Evidence for the Role of Metabotropic Glutamate (mGlu)2 Not mGlu3 Receptors in the Preclinical Antipsychotic Pharmacology of the mGlu2/3 Receptor Agonist (–)-(1 R, 4 S,5 S,6 S)-4-Amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic Acid (LY404039)
(–)-(1 R, 4 S,5 S,6 S)-4-Amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039) is a potent and selective group II metabotropic glutamate [(mGlu)2 and mGlu3] receptor agonist for which its prodrug LY2140023 [(1 R,4 S,5 S,6 S)-2-thiabicyclo[3.1.0]-hexane-4,6-dicarboxylic acid,4-[(2 S)-...
Saved in:
Published in | The Journal of pharmacology and experimental therapeutics Vol. 326; no. 1; pp. 209 - 217 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.07.2008
American Society for Pharmacology and Experimental Therapeutics |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | (–)-(1 R, 4 S,5 S,6 S)-4-Amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039) is a potent and selective group II metabotropic glutamate [(mGlu)2 and mGlu3] receptor agonist for which its prodrug LY2140023 [(1 R,4 S,5 S,6 S)-2-thiabicyclo[3.1.0]-hexane-4,6-dicarboxylic acid,4-[(2 S)-2-amino-4-(methylthio)-1-oxobutyl]amino-, 2,2-dioxide monohydrate] has recently been shown to have efficacy in the treatment of the positive and negative symptoms of schizophrenia. In this article, we use mGlu receptor-deficient mice to investigate the relative contribution of mGlu2 and mGlu3 receptors in mediating the antipsychotic profile of LY404039 in the phencyclidine (PCP) and d- amphetamine (AMP) models of psychosis. To further explore the mechanism of action of LY404039, we compared the drugs’ ability to block PCP-induced hyperlocomotion to that of atypical antipsychotics in wild-type and mice lacking mGlu2/3 receptors. In wild-type animals, LY404039 (3–30 mg/kg i.p.) significantly reversed AMP (5 mg/kg, i.p.)-induced increases in ambulations, distance traveled, and reduced time spent at rest. LY404039 reversed PCP (7.5 mg/kg i.p.)-evoked behaviors at 10 mg/kg. The antipsychotic-like effects of LY404039 (10 mg/kg i.p.) on PCP and AMP-evoked behavioral activation were absent in mGlu2 and mGlu2/3 but not in mGlu3 receptor-deficient mice, indicating that the activation of mGlu2 and not mGlu3 receptors is responsible for the antipsychotic-like effects of the mGlu2/3 receptor agonist LY404039. In contrast, the atypical antipsychotic drugs clozapine and risperidone inhibited PCP-evoked behaviors in both wild-type and mGlu2/3 receptor-deficient mice. These data demonstrate that the antipsychotic-like effects of the mGlu2/3 receptor agonist LY404039 in psychostimulant models of psychosis are mechanistically distinct from those of atypical antipsychotic drugs and are dependent on functional mGlu2 and not mGlu3 receptors. |
---|---|
AbstractList | (-)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039) is a potent and selective group II metabotropic glutamate [(mGlu)2 and mGlu3] receptor agonist for which its prodrug LY2140023 [(1R,4S,5S,6S)-2-thiabicyclo[3.1.0]-hexane-4,6-dicarboxylic acid,4-[(2S)-2-amino-4-(methylthio)-1-oxobutyl]amino-, 2,2-dioxide monohydrate] has recently been shown to have efficacy in the treatment of the positive and negative symptoms of schizophrenia. In this article, we use mGlu receptor-deficient mice to investigate the relative contribution of mGlu2 and mGlu3 receptors in mediating the antipsychotic profile of LY404039 in the phencyclidine (PCP) and d-amphetamine (AMP) models of psychosis. To further explore the mechanism of action of LY404039, we compared the drugs' ability to block PCP-induced hyperlocomotion to that of atypical antipsychotics in wild-type and mice lacking mGlu2/3 receptors. In wild-type animals, LY404039 (3-30 mg/kg i.p.) significantly reversed AMP (5 mg/kg, i.p.)-induced increases in ambulations, distance traveled, and reduced time spent at rest. LY404039 reversed PCP (7.5 mg/kg i.p.)-evoked behaviors at 10 mg/kg. The antipsychotic-like effects of LY404039 (10 mg/kg i.p.) on PCP and AMP-evoked behavioral activation were absent in mGlu2 and mGlu2/3 but not in mGlu3 receptor-deficient mice, indicating that the activation of mGlu2 and not mGlu3 receptors is responsible for the antipsychotic-like effects of the mGlu2/3 receptor agonist LY404039. In contrast, the atypical antipsychotic drugs clozapine and risperidone inhibited PCP-evoked behaviors in both wild-type and mGlu2/3 receptor-deficient mice. These data demonstrate that the antipsychotic-like effects of the mGlu2/3 receptor agonist LY404039 in psychostimulant models of psychosis are mechanistically distinct from those of atypical antipsychotic drugs and are dependent on functional mGlu2 and not mGlu3 receptors. (–)-(1 R, 4 S,5 S,6 S)-4-Amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039) is a potent and selective group II metabotropic glutamate [(mGlu)2 and mGlu3] receptor agonist for which its prodrug LY2140023 [(1 R,4 S,5 S,6 S)-2-thiabicyclo[3.1.0]-hexane-4,6-dicarboxylic acid,4-[(2 S)-2-amino-4-(methylthio)-1-oxobutyl]amino-, 2,2-dioxide monohydrate] has recently been shown to have efficacy in the treatment of the positive and negative symptoms of schizophrenia. In this article, we use mGlu receptor-deficient mice to investigate the relative contribution of mGlu2 and mGlu3 receptors in mediating the antipsychotic profile of LY404039 in the phencyclidine (PCP) and d- amphetamine (AMP) models of psychosis. To further explore the mechanism of action of LY404039, we compared the drugs’ ability to block PCP-induced hyperlocomotion to that of atypical antipsychotics in wild-type and mice lacking mGlu2/3 receptors. In wild-type animals, LY404039 (3–30 mg/kg i.p.) significantly reversed AMP (5 mg/kg, i.p.)-induced increases in ambulations, distance traveled, and reduced time spent at rest. LY404039 reversed PCP (7.5 mg/kg i.p.)-evoked behaviors at 10 mg/kg. The antipsychotic-like effects of LY404039 (10 mg/kg i.p.) on PCP and AMP-evoked behavioral activation were absent in mGlu2 and mGlu2/3 but not in mGlu3 receptor-deficient mice, indicating that the activation of mGlu2 and not mGlu3 receptors is responsible for the antipsychotic-like effects of the mGlu2/3 receptor agonist LY404039. In contrast, the atypical antipsychotic drugs clozapine and risperidone inhibited PCP-evoked behaviors in both wild-type and mGlu2/3 receptor-deficient mice. These data demonstrate that the antipsychotic-like effects of the mGlu2/3 receptor agonist LY404039 in psychostimulant models of psychosis are mechanistically distinct from those of atypical antipsychotic drugs and are dependent on functional mGlu2 and not mGlu3 receptors. (â)-(1 R, 4 S ,5 S ,6 S )-4-Amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039) is a potent and selective group II metabotropic glutamate [(mGlu)2 and mGlu3] receptor agonist for which its prodrug LY2140023 [(1 R ,4 S ,5 S ,6 S )-2-thiabicyclo[3.1.0]-hexane-4,6-dicarboxylic acid,4-[(2 S )-2-amino-4-(methylthio)-1-oxobutyl]amino-, 2,2-dioxide monohydrate] has recently been shown to have efficacy in the treatment of the positive and negative symptoms of schizophrenia. In this article, we use mGlu receptor-deficient mice to investigate the relative contribution of mGlu2 and mGlu3 receptors in mediating the antipsychotic profile of LY404039 in the phencyclidine (PCP) and d- amphetamine (AMP) models of psychosis. To further explore the mechanism of action of LY404039, we compared the drugs' ability to block PCP-induced hyperlocomotion to that of atypical antipsychotics in wild-type and mice lacking mGlu2/3 receptors. In wild-type animals, LY404039 (3â30 mg/kg i.p.) significantly reversed AMP (5 mg/kg, i.p.)-induced increases in ambulations, distance traveled, and reduced time spent at rest. LY404039 reversed PCP (7.5 mg/kg i.p.)-evoked behaviors at 10 mg/kg. The antipsychotic-like effects of LY404039 (10 mg/kg i.p.) on PCP and AMP-evoked behavioral activation were absent in mGlu2 and mGlu2/3 but not in mGlu3 receptor-deficient mice, indicating that the activation of mGlu2 and not mGlu3 receptors is responsible for the antipsychotic-like effects of the mGlu2/3 receptor agonist LY404039. In contrast, the atypical antipsychotic drugs clozapine and risperidone inhibited PCP-evoked behaviors in both wild-type and mGlu2/3 receptor-deficient mice. These data demonstrate that the antipsychotic-like effects of the mGlu2/3 receptor agonist LY404039 in psychostimulant models of psychosis are mechanistically distinct from those of atypical antipsychotic drugs and are dependent on functional mGlu2 and not mGlu3 receptors. |
Author | Fell, Matthew J. Johnson, Bryan G. Svensson, Kjell A. Schoepp, Darryle D. |
Author_xml | – sequence: 1 givenname: Matthew J. surname: Fell fullname: Fell, Matthew J. email: Fell_matthew@lilly.com – sequence: 2 givenname: Kjell A. surname: Svensson fullname: Svensson, Kjell A. – sequence: 3 givenname: Bryan G. surname: Johnson fullname: Johnson, Bryan G. – sequence: 4 givenname: Darryle D. surname: Schoepp fullname: Schoepp, Darryle D. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18424625$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9v0zAYxiM0xLrBmRvyCbVS3fpfnPRYTWNDKjB1cEAIRY7tNJ6cOHLcsdz2HfiGfAxOOBQ0hAQHy6-l3_O8r97HJ8lR61qdJM8xWmBM2PKm02GBUb7AlOccP0omOCUYIozoUTJBiBBIU54eJyd9f4MQZozTJ8kxzhlhnKST5Pv5rVG6lRpUzoNQa7B1VgNXgTc6iNIF7zojwYXdB9GIoMG0ifWMgLcugLGkYKul7oLzPTDtT4crr6U1rZHCgnUbTNcPsnYh2lzVwjdCOut2w9hjpEcTsnywAeuda00fwPTb_dcZnGKwnQMGrudpPBxczyCD68a0DhLY723l2sGWRg7Suk90gRfoc63vRKshm3Oo4hC-dHeDjd3X0igw3XxkiCG6mj1NHlfC9vrZr_s0-fDq_P3ZJdy8u3h9tt5ASVkaoCpViZSmTNESsRXCJFNclzKPi-VCMJFlKuVYZanUaclKnmV5lXFRqUoJkkp6mrw4-Hb7stGq6LxphB-K3yFEYHkApHd973X1gKBijLkYY46PvDjEHBXpXwppggjGtcELY_-je3nQ1WZXfzFeF90fiRSU8AIXBK0iuDqAOi7m1mhf9NKM30RFkQyFcuafTX4AowjM4g |
CitedBy_id | crossref_primary_10_1523_JNEUROSCI_0418_11_2011 crossref_primary_10_1016_j_schres_2013_08_020 crossref_primary_10_1016_j_neuropharm_2010_10_009 crossref_primary_10_1002_glia_20965 crossref_primary_10_1016_j_bmcl_2010_12_048 crossref_primary_10_1016_j_brainresbull_2009_09_010 crossref_primary_10_1016_j_pharmthera_2014_02_003 crossref_primary_10_1016_j_brainres_2010_11_048 crossref_primary_10_3390_biom9060234 crossref_primary_10_1016_j_neubiorev_2010_01_002 crossref_primary_10_1016_j_ejmech_2019_111881 crossref_primary_10_1517_13543776_2013_777043 crossref_primary_10_1038_npp_2011_12 crossref_primary_10_1124_jpet_113_204990 crossref_primary_10_1124_mol_114_096420 crossref_primary_10_1186_s13041_017_0293_z crossref_primary_10_1016_j_neuropharm_2012_04_009 crossref_primary_10_1021_jm101414h crossref_primary_10_1039_C0MD00200C crossref_primary_10_2174_0929867326666190710172002 crossref_primary_10_1021_jm500496m crossref_primary_10_1016_j_nbd_2013_09_013 crossref_primary_10_1016_j_neuropharm_2009_06_016 crossref_primary_10_1016_j_ejphar_2010_02_058 crossref_primary_10_1016_j_pbb_2022_173446 crossref_primary_10_1523_JNEUROSCI_4230_10_2011 crossref_primary_10_1016_j_conb_2010_09_008 crossref_primary_10_1155_2011_403591 crossref_primary_10_1016_j_coph_2014_11_003 crossref_primary_10_1016_j_neuropharm_2012_02_023 crossref_primary_10_1021_jm201561r crossref_primary_10_1177_0269881114565806 crossref_primary_10_1038_s41398_024_03194_2 crossref_primary_10_1016_j_bmcl_2009_11_008 crossref_primary_10_1016_j_neuropharm_2013_02_005 crossref_primary_10_1124_pr_119_019133 crossref_primary_10_1016_j_neubiorev_2015_01_016 crossref_primary_10_1016_j_neuropharm_2009_11_014 crossref_primary_10_1038_tp_2012_68 crossref_primary_10_1016_j_neuropharm_2012_06_002 crossref_primary_10_1016_j_peptides_2017_01_007 crossref_primary_10_1097_FBP_0b013e3283242f57 crossref_primary_10_1007_s00213_018_5015_4 crossref_primary_10_1007_s00213_011_2200_0 crossref_primary_10_1021_acschemneuro_5b00033 crossref_primary_10_1021_acs_jmedchem_2c00593 crossref_primary_10_1517_17460440902762794 crossref_primary_10_1007_s00018_009_0130_3 crossref_primary_10_1021_cn1000638 crossref_primary_10_1021_jm300912k crossref_primary_10_1124_mol_110_067488 crossref_primary_10_1007_s00213_016_4220_2 crossref_primary_10_1016_j_neuropharm_2011_05_005 crossref_primary_10_1038_s41386_018_0143_4 crossref_primary_10_3389_fpsyt_2019_00093 crossref_primary_10_1021_acsmedchemlett_5b00459 crossref_primary_10_1186_1744_8069_8_67 crossref_primary_10_1007_s00213_011_2427_9 crossref_primary_10_1007_s00213_011_2502_2 crossref_primary_10_1016_j_ejphar_2010_03_046 crossref_primary_10_1007_s00213_011_2295_3 crossref_primary_10_1007_s00213_014_3657_4 crossref_primary_10_1016_j_biopsych_2021_02_970 crossref_primary_10_1016_j_neuroscience_2010_02_057 crossref_primary_10_1007_s00406_013_0399_y crossref_primary_10_3390_biom13091288 crossref_primary_10_1016_j_neulet_2013_08_073 crossref_primary_10_1002_syn_21689 crossref_primary_10_1038_s41386_020_0764_2 crossref_primary_10_1016_j_nbd_2020_104807 crossref_primary_10_1093_schbul_sbp132 crossref_primary_10_1002_ddr_21340 crossref_primary_10_1016_j_bbr_2014_03_008 crossref_primary_10_1038_s41401_018_0033_7 crossref_primary_10_1021_acs_jmedchem_8b00161 crossref_primary_10_1021_jm2016864 crossref_primary_10_1074_jbc_M112_363226 crossref_primary_10_1021_jm501612y crossref_primary_10_1146_annurev_pharmtox_011008_145533 crossref_primary_10_1016_j_bbr_2013_08_007 crossref_primary_10_1517_13543770903045009 crossref_primary_10_1124_jpet_109_160598 crossref_primary_10_1016_j_neuropharm_2009_05_002 crossref_primary_10_5402_2012_427267 crossref_primary_10_1016_j_cellsig_2014_04_022 crossref_primary_10_1021_acs_jmedchem_1c00563 crossref_primary_10_1038_srep35320 crossref_primary_10_1371_journal_pone_0006591 crossref_primary_10_1016_j_bmcl_2009_11_032 crossref_primary_10_1038_nrd2760 crossref_primary_10_1016_j_neuropharm_2011_03_013 crossref_primary_10_1016_j_neuropharm_2012_05_023 crossref_primary_10_1007_s11064_023_04055_y crossref_primary_10_2174_1568026619666190808150039 crossref_primary_10_3389_fneur_2021_668877 crossref_primary_10_1021_ml100115a crossref_primary_10_2165_11533230_000000000_00000 crossref_primary_10_1124_jpet_114_213959 crossref_primary_10_1002_syn_20607 crossref_primary_10_1016_j_euroneuro_2008_05_007 crossref_primary_10_1096_fj_201901093RRR crossref_primary_10_1007_s00213_010_1914_8 crossref_primary_10_1177_0271678X221130387 crossref_primary_10_1016_j_expneurol_2015_08_019 crossref_primary_10_1016_j_neulet_2011_01_046 crossref_primary_10_1021_acs_jmedchem_7b01481 crossref_primary_10_1080_13543776_2019_1637421 crossref_primary_10_1016_j_tins_2008_12_005 crossref_primary_10_1016_j_pharmthera_2022_108275 crossref_primary_10_1111_j_1471_4159_2009_06478_x crossref_primary_10_1007_s00424_015_1780_7 crossref_primary_10_1016_j_ejphar_2009_12_041 crossref_primary_10_1016_j_neuropharm_2014_07_009 crossref_primary_10_1016_j_bmcl_2016_01_021 crossref_primary_10_1371_journal_pone_0061787 crossref_primary_10_1021_acs_jmedchem_1c02004 crossref_primary_10_1016_j_pbb_2009_08_011 crossref_primary_10_1038_srep17799 crossref_primary_10_1016_j_jphs_2015_02_004 crossref_primary_10_1021_acs_chemrev_5b00656 crossref_primary_10_1093_schbul_sbr069 crossref_primary_10_1016_j_neuropharm_2018_07_013 crossref_primary_10_1002_prp2_96 crossref_primary_10_1002_prp2_97 crossref_primary_10_1007_s11064_017_2181_4 crossref_primary_10_1038_nn_3181 crossref_primary_10_1186_1471_2202_14_102 crossref_primary_10_1016_j_neulet_2022_137028 crossref_primary_10_1016_j_tins_2015_06_002 crossref_primary_10_1021_acs_jmedchem_0c01394 crossref_primary_10_1002_cmdc_200900028 crossref_primary_10_1016_j_neuroscience_2013_07_010 crossref_primary_10_1371_journal_ppat_1007189 crossref_primary_10_1016_j_tips_2008_10_006 crossref_primary_10_1021_acs_jmedchem_6b01119 crossref_primary_10_1016_j_ejphar_2012_11_027 crossref_primary_10_1021_acs_jmedchem_5b01124 crossref_primary_10_1126_sciadv_adg1679 crossref_primary_10_1007_s11011_018_0380_6 crossref_primary_10_1016_j_neuropharm_2012_01_019 crossref_primary_10_1124_jpet_114_218651 crossref_primary_10_1007_s00213_010_2128_9 crossref_primary_10_1016_j_pnpbp_2015_02_012 crossref_primary_10_1016_j_schres_2012_01_007 crossref_primary_10_1016_j_molmed_2011_08_004 crossref_primary_10_4062_biomolther_2012_20_1_001 crossref_primary_10_1017_S1461145713000606 crossref_primary_10_3389_fphar_2016_00130 crossref_primary_10_1016_j_ejphar_2009_09_006 crossref_primary_10_1124_mol_109_059865 crossref_primary_10_1124_pr_109_002501 crossref_primary_10_1016_j_neuropharm_2011_06_007 crossref_primary_10_1124_jpet_110_172957 crossref_primary_10_1038_s41386_020_0706_z crossref_primary_10_1007_s00213_009_1484_9 |
Cites_doi | 10.1016/S0022-3565(24)29296-X 10.1146/annurev.pharmtox.37.1.205 10.1523/JNEUROSCI.22-21-09150.2002 10.1016/S0165-0173(99)00046-6 10.1124/mol.107.035170 10.1016/0163-7258(93)90036-D 10.1038/nm1632 10.1124/jpet.106.110809 10.1016/S0014-2999(00)00423-4 10.1073/pnas.0405077101 10.1016/j.neuron.2006.09.015 10.1007/s00213-007-0758-3 10.1124/jpet.105.091926 10.1523/JNEUROSCI.15-05-03896.1995 10.1016/j.biopsych.2006.12.005 10.1007/s00213-007-0974-x 10.1124/jpet.102.038422 10.1176/ajp.148.10.1301 10.1016/S0022-3565(24)35084-0 10.1016/S0140-6736(03)12379-3 10.1016/S0022-3565(24)35262-0 10.1016/j.pnpbp.2003.09.003 10.1016/S0014-2999(00)00269-7 10.1523/JNEUROSCI.18-23-09594.1998 10.1196/annals.1300.019 10.1046/j.1471-4159.2000.0750889.x 10.1093/schbul/19.2.199 10.1016/j.neuropharm.2006.03.014 10.1126/science.281.5381.1349 10.1016/S0893-133X(00)00136-6 10.1016/0306-4522(93)90485-X 10.1038/nrd1630 10.1016/S0028-3908(02)00087-4 10.1016/0304-3940(80)90178-0 10.1007/s00213-004-2098-x 10.1007/BF00401402 10.1016/j.neuropharm.2004.02.015 10.1124/jpet.105.091074 10.1021/jm060917u 10.1007/s002130050072 10.1007/s00213-004-2099-9 |
ContentType | Journal Article |
Copyright | 2008 American Society for Pharmacology and Experimental Therapeutics |
Copyright_xml | – notice: 2008 American Society for Pharmacology and Experimental Therapeutics |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.1124/jpet.108.136861 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1521-0103 |
EndPage | 217 |
ExternalDocumentID | 18424625 10_1124_jpet_108_136861 326_1_209 S0022356524345094 |
Genre | Journal Article Comparative Study |
GroupedDBID | --- -~X .55 .GJ 0R~ 18M 2WC 3O- 4.4 53G 5GY 5RE 5VS 8WZ A6W AAJMC AALRI AAXUO AAYOK ABCQX ABIVO ABJNI ABOCM ABSQV ACGFO ACGFS ACNCT ADBBV ADCOW ADIYS AENEX AERNN AFFNX AFHIN AFOSN AGFXO AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CS3 DIK DU5 E3Z EBS EJD F5P F9R FDB GX1 H13 HZ~ INIJC KQ8 L7B LSO M41 MJL MVM O9- OHT OK1 P2P PKN R.V R0Z RHF RHI ROL RPT TR2 UQL VH1 W2D W8F WH7 WOQ X7M YBU YHG YQT ZGI ZXP - 0R 55 8RP AALRV ABFLS ABSGY ABZEH ACDCL ADACO ADBIT ADKFC AETEA AIKQT DL FH7 HZ O0- X AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c345t-dbdb0de34d3b0490127d6ebc83566aa4a77d561d75ce5b4b6778f76afdfda25c3 |
ISSN | 0022-3565 |
IngestDate | Sat Mar 08 01:25:19 EST 2025 Tue Aug 05 11:59:49 EDT 2025 Thu Apr 24 23:08:40 EDT 2025 Tue Jan 05 21:16:53 EST 2021 Sat Feb 22 15:44:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c345t-dbdb0de34d3b0490127d6ebc83566aa4a77d561d75ce5b4b6778f76afdfda25c3 |
PMID | 18424625 |
PageCount | 9 |
ParticipantIDs | pubmed_primary_18424625 crossref_primary_10_1124_jpet_108_136861 crossref_citationtrail_10_1124_jpet_108_136861 highwire_pharmacology_326_1_209 elsevier_sciencedirect_doi_10_1124_jpet_108_136861 |
ProviderPackageCode | RHF RHI |
PublicationCentury | 2000 |
PublicationDate | July 2008 20080701 2008-07-00 2008-Jul |
PublicationDateYYYYMMDD | 2008-07-01 |
PublicationDate_xml | – month: 07 year: 2008 text: July 2008 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of pharmacology and experimental therapeutics |
PublicationTitleAlternate | J Pharmacol Exp Ther |
PublicationYear | 2008 |
Publisher | Elsevier Inc American Society for Pharmacology and Experimental Therapeutics |
Publisher_xml | – name: Elsevier Inc – name: American Society for Pharmacology and Experimental Therapeutics |
References | Marek GJ, Wright RA, Schoepp DD, Monn JA, and Aghajanian GK (2000) Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex. 423–429. Gewirtz JC and Marek GJ (2000) Behavioral evidence for interactions between a hallucinogenic drug and group II metabotropic glutamate receptors. 7th ed. Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council, Washington DC. Rorick-Kehn LM, Johnson BG, Burkey JL, Wright RA, Calligaro DO, Marek GJ, Nisenbaum ES, Catlow JT, Kingston AE, Giera DD, et al. (2007a) Pharmacological and pharmacokinetic properties of a structurally novel, potent, and selective metabotropic glutamate 2/3 receptor agonist: in vitro characterization of agonist (–)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]-hexane-4,6-dicarboxylic acid (LY404039). Linden AM, Shannon H, Baez M, Yu JL, Koester A, and Schoepp DD (2005) Anxiolytic-like activity of the mGLU2/3 receptor agonist LY354740 in the elevated plus maze test is disrupted in metabotropic glutamate receptor 2 and 3 knock-out mice. 308–317. Ellenbroek BA (1993) Treatment of schizophrenia: a clinical and preclinical evaluation of neuroleptic drugs. Spooren WPJM, Gasparini F, van der Putten H, Koller M, Nakanishi S, and Kuhn R (2000) Lack of effect of LY314582 (a group 2 metabotropic glutamate receptor agonist) on phencyclidine-induced locomotor activity in metabotropic glutamate receptor 2 knockout mice. 271–283. Benneyworth MA, Xiang Z, Smith RL, Garcia EE, Conn PJ, and Sanders-Bush E (2007) A selective positive allosteric modulator of metabotropic glutamate receptor subtype 2 blocks a hallucinogenic drug model of psychosis. R1–R2. Javitt DC and Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Auclair A, Cotecchia S, Glowinski J, and Tassin JP (2002) 76–87. 309–317. Cartmell J, Monn JA, and Schoepp DD (1999) The metabotropic glutamate 2/3 receptor agonists LY354740 and LY379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviors in rats. 379–382. Cartmell J, Monn JA, and Schoepp DD (2000a) Attenuation of specific PCP-evoked behaviors by the potent mGlu2/3 receptor agonist, LY379268 and comparison with the atypical antipsychotic, clozapine. Cartmell J, Monn JA, and Schoepp DD (2000b) The mGlu(2/3) receptor agonist LY379268 selectively blocks amphetamine ambulations and rearing. 12604–12609. Swanson CJ, Bures M, Johnson MP, Linden AM, Monn JA, and Schoepp DD (2005) Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. 9594–9600. Kim JS, Kornhuber HH, Schmid-Burgk W, and Holzmuller B (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. 905–913. Galici R, Echemendia NG, Rodriguez AL, and Conn PJ (2005) A selective allosteric potentiator of metabotropic glutamate (mGlu) 2 receptors has effects similar to an orthosteric mGlu2/3 receptor agonist in mouse models predictive of antipsychotic activity. Geyer MA and Ellenbroek B (2003) Animal behavior models of the mechanisms underlying antipsychotic atypicality. 3896–3904. 131–144. 12–20. Bruno V, Battaglia G, Casabona G, Copani A, Caciagli F, and Nicoletti F (1998) Neuroprotection by glial metabotropic glutamate receptors is mediated by transforming growth factor-beta. Schoepp DD (2001) Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. 199–214. 1301–1308. 569–576. Irwin S (1968) Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioral and physiologic state of the mouse. 302–312. 1009–1018. Ross CA, Margolis RL, Reading SA, Pletnikov M, and Coyle JT (2006) Neurobiology of schizophrenia. Linden AM, Baez M, Bergeron M, and Schoepp DD (2006) Effects of mGlu2 or mGlu3 receptor deletions on mGlu2/3 receptor agonist (LY354740)-induced brain c-Fos expression: specific roles for mGlu2 in the amygdala and subcortical nuclei, and mGlu3 in the hippocampus. Harrison PJ and Owen MJ (2003) Genes for schizophrenia? Recent findings and their pathophysiological implications. 205–237. 747–755. Cartmell J and Schoepp DD (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. Monn JA, Massey SM, Valli MJ, Henry SS, Stephenson GA, Bures M, Herin M, Catlow J, Giera D, Wright RA, et al. (2007) Synthesis and metabotropic glutamate receptor activity of S-oxidized variants of (–)-4-amino-2-thiabicyclo-[3.1.0]hexane-4,6-dicarboxylate: identification of potent, selective, and orally bioavailable agonists for mGlu2/3 receptors. Aghajanian GK and Marek GJ (2000) Serotonin model of schizophrenia: emerging role of glutamate mechanisms. 1071–1079. 919–927. Andreasen NC and Carpenter WT Jr (1993) Diagnosis and classification of schizophrenia. Swanson CJ and Schoepp DD (2002) The group II metabotropic glutamate receptor agonist (–)-2-oxa-4-aminobicyclo[3.1.0.]hexane-4,6-dicarboxylate (LY379268) and clozapine reverse phencyclidine-induced behaviors in monoamine-depleted rats. Rorick-Kehn LM, Johnson BG, Knitowski KM, Salhoff CR, Witkin JM, Perry KW, Griffey KI, Tizzano JP, Monn JA, McKinzie DL, et al. (2007b) In vivo pharmacological characterization of the structurally novel, potent, selective mGlu2/3 receptor agonist LY404039 in animal models of psychiatric disorders. 161–170. 889–907. 1181–1187. Conn PJ and Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Institute of Laboratory Animal Resources (1996) Rorick-Kehn LM, Perkins EJ, Knitowski KM, Hart JC, Johnson BG, Schoepp DD, and McKinzie DL (2006) Improved bioavailability of the mGlu2/3 receptor agonist LY354740 using a prodrug strategy: in vivo pharmacology of LY544344. 213–228. 139–153. Corti C, Crepaldi L, Mion S, Roth AL, Xuereb JH, and Ferraguti F (2007) Altered dimerization of metabotropic glutamate receptor 3 in schizophrenia. Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, Mattay VS, Bertolino A, Hyde TM, Shannon-Weickert C, et al. (2004) Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Amphetamine fails to increase extracellular dopamine levels in mice lacking alpha 1b-adrenergic receptors: relationship between functional and nonfunctional dopamine release. Zhai J, Tian MT, Wang Y, Yu JL, Koster A, Baez M, and Nisenbaum ES (2002) Modulation of lateral perforant path excitatory responses by metabotropic glutamate 8 (mGlu8) receptors. 477–484. 221–224. 9150–9154. Moghaddam B and Adams BW (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. 222–257. Greenslade RG and Mitchell SN (2004) Selective action of (–)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268), a group II metabotropic glutamate receptor agonist, on basal and phencyclidine-induced dopamine release in the nucleus accumbens shell. Taber MT and Fibiger HC (1995) Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat: modulation by metabotropic glutamate receptors. Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, et al. (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Ohishi H, Shigemoto R, Nakanishi S, and Mizuno N (1993) Distribution of the messenger RNA for a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat. Woolley ML, Pemberton DJ, Bate S, Corti C, and Jones DNC (2008) The mGlu2 but not the mGlu3 receptor mediates the actions of the mGluR2/3 agonist, LY379268, in mouse models predictive of antipsychotic activity. 1–78. Swanson CJ and Schoepp DD (2003) A role for noradrenergic transmission in the actions of phencyclidine and the antipsychotic and antistress effects of mGlu2/3 receptor agonists. 284–291. Johnson MP, Barda D, Britton TC, Emkey R, Hornback WJ, Jagdmann GE, McKinzie DL, Nisenbaum ES, Tizzano JP, and Schoepp DD (2005) Metabotropic glutamate 2 receptor potentiators: receptor modulation, frequency-dependent synaptic activity, and efficacy in preclinical anxiety and psychosis model(s). 233–240. 431–440. 223–230. 1–8. 417–419. 1102–1107. 1349–1352. 121–136. 10.1124/jpet.108.136861_bib19 10.1124/jpet.108.136861_bib18 10.1124/jpet.108.136861_bib17 10.1124/jpet.108.136861_bib39 10.1124/jpet.108.136861_bib16 10.1124/jpet.108.136861_bib38 10.1124/jpet.108.136861_bib15 10.1124/jpet.108.136861_bib37 10.1124/jpet.108.136861_bib14 10.1124/jpet.108.136861_bib36 10.1124/jpet.108.136861_bib13 10.1124/jpet.108.136861_bib35 10.1124/jpet.108.136861_bib12 10.1124/jpet.108.136861_bib34 10.1124/jpet.108.136861_bib11 10.1124/jpet.108.136861_bib33 10.1124/jpet.108.136861_bib10 10.1124/jpet.108.136861_bib32 10.1124/jpet.108.136861_bib31 10.1124/jpet.108.136861_bib30 10.1124/jpet.108.136861_bib29 10.1124/jpet.108.136861_bib1 10.1124/jpet.108.136861_bib28 10.1124/jpet.108.136861_bib2 10.1124/jpet.108.136861_bib27 10.1124/jpet.108.136861_bib3 10.1124/jpet.108.136861_bib4 10.1124/jpet.108.136861_bib5 10.1124/jpet.108.136861_bib6 10.1124/jpet.108.136861_bib7 10.1124/jpet.108.136861_bib8 10.1124/jpet.108.136861_bib9 10.1124/jpet.108.136861_bib40 10.1124/jpet.108.136861_bib26 10.1124/jpet.108.136861_bib25 10.1124/jpet.108.136861_bib24 10.1124/jpet.108.136861_bib23 10.1124/jpet.108.136861_bib22 10.1124/jpet.108.136861_bib21 10.1124/jpet.108.136861_bib20 10.1124/jpet.108.136861_bib42 10.1124/jpet.108.136861_bib41 |
References_xml | – reference: 477–484. – reference: Javitt DC and Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. – reference: 747–755. – reference: Irwin S (1968) Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioral and physiologic state of the mouse. – reference: 284–291. – reference: Ellenbroek BA (1993) Treatment of schizophrenia: a clinical and preclinical evaluation of neuroleptic drugs. – reference: Woolley ML, Pemberton DJ, Bate S, Corti C, and Jones DNC (2008) The mGlu2 but not the mGlu3 receptor mediates the actions of the mGluR2/3 agonist, LY379268, in mouse models predictive of antipsychotic activity. – reference: Schoepp DD (2001) Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. – reference: 9150–9154. – reference: 205–237. – reference: 919–927. – reference: Monn JA, Massey SM, Valli MJ, Henry SS, Stephenson GA, Bures M, Herin M, Catlow J, Giera D, Wright RA, et al. (2007) Synthesis and metabotropic glutamate receptor activity of S-oxidized variants of (–)-4-amino-2-thiabicyclo-[3.1.0]hexane-4,6-dicarboxylate: identification of potent, selective, and orally bioavailable agonists for mGlu2/3 receptors. – reference: Rorick-Kehn LM, Johnson BG, Burkey JL, Wright RA, Calligaro DO, Marek GJ, Nisenbaum ES, Catlow JT, Kingston AE, Giera DD, et al. (2007a) Pharmacological and pharmacokinetic properties of a structurally novel, potent, and selective metabotropic glutamate 2/3 receptor agonist: in vitro characterization of agonist (–)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]-hexane-4,6-dicarboxylic acid (LY404039). – reference: Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, et al. (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. – reference: Spooren WPJM, Gasparini F, van der Putten H, Koller M, Nakanishi S, and Kuhn R (2000) Lack of effect of LY314582 (a group 2 metabotropic glutamate receptor agonist) on phencyclidine-induced locomotor activity in metabotropic glutamate receptor 2 knockout mice. – reference: Swanson CJ and Schoepp DD (2003) A role for noradrenergic transmission in the actions of phencyclidine and the antipsychotic and antistress effects of mGlu2/3 receptor agonists. – reference: Andreasen NC and Carpenter WT Jr (1993) Diagnosis and classification of schizophrenia. – reference: Swanson CJ, Bures M, Johnson MP, Linden AM, Monn JA, and Schoepp DD (2005) Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. – reference: Geyer MA and Ellenbroek B (2003) Animal behavior models of the mechanisms underlying antipsychotic atypicality. – reference: Johnson MP, Barda D, Britton TC, Emkey R, Hornback WJ, Jagdmann GE, McKinzie DL, Nisenbaum ES, Tizzano JP, and Schoepp DD (2005) Metabotropic glutamate 2 receptor potentiators: receptor modulation, frequency-dependent synaptic activity, and efficacy in preclinical anxiety and psychosis model(s). – reference: Galici R, Echemendia NG, Rodriguez AL, and Conn PJ (2005) A selective allosteric potentiator of metabotropic glutamate (mGlu) 2 receptors has effects similar to an orthosteric mGlu2/3 receptor agonist in mouse models predictive of antipsychotic activity. – reference: 379–382. – reference: Conn PJ and Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. – reference: 302–312. – reference: 139–153. – reference: 7th ed. Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council, Washington DC. – reference: 9594–9600. – reference: 1349–1352. – reference: Rorick-Kehn LM, Johnson BG, Knitowski KM, Salhoff CR, Witkin JM, Perry KW, Griffey KI, Tizzano JP, Monn JA, McKinzie DL, et al. (2007b) In vivo pharmacological characterization of the structurally novel, potent, selective mGlu2/3 receptor agonist LY404039 in animal models of psychiatric disorders. – reference: 121–136. – reference: 199–214. – reference: 1071–1079. – reference: Harrison PJ and Owen MJ (2003) Genes for schizophrenia? Recent findings and their pathophysiological implications. – reference: 569–576. – reference: 1102–1107. – reference: 308–317. – reference: 1–78. – reference: Swanson CJ and Schoepp DD (2002) The group II metabotropic glutamate receptor agonist (–)-2-oxa-4-aminobicyclo[3.1.0.]hexane-4,6-dicarboxylate (LY379268) and clozapine reverse phencyclidine-induced behaviors in monoamine-depleted rats. – reference: Cartmell J, Monn JA, and Schoepp DD (2000b) The mGlu(2/3) receptor agonist LY379268 selectively blocks amphetamine ambulations and rearing. – reference: Bruno V, Battaglia G, Casabona G, Copani A, Caciagli F, and Nicoletti F (1998) Neuroprotection by glial metabotropic glutamate receptors is mediated by transforming growth factor-beta. – reference: Moghaddam B and Adams BW (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. – reference: 905–913. – reference: 1–8. – reference: 233–240. – reference: Benneyworth MA, Xiang Z, Smith RL, Garcia EE, Conn PJ, and Sanders-Bush E (2007) A selective positive allosteric modulator of metabotropic glutamate receptor subtype 2 blocks a hallucinogenic drug model of psychosis. – reference: Taber MT and Fibiger HC (1995) Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat: modulation by metabotropic glutamate receptors. – reference: Cartmell J, Monn JA, and Schoepp DD (2000a) Attenuation of specific PCP-evoked behaviors by the potent mGlu2/3 receptor agonist, LY379268 and comparison with the atypical antipsychotic, clozapine. – reference: Marek GJ, Wright RA, Schoepp DD, Monn JA, and Aghajanian GK (2000) Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex. – reference: : 431–440. – reference: 76–87. – reference: Kim JS, Kornhuber HH, Schmid-Burgk W, and Holzmuller B (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. – reference: 131–144. – reference: 3896–3904. – reference: Gewirtz JC and Marek GJ (2000) Behavioral evidence for interactions between a hallucinogenic drug and group II metabotropic glutamate receptors. – reference: 271–283. – reference: 12–20. – reference: 1181–1187. – reference: R1–R2. – reference: Cartmell J, Monn JA, and Schoepp DD (1999) The metabotropic glutamate 2/3 receptor agonists LY354740 and LY379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviors in rats. – reference: Linden AM, Shannon H, Baez M, Yu JL, Koester A, and Schoepp DD (2005) Anxiolytic-like activity of the mGLU2/3 receptor agonist LY354740 in the elevated plus maze test is disrupted in metabotropic glutamate receptor 2 and 3 knock-out mice. – reference: 417–419. – reference: 221–224. – reference: Aghajanian GK and Marek GJ (2000) Serotonin model of schizophrenia: emerging role of glutamate mechanisms. – reference: 309–317. – reference: Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, Mattay VS, Bertolino A, Hyde TM, Shannon-Weickert C, et al. (2004) Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. – reference: 222–257. – reference: Linden AM, Baez M, Bergeron M, and Schoepp DD (2006) Effects of mGlu2 or mGlu3 receptor deletions on mGlu2/3 receptor agonist (LY354740)-induced brain c-Fos expression: specific roles for mGlu2 in the amygdala and subcortical nuclei, and mGlu3 in the hippocampus. – reference: Ross CA, Margolis RL, Reading SA, Pletnikov M, and Coyle JT (2006) Neurobiology of schizophrenia. – reference: 889–907. – reference: Greenslade RG and Mitchell SN (2004) Selective action of (–)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268), a group II metabotropic glutamate receptor agonist, on basal and phencyclidine-induced dopamine release in the nucleus accumbens shell. – reference: 423–429. – reference: Ohishi H, Shigemoto R, Nakanishi S, and Mizuno N (1993) Distribution of the messenger RNA for a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat. – reference: 1301–1308. – reference: 161–170. – reference: 213–228. – reference: 1009–1018. – reference: 12604–12609. – reference: Rorick-Kehn LM, Perkins EJ, Knitowski KM, Hart JC, Johnson BG, Schoepp DD, and McKinzie DL (2006) Improved bioavailability of the mGlu2/3 receptor agonist LY354740 using a prodrug strategy: in vivo pharmacology of LY544344. – reference: Institute of Laboratory Animal Resources (1996) – reference: Cartmell J and Schoepp DD (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. – reference: Zhai J, Tian MT, Wang Y, Yu JL, Koster A, Baez M, and Nisenbaum ES (2002) Modulation of lateral perforant path excitatory responses by metabotropic glutamate 8 (mGlu8) receptors. – reference: Auclair A, Cotecchia S, Glowinski J, and Tassin JP (2002) – reference: -Amphetamine fails to increase extracellular dopamine levels in mice lacking alpha 1b-adrenergic receptors: relationship between functional and nonfunctional dopamine release. – reference: 223–230. – reference: Corti C, Crepaldi L, Mion S, Roth AL, Xuereb JH, and Ferraguti F (2007) Altered dimerization of metabotropic glutamate receptor 3 in schizophrenia. – ident: 10.1124/jpet.108.136861_bib35 doi: 10.1016/S0022-3565(24)29296-X – ident: 10.1124/jpet.108.136861_bib10 doi: 10.1146/annurev.pharmtox.37.1.205 – ident: 10.1124/jpet.108.136861_bib3 doi: 10.1523/JNEUROSCI.22-21-09150.2002 – ident: 10.1124/jpet.108.136861_bib1 doi: 10.1016/S0165-0173(99)00046-6 – ident: 10.1124/jpet.108.136861_bib4 doi: 10.1124/mol.107.035170 – ident: 10.1124/jpet.108.136861_bib13 doi: 10.1016/0163-7258(93)90036-D – ident: 10.1124/jpet.108.136861_bib30 doi: 10.1038/nm1632 – ident: 10.1124/jpet.108.136861_bib31 doi: 10.1124/jpet.106.110809 – ident: 10.1124/jpet.108.136861_bib8 doi: 10.1016/S0014-2999(00)00423-4 – ident: 10.1124/jpet.108.136861_bib12 doi: 10.1073/pnas.0405077101 – ident: 10.1124/jpet.108.136861_bib34 doi: 10.1016/j.neuron.2006.09.015 – ident: 10.1124/jpet.108.136861_bib32 doi: 10.1007/s00213-007-0758-3 – ident: 10.1124/jpet.108.136861_bib33 doi: 10.1124/jpet.105.091926 – ident: 10.1124/jpet.108.136861_bib40 doi: 10.1523/JNEUROSCI.15-05-03896.1995 – ident: 10.1124/jpet.108.136861_bib11 doi: 10.1016/j.biopsych.2006.12.005 – ident: 10.1124/jpet.108.136861_bib41 doi: 10.1007/s00213-007-0974-x – ident: 10.1124/jpet.108.136861_bib38 doi: 10.1124/jpet.102.038422 – ident: 10.1124/jpet.108.136861_bib21 doi: 10.1176/ajp.148.10.1301 – ident: 10.1124/jpet.108.136861_bib6 doi: 10.1016/S0022-3565(24)35084-0 – ident: 10.1124/jpet.108.136861_bib18 doi: 10.1016/S0140-6736(03)12379-3 – ident: 10.1124/jpet.108.136861_bib26 doi: 10.1016/S0022-3565(24)35262-0 – ident: 10.1124/jpet.108.136861_bib16 doi: 10.1016/j.pnpbp.2003.09.003 – ident: 10.1124/jpet.108.136861_bib36 doi: 10.1016/S0014-2999(00)00269-7 – ident: 10.1124/jpet.108.136861_bib19 – ident: 10.1124/jpet.108.136861_bib5 doi: 10.1523/JNEUROSCI.18-23-09594.1998 – ident: 10.1124/jpet.108.136861_bib39 doi: 10.1196/annals.1300.019 – ident: 10.1124/jpet.108.136861_bib9 doi: 10.1046/j.1471-4159.2000.0750889.x – ident: 10.1124/jpet.108.136861_bib2 doi: 10.1093/schbul/19.2.199 – ident: 10.1124/jpet.108.136861_bib24 doi: 10.1016/j.neuropharm.2006.03.014 – ident: 10.1124/jpet.108.136861_bib27 doi: 10.1126/science.281.5381.1349 – ident: 10.1124/jpet.108.136861_bib15 doi: 10.1016/S0893-133X(00)00136-6 – ident: 10.1124/jpet.108.136861_bib29 doi: 10.1016/0306-4522(93)90485-X – ident: 10.1124/jpet.108.136861_bib37 doi: 10.1038/nrd1630 – ident: 10.1124/jpet.108.136861_bib42 doi: 10.1016/S0028-3908(02)00087-4 – ident: 10.1124/jpet.108.136861_bib23 doi: 10.1016/0304-3940(80)90178-0 – ident: 10.1124/jpet.108.136861_bib25 doi: 10.1007/s00213-004-2098-x – ident: 10.1124/jpet.108.136861_bib20 doi: 10.1007/BF00401402 – ident: 10.1124/jpet.108.136861_bib17 doi: 10.1016/j.neuropharm.2004.02.015 – ident: 10.1124/jpet.108.136861_bib14 doi: 10.1124/jpet.105.091074 – ident: 10.1124/jpet.108.136861_bib28 doi: 10.1021/jm060917u – ident: 10.1124/jpet.108.136861_bib7 doi: 10.1007/s002130050072 – ident: 10.1124/jpet.108.136861_bib22 doi: 10.1007/s00213-004-2099-9 |
SSID | ssj0014463 |
Score | 2.3621783 |
Snippet | (–)-(1 R, 4 S,5 S,6 S)-4-Amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039) is a potent and selective group II metabotropic glutamate... (â)-(1 R, 4 S ,5 S ,6 S )-4-Amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039) is a potent and selective group II metabotropic glutamate... (-)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039) is a potent and selective group II metabotropic glutamate [(mGlu)2... |
SourceID | pubmed crossref highwire elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 209 |
SubjectTerms | Animals Antipsychotic Agents - pharmacology Bridged Bicyclo Compounds, Heterocyclic - pharmacology Cyclic S-Oxides - pharmacology Drug Evaluation, Preclinical - methods Excitatory Amino Acid Agonists - pharmacology Female Male Mice Mice, Inbred C57BL Mice, Inbred ICR Mice, Knockout Motor Activity - drug effects Motor Activity - physiology Receptors, Metabotropic Glutamate - agonists Receptors, Metabotropic Glutamate - physiology |
Title | Evidence for the Role of Metabotropic Glutamate (mGlu)2 Not mGlu3 Receptors in the Preclinical Antipsychotic Pharmacology of the mGlu2/3 Receptor Agonist (–)-(1 R, 4 S,5 S,6 S)-4-Amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic Acid (LY404039) |
URI | https://dx.doi.org/10.1124/jpet.108.136861 http://jpet.aspetjournals.org/content/326/1/209.abstract https://www.ncbi.nlm.nih.gov/pubmed/18424625 |
Volume | 326 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa28cIL4k65-oFNrVp3beIkzSNswMQADdpJmxCKfElGp7aJulSi_G3-AOckzqVllYCXqHUaO-p3Ph8f-1wIedkPQadyXzKfc4dxoUMmPSUZGBs88m2tHIUnuh8_uUen_P2Zc7a1fVDzWlqksqt-XhtX8j-oQhvgilGy_4Bs2Sk0wGfAF66AMFz_CuOiJOgfvoLTMAVw03mcjFX7Al5BwMI0W01O300WYP1b7VmctvGL3YY5L0yyojvG5zGBliJgEv74sYnUgq6SKtH1svAuwE4wvWrVUVtcxJiQF8djMBjDZFDocMHRT9DBizvEds7EdDyLmcWuFpMIfeTlWC3VJN51Xtvdfre36xx-xwCckHF8iOGh0lzGP5aYmluocbYD8uGcwxxh-8WmxmVFgNpye-XV8bRgpbZBLQytCogxRzKmJHrtAA0UxJWJVDu-xM3Pkgam4FjOmiXMnWXpMkx3GiZJHkcwny8BqMOVLZdB6Z4LGtOoCQs3YXp2XY_Yeej_CmGMVsgyQFyjrSyO2grMI3T1RI_DQZ6Zvia7yTQTXjDELe7mMeJrCcKLW9vkhgW2Ek72x5-rozSw922T0wrG218bDZPmmuc3rczKxNlrlle2AhvdJrcMlvRVzoM7ZCuc3SV7Jzmuyw4d1TDs0D16UkP8HvlVkIUCWSgASpEsNI5onSy0JAttomC3LApEoRlRaEkUOp5lPdSIQleIQuvShmPgrzOi7FfdUEMT2mQt1ux_6fBhxxl23GFrMzG-ZrT4VpCis0oJipSgzYIQrfvk9O2b0cERMxVPmLK5kzIttezp0Obalngk37c87YZSgZnkukJw4XkaDB7tOSp0JJeY_THyXBHpSAvLUfYDsjOLZ-EjQlVv4ON2w8ATnPtcCBdEQUsZ-RbXrus3SLdAO1CmHABWpZkE2baAxQOUFMwfHOSS0iDN8oEkz4Sz-adWIT6BWcjnC_QAJH_zQy8KQQvqIAXAq6AfAIca5GEuf9X4RnQfb7zzhNysGPyU7KTzRfgMzIhUPs9o8hvSBBud |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+the+role+of+metabotropic+glutamate+%28mGlu%292+not+mGlu3+receptors+in+the+preclinical+antipsychotic+pharmacology+of+the+mGlu2%2F3+receptor+agonist+%28-%29-%281R%2C4S%2C5S%2C6S%29-4-amino-2-sulfonylbicyclo%5B3.1.0%5Dhexane-4%2C6-dicarboxylic+acid+%28LY404039%29&rft.jtitle=The+Journal+of+pharmacology+and+experimental+therapeutics&rft.au=Fell%2C+Matthew+J&rft.au=Svensson%2C+Kjell+A&rft.au=Johnson%2C+Bryan+G&rft.au=Schoepp%2C+Darryle+D&rft.date=2008-07-01&rft.eissn=1521-0103&rft.volume=326&rft.issue=1&rft.spage=209&rft_id=info:doi/10.1124%2Fjpet.108.136861&rft_id=info%3Apmid%2F18424625&rft.externalDocID=18424625 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3565&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3565&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3565&client=summon |