Optimal operation of compressor units in gas networks to provide flexibility to power systems

Compressor stations play a crucial role in natural gas networks to maintain required pressure levels for transporting gas. Centrifugal compressors commonly used in high pressure gas transmission networks could be driven by gas turbines or electric motors. Including compressor units powered via diffe...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 290; p. 116740
Main Authors Zhao, Yongning, Xu, Xiandong, Qadrdan, Meysam, Wu, Jianzhong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Compressor stations play a crucial role in natural gas networks to maintain required pressure levels for transporting gas. Centrifugal compressors commonly used in high pressure gas transmission networks could be driven by gas turbines or electric motors. Including compressor units powered via different fuels in a compressor station allows switching between fuels required by compressors to achieve a set outlet pressure and flow throughput. In this paper, an optimisation model of gas network was developed considering reasonably detailed representation of a compressor station to investigate flexibility provision from the compressor station to the power system. The model was formulated as a mixed integer linear programming (MILP) problem by linearising the nonlinear equations governing gas flow along pipes and compressor power consumption. The model was tested on the gas transmission system in South Wales, UK. The operation of compressors was optimised in response to gas and electricity price subject to meeting operational limits of the gas network. The results showed that the compressors can provide flexibility to the power system through shifting their electricity energy consumption in time or switching between gas- and electric-driven compressor units. It was found that the allowable range for variation of linepack plays a key role in the magnitude and duration of flexibility provision from compressor units. •An optimisation model was proposed for operation of compressors in the gas networks.•Flexibility from coordinated operation of gas- and electric-driven compressor units were quantified.•The value of linepack in providing flexibility to power systems was investigated.
AbstractList Compressor stations play a crucial role in natural gas networks to maintain required pressure levels for transporting gas. Centrifugal compressors commonly used in high pressure gas transmission networks could be driven by gas turbines or electric motors. Including compressor units powered via different fuels in a compressor station allows switching between fuels required by compressors to achieve a set outlet pressure and flow throughput. In this paper, an optimisation model of gas network was developed considering reasonably detailed representation of a compressor station to investigate flexibility provision from the compressor station to the power system. The model was formulated as a mixed integer linear programming (MILP) problem by linearising the nonlinear equations governing gas flow along pipes and compressor power consumption. The model was tested on the gas transmission system in South Wales, UK. The operation of compressors was optimised in response to gas and electricity price subject to meeting operational limits of the gas network. The results showed that the compressors can provide flexibility to the power system through shifting their electricity energy consumption in time or switching between gas- and electric-driven compressor units. It was found that the allowable range for variation of linepack plays a key role in the magnitude and duration of flexibility provision from compressor units. •An optimisation model was proposed for operation of compressors in the gas networks.•Flexibility from coordinated operation of gas- and electric-driven compressor units were quantified.•The value of linepack in providing flexibility to power systems was investigated.
Compressor stations play a crucial role in natural gas networks to maintain required pressure levels for transporting gas. Centrifugal compressors commonly used in high pressure gas transmission networks could be driven by gas turbines or electric motors. Including compressor units powered via different fuels in a compressor station allows switching between fuels required by compressors to achieve a set outlet pressure and flow throughput. In this paper, an optimisation model of gas network was developed considering reasonably detailed representation of a compressor station to investigate flexibility provision from the compressor station to the power system. The model was formulated as a mixed integer linear programming (MILP) problem by linearising the nonlinear equations governing gas flow along pipes and compressor power consumption. The model was tested on the gas transmission system in South Wales, UK. The operation of compressors was optimised in response to gas and electricity price subject to meeting operational limits of the gas network. The results showed that the compressors can provide flexibility to the power system through shifting their electricity energy consumption in time or switching between gas- and electric-driven compressor units. It was found that the allowable range for variation of linepack plays a key role in the magnitude and duration of flexibility provision from compressor units.
ArticleNumber 116740
Author Zhao, Yongning
Qadrdan, Meysam
Wu, Jianzhong
Xu, Xiandong
Author_xml – sequence: 1
  givenname: Yongning
  orcidid: 0000-0001-6361-6839
  surname: Zhao
  fullname: Zhao, Yongning
  organization: School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
– sequence: 2
  givenname: Xiandong
  surname: Xu
  fullname: Xu, Xiandong
  organization: School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
– sequence: 3
  givenname: Meysam
  surname: Qadrdan
  fullname: Qadrdan, Meysam
  email: qadrdanm@cardiff.ac.uk
  organization: School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
– sequence: 4
  givenname: Jianzhong
  surname: Wu
  fullname: Wu, Jianzhong
  organization: School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
BookMark eNqF0E1LAzEQBuAgCrbVvyA5etmaj-1uFzwoxS8oeNGjhGwyW1K3yZpJW_vv3Vq9ePE0MLzvMDxDcuyDB0IuOBtzxour5Vh34CEudmPBBB9zXpQ5OyIDPi1FVnE-PSYDJlmRiYJXp2SIuGSsTwo2IG_PXXIr3dLQQdTJBU9DQ01YdREQQ6Rr7xJS5-lCI_WQtiG-I02BdjFsnAXatPDpate6tPtehy1EijtMsMIzctLoFuH8Z47I6_3dy-wxmz8_PM1u55mR-SRljS5AMyPAgp02E-C1qKWtqwkII0QFdWlZk0NuS14WIp_mtgEDAiRIIUFXckQuD3f7pz7WgEmtHBpoW-0hrFGJSZlL2XOwPlocoiYGxAiN6mIPEHeKM7X3VEv166n2nurg2Rev_xSNS99iKWrX_l-_OdShd9g4iAqNA2_AuggmKRvcfye-APpDm30
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3227859
crossref_primary_10_3390_en16010489
crossref_primary_10_1016_j_energy_2024_131866
crossref_primary_10_1016_j_applthermaleng_2023_121908
crossref_primary_10_1051_matecconf_202438900004
crossref_primary_10_1177_09576509241283612
crossref_primary_10_1016_j_apenergy_2024_124565
crossref_primary_10_1016_j_energy_2022_125976
crossref_primary_10_1016_j_energy_2023_128427
crossref_primary_10_1016_j_petsci_2022_09_025
crossref_primary_10_1109_TEMPR_2023_3276308
crossref_primary_10_59277_RRST_EE_2023_68_2_11
crossref_primary_10_1016_j_apenergy_2023_121972
crossref_primary_10_1016_j_ins_2024_121593
crossref_primary_10_1016_j_energy_2022_126104
crossref_primary_10_29109_gujsc_1578067
crossref_primary_10_3390_en17092187
crossref_primary_10_1016_j_rico_2023_100226
crossref_primary_10_1016_j_ijhydene_2025_02_194
crossref_primary_10_1016_j_ijepes_2023_109259
crossref_primary_10_1016_j_apenergy_2024_124052
crossref_primary_10_1109_ACCESS_2024_3424890
crossref_primary_10_1016_j_ijepes_2024_110230
crossref_primary_10_1016_j_ijepes_2024_110134
crossref_primary_10_1016_j_seta_2024_104092
crossref_primary_10_1016_j_apenergy_2021_117673
crossref_primary_10_1109_TSG_2022_3203485
crossref_primary_10_1016_j_egyai_2024_100434
Cites_doi 10.1016/j.ejor.2018.06.036
10.1109/TSTE.2016.2595486
10.1016/j.energy.2017.04.138
10.1109/TSG.2019.2938553
10.1109/TSTE.2015.2424885
10.1007/s40565-017-0275-2
10.1016/j.apenergy.2017.05.132
10.1016/j.rser.2015.01.057
10.1109/MPE.2019.2931054
10.1109/TSG.2018.2825103
10.1109/TPWRS.2011.2177280
10.1109/TCNS.2014.2367360
10.1109/TSTE.2017.2764004
10.1109/TPWRS.2014.2372013
10.1109/PTC.2019.8810632
10.1109/TSTE.2018.2791679
10.1016/j.compchemeng.2016.01.012
10.1109/TPWRS.2015.2425833
10.1016/j.ejor.2018.01.033
10.1016/j.ijhydene.2015.03.004
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2021.116740
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2021_116740
S030626192100252X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABTAH
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SEW
SSH
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c345t-fa6ea0c2eded8f5e1b2b3db95e2c229eb7d0f4e4d71762484dfece2e3e323ea93
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Fri Jul 11 16:17:02 EDT 2025
Tue Jul 01 02:53:59 EDT 2025
Thu Apr 24 23:08:39 EDT 2025
Fri Feb 23 02:46:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gas network
Compressors
Operation
Optimisation
Flexibility
Linepack
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-fa6ea0c2eded8f5e1b2b3db95e2c229eb7d0f4e4d71762484dfece2e3e323ea93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6361-6839
PQID 2574338720
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2574338720
crossref_primary_10_1016_j_apenergy_2021_116740
crossref_citationtrail_10_1016_j_apenergy_2021_116740
elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_116740
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-15
PublicationDateYYYYMMDD 2021-05-15
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Santos (b26) 2004
Osiadacz (b23) 1987
Manshadi, Khodayar (b27) 2019; 10
Sirvent, Kanelakis, GEIßLER., Biskas (b25) 2017; 5
Mokhatab, Poe, Mak (b24) 2019
Schwele A, Ordoudis C, Kazempour J, Pinson P. Coordination of power and natural gas systems: Convexification approaches for linepack modeling. In: 2019 IEEE milan PowerTech. Milan, Italy: 2019. p. 1–6.
Tran, French, Ashman, Kent (b11) 2018; 268
Lannoye, Flynn, O’Malley (b7) 2012; 27
Cortinovis, Mercangöz, Zovadelli, Pareschi, De Marco, Bittanti (b20) 2016; 88
Lund, Lindgren, Mikkola, Salpakari (b6) 2015; 45
Kopiske, Spieker, Tsatsaronis (b3) 2017; 137
Hermans, Bruninx, Delarue (b9) 2018; 9
European Parliament and Council (b22) 2021
Ordoudis, Pinson, Morales (b15) 2019; 272
Correa-Posada, Sanchez-Martin (b16) 2015; 30
National Grid (b21) 2021
Qadrdan, Abeysekera, Chaudry, Wu, Jenkins (b14) 2015; 40
Shao, Wang, Shahidehpour, Wang, Wang (b18) 2017; 8
National Grid Electricity System Operator (b2) 2021
Morales-Espana, Correa-Posada, Ramos (b8) 2016; 31
Ameli, Qadrdan, Strbac (b4) 2017; 202
He, Shahidehpour, Li, Guo, Zhu (b12) 2018; 9
Orths (b1) 2019; 17
He, Zhang, Liu, Wu, Shahidehpour (b5) 2018; 5
Yang, Xu, Sun, Zhao (b17) 2020; 11
National Grid Electricity System Operator (b28) 2021
Clegg, Mancarella (b13) 2015; 6
Misra, Fisher, Backhaus, Bent, Chertkov, Pan (b19) 2015; 2
National Grid Electricity System Operator (10.1016/j.apenergy.2021.116740_b2) 2021
Cortinovis (10.1016/j.apenergy.2021.116740_b20) 2016; 88
National Grid (10.1016/j.apenergy.2021.116740_b21) 2021
Santos (10.1016/j.apenergy.2021.116740_b26) 2004
Correa-Posada (10.1016/j.apenergy.2021.116740_b16) 2015; 30
Manshadi (10.1016/j.apenergy.2021.116740_b27) 2019; 10
Orths (10.1016/j.apenergy.2021.116740_b1) 2019; 17
Morales-Espana (10.1016/j.apenergy.2021.116740_b8) 2016; 31
Misra (10.1016/j.apenergy.2021.116740_b19) 2015; 2
He (10.1016/j.apenergy.2021.116740_b5) 2018; 5
Yang (10.1016/j.apenergy.2021.116740_b17) 2020; 11
Shao (10.1016/j.apenergy.2021.116740_b18) 2017; 8
10.1016/j.apenergy.2021.116740_b10
Lannoye (10.1016/j.apenergy.2021.116740_b7) 2012; 27
Ordoudis (10.1016/j.apenergy.2021.116740_b15) 2019; 272
Clegg (10.1016/j.apenergy.2021.116740_b13) 2015; 6
Qadrdan (10.1016/j.apenergy.2021.116740_b14) 2015; 40
Osiadacz (10.1016/j.apenergy.2021.116740_b23) 1987
Kopiske (10.1016/j.apenergy.2021.116740_b3) 2017; 137
Mokhatab (10.1016/j.apenergy.2021.116740_b24) 2019
Lund (10.1016/j.apenergy.2021.116740_b6) 2015; 45
Tran (10.1016/j.apenergy.2021.116740_b11) 2018; 268
He (10.1016/j.apenergy.2021.116740_b12) 2018; 9
Sirvent (10.1016/j.apenergy.2021.116740_b25) 2017; 5
Ameli (10.1016/j.apenergy.2021.116740_b4) 2017; 202
Hermans (10.1016/j.apenergy.2021.116740_b9) 2018; 9
National Grid Electricity System Operator (10.1016/j.apenergy.2021.116740_b28) 2021
European Parliament and Council (10.1016/j.apenergy.2021.116740_b22) 2021
References_xml – volume: 9
  start-page: 1061
  year: 2018
  end-page: 1071
  ident: b12
  article-title: Robust constrained operation of integrated electricity-natural gas system considering distributed natural gas storage
  publication-title: IEEE Trans Sustain Energy
– volume: 17
  start-page: 67
  year: 2019
  end-page: 78
  ident: b1
  article-title: Flexibility from energy systems integration: supporting synergies among sectors
  publication-title: IEEE Power Energy Mag
– volume: 8
  start-page: 239
  year: 2017
  end-page: 248
  ident: b18
  article-title: An MILP-based optimal power flow in multicarrier energy systems
  publication-title: IEEE Trans Sustain Energy
– volume: 88
  start-page: 145
  year: 2016
  end-page: 156
  ident: b20
  article-title: Online performance tracking and load sharing optimization for parallel operation of gas compressors
  publication-title: Comput Chem Eng
– volume: 31
  start-page: 1350
  year: 2016
  end-page: 1359
  ident: b8
  article-title: Tight and compact MIP formulation of configuration-based combined-cycle units
  publication-title: IEEE Trans Power Syst
– year: 1987
  ident: b23
  article-title: Simulation and analysis of gas networks
– volume: 5
  start-page: 23
  year: 2018
  end-page: 36
  ident: b5
  article-title: Coordination of interdependent electricity grid and natural gas network—a review
  publication-title: Curr Sustain Renew Energy Rep
– volume: 40
  start-page: 5763
  year: 2015
  end-page: 5775
  ident: b14
  article-title: Role of power-to-gas in an integrated gas and electricity system in Great Britain
  publication-title: Int J Hydrogen Energy
– volume: 10
  start-page: 3342
  year: 2019
  end-page: 3354
  ident: b27
  article-title: Coordinated operation of electricity and natural gas systems: A convex relaxation approach
  publication-title: IEEE Trans Smart Grid
– year: 2021
  ident: b21
  article-title: Compressor emissions compliance strategy
– year: 2019
  ident: b24
  article-title: Handbook of natural gas transmission and processing: principles and practices
– volume: 6
  start-page: 1234
  year: 2015
  end-page: 1244
  ident: b13
  article-title: Integrated modeling and assessment of the operational impact of power-to-gas (P2G) on electrical and gas transmission networks
  publication-title: IEEE Trans Sustain Energy
– reference: Schwele A, Ordoudis C, Kazempour J, Pinson P. Coordination of power and natural gas systems: Convexification approaches for linepack modeling. In: 2019 IEEE milan PowerTech. Milan, Italy: 2019. p. 1–6.
– year: 2004
  ident: b26
  article-title: Series or parallel arrangement for a compressor station?-a recurring question that needs a convincing answer
  publication-title: PSIG annual meeting
– volume: 30
  start-page: 3347
  year: 2015
  end-page: 3355
  ident: b16
  article-title: Integrated power and natural gas model for energy adequacy in short-term operation
  publication-title: IEEE Trans Power Syst
– volume: 9
  start-page: 1468
  year: 2018
  end-page: 1476
  ident: b9
  article-title: Impact of CCGT start-up flexibility and cycling costs toward renewables integration
  publication-title: IEEE Trans Sustain Energy
– volume: 5
  start-page: 364
  year: 2017
  end-page: 374
  ident: b25
  article-title: Linearized model for optimization of coupled electricity and natural gas systems
  publication-title: J Mod Power Syst Clean Energy
– volume: 2
  start-page: 47
  year: 2015
  end-page: 56
  ident: b19
  article-title: Optimal compression in natural gas networks: A geometric programming approach
  publication-title: IEEE Trans Control Netw Syst
– volume: 268
  start-page: 688
  year: 2018
  end-page: 702
  ident: b11
  article-title: Linepack planning models for gas transmission network under uncertainty
  publication-title: European J Oper Res
– volume: 272
  start-page: 642
  year: 2019
  end-page: 654
  ident: b15
  article-title: An integrated market for electricity and natural gas systems with stochastic power producers
  publication-title: European J Oper Res
– year: 2021
  ident: b2
  article-title: Future energy scenarios 2019
– year: 2021
  ident: b22
  article-title: Industrial emissions directive
– year: 2021
  ident: b28
  article-title: Post tender report - TR15 July 2019
– volume: 27
  start-page: 922
  year: 2012
  end-page: 931
  ident: b7
  article-title: Evaluation of power system flexibility
  publication-title: IEEE Trans Power Syst
– volume: 202
  start-page: 571
  year: 2017
  end-page: 580
  ident: b4
  article-title: Value of gas network infrastructure flexibility in supporting cost effective operation of power systems
  publication-title: Appl Energy
– volume: 137
  start-page: 823
  year: 2017
  end-page: 833
  ident: b3
  article-title: Value of power plant flexibility in power systems with high shares of variable renewables: A scenario outlook for Germany 2035
  publication-title: Energy
– volume: 11
  start-page: 1465
  year: 2020
  end-page: 1475
  ident: b17
  article-title: Two-stage convexification-based optimal electricity-gas flow
  publication-title: IEEE Trans Smart Grid
– volume: 45
  start-page: 785
  year: 2015
  end-page: 807
  ident: b6
  article-title: Review of energy system flexibility measures to enable high levels of variable renewable electricity
  publication-title: Renew Sustain Energy Rev
– year: 2019
  ident: 10.1016/j.apenergy.2021.116740_b24
– year: 1987
  ident: 10.1016/j.apenergy.2021.116740_b23
– volume: 272
  start-page: 642
  issue: 2
  year: 2019
  ident: 10.1016/j.apenergy.2021.116740_b15
  article-title: An integrated market for electricity and natural gas systems with stochastic power producers
  publication-title: European J Oper Res
  doi: 10.1016/j.ejor.2018.06.036
– volume: 8
  start-page: 239
  issue: 1
  year: 2017
  ident: 10.1016/j.apenergy.2021.116740_b18
  article-title: An MILP-based optimal power flow in multicarrier energy systems
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2016.2595486
– year: 2021
  ident: 10.1016/j.apenergy.2021.116740_b21
– year: 2021
  ident: 10.1016/j.apenergy.2021.116740_b22
– volume: 137
  start-page: 823
  year: 2017
  ident: 10.1016/j.apenergy.2021.116740_b3
  article-title: Value of power plant flexibility in power systems with high shares of variable renewables: A scenario outlook for Germany 2035
  publication-title: Energy
  doi: 10.1016/j.energy.2017.04.138
– volume: 11
  start-page: 1465
  issue: 2
  year: 2020
  ident: 10.1016/j.apenergy.2021.116740_b17
  article-title: Two-stage convexification-based optimal electricity-gas flow
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2019.2938553
– volume: 6
  start-page: 1234
  issue: 4
  year: 2015
  ident: 10.1016/j.apenergy.2021.116740_b13
  article-title: Integrated modeling and assessment of the operational impact of power-to-gas (P2G) on electrical and gas transmission networks
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2015.2424885
– year: 2021
  ident: 10.1016/j.apenergy.2021.116740_b2
– volume: 5
  start-page: 364
  issue: 3
  year: 2017
  ident: 10.1016/j.apenergy.2021.116740_b25
  article-title: Linearized model for optimization of coupled electricity and natural gas systems
  publication-title: J Mod Power Syst Clean Energy
  doi: 10.1007/s40565-017-0275-2
– volume: 202
  start-page: 571
  year: 2017
  ident: 10.1016/j.apenergy.2021.116740_b4
  article-title: Value of gas network infrastructure flexibility in supporting cost effective operation of power systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.05.132
– volume: 45
  start-page: 785
  year: 2015
  ident: 10.1016/j.apenergy.2021.116740_b6
  article-title: Review of energy system flexibility measures to enable high levels of variable renewable electricity
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.01.057
– volume: 5
  start-page: 23
  issue: 1
  year: 2018
  ident: 10.1016/j.apenergy.2021.116740_b5
  article-title: Coordination of interdependent electricity grid and natural gas network—a review
  publication-title: Curr Sustain Renew Energy Rep
– year: 2004
  ident: 10.1016/j.apenergy.2021.116740_b26
  article-title: Series or parallel arrangement for a compressor station?-a recurring question that needs a convincing answer
– volume: 17
  start-page: 67
  issue: 6
  year: 2019
  ident: 10.1016/j.apenergy.2021.116740_b1
  article-title: Flexibility from energy systems integration: supporting synergies among sectors
  publication-title: IEEE Power Energy Mag
  doi: 10.1109/MPE.2019.2931054
– volume: 10
  start-page: 3342
  issue: 3
  year: 2019
  ident: 10.1016/j.apenergy.2021.116740_b27
  article-title: Coordinated operation of electricity and natural gas systems: A convex relaxation approach
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2825103
– volume: 27
  start-page: 922
  issue: 2
  year: 2012
  ident: 10.1016/j.apenergy.2021.116740_b7
  article-title: Evaluation of power system flexibility
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2011.2177280
– volume: 2
  start-page: 47
  issue: 1
  year: 2015
  ident: 10.1016/j.apenergy.2021.116740_b19
  article-title: Optimal compression in natural gas networks: A geometric programming approach
  publication-title: IEEE Trans Control Netw Syst
  doi: 10.1109/TCNS.2014.2367360
– year: 2021
  ident: 10.1016/j.apenergy.2021.116740_b28
– volume: 9
  start-page: 1061
  issue: 3
  year: 2018
  ident: 10.1016/j.apenergy.2021.116740_b12
  article-title: Robust constrained operation of integrated electricity-natural gas system considering distributed natural gas storage
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2017.2764004
– volume: 30
  start-page: 3347
  issue: 6
  year: 2015
  ident: 10.1016/j.apenergy.2021.116740_b16
  article-title: Integrated power and natural gas model for energy adequacy in short-term operation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2014.2372013
– ident: 10.1016/j.apenergy.2021.116740_b10
  doi: 10.1109/PTC.2019.8810632
– volume: 9
  start-page: 1468
  issue: 3
  year: 2018
  ident: 10.1016/j.apenergy.2021.116740_b9
  article-title: Impact of CCGT start-up flexibility and cycling costs toward renewables integration
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2018.2791679
– volume: 88
  start-page: 145
  year: 2016
  ident: 10.1016/j.apenergy.2021.116740_b20
  article-title: Online performance tracking and load sharing optimization for parallel operation of gas compressors
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2016.01.012
– volume: 31
  start-page: 1350
  issue: 2
  year: 2016
  ident: 10.1016/j.apenergy.2021.116740_b8
  article-title: Tight and compact MIP formulation of configuration-based combined-cycle units
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2015.2425833
– volume: 268
  start-page: 688
  issue: 2
  year: 2018
  ident: 10.1016/j.apenergy.2021.116740_b11
  article-title: Linepack planning models for gas transmission network under uncertainty
  publication-title: European J Oper Res
  doi: 10.1016/j.ejor.2018.01.033
– volume: 40
  start-page: 5763
  issue: 17
  year: 2015
  ident: 10.1016/j.apenergy.2021.116740_b14
  article-title: Role of power-to-gas in an integrated gas and electricity system in Great Britain
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.03.004
SSID ssj0002120
Score 2.4688
Snippet Compressor stations play a crucial role in natural gas networks to maintain required pressure levels for transporting gas. Centrifugal compressors commonly...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116740
SubjectTerms Compressors
electricity
electricity costs
energy
energy use and consumption
Flexibility
Gas network
Linepack
natural gas
Operation
Optimisation
Title Optimal operation of compressor units in gas networks to provide flexibility to power systems
URI https://dx.doi.org/10.1016/j.apenergy.2021.116740
https://www.proquest.com/docview/2574338720
Volume 290
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-iFz2IToefI4LXbm2arN1xjMlU1IMOdpGQNi8y0Xas28GLf7t5bapTBA8eG5IQ8pL30bzf7xFybjgP41QwzwemPG5i37NWUHuaGxEkQvEgQuzwzW13NOZXEzFZI4MaC4NplU73Vzq91NaupeN2szObTjv36O2W_j-yiAo2QQQ7j_CUt9-_0jyYo2a0nT3svYISfm6rGZQIOxsnsqCNTxL4E-R3A_VDVZf252KHbDvHkfarte2SNcgaZGuFTrBBmsMv1Jrt6q5tsUce76xieLVN-QwqidPcUMwmx2A7n9OlvdgFnWb0SRU0qzLDC7rIqQPqUYO8mWUe7VvZjLXVaMUCXeyT8cXwYTDyXF0FLw25WHhGdUH5KQMNOjYCgoQloU56AljKWA-SSPuGA9c21OsyHnNtIAUGIYQsBNULm2Q9yzM4IDRRRiTWpfRViHVLohiYsS5UbHQQ2WnEIRH1ZsrUkY5j7YsXWWeXPctaCBKFICshHJLO57hZRbvx54heLSv57QBJaxv-HHtWC1fa24VPJiqDfFlIq9C4DeIj5h_9Y_5jsolfmHQQiBOyvpgv4dT6MoukVR7WFtnoX16Pbj8AOpv3mg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6x5bDLAS0sFc9dr8Q1NHHsJj0iBGoXKIdtpV6Q5cTjVdGSVKQ98O_xJA4vrcRhr07Gijz2NzPxzDcAx1aIOM0lD0LkOhA2DQNnBU1ghJVRJrWIEqodvh73h1PxayZna3DW1sJQWqXH_gbTa7T2Iz2_mr3FfN77Td5u7f8Ti6jks0-wTuxUsgPrp6PL4fgZkLlnZ3TvByTwqlD47kQvsC6yc6Eij07oVoL-g_zbRr1D69oEXXyFTe87stPm87ZgDYtt2HjFKLgN3fOXwjX3qj-51Te4vXHYcO-GygU2SmelZZRQTvF2-cBW7mxXbF6wP7piRZMcXrFlyXytHrNEnVmn0j7Ww9RejTVE0NUOTC_OJ2fDwLdWCPJYyGVgdR91mHM0aFIrMcp4FptsIJHnnA8wS0xoBQrjor0-F6kwFnPkGGPMY9SDuAudoixwF1imrcycVxnqmFqXJCly67yo1JoocdPIPZDtYqrc845T-4u_qk0wu1OtEhQpQTVK2IPes9yiYd74UGLQ6kq92UPKmYcPZX-2ylXugNGtiS6wXFXKYZpwcXzCw_3_mP8HfB5Orq_U1Wh8eQBf6AnlIETyEDrLhxUeOddmmX33W_cJq336Sw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+operation+of+compressor+units+in+gas+networks+to+provide+flexibility+to+power+systems&rft.jtitle=Applied+energy&rft.au=Zhao%2C+Yongning&rft.au=Xu%2C+Xiandong&rft.au=Qadrdan%2C+Meysam&rft.au=Wu%2C+Jianzhong&rft.date=2021-05-15&rft.issn=0306-2619&rft.volume=290+p.116740-&rft_id=info:doi/10.1016%2Fj.apenergy.2021.116740&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon