Evidence for the Role of Metabotropic Glutamate (mGlu)2 Not mGlu3 Receptors in the Preclinical Antipsychotic Pharmacology of the mGlu2/3 Receptor Agonist (–)-(1 R, 4 S,5 S,6 S)-4-Amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic Acid (LY404039)

(–)-(1 R, 4 S,5 S,6 S)-4-Amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039) is a potent and selective group II metabotropic glutamate [(mGlu)2 and mGlu3] receptor agonist for which its prodrug LY2140023 [(1 R,4 S,5 S,6 S)-2-thiabicyclo[3.1.0]-hexane-4,6-dicarboxylic acid,4-[(2 S)-...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of pharmacology and experimental therapeutics Vol. 326; no. 1; pp. 209 - 217
Main Authors Fell, Matthew J., Svensson, Kjell A., Johnson, Bryan G., Schoepp, Darryle D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2008
American Society for Pharmacology and Experimental Therapeutics
Subjects
Online AccessGet full text

Cover

Loading…
Abstract (–)-(1 R, 4 S,5 S,6 S)-4-Amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039) is a potent and selective group II metabotropic glutamate [(mGlu)2 and mGlu3] receptor agonist for which its prodrug LY2140023 [(1 R,4 S,5 S,6 S)-2-thiabicyclo[3.1.0]-hexane-4,6-dicarboxylic acid,4-[(2 S)-2-amino-4-(methylthio)-1-oxobutyl]amino-, 2,2-dioxide monohydrate] has recently been shown to have efficacy in the treatment of the positive and negative symptoms of schizophrenia. In this article, we use mGlu receptor-deficient mice to investigate the relative contribution of mGlu2 and mGlu3 receptors in mediating the antipsychotic profile of LY404039 in the phencyclidine (PCP) and d- amphetamine (AMP) models of psychosis. To further explore the mechanism of action of LY404039, we compared the drugs’ ability to block PCP-induced hyperlocomotion to that of atypical antipsychotics in wild-type and mice lacking mGlu2/3 receptors. In wild-type animals, LY404039 (3–30 mg/kg i.p.) significantly reversed AMP (5 mg/kg, i.p.)-induced increases in ambulations, distance traveled, and reduced time spent at rest. LY404039 reversed PCP (7.5 mg/kg i.p.)-evoked behaviors at 10 mg/kg. The antipsychotic-like effects of LY404039 (10 mg/kg i.p.) on PCP and AMP-evoked behavioral activation were absent in mGlu2 and mGlu2/3 but not in mGlu3 receptor-deficient mice, indicating that the activation of mGlu2 and not mGlu3 receptors is responsible for the antipsychotic-like effects of the mGlu2/3 receptor agonist LY404039. In contrast, the atypical antipsychotic drugs clozapine and risperidone inhibited PCP-evoked behaviors in both wild-type and mGlu2/3 receptor-deficient mice. These data demonstrate that the antipsychotic-like effects of the mGlu2/3 receptor agonist LY404039 in psychostimulant models of psychosis are mechanistically distinct from those of atypical antipsychotic drugs and are dependent on functional mGlu2 and not mGlu3 receptors.
AbstractList (-)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039) is a potent and selective group II metabotropic glutamate [(mGlu)2 and mGlu3] receptor agonist for which its prodrug LY2140023 [(1R,4S,5S,6S)-2-thiabicyclo[3.1.0]-hexane-4,6-dicarboxylic acid,4-[(2S)-2-amino-4-(methylthio)-1-oxobutyl]amino-, 2,2-dioxide monohydrate] has recently been shown to have efficacy in the treatment of the positive and negative symptoms of schizophrenia. In this article, we use mGlu receptor-deficient mice to investigate the relative contribution of mGlu2 and mGlu3 receptors in mediating the antipsychotic profile of LY404039 in the phencyclidine (PCP) and d-amphetamine (AMP) models of psychosis. To further explore the mechanism of action of LY404039, we compared the drugs' ability to block PCP-induced hyperlocomotion to that of atypical antipsychotics in wild-type and mice lacking mGlu2/3 receptors. In wild-type animals, LY404039 (3-30 mg/kg i.p.) significantly reversed AMP (5 mg/kg, i.p.)-induced increases in ambulations, distance traveled, and reduced time spent at rest. LY404039 reversed PCP (7.5 mg/kg i.p.)-evoked behaviors at 10 mg/kg. The antipsychotic-like effects of LY404039 (10 mg/kg i.p.) on PCP and AMP-evoked behavioral activation were absent in mGlu2 and mGlu2/3 but not in mGlu3 receptor-deficient mice, indicating that the activation of mGlu2 and not mGlu3 receptors is responsible for the antipsychotic-like effects of the mGlu2/3 receptor agonist LY404039. In contrast, the atypical antipsychotic drugs clozapine and risperidone inhibited PCP-evoked behaviors in both wild-type and mGlu2/3 receptor-deficient mice. These data demonstrate that the antipsychotic-like effects of the mGlu2/3 receptor agonist LY404039 in psychostimulant models of psychosis are mechanistically distinct from those of atypical antipsychotic drugs and are dependent on functional mGlu2 and not mGlu3 receptors.
(–)-(1 R, 4 S,5 S,6 S)-4-Amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039) is a potent and selective group II metabotropic glutamate [(mGlu)2 and mGlu3] receptor agonist for which its prodrug LY2140023 [(1 R,4 S,5 S,6 S)-2-thiabicyclo[3.1.0]-hexane-4,6-dicarboxylic acid,4-[(2 S)-2-amino-4-(methylthio)-1-oxobutyl]amino-, 2,2-dioxide monohydrate] has recently been shown to have efficacy in the treatment of the positive and negative symptoms of schizophrenia. In this article, we use mGlu receptor-deficient mice to investigate the relative contribution of mGlu2 and mGlu3 receptors in mediating the antipsychotic profile of LY404039 in the phencyclidine (PCP) and d- amphetamine (AMP) models of psychosis. To further explore the mechanism of action of LY404039, we compared the drugs’ ability to block PCP-induced hyperlocomotion to that of atypical antipsychotics in wild-type and mice lacking mGlu2/3 receptors. In wild-type animals, LY404039 (3–30 mg/kg i.p.) significantly reversed AMP (5 mg/kg, i.p.)-induced increases in ambulations, distance traveled, and reduced time spent at rest. LY404039 reversed PCP (7.5 mg/kg i.p.)-evoked behaviors at 10 mg/kg. The antipsychotic-like effects of LY404039 (10 mg/kg i.p.) on PCP and AMP-evoked behavioral activation were absent in mGlu2 and mGlu2/3 but not in mGlu3 receptor-deficient mice, indicating that the activation of mGlu2 and not mGlu3 receptors is responsible for the antipsychotic-like effects of the mGlu2/3 receptor agonist LY404039. In contrast, the atypical antipsychotic drugs clozapine and risperidone inhibited PCP-evoked behaviors in both wild-type and mGlu2/3 receptor-deficient mice. These data demonstrate that the antipsychotic-like effects of the mGlu2/3 receptor agonist LY404039 in psychostimulant models of psychosis are mechanistically distinct from those of atypical antipsychotic drugs and are dependent on functional mGlu2 and not mGlu3 receptors.
(–)-(1 R, 4 S ,5 S ,6 S )-4-Amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039) is a potent and selective group II metabotropic glutamate [(mGlu)2 and mGlu3] receptor agonist for which its prodrug LY2140023 [(1 R ,4 S ,5 S ,6 S )-2-thiabicyclo[3.1.0]-hexane-4,6-dicarboxylic acid,4-[(2 S )-2-amino-4-(methylthio)-1-oxobutyl]amino-, 2,2-dioxide monohydrate] has recently been shown to have efficacy in the treatment of the positive and negative symptoms of schizophrenia. In this article, we use mGlu receptor-deficient mice to investigate the relative contribution of mGlu2 and mGlu3 receptors in mediating the antipsychotic profile of LY404039 in the phencyclidine (PCP) and d- amphetamine (AMP) models of psychosis. To further explore the mechanism of action of LY404039, we compared the drugs' ability to block PCP-induced hyperlocomotion to that of atypical antipsychotics in wild-type and mice lacking mGlu2/3 receptors. In wild-type animals, LY404039 (3–30 mg/kg i.p.) significantly reversed AMP (5 mg/kg, i.p.)-induced increases in ambulations, distance traveled, and reduced time spent at rest. LY404039 reversed PCP (7.5 mg/kg i.p.)-evoked behaviors at 10 mg/kg. The antipsychotic-like effects of LY404039 (10 mg/kg i.p.) on PCP and AMP-evoked behavioral activation were absent in mGlu2 and mGlu2/3 but not in mGlu3 receptor-deficient mice, indicating that the activation of mGlu2 and not mGlu3 receptors is responsible for the antipsychotic-like effects of the mGlu2/3 receptor agonist LY404039. In contrast, the atypical antipsychotic drugs clozapine and risperidone inhibited PCP-evoked behaviors in both wild-type and mGlu2/3 receptor-deficient mice. These data demonstrate that the antipsychotic-like effects of the mGlu2/3 receptor agonist LY404039 in psychostimulant models of psychosis are mechanistically distinct from those of atypical antipsychotic drugs and are dependent on functional mGlu2 and not mGlu3 receptors.
Author Fell, Matthew J.
Johnson, Bryan G.
Svensson, Kjell A.
Schoepp, Darryle D.
Author_xml – sequence: 1
  givenname: Matthew J.
  surname: Fell
  fullname: Fell, Matthew J.
  email: Fell_matthew@lilly.com
– sequence: 2
  givenname: Kjell A.
  surname: Svensson
  fullname: Svensson, Kjell A.
– sequence: 3
  givenname: Bryan G.
  surname: Johnson
  fullname: Johnson, Bryan G.
– sequence: 4
  givenname: Darryle D.
  surname: Schoepp
  fullname: Schoepp, Darryle D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18424625$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v0zAYxiM0xLrBmRvyCbVS3fpfnPRYTWNDKjB1cEAIRY7tNJ6cOHLcsdz2HfiGfAxOOBQ0hAQHy6-l3_O8r97HJ8lR61qdJM8xWmBM2PKm02GBUb7AlOccP0omOCUYIozoUTJBiBBIU54eJyd9f4MQZozTJ8kxzhlhnKST5Pv5rVG6lRpUzoNQa7B1VgNXgTc6iNIF7zojwYXdB9GIoMG0ifWMgLcugLGkYKul7oLzPTDtT4crr6U1rZHCgnUbTNcPsnYh2lzVwjdCOut2w9hjpEcTsnywAeuda00fwPTb_dcZnGKwnQMGrudpPBxczyCD68a0DhLY723l2sGWRg7Suk90gRfoc63vRKshm3Oo4hC-dHeDjd3X0igw3XxkiCG6mj1NHlfC9vrZr_s0-fDq_P3ZJdy8u3h9tt5ASVkaoCpViZSmTNESsRXCJFNclzKPi-VCMJFlKuVYZanUaclKnmV5lXFRqUoJkkp6mrw4-Hb7stGq6LxphB-K3yFEYHkApHd973X1gKBijLkYY46PvDjEHBXpXwppggjGtcELY_-je3nQ1WZXfzFeF90fiRSU8AIXBK0iuDqAOi7m1mhf9NKM30RFkQyFcuafTX4AowjM4g
CitedBy_id crossref_primary_10_1523_JNEUROSCI_0418_11_2011
crossref_primary_10_1016_j_schres_2013_08_020
crossref_primary_10_1016_j_neuropharm_2010_10_009
crossref_primary_10_1002_glia_20965
crossref_primary_10_1016_j_bmcl_2010_12_048
crossref_primary_10_1016_j_brainresbull_2009_09_010
crossref_primary_10_1016_j_pharmthera_2014_02_003
crossref_primary_10_1016_j_brainres_2010_11_048
crossref_primary_10_3390_biom9060234
crossref_primary_10_1016_j_neubiorev_2010_01_002
crossref_primary_10_1016_j_ejmech_2019_111881
crossref_primary_10_1517_13543776_2013_777043
crossref_primary_10_1038_npp_2011_12
crossref_primary_10_1124_jpet_113_204990
crossref_primary_10_1124_mol_114_096420
crossref_primary_10_1186_s13041_017_0293_z
crossref_primary_10_1016_j_neuropharm_2012_04_009
crossref_primary_10_1021_jm101414h
crossref_primary_10_1039_C0MD00200C
crossref_primary_10_2174_0929867326666190710172002
crossref_primary_10_1021_jm500496m
crossref_primary_10_1016_j_nbd_2013_09_013
crossref_primary_10_1016_j_neuropharm_2009_06_016
crossref_primary_10_1016_j_ejphar_2010_02_058
crossref_primary_10_1016_j_pbb_2022_173446
crossref_primary_10_1523_JNEUROSCI_4230_10_2011
crossref_primary_10_1016_j_conb_2010_09_008
crossref_primary_10_1155_2011_403591
crossref_primary_10_1016_j_coph_2014_11_003
crossref_primary_10_1016_j_neuropharm_2012_02_023
crossref_primary_10_1021_jm201561r
crossref_primary_10_1177_0269881114565806
crossref_primary_10_1038_s41398_024_03194_2
crossref_primary_10_1016_j_bmcl_2009_11_008
crossref_primary_10_1016_j_neuropharm_2013_02_005
crossref_primary_10_1124_pr_119_019133
crossref_primary_10_1016_j_neubiorev_2015_01_016
crossref_primary_10_1016_j_neuropharm_2009_11_014
crossref_primary_10_1038_tp_2012_68
crossref_primary_10_1016_j_neuropharm_2012_06_002
crossref_primary_10_1016_j_peptides_2017_01_007
crossref_primary_10_1097_FBP_0b013e3283242f57
crossref_primary_10_1007_s00213_018_5015_4
crossref_primary_10_1007_s00213_011_2200_0
crossref_primary_10_1021_acschemneuro_5b00033
crossref_primary_10_1021_acs_jmedchem_2c00593
crossref_primary_10_1517_17460440902762794
crossref_primary_10_1007_s00018_009_0130_3
crossref_primary_10_1021_cn1000638
crossref_primary_10_1021_jm300912k
crossref_primary_10_1124_mol_110_067488
crossref_primary_10_1007_s00213_016_4220_2
crossref_primary_10_1016_j_neuropharm_2011_05_005
crossref_primary_10_1038_s41386_018_0143_4
crossref_primary_10_3389_fpsyt_2019_00093
crossref_primary_10_1021_acsmedchemlett_5b00459
crossref_primary_10_1186_1744_8069_8_67
crossref_primary_10_1007_s00213_011_2427_9
crossref_primary_10_1007_s00213_011_2502_2
crossref_primary_10_1016_j_ejphar_2010_03_046
crossref_primary_10_1007_s00213_011_2295_3
crossref_primary_10_1007_s00213_014_3657_4
crossref_primary_10_1016_j_biopsych_2021_02_970
crossref_primary_10_1016_j_neuroscience_2010_02_057
crossref_primary_10_1007_s00406_013_0399_y
crossref_primary_10_3390_biom13091288
crossref_primary_10_1016_j_neulet_2013_08_073
crossref_primary_10_1002_syn_21689
crossref_primary_10_1038_s41386_020_0764_2
crossref_primary_10_1016_j_nbd_2020_104807
crossref_primary_10_1093_schbul_sbp132
crossref_primary_10_1002_ddr_21340
crossref_primary_10_1016_j_bbr_2014_03_008
crossref_primary_10_1038_s41401_018_0033_7
crossref_primary_10_1021_acs_jmedchem_8b00161
crossref_primary_10_1021_jm2016864
crossref_primary_10_1074_jbc_M112_363226
crossref_primary_10_1021_jm501612y
crossref_primary_10_1146_annurev_pharmtox_011008_145533
crossref_primary_10_1016_j_bbr_2013_08_007
crossref_primary_10_1517_13543770903045009
crossref_primary_10_1124_jpet_109_160598
crossref_primary_10_1016_j_neuropharm_2009_05_002
crossref_primary_10_5402_2012_427267
crossref_primary_10_1016_j_cellsig_2014_04_022
crossref_primary_10_1021_acs_jmedchem_1c00563
crossref_primary_10_1038_srep35320
crossref_primary_10_1371_journal_pone_0006591
crossref_primary_10_1016_j_bmcl_2009_11_032
crossref_primary_10_1038_nrd2760
crossref_primary_10_1016_j_neuropharm_2011_03_013
crossref_primary_10_1016_j_neuropharm_2012_05_023
crossref_primary_10_1007_s11064_023_04055_y
crossref_primary_10_2174_1568026619666190808150039
crossref_primary_10_3389_fneur_2021_668877
crossref_primary_10_1021_ml100115a
crossref_primary_10_2165_11533230_000000000_00000
crossref_primary_10_1124_jpet_114_213959
crossref_primary_10_1002_syn_20607
crossref_primary_10_1016_j_euroneuro_2008_05_007
crossref_primary_10_1096_fj_201901093RRR
crossref_primary_10_1007_s00213_010_1914_8
crossref_primary_10_1177_0271678X221130387
crossref_primary_10_1016_j_expneurol_2015_08_019
crossref_primary_10_1016_j_neulet_2011_01_046
crossref_primary_10_1021_acs_jmedchem_7b01481
crossref_primary_10_1080_13543776_2019_1637421
crossref_primary_10_1016_j_tins_2008_12_005
crossref_primary_10_1016_j_pharmthera_2022_108275
crossref_primary_10_1111_j_1471_4159_2009_06478_x
crossref_primary_10_1007_s00424_015_1780_7
crossref_primary_10_1016_j_ejphar_2009_12_041
crossref_primary_10_1016_j_neuropharm_2014_07_009
crossref_primary_10_1016_j_bmcl_2016_01_021
crossref_primary_10_1371_journal_pone_0061787
crossref_primary_10_1021_acs_jmedchem_1c02004
crossref_primary_10_1016_j_pbb_2009_08_011
crossref_primary_10_1038_srep17799
crossref_primary_10_1016_j_jphs_2015_02_004
crossref_primary_10_1021_acs_chemrev_5b00656
crossref_primary_10_1093_schbul_sbr069
crossref_primary_10_1016_j_neuropharm_2018_07_013
crossref_primary_10_1002_prp2_96
crossref_primary_10_1002_prp2_97
crossref_primary_10_1007_s11064_017_2181_4
crossref_primary_10_1038_nn_3181
crossref_primary_10_1186_1471_2202_14_102
crossref_primary_10_1016_j_neulet_2022_137028
crossref_primary_10_1016_j_tins_2015_06_002
crossref_primary_10_1021_acs_jmedchem_0c01394
crossref_primary_10_1002_cmdc_200900028
crossref_primary_10_1016_j_neuroscience_2013_07_010
crossref_primary_10_1371_journal_ppat_1007189
crossref_primary_10_1016_j_tips_2008_10_006
crossref_primary_10_1021_acs_jmedchem_6b01119
crossref_primary_10_1016_j_ejphar_2012_11_027
crossref_primary_10_1021_acs_jmedchem_5b01124
crossref_primary_10_1126_sciadv_adg1679
crossref_primary_10_1007_s11011_018_0380_6
crossref_primary_10_1016_j_neuropharm_2012_01_019
crossref_primary_10_1124_jpet_114_218651
crossref_primary_10_1007_s00213_010_2128_9
crossref_primary_10_1016_j_pnpbp_2015_02_012
crossref_primary_10_1016_j_schres_2012_01_007
crossref_primary_10_1016_j_molmed_2011_08_004
crossref_primary_10_4062_biomolther_2012_20_1_001
crossref_primary_10_1017_S1461145713000606
crossref_primary_10_3389_fphar_2016_00130
crossref_primary_10_1016_j_ejphar_2009_09_006
crossref_primary_10_1124_mol_109_059865
crossref_primary_10_1124_pr_109_002501
crossref_primary_10_1016_j_neuropharm_2011_06_007
crossref_primary_10_1124_jpet_110_172957
crossref_primary_10_1038_s41386_020_0706_z
crossref_primary_10_1007_s00213_009_1484_9
Cites_doi 10.1016/S0022-3565(24)29296-X
10.1146/annurev.pharmtox.37.1.205
10.1523/JNEUROSCI.22-21-09150.2002
10.1016/S0165-0173(99)00046-6
10.1124/mol.107.035170
10.1016/0163-7258(93)90036-D
10.1038/nm1632
10.1124/jpet.106.110809
10.1016/S0014-2999(00)00423-4
10.1073/pnas.0405077101
10.1016/j.neuron.2006.09.015
10.1007/s00213-007-0758-3
10.1124/jpet.105.091926
10.1523/JNEUROSCI.15-05-03896.1995
10.1016/j.biopsych.2006.12.005
10.1007/s00213-007-0974-x
10.1124/jpet.102.038422
10.1176/ajp.148.10.1301
10.1016/S0022-3565(24)35084-0
10.1016/S0140-6736(03)12379-3
10.1016/S0022-3565(24)35262-0
10.1016/j.pnpbp.2003.09.003
10.1016/S0014-2999(00)00269-7
10.1523/JNEUROSCI.18-23-09594.1998
10.1196/annals.1300.019
10.1046/j.1471-4159.2000.0750889.x
10.1093/schbul/19.2.199
10.1016/j.neuropharm.2006.03.014
10.1126/science.281.5381.1349
10.1016/S0893-133X(00)00136-6
10.1016/0306-4522(93)90485-X
10.1038/nrd1630
10.1016/S0028-3908(02)00087-4
10.1016/0304-3940(80)90178-0
10.1007/s00213-004-2098-x
10.1007/BF00401402
10.1016/j.neuropharm.2004.02.015
10.1124/jpet.105.091074
10.1021/jm060917u
10.1007/s002130050072
10.1007/s00213-004-2099-9
ContentType Journal Article
Copyright 2008 American Society for Pharmacology and Experimental Therapeutics
Copyright_xml – notice: 2008 American Society for Pharmacology and Experimental Therapeutics
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1124/jpet.108.136861
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1521-0103
EndPage 217
ExternalDocumentID 18424625
10_1124_jpet_108_136861
326_1_209
S0022356524345094
Genre Journal Article
Comparative Study
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
2WC
3O-
4.4
53G
5GY
5RE
5VS
8WZ
A6W
AAJMC
AALRI
AAXUO
AAYOK
ABCQX
ABIVO
ABJNI
ABOCM
ABSQV
ACGFO
ACGFS
ACNCT
ADBBV
ADCOW
ADIYS
AENEX
AERNN
AFFNX
AFHIN
AFOSN
AGFXO
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
FDB
GX1
H13
HZ~
INIJC
KQ8
L7B
LSO
M41
MJL
MVM
O9-
OHT
OK1
P2P
PKN
R.V
R0Z
RHF
RHI
ROL
RPT
TR2
UQL
VH1
W2D
W8F
WH7
WOQ
X7M
YBU
YHG
YQT
ZGI
ZXP
-
0R
55
8RP
AALRV
ABFLS
ABSGY
ABZEH
ACDCL
ADACO
ADBIT
ADKFC
AETEA
AIKQT
DL
FH7
HZ
O0-
X
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c345t-dbdb0de34d3b0490127d6ebc83566aa4a77d561d75ce5b4b6778f76afdfda25c3
ISSN 0022-3565
IngestDate Sat Mar 08 01:25:19 EST 2025
Tue Aug 05 11:59:49 EDT 2025
Thu Apr 24 23:08:40 EDT 2025
Tue Jan 05 21:16:53 EST 2021
Sat Feb 22 15:44:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-dbdb0de34d3b0490127d6ebc83566aa4a77d561d75ce5b4b6778f76afdfda25c3
PMID 18424625
PageCount 9
ParticipantIDs pubmed_primary_18424625
crossref_primary_10_1124_jpet_108_136861
crossref_citationtrail_10_1124_jpet_108_136861
highwire_pharmacology_326_1_209
elsevier_sciencedirect_doi_10_1124_jpet_108_136861
ProviderPackageCode RHF
RHI
PublicationCentury 2000
PublicationDate July 2008
20080701
2008-07-00
2008-Jul
PublicationDateYYYYMMDD 2008-07-01
PublicationDate_xml – month: 07
  year: 2008
  text: July 2008
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of pharmacology and experimental therapeutics
PublicationTitleAlternate J Pharmacol Exp Ther
PublicationYear 2008
Publisher Elsevier Inc
American Society for Pharmacology and Experimental Therapeutics
Publisher_xml – name: Elsevier Inc
– name: American Society for Pharmacology and Experimental Therapeutics
References Marek GJ, Wright RA, Schoepp DD, Monn JA, and Aghajanian GK (2000) Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex.
423–429.
Gewirtz JC and Marek GJ (2000) Behavioral evidence for interactions between a hallucinogenic drug and group II metabotropic glutamate receptors.
7th ed. Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council, Washington DC.
Rorick-Kehn LM, Johnson BG, Burkey JL, Wright RA, Calligaro DO, Marek GJ, Nisenbaum ES, Catlow JT, Kingston AE, Giera DD, et al. (2007a) Pharmacological and pharmacokinetic properties of a structurally novel, potent, and selective metabotropic glutamate 2/3 receptor agonist: in vitro characterization of agonist (–)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]-hexane-4,6-dicarboxylic acid (LY404039).
Linden AM, Shannon H, Baez M, Yu JL, Koester A, and Schoepp DD (2005) Anxiolytic-like activity of the mGLU2/3 receptor agonist LY354740 in the elevated plus maze test is disrupted in metabotropic glutamate receptor 2 and 3 knock-out mice.
308–317.
Ellenbroek BA (1993) Treatment of schizophrenia: a clinical and preclinical evaluation of neuroleptic drugs.
Spooren WPJM, Gasparini F, van der Putten H, Koller M, Nakanishi S, and Kuhn R (2000) Lack of effect of LY314582 (a group 2 metabotropic glutamate receptor agonist) on phencyclidine-induced locomotor activity in metabotropic glutamate receptor 2 knockout mice.
271–283.
Benneyworth MA, Xiang Z, Smith RL, Garcia EE, Conn PJ, and Sanders-Bush E (2007) A selective positive allosteric modulator of metabotropic glutamate receptor subtype 2 blocks a hallucinogenic drug model of psychosis.
R1–R2.
Javitt DC and Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia.
Auclair A, Cotecchia S, Glowinski J, and Tassin JP (2002)
76–87.
309–317.
Cartmell J, Monn JA, and Schoepp DD (1999) The metabotropic glutamate 2/3 receptor agonists LY354740 and LY379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviors in rats.
379–382.
Cartmell J, Monn JA, and Schoepp DD (2000a) Attenuation of specific PCP-evoked behaviors by the potent mGlu2/3 receptor agonist, LY379268 and comparison with the atypical antipsychotic, clozapine.
Cartmell J, Monn JA, and Schoepp DD (2000b) The mGlu(2/3) receptor agonist LY379268 selectively blocks amphetamine ambulations and rearing.
12604–12609.
Swanson CJ, Bures M, Johnson MP, Linden AM, Monn JA, and Schoepp DD (2005) Metabotropic glutamate receptors as novel targets for anxiety and stress disorders.
9594–9600.
Kim JS, Kornhuber HH, Schmid-Burgk W, and Holzmuller B (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia.
905–913.
Galici R, Echemendia NG, Rodriguez AL, and Conn PJ (2005) A selective allosteric potentiator of metabotropic glutamate (mGlu) 2 receptors has effects similar to an orthosteric mGlu2/3 receptor agonist in mouse models predictive of antipsychotic activity.
Geyer MA and Ellenbroek B (2003) Animal behavior models of the mechanisms underlying antipsychotic atypicality.
3896–3904.
131–144.
12–20.
Bruno V, Battaglia G, Casabona G, Copani A, Caciagli F, and Nicoletti F (1998) Neuroprotection by glial metabotropic glutamate receptors is mediated by transforming growth factor-beta.
Schoepp DD (2001) Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system.
199–214.
1301–1308.
569–576.
Irwin S (1968) Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioral and physiologic state of the mouse.
302–312.
1009–1018.
Ross CA, Margolis RL, Reading SA, Pletnikov M, and Coyle JT (2006) Neurobiology of schizophrenia.
Linden AM, Baez M, Bergeron M, and Schoepp DD (2006) Effects of mGlu2 or mGlu3 receptor deletions on mGlu2/3 receptor agonist (LY354740)-induced brain c-Fos expression: specific roles for mGlu2 in the amygdala and subcortical nuclei, and mGlu3 in the hippocampus.
Harrison PJ and Owen MJ (2003) Genes for schizophrenia? Recent findings and their pathophysiological implications.
205–237.
747–755.
Cartmell J and Schoepp DD (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors.
Monn JA, Massey SM, Valli MJ, Henry SS, Stephenson GA, Bures M, Herin M, Catlow J, Giera D, Wright RA, et al. (2007) Synthesis and metabotropic glutamate receptor activity of S-oxidized variants of (–)-4-amino-2-thiabicyclo-[3.1.0]hexane-4,6-dicarboxylate: identification of potent, selective, and orally bioavailable agonists for mGlu2/3 receptors.
Aghajanian GK and Marek GJ (2000) Serotonin model of schizophrenia: emerging role of glutamate mechanisms.
1071–1079.
919–927.
Andreasen NC and Carpenter WT Jr (1993) Diagnosis and classification of schizophrenia.
Swanson CJ and Schoepp DD (2002) The group II metabotropic glutamate receptor agonist (–)-2-oxa-4-aminobicyclo[3.1.0.]hexane-4,6-dicarboxylate (LY379268) and clozapine reverse phencyclidine-induced behaviors in monoamine-depleted rats.
Rorick-Kehn LM, Johnson BG, Knitowski KM, Salhoff CR, Witkin JM, Perry KW, Griffey KI, Tizzano JP, Monn JA, McKinzie DL, et al. (2007b) In vivo pharmacological characterization of the structurally novel, potent, selective mGlu2/3 receptor agonist LY404039 in animal models of psychiatric disorders.
161–170.
889–907.
1181–1187.
Conn PJ and Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors.
Institute of Laboratory Animal Resources (1996)
Rorick-Kehn LM, Perkins EJ, Knitowski KM, Hart JC, Johnson BG, Schoepp DD, and McKinzie DL (2006) Improved bioavailability of the mGlu2/3 receptor agonist LY354740 using a prodrug strategy: in vivo pharmacology of LY544344.
213–228.
139–153.
Corti C, Crepaldi L, Mion S, Roth AL, Xuereb JH, and Ferraguti F (2007) Altered dimerization of metabotropic glutamate receptor 3 in schizophrenia.
Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, Mattay VS, Bertolino A, Hyde TM, Shannon-Weickert C, et al. (2004) Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia.
Amphetamine fails to increase extracellular dopamine levels in mice lacking alpha 1b-adrenergic receptors: relationship between functional and nonfunctional dopamine release.
Zhai J, Tian MT, Wang Y, Yu JL, Koster A, Baez M, and Nisenbaum ES (2002) Modulation of lateral perforant path excitatory responses by metabotropic glutamate 8 (mGlu8) receptors.
477–484.
221–224.
9150–9154.
Moghaddam B and Adams BW (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats.
222–257.
Greenslade RG and Mitchell SN (2004) Selective action of (–)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268), a group II metabotropic glutamate receptor agonist, on basal and phencyclidine-induced dopamine release in the nucleus accumbens shell.
Taber MT and Fibiger HC (1995) Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat: modulation by metabotropic glutamate receptors.
Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, et al. (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial.
Ohishi H, Shigemoto R, Nakanishi S, and Mizuno N (1993) Distribution of the messenger RNA for a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat.
Woolley ML, Pemberton DJ, Bate S, Corti C, and Jones DNC (2008) The mGlu2 but not the mGlu3 receptor mediates the actions of the mGluR2/3 agonist, LY379268, in mouse models predictive of antipsychotic activity.
1–78.
Swanson CJ and Schoepp DD (2003) A role for noradrenergic transmission in the actions of phencyclidine and the antipsychotic and antistress effects of mGlu2/3 receptor agonists.
284–291.
Johnson MP, Barda D, Britton TC, Emkey R, Hornback WJ, Jagdmann GE, McKinzie DL, Nisenbaum ES, Tizzano JP, and Schoepp DD (2005) Metabotropic glutamate 2 receptor potentiators: receptor modulation, frequency-dependent synaptic activity, and efficacy in preclinical anxiety and psychosis model(s).
233–240.
431–440.
223–230.
1–8.
417–419.
1102–1107.
1349–1352.
121–136.
10.1124/jpet.108.136861_bib19
10.1124/jpet.108.136861_bib18
10.1124/jpet.108.136861_bib17
10.1124/jpet.108.136861_bib39
10.1124/jpet.108.136861_bib16
10.1124/jpet.108.136861_bib38
10.1124/jpet.108.136861_bib15
10.1124/jpet.108.136861_bib37
10.1124/jpet.108.136861_bib14
10.1124/jpet.108.136861_bib36
10.1124/jpet.108.136861_bib13
10.1124/jpet.108.136861_bib35
10.1124/jpet.108.136861_bib12
10.1124/jpet.108.136861_bib34
10.1124/jpet.108.136861_bib11
10.1124/jpet.108.136861_bib33
10.1124/jpet.108.136861_bib10
10.1124/jpet.108.136861_bib32
10.1124/jpet.108.136861_bib31
10.1124/jpet.108.136861_bib30
10.1124/jpet.108.136861_bib29
10.1124/jpet.108.136861_bib1
10.1124/jpet.108.136861_bib28
10.1124/jpet.108.136861_bib2
10.1124/jpet.108.136861_bib27
10.1124/jpet.108.136861_bib3
10.1124/jpet.108.136861_bib4
10.1124/jpet.108.136861_bib5
10.1124/jpet.108.136861_bib6
10.1124/jpet.108.136861_bib7
10.1124/jpet.108.136861_bib8
10.1124/jpet.108.136861_bib9
10.1124/jpet.108.136861_bib40
10.1124/jpet.108.136861_bib26
10.1124/jpet.108.136861_bib25
10.1124/jpet.108.136861_bib24
10.1124/jpet.108.136861_bib23
10.1124/jpet.108.136861_bib22
10.1124/jpet.108.136861_bib21
10.1124/jpet.108.136861_bib20
10.1124/jpet.108.136861_bib42
10.1124/jpet.108.136861_bib41
References_xml – reference: 477–484.
– reference: Javitt DC and Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia.
– reference: 747–755.
– reference: Irwin S (1968) Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioral and physiologic state of the mouse.
– reference: 284–291.
– reference: Ellenbroek BA (1993) Treatment of schizophrenia: a clinical and preclinical evaluation of neuroleptic drugs.
– reference: Woolley ML, Pemberton DJ, Bate S, Corti C, and Jones DNC (2008) The mGlu2 but not the mGlu3 receptor mediates the actions of the mGluR2/3 agonist, LY379268, in mouse models predictive of antipsychotic activity.
– reference: Schoepp DD (2001) Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system.
– reference: 9150–9154.
– reference: 205–237.
– reference: 919–927.
– reference: Monn JA, Massey SM, Valli MJ, Henry SS, Stephenson GA, Bures M, Herin M, Catlow J, Giera D, Wright RA, et al. (2007) Synthesis and metabotropic glutamate receptor activity of S-oxidized variants of (–)-4-amino-2-thiabicyclo-[3.1.0]hexane-4,6-dicarboxylate: identification of potent, selective, and orally bioavailable agonists for mGlu2/3 receptors.
– reference: Rorick-Kehn LM, Johnson BG, Burkey JL, Wright RA, Calligaro DO, Marek GJ, Nisenbaum ES, Catlow JT, Kingston AE, Giera DD, et al. (2007a) Pharmacological and pharmacokinetic properties of a structurally novel, potent, and selective metabotropic glutamate 2/3 receptor agonist: in vitro characterization of agonist (–)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]-hexane-4,6-dicarboxylic acid (LY404039).
– reference: Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, et al. (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial.
– reference: Spooren WPJM, Gasparini F, van der Putten H, Koller M, Nakanishi S, and Kuhn R (2000) Lack of effect of LY314582 (a group 2 metabotropic glutamate receptor agonist) on phencyclidine-induced locomotor activity in metabotropic glutamate receptor 2 knockout mice.
– reference: Swanson CJ and Schoepp DD (2003) A role for noradrenergic transmission in the actions of phencyclidine and the antipsychotic and antistress effects of mGlu2/3 receptor agonists.
– reference: Andreasen NC and Carpenter WT Jr (1993) Diagnosis and classification of schizophrenia.
– reference: Swanson CJ, Bures M, Johnson MP, Linden AM, Monn JA, and Schoepp DD (2005) Metabotropic glutamate receptors as novel targets for anxiety and stress disorders.
– reference: Geyer MA and Ellenbroek B (2003) Animal behavior models of the mechanisms underlying antipsychotic atypicality.
– reference: Johnson MP, Barda D, Britton TC, Emkey R, Hornback WJ, Jagdmann GE, McKinzie DL, Nisenbaum ES, Tizzano JP, and Schoepp DD (2005) Metabotropic glutamate 2 receptor potentiators: receptor modulation, frequency-dependent synaptic activity, and efficacy in preclinical anxiety and psychosis model(s).
– reference: Galici R, Echemendia NG, Rodriguez AL, and Conn PJ (2005) A selective allosteric potentiator of metabotropic glutamate (mGlu) 2 receptors has effects similar to an orthosteric mGlu2/3 receptor agonist in mouse models predictive of antipsychotic activity.
– reference: 379–382.
– reference: Conn PJ and Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors.
– reference: 302–312.
– reference: 139–153.
– reference: 7th ed. Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council, Washington DC.
– reference: 9594–9600.
– reference: 1349–1352.
– reference: Rorick-Kehn LM, Johnson BG, Knitowski KM, Salhoff CR, Witkin JM, Perry KW, Griffey KI, Tizzano JP, Monn JA, McKinzie DL, et al. (2007b) In vivo pharmacological characterization of the structurally novel, potent, selective mGlu2/3 receptor agonist LY404039 in animal models of psychiatric disorders.
– reference: 121–136.
– reference: 199–214.
– reference: 1071–1079.
– reference: Harrison PJ and Owen MJ (2003) Genes for schizophrenia? Recent findings and their pathophysiological implications.
– reference: 569–576.
– reference: 1102–1107.
– reference: 308–317.
– reference: 1–78.
– reference: Swanson CJ and Schoepp DD (2002) The group II metabotropic glutamate receptor agonist (–)-2-oxa-4-aminobicyclo[3.1.0.]hexane-4,6-dicarboxylate (LY379268) and clozapine reverse phencyclidine-induced behaviors in monoamine-depleted rats.
– reference: Cartmell J, Monn JA, and Schoepp DD (2000b) The mGlu(2/3) receptor agonist LY379268 selectively blocks amphetamine ambulations and rearing.
– reference: Bruno V, Battaglia G, Casabona G, Copani A, Caciagli F, and Nicoletti F (1998) Neuroprotection by glial metabotropic glutamate receptors is mediated by transforming growth factor-beta.
– reference: Moghaddam B and Adams BW (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats.
– reference: 905–913.
– reference: 1–8.
– reference: 233–240.
– reference: Benneyworth MA, Xiang Z, Smith RL, Garcia EE, Conn PJ, and Sanders-Bush E (2007) A selective positive allosteric modulator of metabotropic glutamate receptor subtype 2 blocks a hallucinogenic drug model of psychosis.
– reference: Taber MT and Fibiger HC (1995) Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat: modulation by metabotropic glutamate receptors.
– reference: Cartmell J, Monn JA, and Schoepp DD (2000a) Attenuation of specific PCP-evoked behaviors by the potent mGlu2/3 receptor agonist, LY379268 and comparison with the atypical antipsychotic, clozapine.
– reference: Marek GJ, Wright RA, Schoepp DD, Monn JA, and Aghajanian GK (2000) Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex.
– reference: : 431–440.
– reference: 76–87.
– reference: Kim JS, Kornhuber HH, Schmid-Burgk W, and Holzmuller B (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia.
– reference: 131–144.
– reference: 3896–3904.
– reference: Gewirtz JC and Marek GJ (2000) Behavioral evidence for interactions between a hallucinogenic drug and group II metabotropic glutamate receptors.
– reference: 271–283.
– reference: 12–20.
– reference: 1181–1187.
– reference: R1–R2.
– reference: Cartmell J, Monn JA, and Schoepp DD (1999) The metabotropic glutamate 2/3 receptor agonists LY354740 and LY379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviors in rats.
– reference: Linden AM, Shannon H, Baez M, Yu JL, Koester A, and Schoepp DD (2005) Anxiolytic-like activity of the mGLU2/3 receptor agonist LY354740 in the elevated plus maze test is disrupted in metabotropic glutamate receptor 2 and 3 knock-out mice.
– reference: 417–419.
– reference: 221–224.
– reference: Aghajanian GK and Marek GJ (2000) Serotonin model of schizophrenia: emerging role of glutamate mechanisms.
– reference: 309–317.
– reference: Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, Mattay VS, Bertolino A, Hyde TM, Shannon-Weickert C, et al. (2004) Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia.
– reference: 222–257.
– reference: Linden AM, Baez M, Bergeron M, and Schoepp DD (2006) Effects of mGlu2 or mGlu3 receptor deletions on mGlu2/3 receptor agonist (LY354740)-induced brain c-Fos expression: specific roles for mGlu2 in the amygdala and subcortical nuclei, and mGlu3 in the hippocampus.
– reference: Ross CA, Margolis RL, Reading SA, Pletnikov M, and Coyle JT (2006) Neurobiology of schizophrenia.
– reference: 889–907.
– reference: Greenslade RG and Mitchell SN (2004) Selective action of (–)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268), a group II metabotropic glutamate receptor agonist, on basal and phencyclidine-induced dopamine release in the nucleus accumbens shell.
– reference: 423–429.
– reference: Ohishi H, Shigemoto R, Nakanishi S, and Mizuno N (1993) Distribution of the messenger RNA for a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat.
– reference: 1301–1308.
– reference: 161–170.
– reference: 213–228.
– reference: 1009–1018.
– reference: 12604–12609.
– reference: Rorick-Kehn LM, Perkins EJ, Knitowski KM, Hart JC, Johnson BG, Schoepp DD, and McKinzie DL (2006) Improved bioavailability of the mGlu2/3 receptor agonist LY354740 using a prodrug strategy: in vivo pharmacology of LY544344.
– reference: Institute of Laboratory Animal Resources (1996)
– reference: Cartmell J and Schoepp DD (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors.
– reference: Zhai J, Tian MT, Wang Y, Yu JL, Koster A, Baez M, and Nisenbaum ES (2002) Modulation of lateral perforant path excitatory responses by metabotropic glutamate 8 (mGlu8) receptors.
– reference: Auclair A, Cotecchia S, Glowinski J, and Tassin JP (2002)
– reference: -Amphetamine fails to increase extracellular dopamine levels in mice lacking alpha 1b-adrenergic receptors: relationship between functional and nonfunctional dopamine release.
– reference: 223–230.
– reference: Corti C, Crepaldi L, Mion S, Roth AL, Xuereb JH, and Ferraguti F (2007) Altered dimerization of metabotropic glutamate receptor 3 in schizophrenia.
– ident: 10.1124/jpet.108.136861_bib35
  doi: 10.1016/S0022-3565(24)29296-X
– ident: 10.1124/jpet.108.136861_bib10
  doi: 10.1146/annurev.pharmtox.37.1.205
– ident: 10.1124/jpet.108.136861_bib3
  doi: 10.1523/JNEUROSCI.22-21-09150.2002
– ident: 10.1124/jpet.108.136861_bib1
  doi: 10.1016/S0165-0173(99)00046-6
– ident: 10.1124/jpet.108.136861_bib4
  doi: 10.1124/mol.107.035170
– ident: 10.1124/jpet.108.136861_bib13
  doi: 10.1016/0163-7258(93)90036-D
– ident: 10.1124/jpet.108.136861_bib30
  doi: 10.1038/nm1632
– ident: 10.1124/jpet.108.136861_bib31
  doi: 10.1124/jpet.106.110809
– ident: 10.1124/jpet.108.136861_bib8
  doi: 10.1016/S0014-2999(00)00423-4
– ident: 10.1124/jpet.108.136861_bib12
  doi: 10.1073/pnas.0405077101
– ident: 10.1124/jpet.108.136861_bib34
  doi: 10.1016/j.neuron.2006.09.015
– ident: 10.1124/jpet.108.136861_bib32
  doi: 10.1007/s00213-007-0758-3
– ident: 10.1124/jpet.108.136861_bib33
  doi: 10.1124/jpet.105.091926
– ident: 10.1124/jpet.108.136861_bib40
  doi: 10.1523/JNEUROSCI.15-05-03896.1995
– ident: 10.1124/jpet.108.136861_bib11
  doi: 10.1016/j.biopsych.2006.12.005
– ident: 10.1124/jpet.108.136861_bib41
  doi: 10.1007/s00213-007-0974-x
– ident: 10.1124/jpet.108.136861_bib38
  doi: 10.1124/jpet.102.038422
– ident: 10.1124/jpet.108.136861_bib21
  doi: 10.1176/ajp.148.10.1301
– ident: 10.1124/jpet.108.136861_bib6
  doi: 10.1016/S0022-3565(24)35084-0
– ident: 10.1124/jpet.108.136861_bib18
  doi: 10.1016/S0140-6736(03)12379-3
– ident: 10.1124/jpet.108.136861_bib26
  doi: 10.1016/S0022-3565(24)35262-0
– ident: 10.1124/jpet.108.136861_bib16
  doi: 10.1016/j.pnpbp.2003.09.003
– ident: 10.1124/jpet.108.136861_bib36
  doi: 10.1016/S0014-2999(00)00269-7
– ident: 10.1124/jpet.108.136861_bib19
– ident: 10.1124/jpet.108.136861_bib5
  doi: 10.1523/JNEUROSCI.18-23-09594.1998
– ident: 10.1124/jpet.108.136861_bib39
  doi: 10.1196/annals.1300.019
– ident: 10.1124/jpet.108.136861_bib9
  doi: 10.1046/j.1471-4159.2000.0750889.x
– ident: 10.1124/jpet.108.136861_bib2
  doi: 10.1093/schbul/19.2.199
– ident: 10.1124/jpet.108.136861_bib24
  doi: 10.1016/j.neuropharm.2006.03.014
– ident: 10.1124/jpet.108.136861_bib27
  doi: 10.1126/science.281.5381.1349
– ident: 10.1124/jpet.108.136861_bib15
  doi: 10.1016/S0893-133X(00)00136-6
– ident: 10.1124/jpet.108.136861_bib29
  doi: 10.1016/0306-4522(93)90485-X
– ident: 10.1124/jpet.108.136861_bib37
  doi: 10.1038/nrd1630
– ident: 10.1124/jpet.108.136861_bib42
  doi: 10.1016/S0028-3908(02)00087-4
– ident: 10.1124/jpet.108.136861_bib23
  doi: 10.1016/0304-3940(80)90178-0
– ident: 10.1124/jpet.108.136861_bib25
  doi: 10.1007/s00213-004-2098-x
– ident: 10.1124/jpet.108.136861_bib20
  doi: 10.1007/BF00401402
– ident: 10.1124/jpet.108.136861_bib17
  doi: 10.1016/j.neuropharm.2004.02.015
– ident: 10.1124/jpet.108.136861_bib14
  doi: 10.1124/jpet.105.091074
– ident: 10.1124/jpet.108.136861_bib28
  doi: 10.1021/jm060917u
– ident: 10.1124/jpet.108.136861_bib7
  doi: 10.1007/s002130050072
– ident: 10.1124/jpet.108.136861_bib22
  doi: 10.1007/s00213-004-2099-9
SSID ssj0014463
Score 2.3621783
Snippet (–)-(1 R, 4 S,5 S,6 S)-4-Amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039) is a potent and selective group II metabotropic glutamate...
(–)-(1 R, 4 S ,5 S ,6 S )-4-Amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039) is a potent and selective group II metabotropic glutamate...
(-)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039) is a potent and selective group II metabotropic glutamate [(mGlu)2...
SourceID pubmed
crossref
highwire
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 209
SubjectTerms Animals
Antipsychotic Agents - pharmacology
Bridged Bicyclo Compounds, Heterocyclic - pharmacology
Cyclic S-Oxides - pharmacology
Drug Evaluation, Preclinical - methods
Excitatory Amino Acid Agonists - pharmacology
Female
Male
Mice
Mice, Inbred C57BL
Mice, Inbred ICR
Mice, Knockout
Motor Activity - drug effects
Motor Activity - physiology
Receptors, Metabotropic Glutamate - agonists
Receptors, Metabotropic Glutamate - physiology
Title Evidence for the Role of Metabotropic Glutamate (mGlu)2 Not mGlu3 Receptors in the Preclinical Antipsychotic Pharmacology of the mGlu2/3 Receptor Agonist (–)-(1 R, 4 S,5 S,6 S)-4-Amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic Acid (LY404039)
URI https://dx.doi.org/10.1124/jpet.108.136861
http://jpet.aspetjournals.org/content/326/1/209.abstract
https://www.ncbi.nlm.nih.gov/pubmed/18424625
Volume 326
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa28cIL4k65-oFNrVp3beIkzSNswMQADdpJmxCKfElGp7aJulSi_G3-AOckzqVllYCXqHUaO-p3Ph8f-1wIedkPQadyXzKfc4dxoUMmPSUZGBs88m2tHIUnuh8_uUen_P2Zc7a1fVDzWlqksqt-XhtX8j-oQhvgilGy_4Bs2Sk0wGfAF66AMFz_CuOiJOgfvoLTMAVw03mcjFX7Al5BwMI0W01O300WYP1b7VmctvGL3YY5L0yyojvG5zGBliJgEv74sYnUgq6SKtH1svAuwE4wvWrVUVtcxJiQF8djMBjDZFDocMHRT9DBizvEds7EdDyLmcWuFpMIfeTlWC3VJN51Xtvdfre36xx-xwCckHF8iOGh0lzGP5aYmluocbYD8uGcwxxh-8WmxmVFgNpye-XV8bRgpbZBLQytCogxRzKmJHrtAA0UxJWJVDu-xM3Pkgam4FjOmiXMnWXpMkx3GiZJHkcwny8BqMOVLZdB6Z4LGtOoCQs3YXp2XY_Yeej_CmGMVsgyQFyjrSyO2grMI3T1RI_DQZ6Zvia7yTQTXjDELe7mMeJrCcKLW9vkhgW2Ek72x5-rozSw922T0wrG218bDZPmmuc3rczKxNlrlle2AhvdJrcMlvRVzoM7ZCuc3SV7Jzmuyw4d1TDs0D16UkP8HvlVkIUCWSgASpEsNI5onSy0JAttomC3LApEoRlRaEkUOp5lPdSIQleIQuvShmPgrzOi7FfdUEMT2mQt1ux_6fBhxxl23GFrMzG-ZrT4VpCis0oJipSgzYIQrfvk9O2b0cERMxVPmLK5kzIttezp0Obalngk37c87YZSgZnkukJw4XkaDB7tOSp0JJeY_THyXBHpSAvLUfYDsjOLZ-EjQlVv4ON2w8ATnPtcCBdEQUsZ-RbXrus3SLdAO1CmHABWpZkE2baAxQOUFMwfHOSS0iDN8oEkz4Sz-adWIT6BWcjnC_QAJH_zQy8KQQvqIAXAq6AfAIca5GEuf9X4RnQfb7zzhNysGPyU7KTzRfgMzIhUPs9o8hvSBBud
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+the+role+of+metabotropic+glutamate+%28mGlu%292+not+mGlu3+receptors+in+the+preclinical+antipsychotic+pharmacology+of+the+mGlu2%2F3+receptor+agonist+%28-%29-%281R%2C4S%2C5S%2C6S%29-4-amino-2-sulfonylbicyclo%5B3.1.0%5Dhexane-4%2C6-dicarboxylic+acid+%28LY404039%29&rft.jtitle=The+Journal+of+pharmacology+and+experimental+therapeutics&rft.au=Fell%2C+Matthew+J&rft.au=Svensson%2C+Kjell+A&rft.au=Johnson%2C+Bryan+G&rft.au=Schoepp%2C+Darryle+D&rft.date=2008-07-01&rft.eissn=1521-0103&rft.volume=326&rft.issue=1&rft.spage=209&rft_id=info:doi/10.1124%2Fjpet.108.136861&rft_id=info%3Apmid%2F18424625&rft.externalDocID=18424625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3565&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3565&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3565&client=summon