Nitrogen addition aggravates microbial carbon limitation: Evidence from ecoenzymatic stoichiometry

Nitrogen (N) deposition may change carbon (C) or nutrient limitation of soil microbes, but whether such change can be reflected by ecoenzymatic stoichiometry has not been well studied. Here, we synthesized data from 36 published studies to evaluate the responses of ecoenzymatic stoichiometry to N ad...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 329; pp. 61 - 64
Main Authors Chen, Hao, Li, Dejun, Zhao, Jie, Zhang, Wei, Xiao, Kongcao, Wang, Kelin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nitrogen (N) deposition may change carbon (C) or nutrient limitation of soil microbes, but whether such change can be reflected by ecoenzymatic stoichiometry has not been well studied. Here, we synthesized data from 36 published studies to evaluate the responses of ecoenzymatic stoichiometry to N addition. Results showed that N addition did not change the enzyme ratio (1:1:1) of C, N, and phosphorus (P) acquisition, and also did not change vector angle of ecoenzymatic stoichiometry which is an indicator of microbial P limitation. However, N addition increased two indicators of C-limitation significantly (i.e., activity of β-D-glucosidase and vector length), both of which indicated that N addition aggravated microbial C-limitation. The aggravated C-limitation may be partly due to the reduced decomposition of recalcitrant organic C. Our study extends our understanding of the effects of N deposition on C cycling from a new perspective. •A meta-analysis was conducted by collecting 36 published studies.•Changes of microbial resource limitation after N addition were addressed.•N input aggravated C-limitation due to reduced recalcitrant C decomposition.•N addition did not affect soil microbial P-limitation.
AbstractList Nitrogen (N) deposition may change carbon (C) or nutrient limitation of soil microbes, but whether such change can be reflected by ecoenzymatic stoichiometry has not been well studied. Here, we synthesized data from 36 published studies to evaluate the responses of ecoenzymatic stoichiometry to N addition. Results showed that N addition did not change the enzyme ratio (1:1:1) of C, N, and phosphorus (P) acquisition, and also did not change vector angle of ecoenzymatic stoichiometry which is an indicator of microbial P limitation. However, N addition increased two indicators of C-limitation significantly (i.e., activity of β-D-glucosidase and vector length), both of which indicated that N addition aggravated microbial C-limitation. The aggravated C-limitation may be partly due to the reduced decomposition of recalcitrant organic C. Our study extends our understanding of the effects of N deposition on C cycling from a new perspective.
Nitrogen (N) deposition may change carbon (C) or nutrient limitation of soil microbes, but whether such change can be reflected by ecoenzymatic stoichiometry has not been well studied. Here, we synthesized data from 36 published studies to evaluate the responses of ecoenzymatic stoichiometry to N addition. Results showed that N addition did not change the enzyme ratio (1:1:1) of C, N, and phosphorus (P) acquisition, and also did not change vector angle of ecoenzymatic stoichiometry which is an indicator of microbial P limitation. However, N addition increased two indicators of C-limitation significantly (i.e., activity of β-D-glucosidase and vector length), both of which indicated that N addition aggravated microbial C-limitation. The aggravated C-limitation may be partly due to the reduced decomposition of recalcitrant organic C. Our study extends our understanding of the effects of N deposition on C cycling from a new perspective. •A meta-analysis was conducted by collecting 36 published studies.•Changes of microbial resource limitation after N addition were addressed.•N input aggravated C-limitation due to reduced recalcitrant C decomposition.•N addition did not affect soil microbial P-limitation.
Author Xiao, Kongcao
Wang, Kelin
Chen, Hao
Zhao, Jie
Li, Dejun
Zhang, Wei
Author_xml – sequence: 1
  givenname: Hao
  surname: Chen
  fullname: Chen, Hao
– sequence: 2
  givenname: Dejun
  surname: Li
  fullname: Li, Dejun
  email: dejunli@isa.ac.cn
– sequence: 3
  givenname: Jie
  surname: Zhao
  fullname: Zhao, Jie
– sequence: 4
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
– sequence: 5
  givenname: Kongcao
  surname: Xiao
  fullname: Xiao, Kongcao
– sequence: 6
  givenname: Kelin
  surname: Wang
  fullname: Wang, Kelin
BookMark eNqFkE1PGzEQhq0qSCTQv4D22MsuY-93xQEUUYqE2gs9W157nE60uw62iZT-ehyFXrhwmhm9H9I8K7aY3YyMXXEoOPDmelts0Bn0kyoE8K6AugDef2FL3rUib0TdL9gSkjNvoeHnbBXCNp0tCFiy4RdF7zY4Z8oYiuTSstl4tVcRQzaR9m4gNWZa-SFpI00U1dH2Pbvfk8FZY2a9mzLUDud_hymJOgvRkf5LbsLoD5fszKox4Nf3ecH-_Lh_Xv_Mn34_PK7vnnJdVnXMbWuwbvRgKttVeih1aQGg521jQfO26lBx3le2LHsjhs42veWq4pZDZbRoRHnBvp16d969vGKIcqKgcRzVjO41SCHaRKSGtk_W5mRN74Xg0cqdp0n5g-Qgj1DlVv6HKo9QJdQyQU3Bmw9B_c4jekXj5_HbUxwThz2hl0HTkaEhjzpK4-izijcjH5xR
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_173226
crossref_primary_10_1371_journal_pone_0220599
crossref_primary_10_1016_j_apsoil_2024_105484
crossref_primary_10_1016_j_apsoil_2024_105520
crossref_primary_10_1016_j_geoderma_2021_115384
crossref_primary_10_1016_j_soilbio_2018_09_037
crossref_primary_10_1038_s41598_024_68883_w
crossref_primary_10_1016_j_ppees_2021_125611
crossref_primary_10_1029_2019JG005291
crossref_primary_10_1111_1365_2435_14178
crossref_primary_10_3390_f14102070
crossref_primary_10_3390_agronomy14030467
crossref_primary_10_1016_j_still_2020_104605
crossref_primary_10_1002_ldr_5505
crossref_primary_10_1016_j_jenvman_2021_114155
crossref_primary_10_1002_ldr_3723
crossref_primary_10_1016_j_scitotenv_2023_161746
crossref_primary_10_1016_j_geoderma_2022_116007
crossref_primary_10_1111_gcb_17466
crossref_primary_10_1016_j_jclepro_2022_132265
crossref_primary_10_1016_j_scitotenv_2024_175867
crossref_primary_10_1016_j_catena_2023_106939
crossref_primary_10_2139_ssrn_3990653
crossref_primary_10_1016_j_geoderma_2023_116336
crossref_primary_10_1007_s42729_022_00773_4
crossref_primary_10_1016_j_apsoil_2024_105744
crossref_primary_10_1007_s11368_022_03405_7
crossref_primary_10_1016_j_scitotenv_2024_170294
crossref_primary_10_3389_fmicb_2022_1002542
crossref_primary_10_1016_j_ejsobi_2024_103601
crossref_primary_10_1093_jpe_rtae065
crossref_primary_10_1016_j_pedsph_2023_06_002
crossref_primary_10_1007_s11368_022_03201_3
crossref_primary_10_1007_s11368_021_03094_8
crossref_primary_10_1016_j_catena_2022_106029
crossref_primary_10_1016_j_soilbio_2023_109042
crossref_primary_10_1111_sum_13139
crossref_primary_10_1007_s11104_020_04468_6
crossref_primary_10_1016_j_apsoil_2023_105192
crossref_primary_10_1007_s11368_021_03120_9
crossref_primary_10_1016_j_foreco_2023_121074
crossref_primary_10_1002_jsfa_11304
crossref_primary_10_3390_agriculture13050938
crossref_primary_10_1016_j_scitotenv_2020_142848
crossref_primary_10_1016_j_foreco_2020_118880
crossref_primary_10_1016_j_still_2024_106278
crossref_primary_10_1016_j_soilbio_2019_107657
crossref_primary_10_1016_j_soilbio_2024_109356
crossref_primary_10_1016_j_scitotenv_2022_156405
crossref_primary_10_1007_s11368_022_03368_9
crossref_primary_10_1016_j_gecco_2020_e01328
crossref_primary_10_1016_j_chemosphere_2023_138293
crossref_primary_10_1002_ecs2_3738
crossref_primary_10_1016_j_apsoil_2024_105449
crossref_primary_10_1016_j_still_2024_106441
crossref_primary_10_3390_agronomy10111772
crossref_primary_10_1007_s42729_023_01388_z
crossref_primary_10_1111_gcb_15819
crossref_primary_10_3390_app14072858
crossref_primary_10_1016_j_envres_2025_121320
crossref_primary_10_1016_j_ecoleng_2024_107347
crossref_primary_10_1111_jbi_14235
crossref_primary_10_1016_j_catena_2024_108385
crossref_primary_10_1007_s11104_024_06733_4
crossref_primary_10_1016_j_apsoil_2024_105453
crossref_primary_10_1016_j_still_2019_104474
crossref_primary_10_1016_j_scitotenv_2023_169793
crossref_primary_10_3390_f15061040
crossref_primary_10_1007_s00374_023_01707_7
crossref_primary_10_3390_f14071315
crossref_primary_10_1007_s11104_022_05371_y
crossref_primary_10_1016_j_apsoil_2023_104863
crossref_primary_10_1016_j_still_2020_104766
crossref_primary_10_1016_j_geoderma_2023_116381
crossref_primary_10_3389_fpls_2022_834184
crossref_primary_10_1007_s11104_019_04120_y
crossref_primary_10_3390_f13101701
crossref_primary_10_1016_j_apsoil_2021_103941
crossref_primary_10_1016_j_ejsobi_2023_103553
crossref_primary_10_3390_pr10112425
crossref_primary_10_1016_j_catena_2024_108252
crossref_primary_10_1016_j_catena_2021_105720
crossref_primary_10_1016_j_limno_2022_125960
crossref_primary_10_3759_tropics_MS21_03
crossref_primary_10_1016_j_catena_2021_105849
crossref_primary_10_3389_fenvs_2023_1298027
crossref_primary_10_1016_j_eehl_2023_03_001
crossref_primary_10_1016_j_agee_2024_109373
crossref_primary_10_12677_HJSS_2021_92006
crossref_primary_10_3389_fmicb_2023_1072228
crossref_primary_10_1016_j_jclepro_2024_143211
crossref_primary_10_1016_j_soilbio_2019_107602
crossref_primary_10_1007_s10533_020_00723_1
crossref_primary_10_1007_s11368_021_03096_6
crossref_primary_10_1016_j_agrformet_2025_110503
crossref_primary_10_1007_s11104_019_04158_y
crossref_primary_10_1016_j_chemosphere_2023_139045
crossref_primary_10_1016_j_soilbio_2020_107816
crossref_primary_10_1016_j_jenvman_2022_116376
crossref_primary_10_1016_j_soilbio_2019_05_018
crossref_primary_10_3390_biology13020085
crossref_primary_10_1007_s11368_022_03396_5
crossref_primary_10_3390_agronomy13122972
crossref_primary_10_3390_f14081532
crossref_primary_10_1007_s11104_019_04006_z
crossref_primary_10_1016_j_geoderma_2020_114886
crossref_primary_10_1016_j_scitotenv_2022_156042
crossref_primary_10_1007_s11104_025_07215_x
crossref_primary_10_1016_j_catena_2021_105982
crossref_primary_10_1002_imt2_66
crossref_primary_10_1186_s40663_021_00341_9
crossref_primary_10_3390_f10111038
Cites_doi 10.1111/gcb.13402
10.1016/S0016-7061(96)00036-5
10.1111/j.1469-8137.2011.03967.x
10.1890/03-5120
10.1016/j.soilbio.2014.11.015
10.1016/j.agee.2017.09.032
10.1038/nature08632
10.1111/j.1365-2486.2011.02568.x
10.1007/s10533-013-9849-x
10.1007/s10533-010-9496-4
10.1007/s10533-014-9991-0
10.1007/BF00418675
10.1016/j.soilbio.2016.07.003
10.1146/annurev-ecolsys-071112-124414
10.1111/j.1461-0248.2008.01245.x
10.1007/s10533-013-9892-7
10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2
10.1016/j.soilbio.2003.08.015
10.2307/1311067
10.1016/j.soilbio.2015.04.007
10.1890/06-2057.1
10.1126/science.1136674
10.1016/j.foreco.2004.03.018
10.1007/s10021-012-9550-2
10.3389/fmicb.2013.00223
10.1016/j.soilbio.2007.08.015
10.1023/A:1019698108838
10.1890/0012-9658(2007)88[119:NLISED]2.0.CO;2
10.1007/s10533-009-9286-z
10.1007/s10533-010-9439-0
10.1890/05-0150
10.1111/j.1461-0248.2007.01113.x
10.1016/j.soilbio.2015.10.019
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2018.05.019
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 64
ExternalDocumentID 10_1016_j_geoderma_2018_05_019
S0016706118301435
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c345t-f7de56cbd4f84cb3c3f0009176f0c1748ea1194f339d2b8f69f1a41f104dc2623
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Mon Jul 21 09:20:22 EDT 2025
Tue Jul 01 04:04:47 EDT 2025
Thu Apr 24 23:00:02 EDT 2025
Fri Feb 23 02:27:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords C limitation
Nutrient limitation
N deposition
Ecoenzymatic stoichiometry
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-f7de56cbd4f84cb3c3f0009176f0c1748ea1194f339d2b8f69f1a41f104dc2623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2271875079
PQPubID 24069
PageCount 4
ParticipantIDs proquest_miscellaneous_2271875079
crossref_primary_10_1016_j_geoderma_2018_05_019
crossref_citationtrail_10_1016_j_geoderma_2018_05_019
elsevier_sciencedirect_doi_10_1016_j_geoderma_2018_05_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Waldrop, Zak, Sinsabaugh, Gallo, Lauber (bb0160) 2004; 14
Waring, Weintraub, Sinsabaugh (bb0170) 2014; 117
Sinsabaugh, Shah (bb0130) 2012; 43
Wang, Dorodnikov, Yang, Zhang, Filley, Turco, Zhang, Xu, Li, Jiang (bb0165) 2015; 81
Ekblad, Nordgren (bb0035) 2002; 242
Sinsabaugh, Lauber, Weintraub, Ahmed, Allison, Crenshaw, Contosta, Cusack, Frey, Gallo, Gartner, Hobbie, Holland, Keeler, Powers, Stursova, Takacs-Vesbach, Waldrop, Wallenstein, Zak, Zeglin (bb0135) 2008; 11
Gress, Nichols, Northcraft, Peterjohn (bb0065) 2007; 88
Hagedorn, Spinnler, Siegwolf (bb0070) 2003; 35
Carreiro, Sinsabaugh, Repert, Parkhurst (bb0010) 2000; 81
Moorhead, Sinsabaugh, Hill, Weintraub (bb0110) 2016; 93
Sinsabaugh, Hill, Shah (bb0140) 2009; 462
R Development Core Team (bb2018) 2007
Moorhead, Rinkes, Sinsabaugh, Weintraub (bb0105) 2013; 4
Aber, Nadelhoffer, Steudler, Melillo (bb0005) 1989; 39
Sinsabaugh (bb0125) 1994; 17
Chen, Luo, Li, Zhou, Cao, Wang, Wang, Shelton, Jin, Walker, Feng, Niu, Feng, Jian, Zhou (bb0015) 2016; 23
Cusack, Silver, Torn, McDowell (bb0030) 2010; 104
Sollins, Homann, Caldwell (bb0145) 1996; 74
Crowley, McNeil, Lovett, Canham, Driscoll, Rustad, Denny, Hallett, Arthur, Boggs (bb0025) 2012; 15
Kopáček, Cosby, Evans, Hruška, Moldan, Oulehle, Šantrůčková, Tahovská, Wright (bb0090) 2013; 115
Marklein, Houlton (bb0100) 2012; 193
Tapia-Torres, Elser, Souza, García-Oliva (bb0155) 2015; 87
LeBauer, Treseder (bb0095) 2008; 89
Gnankambary, Ilstedt, Nyberg, Hien, Malmer (bb0060) 2008; 40
Finzi (bb0045) 2009; 92
Chen, Li, Zhao, Xiao, Wang (bb0020) 2018; 252
Elser, Bracken, Cleland, Gruner, Harpole, Hillebrand, Ngai, Seabloom, Shurin, Smith (bb0040) 2007; 10
Frey, Knorr, Parrent, Simpson (bb0050) 2004; 196
Knorr, Frey, Curtis (bb0085) 2005; 86
Galloway, Townsend, Erisman, Bekunda, Cai, Freney, Martinelli, Seitzinger, Sutton (bb0055) 2008; 320
Hill, Elonen, Jicha, Kolka, Lehto, Sebestyen, Seifert-Monson (bb0075) 2014; 120
Jian, Li, Chen, Wang, Mayes, Dzantor, Hui, Luo (bb0080) 2016; 101
Peñuelas, Sardans, Rivas-ubach, Janssens (bb0115) 2015; 18
Prescott (bb0120) 2010; 101
Stotzky, Norman (bb0150) 1961; 40
Aber (10.1016/j.geoderma.2018.05.019_bb0005) 1989; 39
Jian (10.1016/j.geoderma.2018.05.019_bb0080) 2016; 101
Sinsabaugh (10.1016/j.geoderma.2018.05.019_bb0140) 2009; 462
Stotzky (10.1016/j.geoderma.2018.05.019_bb0150) 1961; 40
Waring (10.1016/j.geoderma.2018.05.019_bb0170) 2014; 117
Frey (10.1016/j.geoderma.2018.05.019_bb0050) 2004; 196
Chen (10.1016/j.geoderma.2018.05.019_bb0020) 2018; 252
Prescott (10.1016/j.geoderma.2018.05.019_bb0120) 2010; 101
Hagedorn (10.1016/j.geoderma.2018.05.019_bb0070) 2003; 35
Chen (10.1016/j.geoderma.2018.05.019_bb0015) 2016; 23
Carreiro (10.1016/j.geoderma.2018.05.019_bb0010) 2000; 81
Marklein (10.1016/j.geoderma.2018.05.019_bb0100) 2012; 193
Peñuelas (10.1016/j.geoderma.2018.05.019_bb0115) 2015; 18
Waldrop (10.1016/j.geoderma.2018.05.019_bb0160) 2004; 14
Moorhead (10.1016/j.geoderma.2018.05.019_bb0105) 2013; 4
Moorhead (10.1016/j.geoderma.2018.05.019_bb0110) 2016; 93
Sinsabaugh (10.1016/j.geoderma.2018.05.019_bb0130) 2012; 43
Gnankambary (10.1016/j.geoderma.2018.05.019_bb0060) 2008; 40
Elser (10.1016/j.geoderma.2018.05.019_bb0040) 2007; 10
Knorr (10.1016/j.geoderma.2018.05.019_bb0085) 2005; 86
Hill (10.1016/j.geoderma.2018.05.019_bb0075) 2014; 120
Cusack (10.1016/j.geoderma.2018.05.019_bb0030) 2010; 104
Gress (10.1016/j.geoderma.2018.05.019_bb0065) 2007; 88
Sollins (10.1016/j.geoderma.2018.05.019_bb0145) 1996; 74
Sinsabaugh (10.1016/j.geoderma.2018.05.019_bb0125) 1994; 17
Tapia-Torres (10.1016/j.geoderma.2018.05.019_bb0155) 2015; 87
R Development Core Team (10.1016/j.geoderma.2018.05.019_bb2018) 2007
Galloway (10.1016/j.geoderma.2018.05.019_bb0055) 2008; 320
Kopáček (10.1016/j.geoderma.2018.05.019_bb0090) 2013; 115
Crowley (10.1016/j.geoderma.2018.05.019_bb0025) 2012; 15
Finzi (10.1016/j.geoderma.2018.05.019_bb0045) 2009; 92
Sinsabaugh (10.1016/j.geoderma.2018.05.019_bb0135) 2008; 11
Ekblad (10.1016/j.geoderma.2018.05.019_bb0035) 2002; 242
LeBauer (10.1016/j.geoderma.2018.05.019_bb0095) 2008; 89
Wang (10.1016/j.geoderma.2018.05.019_bb0165) 2015; 81
References_xml – volume: 88
  start-page: 119
  year: 2007
  ident: bb0065
  article-title: Nutrient limitation in soils exhibiting differing nitrogen availabilities: what lies beyond nitrogen saturation?
  publication-title: Ecology
– volume: 86
  start-page: 3252
  year: 2005
  end-page: 3257
  ident: bb0085
  article-title: Nitrogen additions and litter decomposition: a meta-analysis
  publication-title: Ecology
– volume: 14
  start-page: 1172
  year: 2004
  end-page: 1177
  ident: bb0160
  article-title: Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity
  publication-title: Ecol. Appl.
– volume: 23
  start-page: 1328
  year: 2016
  end-page: 1337
  ident: bb0015
  article-title: Co-stimulation of soil glycosidase activity and soil respiration by nitrogen addition
  publication-title: Glob. Chang. Biol.
– volume: 117
  start-page: 101
  year: 2014
  end-page: 113
  ident: bb0170
  article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils
  publication-title: Biogeochemistry
– volume: 320
  start-page: 889
  year: 2008
  end-page: 892
  ident: bb0055
  article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions
  publication-title: Science
– volume: 43
  start-page: 313
  year: 2012
  end-page: 343
  ident: bb0130
  article-title: Ecoenzymatic stoichiometry and ecological theory
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– volume: 4
  start-page: 223
  year: 2013
  ident: bb0105
  article-title: Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models
  publication-title: Front. Microbiol.
– volume: 104
  start-page: 203
  year: 2010
  end-page: 225
  ident: bb0030
  article-title: Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests
  publication-title: Biogeochemistry
– volume: 196
  start-page: 159
  year: 2004
  end-page: 171
  ident: bb0050
  article-title: Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests
  publication-title: For. Ecol. Manag.
– volume: 101
  start-page: 32
  year: 2016
  end-page: 43
  ident: bb0080
  article-title: Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis
  publication-title: Soil Biol. Biochem.
– volume: 462
  start-page: 795
  year: 2009
  end-page: 798
  ident: bb0140
  article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment
  publication-title: Nature
– volume: 242
  start-page: 115
  year: 2002
  end-page: 122
  ident: bb0035
  article-title: Is growth of soil microorganisms in boreal forests limited by carbon or nitrogen availability?
  publication-title: Plant Soil
– volume: 10
  start-page: 1135
  year: 2007
  end-page: 1142
  ident: bb0040
  article-title: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems
  publication-title: Ecol. Lett.
– volume: 35
  start-page: 1683
  year: 2003
  end-page: 1692
  ident: bb0070
  article-title: Increased N deposition retards mineralization of old soil organic matter
  publication-title: Soil Biol. Biochem.
– volume: 89
  start-page: 371
  year: 2008
  end-page: 379
  ident: bb0095
  article-title: Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed
  publication-title: Ecology
– volume: 18
  start-page: 3
  year: 2015
  end-page: 6
  ident: bb0115
  article-title: The human-induced imbalance between C, N and P in Earth's life system
  publication-title: Glob. Chang. Biol.
– year: 2007
  ident: bb2018
  article-title: R: A language and environment for statistical computing
– volume: 74
  start-page: 65
  year: 1996
  end-page: 105
  ident: bb0145
  article-title: Stabilization and destabilization of soil organic matter: mechanisms and controls
  publication-title: Geoderma
– volume: 15
  start-page: 940
  year: 2012
  end-page: 957
  ident: bb0025
  article-title: Do nutrient limitation patterns shift from nitrogen toward phosphorus with increasing nitrogen deposition across the northeastern United States?
  publication-title: Ecosystems
– volume: 93
  start-page: 1
  year: 2016
  end-page: 7
  ident: bb0110
  article-title: Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics
  publication-title: Soil Biol. Biochem.
– volume: 81
  start-page: 2359
  year: 2000
  end-page: 2365
  ident: bb0010
  article-title: Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition
  publication-title: Ecology
– volume: 17
  start-page: 69
  year: 1994
  end-page: 74
  ident: bb0125
  article-title: Enzymic analysis of microbial pattern and process
  publication-title: Biol. Fertil. Soils
– volume: 115
  start-page: 33
  year: 2013
  end-page: 51
  ident: bb0090
  article-title: Nitrogen, organic carbon and sulphur cycling in terrestrial ecosystems: linking nitrogen saturation to carbon limitation of soil microbial processes
  publication-title: Biogeochemistry
– volume: 120
  start-page: 203
  year: 2014
  end-page: 224
  ident: bb0075
  article-title: Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types
  publication-title: Biogeochemistry
– volume: 87
  start-page: 34
  year: 2015
  end-page: 42
  ident: bb0155
  article-title: Ecoenzymatic stoichiometry at the extremes: how microbes cope in an ultra-oligotrophic desert soil
  publication-title: Soil Biol. Biochem.
– volume: 40
  start-page: 350
  year: 2008
  end-page: 359
  ident: bb0060
  article-title: Nitrogen and phosphorus limitation of soil microbial respiration in two tropical agroforestry parklands in the south-Sudanese zone of Burkina Faso: the effects of tree canopy and fertilization
  publication-title: Soil Biol. Biochem.
– volume: 92
  start-page: 217
  year: 2009
  end-page: 229
  ident: bb0045
  article-title: Decades of atmospheric deposition have not resulted in widespread phosphorus limitation or saturation of tree demand for nitrogen in southern New England
  publication-title: Biogeochemistry
– volume: 39
  start-page: 378
  year: 1989
  end-page: 386
  ident: bb0005
  article-title: Nitrogen saturation in northern forest ecosystems
  publication-title: Bioscience
– volume: 81
  start-page: 159
  year: 2015
  end-page: 167
  ident: bb0165
  article-title: Responses of enzymatic activities within soil aggregates to 9-year nitrogen and water addition in a semi-arid grassland
  publication-title: Soil Biol. Biochem.
– volume: 11
  start-page: 1252
  year: 2008
  end-page: 1264
  ident: bb0135
  article-title: Stoichiometry of soil enzyme activity at global scale
  publication-title: Ecol. Lett.
– volume: 252
  start-page: 126
  year: 2018
  end-page: 131
  ident: bb0020
  article-title: Effects of nitrogen addition on activities of soil nitrogen acquisition enzymes: a meta-analysis
  publication-title: Agric. Ecosyst. Environ.
– volume: 193
  start-page: 696
  year: 2012
  end-page: 704
  ident: bb0100
  article-title: Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems
  publication-title: New Phytol.
– volume: 101
  start-page: 133
  year: 2010
  end-page: 149
  ident: bb0120
  article-title: Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?
  publication-title: Biogeochemistry
– volume: 40
  start-page: 341
  year: 1961
  end-page: 369
  ident: bb0150
  article-title: Factors limiting microbial activities in soil
  publication-title: Arch. Microbiol.
– year: 2007
  ident: 10.1016/j.geoderma.2018.05.019_bb2018
– volume: 23
  start-page: 1328
  year: 2016
  ident: 10.1016/j.geoderma.2018.05.019_bb0015
  article-title: Co-stimulation of soil glycosidase activity and soil respiration by nitrogen addition
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13402
– volume: 74
  start-page: 65
  year: 1996
  ident: 10.1016/j.geoderma.2018.05.019_bb0145
  article-title: Stabilization and destabilization of soil organic matter: mechanisms and controls
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(96)00036-5
– volume: 193
  start-page: 696
  year: 2012
  ident: 10.1016/j.geoderma.2018.05.019_bb0100
  article-title: Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2011.03967.x
– volume: 14
  start-page: 1172
  year: 2004
  ident: 10.1016/j.geoderma.2018.05.019_bb0160
  article-title: Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity
  publication-title: Ecol. Appl.
  doi: 10.1890/03-5120
– volume: 81
  start-page: 159
  year: 2015
  ident: 10.1016/j.geoderma.2018.05.019_bb0165
  article-title: Responses of enzymatic activities within soil aggregates to 9-year nitrogen and water addition in a semi-arid grassland
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.11.015
– volume: 252
  start-page: 126
  year: 2018
  ident: 10.1016/j.geoderma.2018.05.019_bb0020
  article-title: Effects of nitrogen addition on activities of soil nitrogen acquisition enzymes: a meta-analysis
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2017.09.032
– volume: 462
  start-page: 795
  year: 2009
  ident: 10.1016/j.geoderma.2018.05.019_bb0140
  article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment
  publication-title: Nature
  doi: 10.1038/nature08632
– volume: 18
  start-page: 3
  year: 2015
  ident: 10.1016/j.geoderma.2018.05.019_bb0115
  article-title: The human-induced imbalance between C, N and P in Earth's life system
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2011.02568.x
– volume: 117
  start-page: 101
  year: 2014
  ident: 10.1016/j.geoderma.2018.05.019_bb0170
  article-title: Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-013-9849-x
– volume: 104
  start-page: 203
  year: 2010
  ident: 10.1016/j.geoderma.2018.05.019_bb0030
  article-title: Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-010-9496-4
– volume: 120
  start-page: 203
  year: 2014
  ident: 10.1016/j.geoderma.2018.05.019_bb0075
  article-title: Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-014-9991-0
– volume: 17
  start-page: 69
  year: 1994
  ident: 10.1016/j.geoderma.2018.05.019_bb0125
  article-title: Enzymic analysis of microbial pattern and process
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/BF00418675
– volume: 101
  start-page: 32
  year: 2016
  ident: 10.1016/j.geoderma.2018.05.019_bb0080
  article-title: Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.07.003
– volume: 43
  start-page: 313
  year: 2012
  ident: 10.1016/j.geoderma.2018.05.019_bb0130
  article-title: Ecoenzymatic stoichiometry and ecological theory
  publication-title: Annu. Rev. Ecol. Evol. Syst.
  doi: 10.1146/annurev-ecolsys-071112-124414
– volume: 11
  start-page: 1252
  year: 2008
  ident: 10.1016/j.geoderma.2018.05.019_bb0135
  article-title: Stoichiometry of soil enzyme activity at global scale
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2008.01245.x
– volume: 115
  start-page: 33
  year: 2013
  ident: 10.1016/j.geoderma.2018.05.019_bb0090
  article-title: Nitrogen, organic carbon and sulphur cycling in terrestrial ecosystems: linking nitrogen saturation to carbon limitation of soil microbial processes
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-013-9892-7
– volume: 81
  start-page: 2359
  year: 2000
  ident: 10.1016/j.geoderma.2018.05.019_bb0010
  article-title: Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition
  publication-title: Ecology
  doi: 10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2
– volume: 35
  start-page: 1683
  year: 2003
  ident: 10.1016/j.geoderma.2018.05.019_bb0070
  article-title: Increased N deposition retards mineralization of old soil organic matter
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2003.08.015
– volume: 39
  start-page: 378
  year: 1989
  ident: 10.1016/j.geoderma.2018.05.019_bb0005
  article-title: Nitrogen saturation in northern forest ecosystems
  publication-title: Bioscience
  doi: 10.2307/1311067
– volume: 87
  start-page: 34
  year: 2015
  ident: 10.1016/j.geoderma.2018.05.019_bb0155
  article-title: Ecoenzymatic stoichiometry at the extremes: how microbes cope in an ultra-oligotrophic desert soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.04.007
– volume: 40
  start-page: 341
  year: 1961
  ident: 10.1016/j.geoderma.2018.05.019_bb0150
  article-title: Factors limiting microbial activities in soil
  publication-title: Arch. Microbiol.
– volume: 89
  start-page: 371
  year: 2008
  ident: 10.1016/j.geoderma.2018.05.019_bb0095
  article-title: Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed
  publication-title: Ecology
  doi: 10.1890/06-2057.1
– volume: 320
  start-page: 889
  year: 2008
  ident: 10.1016/j.geoderma.2018.05.019_bb0055
  article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions
  publication-title: Science
  doi: 10.1126/science.1136674
– volume: 196
  start-page: 159
  year: 2004
  ident: 10.1016/j.geoderma.2018.05.019_bb0050
  article-title: Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2004.03.018
– volume: 15
  start-page: 940
  year: 2012
  ident: 10.1016/j.geoderma.2018.05.019_bb0025
  article-title: Do nutrient limitation patterns shift from nitrogen toward phosphorus with increasing nitrogen deposition across the northeastern United States?
  publication-title: Ecosystems
  doi: 10.1007/s10021-012-9550-2
– volume: 4
  start-page: 223
  year: 2013
  ident: 10.1016/j.geoderma.2018.05.019_bb0105
  article-title: Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2013.00223
– volume: 40
  start-page: 350
  year: 2008
  ident: 10.1016/j.geoderma.2018.05.019_bb0060
  article-title: Nitrogen and phosphorus limitation of soil microbial respiration in two tropical agroforestry parklands in the south-Sudanese zone of Burkina Faso: the effects of tree canopy and fertilization
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2007.08.015
– volume: 242
  start-page: 115
  year: 2002
  ident: 10.1016/j.geoderma.2018.05.019_bb0035
  article-title: Is growth of soil microorganisms in boreal forests limited by carbon or nitrogen availability?
  publication-title: Plant Soil
  doi: 10.1023/A:1019698108838
– volume: 88
  start-page: 119
  year: 2007
  ident: 10.1016/j.geoderma.2018.05.019_bb0065
  article-title: Nutrient limitation in soils exhibiting differing nitrogen availabilities: what lies beyond nitrogen saturation?
  publication-title: Ecology
  doi: 10.1890/0012-9658(2007)88[119:NLISED]2.0.CO;2
– volume: 92
  start-page: 217
  year: 2009
  ident: 10.1016/j.geoderma.2018.05.019_bb0045
  article-title: Decades of atmospheric deposition have not resulted in widespread phosphorus limitation or saturation of tree demand for nitrogen in southern New England
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-009-9286-z
– volume: 101
  start-page: 133
  year: 2010
  ident: 10.1016/j.geoderma.2018.05.019_bb0120
  article-title: Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-010-9439-0
– volume: 86
  start-page: 3252
  year: 2005
  ident: 10.1016/j.geoderma.2018.05.019_bb0085
  article-title: Nitrogen additions and litter decomposition: a meta-analysis
  publication-title: Ecology
  doi: 10.1890/05-0150
– volume: 10
  start-page: 1135
  year: 2007
  ident: 10.1016/j.geoderma.2018.05.019_bb0040
  article-title: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2007.01113.x
– volume: 93
  start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2018.05.019_bb0110
  article-title: Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.10.019
SSID ssj0017020
Score 2.5679965
Snippet Nitrogen (N) deposition may change carbon (C) or nutrient limitation of soil microbes, but whether such change can be reflected by ecoenzymatic stoichiometry...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 61
SubjectTerms C limitation
Ecoenzymatic stoichiometry
enzyme activity
microbial carbon
N deposition
nitrogen
Nutrient limitation
phosphorus
soil microorganisms
stoichiometry
Title Nitrogen addition aggravates microbial carbon limitation: Evidence from ecoenzymatic stoichiometry
URI https://dx.doi.org/10.1016/j.geoderma.2018.05.019
https://www.proquest.com/docview/2271875079
Volume 329
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIryqIzEGtokjpOwVRVVAdGJSt0s24lLqpJWIR3KwG_nLo8KkFAHxjxsWXeXu8_xfXeE3EgP4pj28dTf4xaTUdcKjePhf6uAB8aXdtF57nnEh2P2OPEmDdKvuTCYVln5_tKnF966utOppNlZJglyfG3uQzgCo8QidUg0Z8xHK7_93KR52H63Ks1ocwvf_sYSnoGOsOFYUX_IDsoKnuFfAeqXqy7iz-CA7FfAkfbKtR2SRpwekb3eNKuKZ8THRI2SPFuARVDMEkKJUznF_kKIJ-lbUtRcgjm0zBQ8myO3qVDMHa2bi1Kkm1DYksbpx7qo5koBHSb6FVn6ebY-IePB_Ut_aFU9FCztMi-3jB_FHtcqYiZgWrnaNQirbJ-brobdSBCDNkJmXDeMHBUYHhpbMtvALi3SDmCjU9JMF2l8Rqgro1ACpIANkmFScsBqirmGqYDJwFFRi3i14ISu1o99LuaiziSbiVrgAgUuup4AgbdIZzNuWZbY2DoirPUifhiLgDiwdex1rUgBXxIej8g0XqzeheNAnAYA5Yfn_5j_guziVUlXvCTNPFvFV4BbctUuDLNNdnoPT8PRF9wK7xY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-QwDLZgOAAHBLsg3gRpr9VM2yRtuY0QaHjNCSRuUZI2UAQdVMoBfj12m6LdlRAHro0cVbZrf27izwB_tMA8ZhM69Rcy4DofBZmLBP23SmXqEh22k-eupnJyw89vxe0cHPe9MHSt0sf-Lqa30do_GXptDp_Lknp8Q5lgOkKnJJI6MQ8LxE4lBrAwPruYTD8PE5KRZ2cMZUACfzUKP6CZaOZYS0EUph2JZ_ZVjvovWrcp6HQVVjx2ZOPu9dZgrqh-wfL4rvb8GcVvMNOyqWfoFIwuCpHSmb6jEUMEKdlT2dIu4R5W1wbXHqm9qbXNEevnizLqOGFYlRbV-1tL6MoQIJb2nhr1m_ptHW5OT66PJ4EfoxDYmIsmcEleCGlNzl3KrYlt7AhZhYl0I4sFSVqgQTLu4jjLI5M6mblQ89BhoZbbCOHRBgyqWVVsAot1nmlEFVgjOa61RLhmeOy4SblOI5NvgegVp6x_fxp18aj6y2QPqle4IoWrkVCo8C0Yfso9dywb30pkvV3UP_6iMBV8K3vYG1Lhx0QnJLoqZq8vKoowVSOGSrLtH-x_AIuT66tLdXk2vdiBJVrpuhd3YdDUr8UewpjG7Hs3_QAIBvHH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen+addition+aggravates+microbial+carbon+limitation%3A+Evidence+from+ecoenzymatic+stoichiometry&rft.jtitle=Geoderma&rft.au=Chen%2C+Hao&rft.au=Li%2C+Dejun&rft.au=Zhao%2C+Jie&rft.au=Zhang%2C+Wei&rft.date=2018-11-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=329&rft.spage=61&rft.epage=64&rft_id=info:doi/10.1016%2Fj.geoderma.2018.05.019&rft.externalDocID=S0016706118301435
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon