.1016/j.apenergy.2021.116740_b4 article-title: Value of gas network infrastructure flexibility in supporting cost effective operation of power systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.05.132 – volume: 45 start-page: 785 year: 2015 ident: 10.1016/j.apenergy.2021.116740_b6 article-title: Review of energy system flexibility measures to enable high levels of variable renewable electricity publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.01.057 – volume: 5 start-page: 23 issue: 1 year: 2018 ident: 10.1016/j.apenergy.2021.116740_b5 article-title: Coordination of interdependent electricity grid and natural gas network—a review publication-title: Curr Sustain Renew Energy Rep – year: 2004 ident: 10.1016/j.apenergy.2021.116740_b26 article-title: Series or parallel arrangement for a compressor station?-a recurring question that needs a convincing answer – volume: 17 start-page: 67 issue: 6 year: 2019 ident: 10.1016/j.apenergy.2021.116740_b1 article-title: Flexibility from energy systems integration: supporting synergies among sectors publication-title: IEEE Power Energy Mag doi: 10.1109/MPE.2019.2931054 – volume: 10 start-page: 3342 issue: 3 year: 2019 ident: 10.1016/j.apenergy.2021.116740_b27 article-title: Coordinated operation of electricity and natural gas systems: A convex relaxation approach publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2018.2825103 – volume: 27 start-page: 922 issue: 2 year: 2012 ident: 10.1016/j.apenergy.2021.116740_b7 article-title: Evaluation of power system flexibility publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2011.2177280 – volume: 2 start-page: 47 issue: 1 year: 2015 ident: 10.1016/j.apenergy.2021.116740_b19 article-title: Optimal compression in natural gas networks: A geometric programming approach publication-title: IEEE Trans Control Netw Syst doi: 10.1109/TCNS.2014.2367360 – year: 2021 ident: 10.1016/j.apenergy.2021.116740_b28 – volume: 9 start-page: 1061 issue: 3 year: 2018 ident: 10.1016/j.apenergy.2021.116740_b12 article-title: Robust constrained operation of integrated electricity-natural gas system considering distributed natural gas storage publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2017.2764004 – volume: 30 start-page: 3347 issue: 6 year: 2015 ident: 10.1016/j.apenergy.2021.116740_b16 article-title: Integrated power and natural gas model for energy adequacy in short-term operation publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2014.2372013 – ident: 10.1016/j.apenergy.2021.116740_b10 doi: 10.1109/PTC.2019.8810632 – volume: 9 start-page: 1468 issue: 3 year: 2018 ident: 10.1016/j.apenergy.2021.116740_b9 article-title: Impact of CCGT start-up flexibility and cycling costs toward renewables integration publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2018.2791679 – volume: 88 start-page: 145 year: 2016 ident: 10.1016/j.apenergy.2021.116740_b20 article-title: Online performance tracking and load sharing optimization for parallel operation of gas compressors publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2016.01.012 – volume: 31 start-page: 1350 issue: 2 year: 2016 ident: 10.1016/j.apenergy.2021.116740_b8 article-title: Tight and compact MIP formulation of configuration-based combined-cycle units publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2015.2425833 – volume: 268 start-page: 688 issue: 2 year: 2018 ident: 10.1016/j.apenergy.2021.116740_b11 article-title: Linepack planning models for gas transmission network under uncertainty publication-title: European J Oper Res doi: 10.1016/j.ejor.2018.01.033 – volume: 40 start-page: 5763 issue: 17 year: 2015 ident: 10.1016/j.apenergy.2021.116740_b14 article-title: Role of power-to-gas in an integrated gas and electricity system in Great Britain publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.03.004 |
SSID | ssj0002120 |
Score | 2.4688 |
Snippet | Compressor stations play a crucial role in natural gas networks to maintain required pressure levels for transporting gas. Centrifugal compressors commonly... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 116740 |
SubjectTerms | Compressors electricity electricity costs energy energy use and consumption Flexibility Gas network Linepack natural gas Operation Optimisation |
Title | Optimal operation of compressor units in gas networks to provide flexibility to power systems |
URI | https://dx.doi.org/10.1016/j.apenergy.2021.116740 https://www.proquest.com/docview/2574338720 |
Volume | 290 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-iFz2IToefI4LXbm2arN1xjMlU1IMOdpGQNi8y0Xas28GLf7t5bapTBA8eG5IQ8pL30bzf7xFybjgP41QwzwemPG5i37NWUHuaGxEkQvEgQuzwzW13NOZXEzFZI4MaC4NplU73Vzq91NaupeN2szObTjv36O2W_j-yiAo2QQQ7j_CUt9-_0jyYo2a0nT3svYISfm6rGZQIOxsnsqCNTxL4E-R3A_VDVZf252KHbDvHkfarte2SNcgaZGuFTrBBmsMv1Jrt6q5tsUce76xieLVN-QwqidPcUMwmx2A7n9OlvdgFnWb0SRU0qzLDC7rIqQPqUYO8mWUe7VvZjLXVaMUCXeyT8cXwYTDyXF0FLw25WHhGdUH5KQMNOjYCgoQloU56AljKWA-SSPuGA9c21OsyHnNtIAUGIYQsBNULm2Q9yzM4IDRRRiTWpfRViHVLohiYsS5UbHQQ2WnEIRH1ZsrUkY5j7YsXWWeXPctaCBKFICshHJLO57hZRbvx54heLSv57QBJaxv-HHtWC1fa24VPJiqDfFlIq9C4DeIj5h_9Y_5jsolfmHQQiBOyvpgv4dT6MoukVR7WFtnoX16Pbj8AOpv3mg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6x5bDLAS0sFc9dr8Q1NHHsJj0iBGoXKIdtpV6Q5cTjVdGSVKQ98O_xJA4vrcRhr07Gijz2NzPxzDcAx1aIOM0lD0LkOhA2DQNnBU1ghJVRJrWIEqodvh73h1PxayZna3DW1sJQWqXH_gbTa7T2Iz2_mr3FfN77Td5u7f8Ti6jks0-wTuxUsgPrp6PL4fgZkLlnZ3TvByTwqlD47kQvsC6yc6Eij07oVoL-g_zbRr1D69oEXXyFTe87stPm87ZgDYtt2HjFKLgN3fOXwjX3qj-51Te4vXHYcO-GygU2SmelZZRQTvF2-cBW7mxXbF6wP7piRZMcXrFlyXytHrNEnVmn0j7Ww9RejTVE0NUOTC_OJ2fDwLdWCPJYyGVgdR91mHM0aFIrMcp4FptsIJHnnA8wS0xoBQrjor0-F6kwFnPkGGPMY9SDuAudoixwF1imrcycVxnqmFqXJCly67yo1JoocdPIPZDtYqrc845T-4u_qk0wu1OtEhQpQTVK2IPes9yiYd74UGLQ6kq92UPKmYcPZX-2ylXugNGtiS6wXFXKYZpwcXzCw_3_mP8HfB5Orq_U1Wh8eQBf6AnlIETyEDrLhxUeOddmmX33W_cJq336Sw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+operation+of+compressor+units+in+gas+networks+to+provide+flexibility+to+power+systems&rft.jtitle=Applied+energy&rft.au=Zhao%2C+Yongning&rft.au=Xu%2C+Xiandong&rft.au=Qadrdan%2C+Meysam&rft.au=Wu%2C+Jianzhong&rft.date=2021-05-15&rft.issn=0306-2619&rft.volume=290+p.116740-&rft_id=info:doi/10.1016%2Fj.apenergy.2021.116740&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |