Magnetic nanoscale Fe–Mn binary oxides loaded zeolite for arsenic removal from synthetic groundwater
•A magnetic adsorbent MFM can be potentially used for arsenic removal in groundwater.•MFM shows good adsorption capacities and convenient solid/liquid magnetic separation.•As(III) oxidization to As(V) on MFM enhances its adsorption capacity.•Heterogeneous distribution of adsorption site energy on MF...
Saved in:
Published in | Colloids and surfaces. A, Physicochemical and engineering aspects Vol. 457; pp. 220 - 227 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.09.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A magnetic adsorbent MFM can be potentially used for arsenic removal in groundwater.•MFM shows good adsorption capacities and convenient solid/liquid magnetic separation.•As(III) oxidization to As(V) on MFM enhances its adsorption capacity.•Heterogeneous distribution of adsorption site energy on MFM is found.
The removal of arsenic in contaminated groundwater on magnetic nanoscale Fe–Mn binary oxides loaded zeolite (MFM) is evaluated in this study. MFM is produced by an improved precipitation method; and is easily separated from water by an external magnetic field after arsenic removal. With the measured surface area of 340m2/g by the BET method, the removal efficiency of MFM for arsenic is more than 99.0% at pH 7.0. The adsorption kinetics is well fitted with pseudo-second-order, as well as Weber–Morris model. Results show that arsenic adsorption on MFM is predominantly regulated by surface diffusion in initial 15min, followed by intraparticle diffusion in later stage. Adsorption and oxidation occur simultaneously in the process of arsenite removal, while adsorption is the sole driving process during arsenate removal. MFM exhibits a strong adsorption affinity to arsenic, and the adsorption isotherms are well described by Freundlich and Redlich–Peterson models. A thermodynamic analysis indicates that the adsorption is spontaneous and endothermic. An adsorption site energy analysis illustrates a distribution of adsorption energy to exhibit the heterogeneous distribution nature on MFM for arsenic removal. This study proves MFM as a promising adsorbent for arsenic removal in contaminated groundwater. |
---|---|
AbstractList | The removal of arsenic in contaminated groundwater on magnetic nanoscale Fe-Mn binary oxides loaded zeolite (MFM) is evaluated in this study. MFM is produced by an improved precipitation method; and is easily separated from water by an external magnetic field after arsenic removal. With the measured surface area of 340 m super(2)/g by the BET method, the removal efficiency of MFM for arsenic is more than 99.0% at pH 7.0. The adsorption kinetics is well fitted with pseudo-second-order, as well as Weber-Morris model. Results show that arsenic adsorption on MFM is predominantly regulated by surface diffusion in initial 15 min, followed by intraparticle diffusion in later stage. Adsorption and oxidation occur simultaneously in the process of arsenite removal, while adsorption is the sole driving process during arsenate removal. MFM exhibits a strong adsorption affinity to arsenic, and the adsorption isotherms are well described by Freundlich and Redlich-Peterson models. A thermodynamic analysis indicates that the adsorption is spontaneous and endothermic. An adsorption site energy analysis illustrates a distribution of adsorption energy to exhibit the heterogeneous distribution nature on MFM for arsenic removal. This study proves MFM as a promising adsorbent for arsenic removal in contaminated groundwater. •A magnetic adsorbent MFM can be potentially used for arsenic removal in groundwater.•MFM shows good adsorption capacities and convenient solid/liquid magnetic separation.•As(III) oxidization to As(V) on MFM enhances its adsorption capacity.•Heterogeneous distribution of adsorption site energy on MFM is found. The removal of arsenic in contaminated groundwater on magnetic nanoscale Fe–Mn binary oxides loaded zeolite (MFM) is evaluated in this study. MFM is produced by an improved precipitation method; and is easily separated from water by an external magnetic field after arsenic removal. With the measured surface area of 340m2/g by the BET method, the removal efficiency of MFM for arsenic is more than 99.0% at pH 7.0. The adsorption kinetics is well fitted with pseudo-second-order, as well as Weber–Morris model. Results show that arsenic adsorption on MFM is predominantly regulated by surface diffusion in initial 15min, followed by intraparticle diffusion in later stage. Adsorption and oxidation occur simultaneously in the process of arsenite removal, while adsorption is the sole driving process during arsenate removal. MFM exhibits a strong adsorption affinity to arsenic, and the adsorption isotherms are well described by Freundlich and Redlich–Peterson models. A thermodynamic analysis indicates that the adsorption is spontaneous and endothermic. An adsorption site energy analysis illustrates a distribution of adsorption energy to exhibit the heterogeneous distribution nature on MFM for arsenic removal. This study proves MFM as a promising adsorbent for arsenic removal in contaminated groundwater. |
Author | Kong, Shuqiong Hu, Qinhong Wang, Yanxin Olusegun, Abass K. |
Author_xml | – sequence: 1 givenname: Shuqiong surname: Kong fullname: Kong, Shuqiong organization: School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China – sequence: 2 givenname: Yanxin surname: Wang fullname: Wang, Yanxin email: yx.wang1108@gmail.com organization: School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China – sequence: 3 givenname: Qinhong surname: Hu fullname: Hu, Qinhong email: water19019@gmail.com organization: School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China – sequence: 4 givenname: Abass K. surname: Olusegun fullname: Olusegun, Abass K. organization: School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China |
BookMark | eNqFkLFOwzAURS1UJNrCLyCPLAl2EsfJBqooILVigdly7JfiKrWLnRbKxD_wh3wJLoWZ6elJ91zpnhEaWGcBoXNKUkpoeblMlevCxrcyzQgtUsJSUpZHaEgrnidFzuoBGpI64wnnjJ-gUQhLQkjBeD1E7VwuLPRGYSutC0p2gKfw9fE5t7gxVvoddm9GQ8Cdkxo0fgfXmR5w6zyWPoCNqIeV28oOt96tcNjZ_vmnceHdxupX2YM_Rcet7AKc_d4xeprePE7uktnD7f3kepaovGB9oqHJdJ0DY7wCVgEnTVVx2SrCtVRaZ03RFAoqXtJckTzXZVaymIlfVrEa8jG6OPSuvXvZQOjFygQFXSctuE0QlJWcRJhWMVoeosq7EDy0Yu3NKg4WlIi9WLEUf2LFXqwgTESxEbw6gBCHbA14EZQBq0AbD6oX2pn_Kr4BcrWKHQ |
CitedBy_id | crossref_primary_10_1016_j_jwpe_2019_101026 crossref_primary_10_1002_ep_12583 crossref_primary_10_1088_2053_1591_ab58ff crossref_primary_10_1016_j_jclepro_2021_128959 crossref_primary_10_1039_C6RA21030A crossref_primary_10_1007_s11270_018_3955_2 crossref_primary_10_1039_D3RA08815D crossref_primary_10_1002_vjch_202200116 crossref_primary_10_1002_wer_1056 crossref_primary_10_1016_j_molliq_2022_120845 crossref_primary_10_1080_09593330_2017_1410579 crossref_primary_10_1002_wer_10714 crossref_primary_10_1016_j_eti_2021_102001 crossref_primary_10_1016_j_psep_2016_03_007 crossref_primary_10_1016_j_reactfunctpolym_2019_104441 crossref_primary_10_1016_j_wsj_2017_05_001 crossref_primary_10_1016_j_jhazmat_2017_08_066 crossref_primary_10_1016_j_jenvman_2021_113590 crossref_primary_10_1016_j_jece_2021_106376 crossref_primary_10_1016_j_matchemphys_2020_124009 crossref_primary_10_1007_s11356_023_31185_1 crossref_primary_10_1016_j_mseb_2023_116809 crossref_primary_10_1016_j_colsurfa_2020_125500 crossref_primary_10_1016_j_cplett_2022_139480 crossref_primary_10_1080_01932691_2020_1805332 crossref_primary_10_3390_coatings11111407 crossref_primary_10_1016_j_cherd_2022_04_042 crossref_primary_10_1515_revic_2021_0005 crossref_primary_10_1080_10934529_2021_1894041 crossref_primary_10_1016_j_cej_2020_124313 crossref_primary_10_1016_j_cherd_2023_01_046 crossref_primary_10_3389_fenvs_2023_1104320 crossref_primary_10_1016_j_jcis_2017_11_063 crossref_primary_10_1016_j_cej_2022_139991 crossref_primary_10_1016_j_cej_2016_02_111 crossref_primary_10_1016_j_jhazmat_2015_05_037 crossref_primary_10_1016_j_jtice_2019_05_002 crossref_primary_10_1021_acsami_6b16414 crossref_primary_10_1016_j_jhazmat_2022_129631 crossref_primary_10_1007_s11356_019_04173_7 crossref_primary_10_1016_j_matchemphys_2018_11_067 crossref_primary_10_1002_jctb_5933 crossref_primary_10_2166_wst_2020_099 crossref_primary_10_1016_j_cej_2020_124470 crossref_primary_10_1039_C7RA06065C crossref_primary_10_1016_j_matpr_2021_04_370 crossref_primary_10_1016_j_molliq_2016_08_116 crossref_primary_10_1016_j_apsusc_2016_02_043 crossref_primary_10_1016_j_biortech_2024_130308 crossref_primary_10_1016_j_jssc_2021_122383 crossref_primary_10_2139_ssrn_4180206 crossref_primary_10_1016_j_colsurfa_2023_131014 crossref_primary_10_1039_C6RA06332B crossref_primary_10_1007_s40710_019_00397_4 crossref_primary_10_1016_j_enmm_2018_04_004 crossref_primary_10_1002_pen_25510 crossref_primary_10_1016_j_jhazmat_2018_10_069 crossref_primary_10_1109_TASC_2023_3241826 crossref_primary_10_1016_j_chemosphere_2018_02_126 crossref_primary_10_1016_j_apsusc_2018_10_091 crossref_primary_10_1016_j_jece_2021_105866 crossref_primary_10_1039_C8RA08512A crossref_primary_10_1016_j_cej_2016_01_053 crossref_primary_10_1039_D0RA02723E crossref_primary_10_1016_j_eti_2018_02_005 crossref_primary_10_1016_j_jcis_2016_09_026 crossref_primary_10_1016_j_jhazmat_2019_121815 crossref_primary_10_1080_09593330_2018_1432693 crossref_primary_10_1016_j_micromeso_2024_113069 crossref_primary_10_1016_j_psep_2019_03_037 crossref_primary_10_1016_j_eti_2021_101525 crossref_primary_10_1002_jctb_7258 crossref_primary_10_1016_j_seppur_2016_05_034 crossref_primary_10_1002_clen_202000233 crossref_primary_10_1016_j_colsurfa_2015_11_060 crossref_primary_10_1016_j_micromeso_2017_03_005 crossref_primary_10_1002_aoc_5406 crossref_primary_10_1016_j_ijbiomac_2020_02_030 crossref_primary_10_1007_s11696_021_01549_3 crossref_primary_10_2139_ssrn_4005058 crossref_primary_10_2139_ssrn_4005059 crossref_primary_10_4028_www_scientific_net_SSP_232_1 crossref_primary_10_1016_j_chemosphere_2021_133370 crossref_primary_10_1016_j_cis_2023_102859 crossref_primary_10_1002_cjce_23725 crossref_primary_10_1016_j_chemosphere_2022_135494 crossref_primary_10_1016_j_jenvman_2021_113838 |
Cites_doi | 10.2136/sssaj2002.0413 10.1016/j.chemosphere.2004.12.008 10.1021/es00007a013 10.1016/j.chemosphere.2005.03.012 10.1166/jnn.2012.6568 10.1039/b912767d 10.1016/j.micromeso.2007.01.011 10.1039/c1cc12258d 10.1016/S0032-9592(98)00112-5 10.1021/es991203u 10.1016/j.jhazmat.2012.12.007 10.1016/S0043-1354(01)00234-2 10.1016/j.jcis.2005.05.087 10.1016/j.jhazmat.2007.01.006 10.1016/j.watres.2007.02.009 10.1021/es063010u 10.1016/j.jhazmat.2009.02.137 10.1016/j.watres.2007.01.052 10.1039/c2jm00153e 10.1016/j.micromeso.2007.03.038 10.1016/j.cej.2012.09.018 10.1126/science.1131475 10.1016/j.cej.2012.01.013 10.1080/10643380902945771 10.1016/j.jhazmat.2008.04.034 10.1016/j.seppur.2007.01.025 10.1016/j.cej.2010.02.013 10.2175/106143013X13807328849170 10.1016/S0043-1354(00)00467-X 10.1021/cr100059s 10.1016/j.jhazmat.2008.12.093 10.1016/j.mineng.2003.11.020 10.1089/ees.2013.0037 10.1016/j.watres.2011.06.016 10.1016/j.jclepro.2012.10.035 10.1016/S0304-3894(99)00152-1 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. |
Copyright_xml | – notice: 2014 Elsevier B.V. |
DBID | AAYXX CITATION 7SR 7U5 8FD FR3 JG9 KR7 L7M |
DOI | 10.1016/j.colsurfa.2014.05.066 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-4359 |
EndPage | 227 |
ExternalDocumentID | 10_1016_j_colsurfa_2014_05_066 S0927775714005263 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCE SDF SDG SDP SES SPC SPD SSG SSK SSM SSQ SSZ T5K WH7 ~02 ~G- 29F AAQXK AAXKI AAYXX ABFNM ACNNM ADMUD AFJKZ AI. ASPBG AVWKF AZFZN BBWZM CITATION FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCB SEW VH1 WUQ 7SR 7U5 8FD FR3 JG9 KR7 L7M |
ID | FETCH-LOGICAL-c345t-deb2d93e5578e58e70b887afc07dacdd2b4b4ce87613c033d62650b813c2859e3 |
IEDL.DBID | AIKHN |
ISSN | 0927-7757 |
IngestDate | Fri Oct 25 07:09:11 EDT 2024 Thu Sep 26 17:42:07 EDT 2024 Fri Feb 23 02:26:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fe–Mn binary oxides Magnetic Zeolite Arsenic Nanoparticle |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-deb2d93e5578e58e70b887afc07dacdd2b4b4ce87613c033d62650b813c2859e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1567061318 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1567061318 crossref_primary_10_1016_j_colsurfa_2014_05_066 elsevier_sciencedirect_doi_10_1016_j_colsurfa_2014_05_066 |
PublicationCentury | 2000 |
PublicationDate | 2014-09-05 |
PublicationDateYYYYMMDD | 2014-09-05 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-05 day: 05 |
PublicationDecade | 2010 |
PublicationTitle | Colloids and surfaces. A, Physicochemical and engineering aspects |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mohan, Pittman (bib0020) 2007; 142 Yavuz, Mayo, William, Prakash, Falkner, Yean, Cong, Shipley, Kan, Tomson, Natelson, Colvin (bib0055) 2006; 314 Aredes, Klein, Pawlik (bib0010) 2013; 60 Boppana, Jiao (bib0060) 2011; 47 Zhao, Liu, Cui, Feng, Zhang (bib0065) 2012; 22 Mcafee, Gould, Nadeau, da Costa (bib0150) 2001; 36 Kong, Wang, Zhan, Yuan, Yu, Liu (bib0090) 2014; 86 Gu, Deng, Yang (bib0045) 2007; 102 Gupta, Ghosh (bib0050) 2009; 161 Yu, Peng, Ni, Li, Wang, Luan (bib0075) 2013; 246 Zheng, Liu, Zheng, Liang, Liu (bib0175) 2009; 167 Ramesh, Hasegawa, Maki, Ueda (bib0040) 2007; 56 Le, Yalcin, Ma (bib0120) 2000; 34 Zhang, Qu, Liu, Liu, Li (bib0095) 2007; 41 Li, Beachner, McManama, Hanlie (bib0035) 2007; 105 Kong, Wang, Zhan, Yuan, Liu, Zhou (bib0100) 2013; 30 Carter, Kilduff, Weber (bib0185) 1995; 29 Ho, McKay (bib0165) 1999; 34 Chuang, Fan, Xu, Brown, Sung, Saha, Huang (bib0130) 2005; 61 Kalavathy, Karthikeyan, Rajgopal, Miranda (bib0170) 2005; 292 Chakravarty, Dureja, Bhattacharyya, Maity, Bhattacharjee (bib0025) 2002; 36 Bang, Patel, Lippincott, Meng (bib0135) 2005; 60 Yang, Xing (bib0125) 2010; 110 Juang, Shiau (bib0180) 1999; 70 Lin, Wang, Na, Lu, Liu (bib0155) 2012; 183 Goldberg (bib0145) 2002; 66 Zhang, Singh, Paling, Delides (bib0015) 2004; 17 Chen, Parette, Zou, Cannon, Dempsey (bib0030) 2007; 41 Mudhoo, Sharma, Garg, Tseng (bib0005) 2011; 41 Dhoble, Lunge, Bhole, Rayalu (bib0105) 2011; 45 Rajbhandari, Shrestha, Pradhananga (bib0080) 2012; 12 Zhai, Zhai, Zhou, Dong (bib0110) 2009; 19 Lin, Lu, Liu (bib0140) 2012; 211 Zhang, Niu, Cai, Zhao, Shi (bib0070) 2010; 158 Lin, Wu (bib0160) 2001; 35 Zhang, Liu, Liu, Qu (bib0115) 2009; 168 Zhang, Qu, Liu, Liu, Wu (bib0085) 2007; 41 Kong (10.1016/j.colsurfa.2014.05.066_bib0090) 2014; 86 Dhoble (10.1016/j.colsurfa.2014.05.066_bib0105) 2011; 45 Lin (10.1016/j.colsurfa.2014.05.066_bib0155) 2012; 183 Lin (10.1016/j.colsurfa.2014.05.066_bib0140) 2012; 211 Chuang (10.1016/j.colsurfa.2014.05.066_bib0130) 2005; 61 Gu (10.1016/j.colsurfa.2014.05.066_bib0045) 2007; 102 Bang (10.1016/j.colsurfa.2014.05.066_bib0135) 2005; 60 Zhao (10.1016/j.colsurfa.2014.05.066_bib0065) 2012; 22 Lin (10.1016/j.colsurfa.2014.05.066_bib0160) 2001; 35 Gupta (10.1016/j.colsurfa.2014.05.066_bib0050) 2009; 161 Zheng (10.1016/j.colsurfa.2014.05.066_bib0175) 2009; 167 Zhang (10.1016/j.colsurfa.2014.05.066_bib0115) 2009; 168 Yavuz (10.1016/j.colsurfa.2014.05.066_bib0055) 2006; 314 Zhang (10.1016/j.colsurfa.2014.05.066_bib0085) 2007; 41 Juang (10.1016/j.colsurfa.2014.05.066_bib0180) 1999; 70 Chen (10.1016/j.colsurfa.2014.05.066_bib0030) 2007; 41 Yang (10.1016/j.colsurfa.2014.05.066_bib0125) 2010; 110 Boppana (10.1016/j.colsurfa.2014.05.066_bib0060) 2011; 47 Aredes (10.1016/j.colsurfa.2014.05.066_bib0010) 2013; 60 Carter (10.1016/j.colsurfa.2014.05.066_bib0185) 1995; 29 Goldberg (10.1016/j.colsurfa.2014.05.066_bib0145) 2002; 66 Zhang (10.1016/j.colsurfa.2014.05.066_bib0015) 2004; 17 Mudhoo (10.1016/j.colsurfa.2014.05.066_bib0005) 2011; 41 Ho (10.1016/j.colsurfa.2014.05.066_bib0165) 1999; 34 Kalavathy (10.1016/j.colsurfa.2014.05.066_bib0170) 2005; 292 Li (10.1016/j.colsurfa.2014.05.066_bib0035) 2007; 105 Zhang (10.1016/j.colsurfa.2014.05.066_bib0070) 2010; 158 Yu (10.1016/j.colsurfa.2014.05.066_bib0075) 2013; 246 Chakravarty (10.1016/j.colsurfa.2014.05.066_bib0025) 2002; 36 Rajbhandari (10.1016/j.colsurfa.2014.05.066_bib0080) 2012; 12 Le (10.1016/j.colsurfa.2014.05.066_bib0120) 2000; 34 Mohan (10.1016/j.colsurfa.2014.05.066_bib0020) 2007; 142 Ramesh (10.1016/j.colsurfa.2014.05.066_bib0040) 2007; 56 Kong (10.1016/j.colsurfa.2014.05.066_bib0100) 2013; 30 Zhai (10.1016/j.colsurfa.2014.05.066_bib0110) 2009; 19 Mcafee (10.1016/j.colsurfa.2014.05.066_bib0150) 2001; 36 Zhang (10.1016/j.colsurfa.2014.05.066_bib0095) 2007; 41 |
References_xml | – volume: 292 start-page: 354 year: 2005 end-page: 362 ident: bib0170 article-title: Kinetic and isotherm studies of Cu(II) adsorption onto H publication-title: J. Colloid Interface Sci. contributor: fullname: Miranda – volume: 70 start-page: 171 year: 1999 end-page: 183 ident: bib0180 article-title: Adsorption isotherms of phenols from water onto macroreticular resins publication-title: J. Hazard. Mater. contributor: fullname: Shiau – volume: 41 start-page: 1921 year: 2007 end-page: 1928 ident: bib0085 article-title: Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal publication-title: Water Res. contributor: fullname: Wu – volume: 30 start-page: 689 year: 2013 end-page: 696 ident: bib0100 article-title: Arsenite and arsenate removal from contaminated groundwater by nanoscale iron-manganese binary oxides: column studies publication-title: Environ. Eng. Sci. contributor: fullname: Zhou – volume: 35 start-page: 2049 year: 2001 end-page: 2057 ident: bib0160 article-title: Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics publication-title: Water Res. contributor: fullname: Wu – volume: 246 start-page: 10 year: 2013 end-page: 17 ident: bib0075 article-title: Arsenite removal from aqueous solutions by γ-Fe publication-title: J. Hazard. Mater. contributor: fullname: Luan – volume: 158 start-page: 599 year: 2010 end-page: 607 ident: bib0070 article-title: Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe publication-title: Chem. Eng. J. contributor: fullname: Shi – volume: 61 start-page: 478 year: 2005 end-page: 483 ident: bib0130 article-title: Adsorption of arsenic(V) by activated carbon prepared from oat hulls publication-title: Chemosphere contributor: fullname: Huang – volume: 66 start-page: 413 year: 2002 end-page: 421 ident: bib0145 article-title: Competitive adsorption of arsenate and arsenite on oxides and clay minerals publication-title: Soil Sci. Soc. Am. J. contributor: fullname: Goldberg – volume: 110 start-page: 5989 year: 2010 end-page: 6008 ident: bib0125 article-title: Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application publication-title: Chem. Rev. contributor: fullname: Xing – volume: 19 start-page: 7030 year: 2009 end-page: 7035 ident: bib0110 article-title: Ordered magnetic core-manganese oxide shell nanostructures and their application in water treatment publication-title: J. Mater. Chem. contributor: fullname: Dong – volume: 17 start-page: 517 year: 2004 end-page: 524 ident: bib0015 article-title: Arsenic removal from contaminated water by natural iron ores publication-title: Miner. Eng. contributor: fullname: Delides – volume: 168 start-page: 820 year: 2009 end-page: 825 ident: bib0115 article-title: Adsorption behavior and mechanism of arsenate at Fe-Mn binary oxide/water interface publication-title: J. Hazard. Mater. contributor: fullname: Qu – volume: 56 start-page: 90 year: 2007 end-page: 100 ident: bib0040 article-title: Adsorption of inorganic and organic arsenic from aqueous solutions by polymeric Al/Fe modified montmorillonite publication-title: Sep. Purif. Technol. contributor: fullname: Ueda – volume: 60 start-page: 389 year: 2005 end-page: 397 ident: bib0135 article-title: Removal of arsenic from groundwater by granular titanium dioxide adsorbent publication-title: Chemosphere contributor: fullname: Meng – volume: 36 start-page: 625 year: 2002 end-page: 632 ident: bib0025 article-title: Removal of arsenic from groundwater using low cost ferruginous manganese ore publication-title: Water Res. contributor: fullname: Bhattacharjee – volume: 34 start-page: 451 year: 1999 end-page: 465 ident: bib0165 article-title: Pseudo-second order model for sorption processes publication-title: Process Biochem. contributor: fullname: McKay – volume: 41 start-page: 435 year: 2011 end-page: 519 ident: bib0005 article-title: Arsenic: an overview of applications, health, and environmental concerns and removal processes publication-title: Crit. Rev. Environ. Sci. Technol. contributor: fullname: Tseng – volume: 60 start-page: 71 year: 2013 end-page: 76 ident: bib0010 article-title: Reprint of The removal of arsenic from water using natural iron oxide minerals publication-title: J. Clean. Prod. contributor: fullname: Pawlik – volume: 314 start-page: 964 year: 2006 end-page: 967 ident: bib0055 article-title: Low-field magnetic separation of monodisperse Fe publication-title: Science contributor: fullname: Colvin – volume: 36 start-page: 3207 year: 2001 end-page: 3222 ident: bib0150 article-title: Biosorption of metal ions using chitosan, chitin, and biomass of publication-title: Sep. Purif. Technol. contributor: fullname: da Costa – volume: 29 start-page: 1773 year: 1995 end-page: 1780 ident: bib0185 article-title: Site energy distribution analysis of preloaded adsorbents publication-title: Environ. Sci. Technol. contributor: fullname: Weber – volume: 86 start-page: 147 year: 2014 end-page: 155 ident: bib0090 article-title: Adsorption/oxidation of arsenic in groundwater by nanoscale Fe-Mn binary oxides loaded on zeolite publication-title: Water Environ. Res. contributor: fullname: Liu – volume: 183 start-page: 365 year: 2012 end-page: 371 ident: bib0155 article-title: Long-root publication-title: Chem. Eng. J. contributor: fullname: Liu – volume: 34 start-page: 2342 year: 2000 end-page: 2347 ident: bib0120 article-title: Speciation of submicrogram per liter levels of arsenic in water: on-site species separation integrated with sample collection publication-title: Environ. Sci. Technol. contributor: fullname: Ma – volume: 102 start-page: 265 year: 2007 end-page: 273 ident: bib0045 article-title: Synthesis and evaluation of iron-containing ordered mesoporous carbon (FeOMC) for arsenic adsorption publication-title: Microporous Mesoporous Mater. contributor: fullname: Yang – volume: 105 start-page: 291 year: 2007 end-page: 297 ident: bib0035 article-title: Sorption of arsenic by surfactant-modified zeolite and kaolinite publication-title: Microporous Mesoporous Mater. contributor: fullname: Hanlie – volume: 45 start-page: 4769 year: 2011 end-page: 4781 ident: bib0105 article-title: Magnetic binary oxide particles (MBOP): a promising adsorbent for removal of As(III) in water publication-title: Water Res. contributor: fullname: Rayalu – volume: 41 start-page: 4613 year: 2007 end-page: 4619 ident: bib0095 article-title: Removal mechanism of As(III) by a novel Fe-Mn binary oxide adsorbent: oxidation and sorption publication-title: Environ. Sci. Technol. contributor: fullname: Li – volume: 22 start-page: 9052 year: 2012 end-page: 9057 ident: bib0065 article-title: One pot synthesis of tunable Fe publication-title: J. Mater. Chem. contributor: fullname: Zhang – volume: 167 start-page: 141 year: 2009 end-page: 147 ident: bib0175 article-title: Sorption isotherm and kinetic modeling of aniline on Cr-bentonite publication-title: J. Hazard. Mater. contributor: fullname: Liu – volume: 142 start-page: 1 year: 2007 end-page: 53 ident: bib0020 article-title: Arsenic removal from water/wastewater using adsorbents – a critical review publication-title: J. Hazard. Mater. contributor: fullname: Pittman – volume: 211 start-page: 46 year: 2012 end-page: 52 ident: bib0140 article-title: Removal of arsenic contaminants with magnetic γ-Fe publication-title: Chem. Eng. J. contributor: fullname: Liu – volume: 41 start-page: 1851 year: 2007 end-page: 1858 ident: bib0030 article-title: Arsenic removal by iron-modified activated carbon publication-title: Water Res. contributor: fullname: Dempsey – volume: 161 start-page: 884 year: 2009 end-page: 892 ident: bib0050 article-title: Arsenic removal using hydrous nanostructure iron(III)-titanium(IV) binary mixed oxide from aqueous solution publication-title: J. Hazard. Mater. contributor: fullname: Ghosh – volume: 47 start-page: 8973 year: 2011 end-page: 8975 ident: bib0060 article-title: Nanostructured MnO publication-title: Chem. Commun. contributor: fullname: Jiao – volume: 12 start-page: 7002 year: 2012 end-page: 7009 ident: bib0080 article-title: Nanoporous activated carbon derived from Lapsi ( publication-title: J. Nanosci. Nanotechnol. contributor: fullname: Pradhananga – volume: 66 start-page: 413 year: 2002 ident: 10.1016/j.colsurfa.2014.05.066_bib0145 article-title: Competitive adsorption of arsenate and arsenite on oxides and clay minerals publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.0413 contributor: fullname: Goldberg – volume: 60 start-page: 389 year: 2005 ident: 10.1016/j.colsurfa.2014.05.066_bib0135 article-title: Removal of arsenic from groundwater by granular titanium dioxide adsorbent publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.12.008 contributor: fullname: Bang – volume: 29 start-page: 1773 year: 1995 ident: 10.1016/j.colsurfa.2014.05.066_bib0185 article-title: Site energy distribution analysis of preloaded adsorbents publication-title: Environ. Sci. Technol. doi: 10.1021/es00007a013 contributor: fullname: Carter – volume: 61 start-page: 478 year: 2005 ident: 10.1016/j.colsurfa.2014.05.066_bib0130 article-title: Adsorption of arsenic(V) by activated carbon prepared from oat hulls publication-title: Chemosphere doi: 10.1016/j.chemosphere.2005.03.012 contributor: fullname: Chuang – volume: 12 start-page: 7002 year: 2012 ident: 10.1016/j.colsurfa.2014.05.066_bib0080 article-title: Nanoporous activated carbon derived from Lapsi (Choerospondias Axillaris) seed stone for the removal of arsenic from water publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2012.6568 contributor: fullname: Rajbhandari – volume: 19 start-page: 7030 year: 2009 ident: 10.1016/j.colsurfa.2014.05.066_bib0110 article-title: Ordered magnetic core-manganese oxide shell nanostructures and their application in water treatment publication-title: J. Mater. Chem. doi: 10.1039/b912767d contributor: fullname: Zhai – volume: 102 start-page: 265 year: 2007 ident: 10.1016/j.colsurfa.2014.05.066_bib0045 article-title: Synthesis and evaluation of iron-containing ordered mesoporous carbon (FeOMC) for arsenic adsorption publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2007.01.011 contributor: fullname: Gu – volume: 47 start-page: 8973 year: 2011 ident: 10.1016/j.colsurfa.2014.05.066_bib0060 article-title: Nanostructured MnO2: an efficient and robust water oxidation catalyst publication-title: Chem. Commun. doi: 10.1039/c1cc12258d contributor: fullname: Boppana – volume: 34 start-page: 451 year: 1999 ident: 10.1016/j.colsurfa.2014.05.066_bib0165 article-title: Pseudo-second order model for sorption processes publication-title: Process Biochem. doi: 10.1016/S0032-9592(98)00112-5 contributor: fullname: Ho – volume: 34 start-page: 2342 year: 2000 ident: 10.1016/j.colsurfa.2014.05.066_bib0120 article-title: Speciation of submicrogram per liter levels of arsenic in water: on-site species separation integrated with sample collection publication-title: Environ. Sci. Technol. doi: 10.1021/es991203u contributor: fullname: Le – volume: 246 start-page: 10 year: 2013 ident: 10.1016/j.colsurfa.2014.05.066_bib0075 article-title: Arsenite removal from aqueous solutions by γ-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.12.007 contributor: fullname: Yu – volume: 36 start-page: 3207 year: 2001 ident: 10.1016/j.colsurfa.2014.05.066_bib0150 article-title: Biosorption of metal ions using chitosan, chitin, and biomass of Rhizopus oryzae publication-title: Sep. Purif. Technol. contributor: fullname: Mcafee – volume: 36 start-page: 625 year: 2002 ident: 10.1016/j.colsurfa.2014.05.066_bib0025 article-title: Removal of arsenic from groundwater using low cost ferruginous manganese ore publication-title: Water Res. doi: 10.1016/S0043-1354(01)00234-2 contributor: fullname: Chakravarty – volume: 292 start-page: 354 year: 2005 ident: 10.1016/j.colsurfa.2014.05.066_bib0170 article-title: Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2005.05.087 contributor: fullname: Kalavathy – volume: 142 start-page: 1 year: 2007 ident: 10.1016/j.colsurfa.2014.05.066_bib0020 article-title: Arsenic removal from water/wastewater using adsorbents – a critical review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.01.006 contributor: fullname: Mohan – volume: 41 start-page: 1921 year: 2007 ident: 10.1016/j.colsurfa.2014.05.066_bib0085 article-title: Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal publication-title: Water Res. doi: 10.1016/j.watres.2007.02.009 contributor: fullname: Zhang – volume: 41 start-page: 4613 year: 2007 ident: 10.1016/j.colsurfa.2014.05.066_bib0095 article-title: Removal mechanism of As(III) by a novel Fe-Mn binary oxide adsorbent: oxidation and sorption publication-title: Environ. Sci. Technol. doi: 10.1021/es063010u contributor: fullname: Zhang – volume: 168 start-page: 820 year: 2009 ident: 10.1016/j.colsurfa.2014.05.066_bib0115 article-title: Adsorption behavior and mechanism of arsenate at Fe-Mn binary oxide/water interface publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.02.137 contributor: fullname: Zhang – volume: 41 start-page: 1851 year: 2007 ident: 10.1016/j.colsurfa.2014.05.066_bib0030 article-title: Arsenic removal by iron-modified activated carbon publication-title: Water Res. doi: 10.1016/j.watres.2007.01.052 contributor: fullname: Chen – volume: 22 start-page: 9052 year: 2012 ident: 10.1016/j.colsurfa.2014.05.066_bib0065 article-title: One pot synthesis of tunable Fe3O4-MnO2 core-shell nanoplates and their applications for water purification publication-title: J. Mater. Chem. doi: 10.1039/c2jm00153e contributor: fullname: Zhao – volume: 105 start-page: 291 year: 2007 ident: 10.1016/j.colsurfa.2014.05.066_bib0035 article-title: Sorption of arsenic by surfactant-modified zeolite and kaolinite publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2007.03.038 contributor: fullname: Li – volume: 211 start-page: 46 year: 2012 ident: 10.1016/j.colsurfa.2014.05.066_bib0140 article-title: Removal of arsenic contaminants with magnetic γ-Fe2O3 nanoparticles publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.09.018 contributor: fullname: Lin – volume: 314 start-page: 964 year: 2006 ident: 10.1016/j.colsurfa.2014.05.066_bib0055 article-title: Low-field magnetic separation of monodisperse Fe3O4 nanocrystals publication-title: Science doi: 10.1126/science.1131475 contributor: fullname: Yavuz – volume: 183 start-page: 365 year: 2012 ident: 10.1016/j.colsurfa.2014.05.066_bib0155 article-title: Long-root Eichhornia crassipes as a biodegradable adsorbent for aqueous As(III) and As(V) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.01.013 contributor: fullname: Lin – volume: 41 start-page: 435 year: 2011 ident: 10.1016/j.colsurfa.2014.05.066_bib0005 article-title: Arsenic: an overview of applications, health, and environmental concerns and removal processes publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380902945771 contributor: fullname: Mudhoo – volume: 161 start-page: 884 year: 2009 ident: 10.1016/j.colsurfa.2014.05.066_bib0050 article-title: Arsenic removal using hydrous nanostructure iron(III)-titanium(IV) binary mixed oxide from aqueous solution publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.04.034 contributor: fullname: Gupta – volume: 56 start-page: 90 year: 2007 ident: 10.1016/j.colsurfa.2014.05.066_bib0040 article-title: Adsorption of inorganic and organic arsenic from aqueous solutions by polymeric Al/Fe modified montmorillonite publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2007.01.025 contributor: fullname: Ramesh – volume: 158 start-page: 599 year: 2010 ident: 10.1016/j.colsurfa.2014.05.066_bib0070 article-title: Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.02.013 contributor: fullname: Zhang – volume: 86 start-page: 147 year: 2014 ident: 10.1016/j.colsurfa.2014.05.066_bib0090 article-title: Adsorption/oxidation of arsenic in groundwater by nanoscale Fe-Mn binary oxides loaded on zeolite publication-title: Water Environ. Res. doi: 10.2175/106143013X13807328849170 contributor: fullname: Kong – volume: 35 start-page: 2049 year: 2001 ident: 10.1016/j.colsurfa.2014.05.066_bib0160 article-title: Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics publication-title: Water Res. doi: 10.1016/S0043-1354(00)00467-X contributor: fullname: Lin – volume: 110 start-page: 5989 year: 2010 ident: 10.1016/j.colsurfa.2014.05.066_bib0125 article-title: Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application publication-title: Chem. Rev. doi: 10.1021/cr100059s contributor: fullname: Yang – volume: 167 start-page: 141 year: 2009 ident: 10.1016/j.colsurfa.2014.05.066_bib0175 article-title: Sorption isotherm and kinetic modeling of aniline on Cr-bentonite publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.12.093 contributor: fullname: Zheng – volume: 17 start-page: 517 year: 2004 ident: 10.1016/j.colsurfa.2014.05.066_bib0015 article-title: Arsenic removal from contaminated water by natural iron ores publication-title: Miner. Eng. doi: 10.1016/j.mineng.2003.11.020 contributor: fullname: Zhang – volume: 30 start-page: 689 year: 2013 ident: 10.1016/j.colsurfa.2014.05.066_bib0100 article-title: Arsenite and arsenate removal from contaminated groundwater by nanoscale iron-manganese binary oxides: column studies publication-title: Environ. Eng. Sci. doi: 10.1089/ees.2013.0037 contributor: fullname: Kong – volume: 45 start-page: 4769 year: 2011 ident: 10.1016/j.colsurfa.2014.05.066_bib0105 article-title: Magnetic binary oxide particles (MBOP): a promising adsorbent for removal of As(III) in water publication-title: Water Res. doi: 10.1016/j.watres.2011.06.016 contributor: fullname: Dhoble – volume: 60 start-page: 71 year: 2013 ident: 10.1016/j.colsurfa.2014.05.066_bib0010 article-title: Reprint of The removal of arsenic from water using natural iron oxide minerals publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2012.10.035 contributor: fullname: Aredes – volume: 70 start-page: 171 year: 1999 ident: 10.1016/j.colsurfa.2014.05.066_bib0180 article-title: Adsorption isotherms of phenols from water onto macroreticular resins publication-title: J. Hazard. Mater. doi: 10.1016/S0304-3894(99)00152-1 contributor: fullname: Juang |
SSID | ssj0004579 |
Score | 2.4729998 |
Snippet | •A magnetic adsorbent MFM can be potentially used for arsenic removal in groundwater.•MFM shows good adsorption capacities and convenient solid/liquid magnetic... The removal of arsenic in contaminated groundwater on magnetic nanoscale Fe-Mn binary oxides loaded zeolite (MFM) is evaluated in this study. MFM is produced... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 220 |
SubjectTerms | Adsorption Arsenic Fe–Mn binary oxides Groundwater Iron Magnetic Mathematical models Nanoparticle Nanostructure Oxides Surface chemistry Zeolite |
Title | Magnetic nanoscale Fe–Mn binary oxides loaded zeolite for arsenic removal from synthetic groundwater |
URI | https://dx.doi.org/10.1016/j.colsurfa.2014.05.066 https://search.proquest.com/docview/1567061318 |
Volume | 457 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0ty4FyQIW24qvIlbimmy-vkyNasVpAu5eCxM2y43G1CBy02VULB9T_0H_IL2GcTaRthcSBo6PMKBo7z2-SmWeA44hwV3PbD4oi5kGKcRQoy20QcR0Jm6sMrf-gP570R1fp-TW_7sCg7YXxZZUN9i8xvUbr5kqviWbvfjrt_QjzWAjBveKcFy1J1mCdtqM468L6ydnFaLIiGt5I7sUi8AYrjcI35P62WsyslyCK0lrEsxZMfHWP-g-t6y1o-BG2Gu7ITpaPtw0ddDuwMWiPbNuBzRV1wU9gx-qn8z2KzClXVjQZyIb4_Ofv2DFdt-Gy8vfUYMVuS2XQsEf0xXDIiMcyynfRkekM70pajMy3obDqwRFf9B59M4gzv4iozj7D1fD0cjAKmmMVgiJJ-TwwlEybPEFOLyvyDEWoCWmULUJhVGFMrFOdFkgwGSVFmCSGch5O99DIq91h8gW6rnS4C0youK-5TnKyTjMda0X00hZZRk6IyOg96LWBlPdL9QzZlpXdyDb00odehlxS6Pcgb-Mt_1kHkiD-Tdtv7QRJCrz_86EclotKUpIqPHGJsv13-D-AD35UV5jxQ-jOZwv8SpRkro9g7ftTdNQsvBekkOVY |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xOMAeEE8Bu4CRuEbNy3VyRNVWZaG9ABI3y47HqAgc1LTaXU77H_Yf7i9hnCZSWSFx4JjHjKKx_eWbZOYzwFlEuKu57QZFEfMgxTgKlOU2iLiOhM1VhtZ_0B-OuoPb9Mcdv1uCXtsL48sqG-yfY3qN1s2ZThPNzvN43LkO81gIwb3inBctSZZhldhATqtz9fzicjBaEA1vJPdiEXiDhUbhB3L_WM0m1ksQRWkt4lkLJr77jvoPretXUH8TNhruyM7nj7cFS-i2Ya3Xbtm2DV8W1AV3wA7VvfM9iswpV1Y0GMj6-O_P36Fjum7DZeWvscGKPZbKoGEv6IvhkBGPZZTvoiPTCT6VNBmZb0Nh1W9HfNF79M0gzvwkojrZhdv-95veIGi2VQiKJOXTwFAybfIEOS1W5BmKUBPSKFuEwqjCmFinOi2QYDJKijBJDOU8nO6hI692h8kerLjS4T4woeKu5jrJyTrNdKwV0UtbZBk5ISKjD6DTBlI-z9UzZFtW9iDb0EsfehlySaE_gLyNt3wzDyRB_Ie2p-0ASQq8__OhHJazSlKSKjxxibLDT_g_gbXBzfBKXl2MLr_Cur9SV5vxb7AynczwiOjJVB830-8VMe3nTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+nanoscale+Fe%E2%80%93Mn+binary+oxides+loaded+zeolite+for+arsenic+removal+from+synthetic+groundwater&rft.jtitle=Colloids+and+surfaces.+A%2C+Physicochemical+and+engineering+aspects&rft.au=Kong%2C+Shuqiong&rft.au=Wang%2C+Yanxin&rft.au=Hu%2C+Qinhong&rft.au=Olusegun%2C+Abass+K.&rft.date=2014-09-05&rft.pub=Elsevier+B.V&rft.issn=0927-7757&rft.eissn=1873-4359&rft.volume=457&rft.spage=220&rft.epage=227&rft_id=info:doi/10.1016%2Fj.colsurfa.2014.05.066&rft.externalDocID=S0927775714005263 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7757&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7757&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7757&client=summon |