Biochar’s stability and effect on the content, composition and turnover of soil organic carbon

[Display omitted] •Stability of biochar was related with both biochar and soil properties.•Positive priming effect was common for manure biochar and sandy soil.•Manure-based and low temperature biochar more intensely promoted soil aggregation.•Influential mechanisms of biochar on HS amount and compo...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 364; p. 114184
Main Authors Han, Lanfang, Sun, Ke, Yang, Yan, Xia, Xinghui, Li, Fangbai, Yang, Zhifeng, Xing, Baoshan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Stability of biochar was related with both biochar and soil properties.•Positive priming effect was common for manure biochar and sandy soil.•Manure-based and low temperature biochar more intensely promoted soil aggregation.•Influential mechanisms of biochar on HS amount and composition were proposed. Extensive application of biochar to soil exerts a profound effect on organic carbon (OC) in soils. However, the impact of biochar on the content and composition of OC has not been comprehensively summarized. This review provided a detailed examination on the stability of biochar and its effect on the amount, composition and turnover of soil OC, with key limitations and issues recognized. The direct input of labile and stable OC of biochar to soil OC pool, and indirect effects of biochar on soil OC by affecting soil physicochemical and biological properties were discussed. Both low stability of biochar and biochar-induced strong positive priming effect on OC mineralization were commonly observed in sandy soil added with biochar produced from manure at low temperature. The stable OC of biochar was composed of both aromatic OC and the OC fractions stabilized by soil minerals. Biochar mainly increased the formation of macro-aggregates, and this promotion was more intense for clayey soil added with manure-based low temperature-biochar. Additionally, potential influential mechanisms were proposed to explain the effect of biochar addition on amount and composition of humic substances in soils. This review will shed lights on the effect of biochar application on the amount, composition and turnover of native soil OC, and improve the understanding of the ecological effect of biochar on the soil functions.
AbstractList Extensive application of biochar to soil exerts a profound effect on organic carbon (OC) in soils. However, the impact of biochar on the content and composition of OC has not been comprehensively summarized. This review provided a detailed examination on the stability of biochar and its effect on the amount, composition and turnover of soil OC, with key limitations and issues recognized. The direct input of labile and stable OC of biochar to soil OC pool, and indirect effects of biochar on soil OC by affecting soil physicochemical and biological properties were discussed. Both low stability of biochar and biochar-induced strong positive priming effect on OC mineralization were commonly observed in sandy soil added with biochar produced from manure at low temperature. The stable OC of biochar was composed of both aromatic OC and the OC fractions stabilized by soil minerals. Biochar mainly increased the formation of macro-aggregates, and this promotion was more intense for clayey soil added with manure-based low temperature-biochar. Additionally, potential influential mechanisms were proposed to explain the effect of biochar addition on amount and composition of humic substances in soils. This review will shed lights on the effect of biochar application on the amount, composition and turnover of native soil OC, and improve the understanding of the ecological effect of biochar on the soil functions.
[Display omitted] •Stability of biochar was related with both biochar and soil properties.•Positive priming effect was common for manure biochar and sandy soil.•Manure-based and low temperature biochar more intensely promoted soil aggregation.•Influential mechanisms of biochar on HS amount and composition were proposed. Extensive application of biochar to soil exerts a profound effect on organic carbon (OC) in soils. However, the impact of biochar on the content and composition of OC has not been comprehensively summarized. This review provided a detailed examination on the stability of biochar and its effect on the amount, composition and turnover of soil OC, with key limitations and issues recognized. The direct input of labile and stable OC of biochar to soil OC pool, and indirect effects of biochar on soil OC by affecting soil physicochemical and biological properties were discussed. Both low stability of biochar and biochar-induced strong positive priming effect on OC mineralization were commonly observed in sandy soil added with biochar produced from manure at low temperature. The stable OC of biochar was composed of both aromatic OC and the OC fractions stabilized by soil minerals. Biochar mainly increased the formation of macro-aggregates, and this promotion was more intense for clayey soil added with manure-based low temperature-biochar. Additionally, potential influential mechanisms were proposed to explain the effect of biochar addition on amount and composition of humic substances in soils. This review will shed lights on the effect of biochar application on the amount, composition and turnover of native soil OC, and improve the understanding of the ecological effect of biochar on the soil functions.
ArticleNumber 114184
Author Li, Fangbai
Xing, Baoshan
Sun, Ke
Xia, Xinghui
Han, Lanfang
Yang, Yan
Yang, Zhifeng
Author_xml – sequence: 1
  givenname: Lanfang
  surname: Han
  fullname: Han, Lanfang
  organization: Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
– sequence: 2
  givenname: Ke
  surname: Sun
  fullname: Sun, Ke
  email: sunke@bnu.edu.cn
  organization: State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
– sequence: 3
  givenname: Yan
  surname: Yang
  fullname: Yang, Yan
  organization: State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
– sequence: 4
  givenname: Xinghui
  surname: Xia
  fullname: Xia, Xinghui
  organization: State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
– sequence: 5
  givenname: Fangbai
  surname: Li
  fullname: Li, Fangbai
  organization: Guangdong Public Laboratory of Environmental Science and Technology, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
– sequence: 6
  givenname: Zhifeng
  surname: Yang
  fullname: Yang, Zhifeng
  organization: Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
– sequence: 7
  givenname: Baoshan
  surname: Xing
  fullname: Xing, Baoshan
  organization: Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
BookMark eNqFkMtOAyEUhonRxLb6CoalC6fC3BgTF2rjLWniRtfIwKGlmUIF2qQ7X8PX80lkUt24aVgczuH7T8g3RIfWWUDojJIxJbS-XIxn4BT4pRjnJE9DWtKmPEAD2rA8q_Pq6hANSCIzRmp6jIYhLFLLEjtA73fGybnw359fAYcoWtOZuMXCKgxag4zYWRzngKWzEWy8SJflygUTTXrosbj21m3AY6dxcKbDzs-ENRJL4VtnT9CRFl2A0986Qm8P96-Tp2z68vg8uZ1msiirmKmGSK2UYA2ldTqsIEqpgrRMigpIKZVWULZM1FIoxdLXGtBNXRU6r0oNZTFC57u9K-8-1hAiX5ogoeuEBbcOPC-ahtUlq3q03qHSuxA8aL7yZin8llPCe6V8wf-U8l4p3ylNwet_QWmi6E1EL0y3P36zi0PysDHgeZAGrARlfDLNlTP7VvwAuvmcLw
CitedBy_id crossref_primary_10_1016_j_jhazmat_2021_125785
crossref_primary_10_1007_s12665_022_10586_4
crossref_primary_10_1007_s42729_024_01847_1
crossref_primary_10_3390_su13116392
crossref_primary_10_3390_agronomy14030455
crossref_primary_10_1016_j_eti_2024_103612
crossref_primary_10_1002_ldr_4948
crossref_primary_10_1016_j_still_2024_106365
crossref_primary_10_1016_j_ejsobi_2021_103350
crossref_primary_10_1016_j_envpol_2024_124014
crossref_primary_10_1016_j_apenergy_2022_120192
crossref_primary_10_3390_f14040731
crossref_primary_10_1186_s40562_023_00285_8
crossref_primary_10_3390_agronomy14071449
crossref_primary_10_3390_toxics12080535
crossref_primary_10_1016_j_envpol_2021_118655
crossref_primary_10_3389_fpls_2023_1146416
crossref_primary_10_1111_gcbb_13110
crossref_primary_10_1016_j_jhazmat_2024_135065
crossref_primary_10_3390_su17052214
crossref_primary_10_1016_j_eti_2024_103743
crossref_primary_10_1016_j_envres_2022_114949
crossref_primary_10_3390_su141710922
crossref_primary_10_3389_fsoil_2023_1010677
crossref_primary_10_3390_agronomy14010153
crossref_primary_10_1016_j_scitotenv_2023_166364
crossref_primary_10_1016_j_chemosphere_2024_142918
crossref_primary_10_1007_s42773_021_00097_z
crossref_primary_10_1016_j_chemosphere_2021_132925
crossref_primary_10_1016_j_apsoil_2023_105065
crossref_primary_10_1016_j_catena_2024_108082
crossref_primary_10_37908_mkutbd_1512410
crossref_primary_10_1007_s40726_020_00172_2
crossref_primary_10_1007_s11368_024_03718_9
crossref_primary_10_1111_gcbb_12813
crossref_primary_10_1016_j_jenvman_2024_121042
crossref_primary_10_1007_s00449_024_03063_8
crossref_primary_10_1007_s42773_020_00084_w
crossref_primary_10_1016_j_jenvman_2023_118377
crossref_primary_10_1007_s11368_023_03546_3
crossref_primary_10_3390_en16010410
crossref_primary_10_1016_j_scitotenv_2022_153783
crossref_primary_10_1016_j_chemosphere_2024_141293
crossref_primary_10_2139_ssrn_4022382
crossref_primary_10_1007_s13399_020_00991_9
crossref_primary_10_1016_j_jhazmat_2024_133589
crossref_primary_10_1016_j_scitotenv_2023_164845
crossref_primary_10_1016_j_scitotenv_2020_142457
crossref_primary_10_1111_gcb_17480
crossref_primary_10_1007_s44246_024_00170_9
crossref_primary_10_1016_j_apsoil_2022_104593
crossref_primary_10_3390_agronomy13051385
crossref_primary_10_1007_s42729_025_02222_4
crossref_primary_10_1016_j_rser_2021_111133
crossref_primary_10_1007_s44378_025_00041_8
crossref_primary_10_1007_s42773_024_00321_6
crossref_primary_10_1016_j_scitotenv_2022_157460
crossref_primary_10_1016_j_seh_2024_100095
crossref_primary_10_1016_j_conbuildmat_2023_133373
crossref_primary_10_1134_S106422932112005X
crossref_primary_10_3390_appliedchem4020011
crossref_primary_10_1016_j_jenvman_2024_121066
crossref_primary_10_3390_f15040622
crossref_primary_10_1007_s42729_024_01810_0
crossref_primary_10_1016_j_biteb_2022_101259
crossref_primary_10_1016_j_still_2020_104926
crossref_primary_10_1016_j_watres_2024_122815
crossref_primary_10_1016_j_still_2021_105189
crossref_primary_10_1016_j_scitotenv_2022_158322
crossref_primary_10_3390_soilsystems8030082
crossref_primary_10_1007_s11368_021_02928_9
crossref_primary_10_1186_s40562_023_00276_9
crossref_primary_10_1016_j_scitotenv_2021_150304
crossref_primary_10_3390_agronomy12071560
crossref_primary_10_3390_agronomy13061512
crossref_primary_10_1016_j_jenvman_2024_122964
crossref_primary_10_1021_acs_est_1c08302
crossref_primary_10_1186_s13065_025_01418_0
crossref_primary_10_1007_s11356_021_16526_2
crossref_primary_10_1007_s42773_021_00090_6
crossref_primary_10_1016_j_scitotenv_2023_167924
crossref_primary_10_5194_gmd_17_4871_2024
crossref_primary_10_1016_j_eti_2021_102070
crossref_primary_10_3390_su132413726
crossref_primary_10_1016_j_jenvman_2022_114972
crossref_primary_10_1007_s44246_024_00103_6
crossref_primary_10_1021_acsestengg_3c00401
crossref_primary_10_1007_s42773_021_00125_y
crossref_primary_10_1016_j_envres_2024_120369
crossref_primary_10_1029_2024GL110618
crossref_primary_10_48130_TIA_2023_0016
crossref_primary_10_1016_j_jwpe_2024_106484
crossref_primary_10_1016_j_agee_2022_108233
crossref_primary_10_1016_j_scitotenv_2020_142531
crossref_primary_10_3390_land11040473
crossref_primary_10_1016_j_jhazmat_2024_135721
crossref_primary_10_1016_j_jenvman_2024_121196
crossref_primary_10_3390_agronomy13061532
crossref_primary_10_1016_j_jenvman_2024_121653
crossref_primary_10_1016_j_soilbio_2022_108657
crossref_primary_10_1515_gps_2022_0044
crossref_primary_10_3390_agronomy13092209
crossref_primary_10_1016_j_ijbiomac_2025_140665
crossref_primary_10_1007_s44246_022_00017_1
crossref_primary_10_1016_j_soilbio_2024_109500
crossref_primary_10_1016_j_scitotenv_2022_156333
crossref_primary_10_3390_molecules28135225
crossref_primary_10_3389_fmicb_2021_641913
crossref_primary_10_3390_land12081645
crossref_primary_10_1186_s40068_024_00379_y
crossref_primary_10_1016_j_chemosphere_2023_138891
crossref_primary_10_1038_s41598_024_76082_w
crossref_primary_10_1039_D3VA00197K
crossref_primary_10_3389_fenvs_2022_899935
crossref_primary_10_3390_su17052170
crossref_primary_10_1016_j_scitotenv_2021_148793
crossref_primary_10_3390_agronomy13010004
crossref_primary_10_1016_j_scitotenv_2023_167290
crossref_primary_10_1016_j_scitotenv_2024_170522
crossref_primary_10_1016_j_scitotenv_2021_152495
crossref_primary_10_1016_j_jenvman_2023_119603
crossref_primary_10_1016_j_envres_2022_114543
crossref_primary_10_3389_fpls_2023_1172425
crossref_primary_10_1007_s10653_024_02355_y
crossref_primary_10_1016_j_still_2022_105442
crossref_primary_10_1016_j_envpol_2021_118243
crossref_primary_10_1016_j_scitotenv_2021_150629
crossref_primary_10_1016_S1002_0160_21_60087_5
crossref_primary_10_1016_j_chemosphere_2021_129914
crossref_primary_10_1016_j_scitotenv_2023_169585
crossref_primary_10_1007_s42729_024_02052_w
crossref_primary_10_1016_j_biortech_2021_125555
crossref_primary_10_1016_j_enconman_2023_116658
crossref_primary_10_1021_acssuschemeng_1c08074
crossref_primary_10_1007_s42773_024_00346_x
crossref_primary_10_1016_j_seh_2023_100033
crossref_primary_10_1016_j_still_2023_105978
crossref_primary_10_1016_j_jenvman_2021_112993
crossref_primary_10_1111_sum_12965
crossref_primary_10_2478_agri_2020_0016
crossref_primary_10_1007_s10653_023_01602_y
crossref_primary_10_1016_j_chemosphere_2022_137025
crossref_primary_10_1016_j_indcrop_2024_119972
crossref_primary_10_1111_sum_12848
crossref_primary_10_1016_j_ecoenv_2024_117630
crossref_primary_10_3390_en14196157
crossref_primary_10_1111_rec_13909
crossref_primary_10_1007_s42729_021_00631_9
crossref_primary_10_1016_j_agee_2021_107445
crossref_primary_10_3390_microorganisms12040783
crossref_primary_10_1080_10643389_2023_2221155
crossref_primary_10_3390_agriculture14122165
crossref_primary_10_1016_j_scitotenv_2024_176283
crossref_primary_10_1111_gcbb_12763
crossref_primary_10_1016_j_clema_2022_100045
crossref_primary_10_1111_sum_12712
crossref_primary_10_1007_s42773_025_00451_5
crossref_primary_10_54097_hset_v40i_6659
crossref_primary_10_1016_j_scitotenv_2022_157219
crossref_primary_10_22207_JPAM_18_1_58
crossref_primary_10_1002_ldr_5285
crossref_primary_10_18006_2023_11_5__854_865
crossref_primary_10_1111_gcb_16865
crossref_primary_10_17221_426_2021_PSE
crossref_primary_10_1007_s10973_025_14065_3
crossref_primary_10_1016_j_ecoenv_2023_115228
crossref_primary_10_3390_su15054081
crossref_primary_10_1007_s40726_024_00327_5
crossref_primary_10_1007_s42729_023_01489_9
crossref_primary_10_1016_j_apsoil_2025_105950
crossref_primary_10_1016_j_scitotenv_2021_151124
crossref_primary_10_1016_j_jhazmat_2022_129557
crossref_primary_10_3389_fmicb_2023_1233465
crossref_primary_10_1016_j_bgtech_2024_100096
crossref_primary_10_1080_10934529_2021_2020503
crossref_primary_10_1016_j_biombioe_2023_106914
crossref_primary_10_1021_acs_est_3c09003
crossref_primary_10_3390_su15042893
crossref_primary_10_1007_s42773_024_00411_5
crossref_primary_10_1007_s42773_023_00244_8
crossref_primary_10_3390_pr10112385
crossref_primary_10_1016_j_rser_2023_113890
crossref_primary_10_1021_acsestengg_2c00266
crossref_primary_10_1007_s00344_024_11600_8
crossref_primary_10_1016_j_scitotenv_2023_168734
crossref_primary_10_1016_j_eti_2024_103872
crossref_primary_10_1016_j_rser_2022_112963
crossref_primary_10_1007_s42773_021_00094_2
crossref_primary_10_1016_j_eti_2025_104133
crossref_primary_10_1016_j_scitotenv_2023_166678
crossref_primary_10_1016_j_scitotenv_2022_159025
crossref_primary_10_1016_j_scitotenv_2022_156674
crossref_primary_10_3390_agronomy14040676
crossref_primary_10_1007_s42452_024_06125_4
crossref_primary_10_1016_j_catena_2022_106860
crossref_primary_10_1016_j_catena_2024_107877
crossref_primary_10_3390_agriculture11040290
crossref_primary_10_1016_j_scitotenv_2022_154831
crossref_primary_10_1016_j_scitotenv_2024_176889
crossref_primary_10_1016_j_scitotenv_2023_168046
crossref_primary_10_1007_s11368_022_03335_4
crossref_primary_10_1021_acs_est_4c07027
crossref_primary_10_5194_soil_8_199_2022
crossref_primary_10_1016_j_envpol_2021_118386
crossref_primary_10_1016_j_scitotenv_2020_141840
crossref_primary_10_1016_j_scitotenv_2022_159155
crossref_primary_10_1007_s11368_024_03788_9
crossref_primary_10_1007_s12600_021_00887_y
Cites_doi 10.1016/j.soilbio.2013.12.021
10.1016/j.soilbio.2008.10.016
10.1007/s11104-014-2074-0
10.1016/j.biortech.2017.06.023
10.1071/SR10036
10.1016/j.geoderma.2015.01.012
10.1111/gcbb.12001
10.1016/j.jaap.2013.05.022
10.1016/j.soilbio.2012.04.005
10.1021/es903140c
10.1016/S0016-7061(03)00185-X
10.1016/j.soilbio.2017.12.008
10.1016/j.biortech.2012.04.094
10.1016/j.soilbio.2011.07.020
10.1016/j.jenvman.2016.07.024
10.1111/gcbb.12219
10.1016/j.biortech.2014.02.080
10.1021/ef9901138
10.1016/j.jhazmat.2011.01.127
10.1016/j.agee.2004.03.006
10.1016/j.scitotenv.2019.01.298
10.1016/j.scitotenv.2018.04.099
10.1016/j.catena.2014.12.009
10.1016/j.apsoil.2017.09.007
10.1016/j.geoderma.2013.02.004
10.1016/j.chemosphere.2014.04.043
10.2134/jeq2011.0070
10.1016/j.geoderma.2017.05.027
10.1016/j.scitotenv.2017.08.166
10.1021/acs.est.6b06300
10.1111/gcbb.12035
10.2136/sssaj2013.07.0258
10.1111/j.1365-2389.1996.tb01386.x
10.1016/j.still.2015.08.002
10.1016/j.apsoil.2015.08.018
10.1016/j.geoderma.2012.10.002
10.1016/j.envpol.2018.11.013
10.1016/j.apsoil.2017.04.024
10.1007/s11368-015-1243-y
10.1007/s11104-013-1980-x
10.1021/es302125k
10.1016/j.scitotenv.2019.07.262
10.1021/es8002684
10.1016/j.fcr.2011.01.014
10.1007/s42773-019-00009-2
10.1016/j.geoderma.2014.11.009
10.1002/ep.11867
10.1016/j.soilbio.2012.10.033
10.1016/j.scitotenv.2013.03.090
10.1016/j.still.2016.08.012
10.2136/sssaj2004.0347
10.1002/jctb.4157
10.2136/sssaj2000.642681x
10.1038/ncomms1053
10.1021/acs.est.6b02401
10.1007/s11368-016-1361-1
10.1016/j.gca.2008.09.028
10.1016/j.soilbio.2014.04.029
10.1016/j.agee.2017.08.026
10.1016/j.enpol.2007.11.029
10.1016/j.soilbio.2011.04.022
10.1016/j.chemosphere.2010.05.028
10.1007/s11368-012-0483-3
10.2136/sssaj2000.6441479x
10.1071/SR13186
10.1111/ejss.12257
10.1016/S0065-2113(10)06003-7
10.1021/es302545b
10.1016/j.jhazmat.2019.121071
10.1080/10643389.2011.574115
10.1002/jpln.201200639
10.1038/srep03687
10.1016/j.soilbio.2005.02.037
10.1016/j.soilbio.2004.01.013
10.1111/ejss.12094
10.1016/j.envpol.2015.05.030
10.1016/j.soilbio.2009.03.016
10.1016/j.biortech.2013.07.086
10.1016/j.chemosphere.2017.08.074
10.5194/se-5-693-2014
10.1021/es9031419
10.1016/j.geoderma.2009.02.009
10.1111/j.1365-2389.1982.tb01755.x
10.1016/j.soilbio.2013.03.013
10.1016/j.geoderma.2016.12.006
10.1016/j.biortech.2011.11.084
10.1111/gcbb.12158
10.1016/S0065-2113(10)05002-9
10.2136/sssaj2005.0383
10.1016/j.fcr.2011.11.020
10.1111/ejss.12073
10.1023/A:1022833116184
10.1016/j.biortech.2014.11.011
10.1021/es902648t
10.1021/acs.est.5b03656
10.1111/ejss.12064
10.1016/j.orggeochem.2008.04.020
10.1016/S2095-3119(13)60704-2
10.1111/gcbb.12414
10.1016/j.agee.2015.03.015
10.1021/es803092k
10.1021/es061307m
10.1890/06-0219
10.1007/s11104-010-0359-5
10.1021/es5022087
10.1016/j.chemosphere.2015.05.052
10.1016/j.chemosphere.2014.12.058
10.1061/(ASCE)1090-0241(2005)131:10(1222)
10.2503/jjshs.71.370
10.1016/S0045-6535(03)00452-1
10.1007/s00374-008-0334-y
10.1016/j.gca.2008.06.015
10.1016/j.soilbio.2016.12.006
10.1016/j.biortech.2017.02.130
10.1007/s11368-015-1338-5
10.1016/bs.agron.2017.11.001
10.1016/S0016-7037(00)00511-1
10.1016/j.scitotenv.2017.11.014
10.1007/978-3-662-05683-7_15
10.1080/10643389.2014.924180
10.1021/es301029g
10.1007/s11368-013-0738-7
10.1007/s11368-015-1349-2
10.1007/s11104-009-0050-x
10.1016/j.ecoleng.2016.06.039
10.1016/0038-0717(93)90241-3
10.1016/S0146-6380(00)00049-8
10.1016/j.biortech.2011.06.078
10.1021/acs.est.5b05517
10.1016/j.scitotenv.2017.12.196
10.1016/j.still.2004.03.008
10.1080/09593330802536339
10.1111/gcbb.12183
10.1111/gcbb.12267
10.1016/j.jenvman.2011.05.013
10.1111/ejss.12074
10.1021/es501885n
10.1016/j.scitotenv.2016.01.117
10.1016/j.carbon.2016.12.096
10.13031/2013.25409
10.1016/j.geoderma.2014.01.023
10.1007/s100210000058
10.1016/j.geoderma.2004.12.013
10.2134/agronj2007.0161
10.1016/j.soilbio.2015.11.023
10.1021/es1014423
10.1016/j.biortech.2013.04.116
10.1016/j.fuel.2009.08.042
10.1016/j.chemosphere.2015.11.063
10.1016/j.jenvman.2016.07.023
10.1016/j.biortech.2013.06.033
10.1016/j.chemosphere.2015.08.042
10.1016/j.geoderma.2011.04.021
10.1016/j.soilbio.2003.09.005
10.1007/s11104-010-0464-5
10.1073/pnas.0507535103
10.1016/S0016-7061(02)00362-2
10.1111/1365-2664.12136
10.1016/j.chemosphere.2011.12.007
10.1016/S1002-0160(17)60399-0
10.1080/10643389.2018.1561104
10.1080/10643389.2016.1239975
10.1016/j.jhazmat.2011.03.063
10.1071/SR10009
10.1111/j.1475-2743.1997.tb00594.x
10.1016/j.still.2011.01.002
10.1016/j.chemosphere.2015.07.018
10.1021/es035034w
10.1097/00010694-197101000-00007
10.1007/s13762-012-0174-z
10.1016/j.biortech.2014.05.029
10.1016/j.soilbio.2014.11.017
10.1111/gcbb.12266
10.1016/j.soilbio.2016.10.014
10.1016/j.envpol.2015.07.026
10.1007/s13593-012-0081-1
10.1016/j.biortech.2012.10.150
10.1021/acs.est.7b02528
10.1371/journal.pone.0075932
10.1007/s11270-012-1144-2
10.1016/j.jhazmat.2010.01.103
10.1016/S0038-0717(99)00186-8
10.1016/j.soilbio.2011.02.005
10.1111/gcbb.12401
10.1007/s40003-017-0281-7
10.1128/AEM.02775-08
10.1016/j.biortech.2010.11.018
10.1080/10643389.2016.1212368
10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
10.1016/j.soilbio.2014.10.006
10.1016/j.envpol.2016.08.014
10.1021/es302345e
10.1016/j.biortech.2006.12.020
10.1021/acs.est.6b04573
10.1016/j.chemosphere.2009.02.004
10.1016/j.geoderma.2018.06.016
10.1016/j.biortech.2013.03.186
10.1016/j.chemosphere.2015.06.044
10.1016/j.geoderma.2013.06.016
10.1016/j.envpol.2011.06.012
10.1016/j.envpol.2013.05.056
10.1021/acssuschemeng.6b01869
10.1126/science.1160232
10.1016/j.orggeochem.2005.08.001
10.1111/ejss.12097
10.1016/j.envint.2019.02.022
10.1016/j.ecoenv.2016.10.033
10.1016/j.geoderma.2010.05.013
10.1034/j.1600-0706.2000.890203.x
10.1016/B978-0-12-385538-1.00003-2
10.1016/j.biortech.2011.08.036
10.1016/j.biortech.2016.07.112
10.1016/j.geoderma.2013.03.003
10.1021/es960481f
10.1002/etc.1800
10.1002/9780470494950.ch2
10.1021/es900573d
10.1016/j.biortech.2014.12.059
10.1016/0038-0717(95)00159-X
10.1016/j.biombioe.2013.07.019
10.5194/bg-11-5199-2014
10.1111/j.1365-2486.2009.02044.x
10.1021/es903016y
10.1007/s10533-012-9764-6
10.1016/S0146-6380(00)00046-2
10.1080/10643389.2018.1564526
10.1016/j.apsoil.2013.05.003
10.1021/es202186j
10.1016/j.soilbio.2017.11.011
10.1016/j.biortech.2012.06.085
10.1016/j.soilbio.2011.06.016
10.1016/j.envpol.2008.05.003
10.1016/j.biortech.2011.10.096
10.1111/gcbb.12595
10.1021/acs.est.6b00685
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2020.114184
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2020_114184
S0016706119321755
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-c345t-d80cfdda78116161730ddd30b7ca5e04cdfde4b7a6cadd7ffe8ef8653f254fe43
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 02:29:57 EDT 2025
Tue Jul 01 04:04:52 EDT 2025
Thu Apr 24 23:13:00 EDT 2025
Fri Feb 23 02:45:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Organic carbon
Soil aggregate
Humic substance
Stability
Biochar
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-d80cfdda78116161730ddd30b7ca5e04cdfde4b7a6cadd7ffe8ef8653f254fe43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2388764754
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2388764754
crossref_primary_10_1016_j_geoderma_2020_114184
crossref_citationtrail_10_1016_j_geoderma_2020_114184
elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114184
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ouyang, Yu, Zhang (b0810) 2014; 52
Pietikäinen, Kiikkilä, Fritze (b0830) 2000; 89
Sun, Gao, Zhang, Zhang, Liu, Zhao, Xing (b0990) 2010; 80
Wang, Fonte, Parikh, Six, Scow (b1085) 2017; 303
Xu, Chen (b1180) 2013; 146
Chenu, Le Bissonnais, Arrouays (b0145) 2000; 64
Durand, Nicaise (b0210) 1980
Gascó, Paz-Ferreiro, Cely, Plaza, Méndez (b0265) 2016; 95
Keiluweit, Nico, Johnson, Kleber (b0450) 2010; 44
Kloss, Zehetner, Dellantonio, Hamid, Ottner, Liedtke, Schwanninger, Gerzabek, Soja (b0495) 2012; 41
Zhang, Zhou, Li, Wu (b1220) 2017; 186
Fierer, Jackson (b0255) 2006; 103
Sun, Lu (b0985) 2014; 177
Tsai, Chen (b1055) 2013; 10
Nguyen, Koide, Dell, Drohan, Skinner, Adler, Nord (b0785) 2014; 78
Hua, Lu, Ma, Jin (b0365) 2014; 33
Lyu, He, Tang, Hecker, Liu, Jones, Codling, Giesy (b0650) 2016; 218
Lian, Xing (b0580) 2017; 51
Chen, Chen, Chiou (b0140) 2012; 46
Dugan, E., Verhoef, A., Robinson, S., Sohi, S., 2010. Bio-char from sawdust, maize stover and charcoal: impact on water holding capacities (WHC) of three soils from Ghana. In: 19th World Congress of Soil Science, Symposium, pp. 9–12.
Cao, Ma, Gao, Harris (b0105) 2009; 43
Major, J., Steiner, C., Downie, A., Lehmann, J., Joseph, S., 2009. Biochar effects on nutrient leaching. In: Biochar for Environmental Management: Science and Technology, vol. 271, pp. 303–320.
Steinbeiss, Gleixner, Antonietti (b0970) 2009; 41
Abel, Peters, Trinks, Schonsky, Facklam, Wessolek (b0010) 2013; 202
Luo, Wang, Tian, Li, Li, Shen, Tian (b0625) 2017; 117
Liu, Zhang, Wu (b0615) 2010; 89
Du, Zhao, Wang, Zhang (b0200) 2017; 17
Kaiser, Guggenberger (b0430) 2000; 31
Rawal, Joseph, Hook, Chia, Munroe, Donne, Lin, Phelan, Mitchell, Pace (b0865) 2016; 50
Pignatello, Kwon, Lu (b0835) 2006; 40
Truong, Lomnicki, Dellinger (b1050) 2010; 44
Luo, Zang, Yu, Chen, Gunina, Kuzyakov, Xu, Zhang, Brookes (b0645) 2017; 106
Swift, Heal, Anderson (b1015) 1979
Malghani, Gleixner, Trumbore (b0675) 2013; 62
Laird (b0530) 2008; 100
Kelly, Benjamin, CALDERóN, Mikha, Rutherford, Rostad (b0460) 2017; 27
Mitchell, Santamarina (b0730) 2005; 131
Wang, Song, Liang, Zhang, Ai, Zhou (b1100) 2015; 96
Zhang, Bian, Pan, Cui, Hussain, Li, Zheng, Zheng, Zhang, Han (b1215) 2012; 127
Singh, Cowie, Smernik (b0930) 2012; 46
Kołtowski, Charmas, Skubiszewska-Zięba, Oleszczuk (b0500) 2017; 136
John, Yamashita, Ludwig, Flessa (b0415) 2005; 128
Thies, J.E., Rillig, M.C., 2009. Characteristics of biochar: biological properties. In: Biochar for Environmental Management: Science and Technology, pp. 85–105.
Zimmerman, Gao (b1275) 2013; 1
Seneviratne, Weerasundara, Ok, Rinklebe, Vithanage (b0910) 2017; 186
Han, Sun, Jin, Wei, Xia, Wu, Gao, Xing (b0320) 2014; 48
Mataix-Solera, Doerr (b0700) 2004; 118
Sohi, Krull, Lopez-Capel, Bol (b0955) 2010
Hartley, Riby, Waterson (b0340) 2016; 181
Ventura, Alberti, Viger, Jenkins, Girardin, Baronti, Zaldei, Taylor, Rumpel, Miglietta (b1075) 2015; 7
Verheijen, F., Jeffery, S., Bastos, A., Van der Velde, M., Diafas, I., 2010. Biochar Application to Soils. A Critical Scientific Review of Effects on Soil Properties, Processes, and Functions, EUR 24099, p. 162.
Schimel, Balser, Wallenstein (b0905) 2007; 88
Aller (b0025) 2016; 46
Qiu, Xiao, Cheng, Zhou, Sheng (b0850) 2009; 43
Major, Lehmann, Rondon, Goodale (b0665) 2010; 16
Zabaniotou, Stavropoulos, Skoulou (b1210) 2008; 99
Mitchell, Simpson, Soong, Simpson (b0735) 2015; 81
Gaskin, Steiner, Harris, Das, Bibens (b0270) 2008; 51
Gomez, Denef, Stewart, Zheng, Cotrufo (b0280) 2014; 65
Liu, Han, Zhang (b0610) 2012; 14
Kleber, Johnson (b0490) 2010; 106
Liu, Liu, Show, Tay (b0605) 2009; 30
Marschner, Kalbitz (b0690) 2003; 113
Mukherjee, Zimmerman (b0765) 2013; 193
Chen, Liu, Zheng, Zhang, Lu, Chi, Pan, Li, Zheng, Zhang (b0130) 2013; 71
Purakayastha, Kumari, Pathak (b0840) 2015; 239
Chen, Chen (b0110) 2009; 76
Iorio, Pan, Capasso, Xing (b0385) 2008; 156
Fang, Singh, Singh (b0235) 2015; 80
Atkinson, Fitzgerald, Hipps (b0040) 2010; 337
Han, Sun, Ro, Sun, Libra, Xing (b0315) 2017; 234
Houben, Evrard, Sonnet (b0360) 2013; 57
Meng, Dou, Yin, Zhang, Zhong (b0720) 2016; 35
Quan, Fan, Zimmerman, Sun, Cui, Wang, Gao, Yan (b0855) 2020.; 382
Zhang, Lü, Shao, He (b1235) 2014; 168
Doerr, S., Shakesby, R., 2009. Soil water repellency. Principles, causes and relevance in fire-affected environments, Efectos de los incendios forestales sobre los suelos en España: el estado de la cuestión visto por los científicos españoles. Cátedra Divulgación de la Ciencia, pp. 57–76.
Han, Sun, Jin, Xing (b0325) 2016; 94
Zhao, Ta, Li, Yang, Zhang, Liu, Zhang, Wang (b1245) 2018; 123
Laird, Fleming, Davis, Horton, Wang, Karlen (b0535) 2010; 158
Kasozi, Zimmerman, Nkedi-Kizza, Gao (b0440) 2010; 44
Six, Bossuyt, Degryze, Denef (b0940) 2004; 79
Gul, Whalen, Thomas, Sachdeva, Deng (b0290) 2015; 206
Rumpel, Eusterhues, Kögel-Knabner (b0885) 2004; 36
Chun, Sheng, Chiou, Xing (b0155) 2004; 38
Paustian, Andrén, Janzen, Lal, Smith, Tian, Tiessen, Noordwijk, Woomer (b0820) 1997; 13
Xu, Adhikari, Huang, Zhang, Tang, Roden, Yang (b1170) 2016; 50
Heitkötter, Marschner (b0345) 2015; 245
Qiu, Sun, Jin, Han, Sun, Zhao, Xia, Wu, Xing (b0845) 2015; 206
Sarauer, Page-Dumroese, Coleman (b0895) 2019; 11
Huang, Zhang, Xiao, Zhang, Wang, Yang, Xu, Liang (b0375) 2019; 692
Sun, Qiu, Han, Jin, Wang, Pan, Xing (b1005) 2018; 634
Tisdall, Oades (b1030) 1982; 33
Weng, Van Zwieten, Singh, Tavakkoli, Kimber, Morris, Macdonald, Cowie (b1120) 2018; 118
Dong, Guan, Li, Lin, Zhao (b0185) 2016; 16
Li, Cao, Zhao, Wang, Ding (b0565) 2014; 48
Xiao, Li, Huang, Sheng, Qiu (b1145) 2012; 31
Zheng, Wang, Luo, Wang, Xing (b1255) 2018; 610
Zhou, Dou, Liu (b1265) 2011; 30
Abbruzzini, Moreira, de Camargo, Conz, Cerri (b0005) 2017; 6
Cantrell, Hunt, Uchimiya, Novak, Ro (b0100) 2012; 107
McCarthy, Ilavsky, Jastrow, Mayer, Perfect, Zhuang (b0715) 2008; 72
Spokas, Baker, Reicosky (b0960) 2010; 333
Xiao, Chen (b1140) 2017; 51
Nguyen, Lehmann, Hockaday, Joseph, Masiello (b0790) 2010; 44
Xu, Zhao, Sun, Gao, Wang, Jin, Zhang, Wang, Yan, Liu (b1160) 2014; 111
Hart, Luckai (b0335) 2013; 50
Han, Ro, Sun, Sun, Wang, Libra, Xing (b0305) 2016; 50
Wang, Xiong, Kuzyakov (b1090) 2016; 8
Luo, Durenkamp, De Nobili, Lin, Brookes (b0635) 2011; 43
Li, Yue, Gao (b0570) 2010; 178
Hardie, Clothier, Bound, Oliver, Close (b0330) 2014; 376
Shen, Wang, Tzou, Yan, Kuan (b0915) 2012; 104
Singh, Sarkar, Sarkar, Churchman, Bolan, Mandal, Menon, Purakayastha, Beerling (b0935) 2017; 148
Kookana, Sarmah, Van Zwieten, Krull, Singh (b0510) 2011; 112
Wang, Zhang, Cerdà, Cao, Zhang, Yin, Jiang, Chen (b1095) 2017; 289
Ameloot, Graber, Verheijen, De Neve (b0030) 2013; 64
Keiluweit, Kleber, Sparrow, Simoneit, Prahl (b0445) 2012; 46
Herath, Camps-Arbestain, Hedley (b0350) 2013; 209
Fungo, Lehmann, Kalbitz, Thionģo, Okeyo, Tenywa, Neufeldt (b0260) 2017; 165
Magill, Aber (b0660) 2000; 32
Yuan, Xu, Zhang (b1205) 2011; 102
Yin, He, Ren, Yang (b1195) 2014; 13
Angın (b0035) 2013; 128
Chen, Zhou, Zhu (b0115) 2008; 42
Maestrini, Abiven, Singh, Bird, Torn, Schmidt (b0655) 2014; 11
Stavi, Lal (b0965) 2013; 33
Jastrow (b0395) 1996; 28
Wen, Huang, Li, Gong, Zhang, Pei, Fang, Shan, Khan (b1115) 2009; 150
Zimmerman (b1270) 2010; 44
Muhammad, Dai, Xiao, Meng, Brookes, Liu, Wang, Wu, Xu (b0750) 2014; 226
Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (b0545) 2011; 43
Brennan, Jiménez, Puschenreiter, Alburquerque, Switzer (b0075) 2014; 379
Kim, Kim, Cho, Choi (b0475) 2012; 118
Sun, Kang, Ro, Libra, Zhao, Xing (b0995) 2016; 142
Chen, Chen, Chen, Chen, Lehmann, McBride, Hay (b0135) 2011; 102
Sarker, Incerti, Spaccini, Piccolo, Mazzoleni, Bonanomi (b0900) 2018; 117
Bandara, Herath, Kumarathilaka, Seneviratne, Seneviratne, Rajakaruna, Vithanage, Ok (b0060) 2017; 17
Bach, Hofmockel (b0045) 2016; 8
Xing, Pignatello (b1155) 1997; 31
Bruun, Jensen, Jensen (b0085) 2008; 39
Matsubara, Hasegawa, Fukui (b0710) 2002; 71
Gurwick, Moore, Kelly, Elias (b0295) 2013; 8
Bamminger, Marschner, Jüschke (b0055) 2014; 65
Stewart, Zheng, Botte, Cotrufo (b0980) 2013; 5
IBI, 2012. Standardized product definition and product testing guidelines for biochar that is used in soil, IBI Biochar Standards.
Zhang, Du, Lou, He (b1240) 2015; 127
Liang, Lehmann, Solomon, Sohi, Thies, Skjemstad, Luizao, Engelhard, Neves, Wirick (b0590) 2008; 72
Baldock, Skjemstad (b0050) 2000; 31
Trumbore, Czimczik (b1045) 2008; 321
Trompowsky, de Melo Benites, Madari, Pimenta, Hockaday, Hatcher (b1040) 2005; 36
Fernandes, Brooks (b0245) 2003; 53
Manyà (b0685) 2012; 46
Karaosmanoǧlu, Işıgıgür-Ergüdenler, Sever (b0435) 2000; 14
Mohan, Rajput, Singh, Steele, Pittman (b0740) 2011; 188
Zhao, Zhou (b1250) 2019; 245
Mathews (b0705) 2008; 36
Luo, Liu, Xia, Chen, Jiang, Zheng, Wang (b0630) 2017; 17
Merzari, Langone, Andreottola, Fiori (b0725) 2019; 49
Downie, A., Crosky, A., Munroe, P., 2009. Physical properties of biochar. Biochar for environmental management: science and technology, 13–32.
Xu, Zhao, Sima, Zhao, Mašek, Cao (b1175) 2017; 241
Kimetu, Lehmann (b0485) 2010; 48
Van Zwieten, Kimber, Morris, Chan, Downie, Rust, Joseph, Cowie (b1070) 2010; 327
Lian, Sun, Chen, Zhu, Liu, Xing (b0575) 2015; 204
Mukome, Six, Parikh (b0770) 2013; 200
Jin, Kang, Sun, Pan, Wu, Xing (b0400) 2016; 550
Herath, Camps-Arbestain, Hedley, Kirschbaum, Wang, Hale (b0355) 2015; 7
Jäckel, Schnell, Conrad (b0390) 2004; 36
Troeh, Thompson (b1035) 2005
Fidel, Laird, Parkin (b0250) 2017; 9
Xie, Reddy, Wang, Yargicoglu, Spokas (b1150) 2015; 45
Steiner, C., Teixeira, W.G., Lehmann, J., Zech, W., 2004. Microbial response to charcoal amendments of highly weathered soils and Amazonian Dark Earths in Central Amazonia—preliminary results. In: Amazonian Dark Earths: Explorations in Space and Time. Springer, pp. 195–212.
Blagodatskaya, Kuzyakov (b0070) 2008; 45
Jin, Sun, Wang, Yang, Han, Xing (b0405) 2017; 51
Grutzmacher, Puga, Bibar, Coscione, Packer, de Andrade (b0285) 2018; 625
Dong, Singh, Li, Lin, Zhao (b0190) 2018; 252
Six, Paustian, Elliott, Combrink (b0950) 2000; 64
Woolf, Lehmann (b1130) 2012; 111
Cross, Sohi (b0160) 2011; 43
Chen, Zhou, Lin (b0120) 2015; 179
Naisse, Girardin, Lefevre, Pozzi, Maas, Stark, Rumpel (b0775) 2015; 7
Neff, Asner (b0780) 2001; 4
El-Naggar, Usman, Al-Omra
Fang (10.1016/j.geoderma.2020.114184_b0230) 2014; 65
Stavi (10.1016/j.geoderma.2020.114184_b0965) 2013; 33
Uchimiya (10.1016/j.geoderma.2020.114184_b1060) 2011; 190
Peng (10.1016/j.geoderma.2020.114184_b0825) 2011; 112
Han (10.1016/j.geoderma.2020.114184_b0315) 2017; 234
Naisse (10.1016/j.geoderma.2020.114184_b0775) 2015; 7
Singh (10.1016/j.geoderma.2020.114184_b0930) 2012; 46
Luo (10.1016/j.geoderma.2020.114184_b0625) 2017; 117
Zhang (10.1016/j.geoderma.2020.114184_b1240) 2015; 127
Kookana (10.1016/j.geoderma.2020.114184_b0510) 2011; 112
Ouyang (10.1016/j.geoderma.2020.114184_b0810) 2014; 52
Rechberger (10.1016/j.geoderma.2020.114184_b0870) 2017; 115
Fidel (10.1016/j.geoderma.2020.114184_b0250) 2017; 9
Kim (10.1016/j.geoderma.2020.114184_b0475) 2012; 118
Weng (10.1016/j.geoderma.2020.114184_b1120) 2018; 118
Zhang (10.1016/j.geoderma.2020.114184_b1235) 2014; 168
Manyà (10.1016/j.geoderma.2020.114184_b0685) 2012; 46
John (10.1016/j.geoderma.2020.114184_b0415) 2005; 128
Leng (10.1016/j.geoderma.2020.114184_b0560) 2019; 664
Dong (10.1016/j.geoderma.2020.114184_b0185) 2016; 16
Lyu (10.1016/j.geoderma.2020.114184_b0650) 2016; 218
Ventura (10.1016/j.geoderma.2020.114184_b1075) 2015; 7
10.1016/j.geoderma.2020.114184_b0370
Sun (10.1016/j.geoderma.2020.114184_b0995) 2016; 142
Martin (10.1016/j.geoderma.2020.114184_b0695) 1971; 111
Luo (10.1016/j.geoderma.2020.114184_b0645) 2017; 106
Bruun (10.1016/j.geoderma.2020.114184_b0085) 2008; 39
Spokas (10.1016/j.geoderma.2020.114184_b0960) 2010; 333
Chen (10.1016/j.geoderma.2020.114184_b0110) 2009; 76
Grutzmacher (10.1016/j.geoderma.2020.114184_b0285) 2018; 625
Dong (10.1016/j.geoderma.2020.114184_b0190) 2018; 252
Seneviratne (10.1016/j.geoderma.2020.114184_b0910) 2017; 186
Van Zwieten (10.1016/j.geoderma.2020.114184_b1070) 2010; 327
Fungo (10.1016/j.geoderma.2020.114184_b0260) 2017; 165
Han (10.1016/j.geoderma.2020.114184_b0325) 2016; 94
Gurwick (10.1016/j.geoderma.2020.114184_b0295) 2013; 8
Palansooriya (10.1016/j.geoderma.2020.114184_b0815) 2019; 1
Mukherjee (10.1016/j.geoderma.2020.114184_b0755) 2014; 5
Väisänen (10.1016/j.geoderma.2020.114184_b1065) 2005; 37
Wang (10.1016/j.geoderma.2020.114184_b1095) 2017; 289
Matsubara (10.1016/j.geoderma.2020.114184_b0710) 2002; 71
Paustian (10.1016/j.geoderma.2020.114184_b0820) 1997; 13
Baldock (10.1016/j.geoderma.2020.114184_b0050) 2000; 31
Troeh (10.1016/j.geoderma.2020.114184_b1035) 2005
Han (10.1016/j.geoderma.2020.114184_b0305) 2016; 50
Cui (10.1016/j.geoderma.2020.114184_b0175) 2019; 126
Keith (10.1016/j.geoderma.2020.114184_b0455) 2011; 45
Herath (10.1016/j.geoderma.2020.114184_b0350) 2013; 209
Lu (10.1016/j.geoderma.2020.114184_b0620) 2014; 76
Liang (10.1016/j.geoderma.2020.114184_b0590) 2008; 72
10.1016/j.geoderma.2020.114184_b0380
Kasozi (10.1016/j.geoderma.2020.114184_b0440) 2010; 44
Chen (10.1016/j.geoderma.2020.114184_b0115) 2008; 42
Trumbore (10.1016/j.geoderma.2020.114184_b1045) 2008; 321
Zhao (10.1016/j.geoderma.2020.114184_b1250) 2019; 245
Luo (10.1016/j.geoderma.2020.114184_b0640) 2013; 57
Zhang (10.1016/j.geoderma.2020.114184_b1215) 2012; 127
Chen (10.1016/j.geoderma.2020.114184_b0140) 2012; 46
Chenu (10.1016/j.geoderma.2020.114184_b0145) 2000; 64
Mitchell (10.1016/j.geoderma.2020.114184_b0730) 2005; 131
Pignatello (10.1016/j.geoderma.2020.114184_b0835) 2006; 40
Wang (10.1016/j.geoderma.2020.114184_b1090) 2016; 8
Zhao (10.1016/j.geoderma.2020.114184_b1245) 2018; 123
Swift (10.1016/j.geoderma.2020.114184_b1015) 1979
Fierer (10.1016/j.geoderma.2020.114184_b0255) 2006; 103
Tsai (10.1016/j.geoderma.2020.114184_b1055) 2013; 10
Pietikäinen (10.1016/j.geoderma.2020.114184_b0830) 2000; 89
Kuzyakov (10.1016/j.geoderma.2020.114184_b0520) 2014; 70
Xu (10.1016/j.geoderma.2020.114184_b1170) 2016; 50
10.1016/j.geoderma.2020.114184_b0205
Kilbertus (10.1016/j.geoderma.2020.114184_b0465) 1980; 17
Magill (10.1016/j.geoderma.2020.114184_b0660) 2000; 32
Kelly (10.1016/j.geoderma.2020.114184_b0460) 2017; 27
Fernandes (10.1016/j.geoderma.2020.114184_b0245) 2003; 53
Tisdall (10.1016/j.geoderma.2020.114184_b1030) 1982; 33
Luo (10.1016/j.geoderma.2020.114184_b0635) 2011; 43
Sun (10.1016/j.geoderma.2020.114184_b0985) 2014; 177
Xiao (10.1016/j.geoderma.2020.114184_b1140) 2017; 51
Ennis (10.1016/j.geoderma.2020.114184_b0225) 2012; 42
Mohanty (10.1016/j.geoderma.2020.114184_b0745) 2013; 104
Xie (10.1016/j.geoderma.2020.114184_b1150) 2015; 45
Xiao (10.1016/j.geoderma.2020.114184_b1145) 2012; 31
Han (10.1016/j.geoderma.2020.114184_b0320) 2014; 48
Gomez (10.1016/j.geoderma.2020.114184_b0280) 2014; 65
Gul (10.1016/j.geoderma.2020.114184_b0290) 2015; 206
Xia (10.1016/j.geoderma.2020.114184_b1135) 2019; 49
Aller (10.1016/j.geoderma.2020.114184_b0025) 2016; 46
Wen (10.1016/j.geoderma.2020.114184_b1115) 2009; 150
Hart (10.1016/j.geoderma.2020.114184_b0335) 2013; 50
Hua (10.1016/j.geoderma.2020.114184_b0365) 2014; 33
Zabaniotou (10.1016/j.geoderma.2020.114184_b1210) 2008; 99
Xu (10.1016/j.geoderma.2020.114184_b1175) 2017; 241
Huang (10.1016/j.geoderma.2020.114184_b0375) 2019; 692
Rawal (10.1016/j.geoderma.2020.114184_b0865) 2016; 50
Shen (10.1016/j.geoderma.2020.114184_b0915) 2012; 104
Li (10.1016/j.geoderma.2020.114184_b0565) 2014; 48
Gaskin (10.1016/j.geoderma.2020.114184_b0270) 2008; 51
Maestrini (10.1016/j.geoderma.2020.114184_b0655) 2014; 11
Singh (10.1016/j.geoderma.2020.114184_b0935) 2017; 148
Karaosmanoǧlu (10.1016/j.geoderma.2020.114184_b0435) 2000; 14
Sarauer (10.1016/j.geoderma.2020.114184_b0895) 2019; 11
Ahmad (10.1016/j.geoderma.2020.114184_b0015) 2013; 143
Cross (10.1016/j.geoderma.2020.114184_b0160) 2011; 43
Bandara (10.1016/j.geoderma.2020.114184_b0060) 2017; 17
Xu (10.1016/j.geoderma.2020.114184_b1165) 2012; 12
Chen (10.1016/j.geoderma.2020.114184_b0135) 2011; 102
Liu (10.1016/j.geoderma.2020.114184_b0600) 2012; 121
Kumar (10.1016/j.geoderma.2020.114184_b0515) 2011; 92
Ouyang (10.1016/j.geoderma.2020.114184_b0805) 2013; 13
Meng (10.1016/j.geoderma.2020.114184_b0720) 2016; 35
Kleber (10.1016/j.geoderma.2020.114184_b0490) 2010; 106
Zheng (10.1016/j.geoderma.2020.114184_b1255) 2018; 610
Elzobair (10.1016/j.geoderma.2020.114184_b0220) 2016; 142
Qiu (10.1016/j.geoderma.2020.114184_b0845) 2015; 206
Sun (10.1016/j.geoderma.2020.114184_b1005) 2018; 634
Major (10.1016/j.geoderma.2020.114184_b0665) 2010; 16
Mathews (10.1016/j.geoderma.2020.114184_b0705) 2008; 36
Sun (10.1016/j.geoderma.2020.114184_b0990) 2010; 80
Merzari (10.1016/j.geoderma.2020.114184_b0725) 2019; 49
Nguyen (10.1016/j.geoderma.2020.114184_b0790) 2010; 44
Liang (10.1016/j.geoderma.2020.114184_b0585) 2006; 70
Durand (10.1016/j.geoderma.2020.114184_b0210) 1980
Nguyen (10.1016/j.geoderma.2020.114184_b0785) 2014; 78
Purakayastha (10.1016/j.geoderma.2020.114184_b0840) 2015; 239
Wang (10.1016/j.geoderma.2020.114184_b1085) 2017; 303
Houben (10.1016/j.geoderma.2020.114184_b0360) 2013; 57
Chen (10.1016/j.geoderma.2020.114184_b0120) 2015; 179
Six (10.1016/j.geoderma.2020.114184_b0945) 2006; 70
Bach (10.1016/j.geoderma.2020.114184_b0045) 2016; 8
Jäckel (10.1016/j.geoderma.2020.114184_b0390) 2004; 36
Yin (10.1016/j.geoderma.2020.114184_b1195) 2014; 13
Hardie (10.1016/j.geoderma.2020.114184_b0330) 2014; 376
Cao (10.1016/j.geoderma.2020.114184_b0105) 2009; 43
Mukome (10.1016/j.geoderma.2020.114184_b0770) 2013; 200
Quan (10.1016/j.geoderma.2020.114184_b0855) 2020; 382
Fang (10.1016/j.geoderma.2020.114184_b0235) 2015; 80
Brennan (10.1016/j.geoderma.2020.114184_b0075) 2014; 379
McCarthy (10.1016/j.geoderma.2020.114184_b0715) 2008; 72
Zheng (10.1016/j.geoderma.2020.114184_b1260) 2013; 181
Li (10.1016/j.geoderma.2020.114184_b0570) 2010; 178
10.1016/j.geoderma.2020.114184_b0095
Lehmann (10.1016/j.geoderma.2020.114184_b0540) 2003; 249
10.1016/j.geoderma.2020.114184_b1185
Wang (10.1016/j.geoderma.2020.114184_b1105) 2013; 32
Kuzyakov (10.1016/j.geoderma.2020.114184_b0525) 2009; 41
Heitkötter (10.1016/j.geoderma.2020.114184_b0345) 2015; 245
Sun (10.1016/j.geoderma.2020.114184_b1000) 2011; 102
Angın (10.1016/j.geoderma.2020.114184_b0035) 2013; 128
Lei (10.1016/j.geoderma.2020.114184_b0550) 2013; 13
Mohan (10.1016/j.geoderma.2020.114184_b0740) 2011; 188
Hartley (10.1016/j.geoderma.2020.114184_b0340) 2016; 181
Steinbeiss (10.1016/j.geoderma.2020.114184_b0970) 2009; 41
El-Naggar (10.1016/j.geoderma.2020.114184_b0215) 2015; 138
Yuan (10.1016/j.geoderma.2020.114184_b1205) 2011; 102
Jastrow (10.1016/j.geoderma.2020.114184_b0395) 1996; 28
Xing (10.1016/j.geoderma.2020.114184_b1155) 1997; 31
Sarker (10.1016/j.geoderma.2020.114184_b0900) 2018; 117
Mataix-Solera (10.1016/j.geoderma.2020.114184_b0700) 2004; 118
Blagodatskaya (10.1016/j.geoderma.2020.114184_b0070) 2008; 45
Kaiser (10.1016/j.geoderma.2020.114184_b0430) 2000; 31
Sohi (10.1016/j.geoderma.2020.114184_b0955) 2010
10.1016/j.geoderma.2020.114184_b0425
Buss (10.1016/j.geoderma.2020.114184_b0090) 2018; 331
Lehmann (10.1016/j.geoderma.2020.114184_b0545) 2011; 43
Ameloot (10.1016/j.geoderma.2020.114184_b0030) 2013; 64
Rousk (10.1016/j.geoderma.2020.114184_b0880) 2009; 75
Cross (10.1016/j.geoderma.2020.114184_b0165) 2013; 5
Cui (10.1016/j.geoderma.2020.114184_b0170) 2017; 104
Oh (10.1016/j.geoderma.2020.114184_b0800) 2012; 223
Iorio (10.1016/j.geoderma.2020.114184_b0385) 2008; 156
Chen (10.1016/j.geoderma.2020.114184_b0125) 2016; 218
10.1016/j.geoderma.2020.114184_b0670
Joseph (10.1016/j.geoderma.2020.114184_b0420) 2010; 48
Kononova (10.1016/j.geoderma.2020.114184_b0505) 1966
Rittl (10.1016/j.geoderma.2020.114184_b0875) 2015; 66
Batjes (10.1016/j.geoderma.2020.114184_b0065) 1996; 47
Sun (10.1016/j.geoderma.2020.114184_b1010) 2013; 140
Chorover (10.1016/j.geoderma.2020.114184_b0150) 2001; 65
Farrell (10.1016/j.geoderma.2020.114184_b0240) 2013; 465
Yang (10.1016/j.geoderma.2020.114184_b1190) 2016; 50
Zhang (10.1016/j.geoderma.2020.114184_b1220) 2017; 186
Zhang (10.1016/j.geoderma.2020.114184_b1225) 2011; 159
10.1016/j.geoderma.2020.114184_b1080
Six (10.1016/j.geoderma.2020.114184_b0940) 2004; 79
Wang (10.1016/j.geoderma.2020.114184_b1100) 2015; 96
Abbruzzini (10.1016/j.geoderma.2020.114184_b0005) 2017; 6
Han (10.1016/j.geoderma.2020.114184_b0310) 2018; 616
Trompowsky (10.1016/j.geoderma.2020.114184_b1040) 2005; 36
Lin (10.1016/j.geoderma.2020.1141
References_xml – volume: 36
  start-page: 835
  year: 2004
  end-page: 840
  ident: b0390
  article-title: Microbial ethylene production and inhibition of methanotrophic activity in a deciduous forest soil
  publication-title: Soil Biol. Biochem.
– volume: 218
  start-page: 1
  year: 2016
  end-page: 7
  ident: b0650
  article-title: Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment
  publication-title: Environ. Pollut.
– volume: 156
  start-page: 1021
  year: 2008
  end-page: 1029
  ident: b0385
  article-title: Sorption of phenanthrene by dissolved organic matter and its complex with aluminum oxide nanoparticles
  publication-title: Environ. Pollut.
– volume: 112
  start-page: 159
  year: 2011
  end-page: 166
  ident: b0825
  article-title: Temperature-and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China
  publication-title: Soil Till. Res.
– volume: 177
  start-page: 26
  year: 2014
  end-page: 33
  ident: b0985
  article-title: Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil
  publication-title: J. Plant Nut. Soil Sci.
– volume: 43
  start-page: 1812
  year: 2011
  end-page: 1836
  ident: b0545
  article-title: Biochar effects on soil biota–a review
  publication-title: Soil Biol. Biochem.
– volume: 5
  start-page: 153
  year: 2013
  end-page: 164
  ident: b0980
  article-title: Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils
  publication-title: Gcb. Bioenerg.
– reference: Thies, J.E., Rillig, M.C., 2009. Characteristics of biochar: biological properties. In: Biochar for Environmental Management: Science and Technology, pp. 85–105.
– volume: 100
  start-page: 178
  year: 2008
  end-page: 181
  ident: b0530
  article-title: The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality
  publication-title: Agron. J.
– volume: 32
  start-page: 597
  year: 2000
  end-page: 601
  ident: b0660
  article-title: Variation in soil net mineralization rates with dissolved organic carbon additions
  publication-title: Soil Biol. Biochem.
– volume: 51
  start-page: 5473
  year: 2017
  end-page: 5482
  ident: b1140
  article-title: A direct observation of the fine aromatic clusters and molecular structures of biochars
  publication-title: Environ. Sci. Technol.
– volume: 71
  start-page: 33
  year: 2013
  end-page: 44
  ident: b0130
  article-title: Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China
  publication-title: Appl. Soil Ecol.
– volume: 7
  start-page: 488
  year: 2015
  end-page: 496
  ident: b0775
  article-title: Effect of physical weathering on the carbon sequestration potential of biochars and hydrochars in soil
  publication-title: Gcb. Bioenerg.
– volume: 111
  start-page: 320
  year: 2014
  end-page: 326
  ident: b1160
  article-title: Cadmium adsorption on plant-and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties
  publication-title: Chemosphere
– volume: 72
  start-page: 4725
  year: 2008
  end-page: 4744
  ident: b0715
  article-title: Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter
  publication-title: Geochim. Cosmochim. Ac.
– volume: 179
  start-page: 359
  year: 2015
  end-page: 366
  ident: b0120
  article-title: Sorption characteristics of N-nitrosodimethylamine onto biochar from aqueous solution
  publication-title: Bioresour. Technol.
– volume: 43
  start-page: 2127
  year: 2011
  end-page: 2134
  ident: b0160
  article-title: The priming potential of biochar products in relation to labile carbon contents and soil organic matter status
  publication-title: Soil Biol. Biochem.
– volume: 7
  start-page: 1150
  year: 2015
  end-page: 1160
  ident: b1075
  article-title: Biochar mineralization and priming effect on SOM decomposition in two European short rotation coppices
  publication-title: Gcb. Bioenerg.
– volume: 78
  start-page: 531
  year: 2014
  end-page: 537
  ident: b0785
  article-title: Turnover of soil carbon following addition of switchgrass-derived biochar to four soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 111
  start-page: 83
  year: 2012
  end-page: 95
  ident: b1130
  article-title: Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon
  publication-title: Biogeochemistry
– volume: 51
  start-page: 115
  year: 2012
  end-page: 124
  ident: b0890
  article-title: Biological degradation of pyrogenic organic matter in temperate forest soils
  publication-title: Soil Biol. Biochem.
– volume: 50
  start-page: 2264
  year: 2016
  end-page: 2271
  ident: b1190
  article-title: The interfacial behavior between biochar and soil minerals and its effect on biochar stability
  publication-title: Environ. Sci. Technol.
– volume: 79
  start-page: 7
  year: 2004
  end-page: 31
  ident: b0940
  article-title: A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics
  publication-title: Soil Till. Res.
– volume: 44
  start-page: 3324
  year: 2010
  end-page: 3331
  ident: b0790
  article-title: Temperature sensitivity of black carbon decomposition and oxidation
  publication-title: Environ. Sci. Technol.
– volume: 200
  start-page: 90
  year: 2013
  end-page: 98
  ident: b0770
  article-title: The effects of walnut shell and wood feedstock biochar amendments on greenhouse gas emissions from a fertile soil
  publication-title: Geoderma
– volume: 12
  start-page: 494
  year: 2012
  end-page: 502
  ident: b1165
  article-title: pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars
  publication-title: J. Soil. Sediment.
– volume: 38
  start-page: 4649
  year: 2004
  end-page: 4655
  ident: b0155
  article-title: Compositions and sorptive properties of crop residue-derived chars
  publication-title: Environ. Sci. Technol.
– volume: 664
  start-page: 11
  year: 2019
  end-page: 23
  ident: b0560
  article-title: Biochar stability assessment by incubation and modelling: methods, drawbacks and recommendations
  publication-title: Sci. Total Environ.
– volume: 241
  start-page: 887
  year: 2017
  end-page: 899
  ident: b1175
  article-title: Indispensable role of biochar-inherent mineral constituents in its environmental applications: a review
  publication-title: Bioresour. Technol.
– volume: 33
  start-page: 941
  year: 2014
  end-page: 946
  ident: b0365
  article-title: Effect of biochar on carbon dioxide release, organic carbon accumulation, and aggregation of soil
  publication-title: Environ. Prog. Sustain.
– volume: 43
  start-page: 2304
  year: 2011
  end-page: 2314
  ident: b0635
  article-title: Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH
  publication-title: Soil Biol. Biochem.
– volume: 186
  start-page: 293
  year: 2017
  end-page: 300
  ident: b0910
  article-title: Phytotoxicity attenuation in
  publication-title: J. Environ. Manage.
– volume: 96
  start-page: 265
  year: 2015
  end-page: 272
  ident: b1100
  article-title: Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil
  publication-title: Appl. Soil Ecol.
– volume: 32
  start-page: 1585
  year: 2013
  end-page: 1591
  ident: b1105
  article-title: Effects of biochar amendments synthesized at varying temperatures on soil organic carbon mineralization and humus composition
  publication-title: J. Agro-Environ. Sci.
– volume: 17
  start-page: 780
  year: 2017
  end-page: 789
  ident: b0630
  article-title: Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China
  publication-title: J. Soil Sediment
– volume: 46
  start-page: 7939
  year: 2012
  end-page: 7954
  ident: b0685
  article-title: Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs
  publication-title: Environ. Sci. Technol.
– volume: 88
  start-page: 1386
  year: 2007
  end-page: 1394
  ident: b0905
  article-title: Microbial stress-response physiology and its implications for ecosystem function
  publication-title: Ecology
– volume: 47
  start-page: 151
  year: 1996
  end-page: 163
  ident: b0065
  article-title: Total carbon and nitrogen in the soils of the world
  publication-title: Eur. J. Soil Sci.
– volume: 48
  start-page: 11211
  year: 2014
  end-page: 11217
  ident: b0565
  article-title: Effects of mineral additives on biochar formation: carbon retention, stability, and properties
  publication-title: Environ. Sci. Technol.
– volume: 128
  start-page: 63
  year: 2005
  end-page: 79
  ident: b0415
  article-title: Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use
  publication-title: Geoderma
– volume: 190
  start-page: 432
  year: 2011
  end-page: 441
  ident: b1060
  article-title: Screening biochars for heavy metal retention in soil: role of oxygen functional groups
  publication-title: J. Hazard. Mater.
– volume: 128
  start-page: 593
  year: 2013
  end-page: 597
  ident: b0035
  article-title: Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake
  publication-title: Bioresour. Technol.
– volume: 616
  start-page: 335
  year: 2018
  end-page: 344
  ident: b0310
  article-title: Oxidation resistance of biochars as a function of feedstock and pyrolysis condition
  publication-title: Sci. Total Environ.
– volume: 17
  start-page: 543
  year: 1980
  end-page: 557
  ident: b0465
  article-title: Microhabitats in soil aggregates. Their relationship with bacterial biomass and the size of the procaryotes present
  publication-title: Revue d'Ecologie et de Biologie du Sol
– volume: 41
  start-page: 990
  year: 2012
  end-page: 1000
  ident: b0495
  article-title: Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties
  publication-title: J. Environ. Qual.
– volume: 44
  start-page: 6189
  year: 2010
  end-page: 6195
  ident: b0440
  article-title: Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars)
  publication-title: Environ. Sci. Technol.
– volume: 102
  start-page: 8877
  year: 2011
  end-page: 8884
  ident: b0135
  article-title: Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution
  publication-title: Bioresour. Technol.
– volume: 245
  start-page: 56
  year: 2015
  end-page: 64
  ident: b0345
  article-title: Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production
  publication-title: Geoderma
– volume: 382
  year: 2020.
  ident: b0855
  article-title: Effects of laboratory biotic aging on the characteristics of biochar and its water-soluble organic products
  publication-title: J. Hazard. Mater.
– volume: 252
  start-page: 200
  year: 2018
  end-page: 207
  ident: b0190
  article-title: Biochar application constrained native soil organic carbon accumulation from wheat residue inputs in a long-term wheat-maize cropping system
  publication-title: Agr. Ecosyst. Environ.
– volume: 168
  start-page: 252
  year: 2014
  end-page: 258
  ident: b1235
  article-title: The use of biochar-amended composting to improve the humification and degradation of sewage sludge
  publication-title: Bioresour. Technol.
– volume: 25
  start-page: 57
  year: 1993
  end-page: 62
  ident: b0470
  article-title: Effect of substrate location in soil and soil pore-water regime on carbon turnover
  publication-title: Soil Biol. Biochem.
– volume: 142
  start-page: 56
  year: 2016
  end-page: 63
  ident: b0995
  article-title: Variation in sorption of propiconazole with biochars: the effect of temperature, mineral, molecular structure, and nano-porosity
  publication-title: Chemosphere
– volume: 36
  start-page: 1480
  year: 2005
  end-page: 1489
  ident: b1040
  article-title: Characterization of humic like substances obtained by chemical oxidation of
  publication-title: Org. Geochem.
– volume: 105
  start-page: 255
  year: 2005
  end-page: 266
  ident: b0555
  article-title: Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude
  publication-title: Agr. Ecosyst. Environ.
– volume: 64
  start-page: 681
  year: 2000
  end-page: 689
  ident: b0950
  article-title: Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon
  publication-title: Soil Sci. Soc. Am. J.
– volume: 57
  start-page: 196
  year: 2013
  end-page: 204
  ident: b0360
  article-title: Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (
  publication-title: Biomass Bioenerg.
– volume: 70
  start-page: 229
  year: 2014
  end-page: 236
  ident: b0520
  article-title: Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific
  publication-title: Soil Biol. Biochem.
– volume: 131
  start-page: 1222
  year: 2005
  end-page: 1233
  ident: b0730
  article-title: Biological considerations in geotechnical engineering
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 550
  start-page: 504
  year: 2016
  end-page: 513
  ident: b0400
  article-title: Properties of biochar-amended soils and their sorption of imidacloprid, isoproturon, and atrazine
  publication-title: Sci. Total Environ.
– volume: 44
  start-page: 1247
  year: 2010
  end-page: 1253
  ident: b0450
  article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
– volume: 31
  start-page: 697
  year: 2000
  end-page: 710
  ident: b0050
  article-title: Role of the soil matrix and minerals in protecting natural organic materials against biological attack
  publication-title: Org. Geochem.
– volume: 64
  start-page: 1479
  year: 2000
  end-page: 1486
  ident: b0145
  article-title: Organic matter influence on clay wettability and soil aggregate stability
  publication-title: Soil Sci. Soc. Am. J.
– volume: 70
  start-page: 1719
  year: 2006
  end-page: 1730
  ident: b0585
  article-title: Black carbon increases cation exchange capacity in soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 178
  start-page: 455
  year: 2010
  end-page: 461
  ident: b0570
  article-title: Adsorption kinetics and desorption of Cu (II) and Zn (II) from aqueous solution onto humic acid
  publication-title: J. Hazard. Mater.
– volume: 36
  start-page: 940
  year: 2008
  end-page: 945
  ident: b0705
  article-title: Carbon-negative biofuels
  publication-title: Energ. Policy
– year: 1966
  ident: b0505
  article-title: Soil Organic Matter; Its Nature, Its Role in Soil Formation and in Soil Fertility
– reference: Major, J., Steiner, C., Downie, A., Lehmann, J., Joseph, S., 2009. Biochar effects on nutrient leaching. In: Biochar for Environmental Management: Science and Technology, vol. 271, pp. 303–320.
– volume: 35
  start-page: 122
  year: 2016
  end-page: 128
  ident: b0720
  article-title: Effects of maize stalk biochar on humus composition and humic acid structure in black soil
  publication-title: J. Agro-Environ. Sci.
– volume: 37
  start-page: 2007
  year: 2005
  end-page: 2016
  ident: b1065
  article-title: Physiological and molecular characterisation of microbial communities associated with different water-stable aggregate size classes
  publication-title: Soil Biol. Biochem.
– volume: 327
  start-page: 235
  year: 2010
  end-page: 246
  ident: b1070
  article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility
  publication-title: Plant Soil
– volume: 104
  start-page: 49
  year: 2017
  end-page: 58
  ident: b0170
  article-title: Interactions between biochar and litter priming: a three-source
  publication-title: Soil Biol. Biochem.
– volume: 143
  start-page: 615
  year: 2013
  end-page: 622
  ident: b0015
  article-title: Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures
  publication-title: Bioresour. Technol.
– volume: 76
  start-page: 127
  year: 2009
  end-page: 133
  ident: b0110
  article-title: Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures
  publication-title: Chemosphere
– volume: 126
  start-page: 69
  year: 2019
  end-page: 75
  ident: b0175
  article-title: Wheat straw biochar reduces environmental cadmium bioavailability
  publication-title: Environ. Int.
– volume: 89
  start-page: 150
  year: 2014
  end-page: 157
  ident: b0020
  article-title: Production and use of biochar from buffalo-weed (
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 57
  start-page: 513
  year: 2013
  end-page: 523
  ident: b0640
  article-title: Microbial biomass growth, following incorporation of biochars produced at 350
  publication-title: Soil Biol. Biochem.
– volume: 125
  start-page: 70
  year: 2015
  end-page: 85
  ident: b1020
  article-title: Application of biochar for the removal of pollutants from aqueous solutions
  publication-title: Chemosphere
– volume: 46
  start-page: 1183
  year: 2016
  end-page: 1296
  ident: b0025
  article-title: Biochar properties: transport, fate, and impact
  publication-title: Crit. Rev. Env. Sci. Tec.
– volume: 76
  start-page: 12
  year: 2014
  end-page: 21
  ident: b0620
  article-title: Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect
  publication-title: Soil Biol. Biochem.
– volume: 331
  start-page: 50
  year: 2018
  end-page: 52
  ident: b0090
  article-title: Spatial and temporal microscale pH change at the soil-biochar interface
  publication-title: Geoderma
– volume: 50
  start-page: 13274
  year: 2016
  end-page: 13282
  ident: b0305
  article-title: New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants
  publication-title: Environ. Sci. Technol.
– volume: 106
  start-page: 28
  year: 2017
  end-page: 35
  ident: b0645
  article-title: Priming effects in biochar enriched soils using a three-source-partitioning approach:
  publication-title: Soil Biol. Biochem.
– volume: 144
  start-page: 285
  year: 2016
  end-page: 291
  ident: b1110
  article-title: Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures
  publication-title: Chemosphere
– volume: 142
  start-page: 145
  year: 2016
  end-page: 152
  ident: b0220
  article-title: Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol
  publication-title: Chemosphere
– volume: 31
  start-page: 1187
  year: 2012
  end-page: 1193
  ident: b1145
  article-title: Reduced adsorption of propanil to black carbon: effect of dissolved organic matter loading mode and molecule size
  publication-title: Environ. Toxicol. Chem.
– volume: 5
  start-page: 215
  year: 2013
  end-page: 220
  ident: b0165
  article-title: A method for screening the relative long-term stability of biochar
  publication-title: Gcb. Bioenerg.
– volume: 289
  start-page: 161
  year: 2017
  end-page: 168
  ident: b1095
  article-title: Changes in soil chemical properties as affected by pyrogenic organic matter amendment with different intensity and frequency
  publication-title: Geoderma
– volume: 28
  start-page: 665
  year: 1996
  end-page: 676
  ident: b0395
  article-title: Soil aggregate formation and the accrual of particulate and mineral-associated organic matter
  publication-title: Soil Biol. Biochem.
– volume: 379
  start-page: 351
  year: 2014
  end-page: 360
  ident: b0075
  article-title: Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil
  publication-title: Plant Soil
– volume: 104
  start-page: 485
  year: 2013
  end-page: 493
  ident: b0745
  article-title: Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate
  publication-title: J. Anal. Appl. Pyrol.
– volume: 52
  start-page: 46
  year: 2014
  end-page: 54
  ident: b0810
  article-title: Effects of amendment of different biochars on soil carbon mineralisation and sequestration
  publication-title: Soil Res.
– volume: 89
  start-page: 510
  year: 2010
  end-page: 514
  ident: b0615
  article-title: Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment
  publication-title: Fuel
– volume: 9
  start-page: 1279
  year: 2017
  end-page: 1291
  ident: b0250
  article-title: Impact of six lignocellulosic biochars on C and N dynamics of two contrasting soils
  publication-title: Gcb. Bioenerg.
– start-page: 5
  year: 1979
  ident: b1015
  article-title: Decomposition in Terrestrial Ecosystems
– volume: 1
  start-page: 56
  year: 2010
  ident: b1125
  article-title: Sustainable biochar to mitigate global climate change
  publication-title: Nat. Commun.
– volume: 206
  start-page: 298
  year: 2015
  end-page: 305
  ident: b0845
  article-title: Metal/metalloid elements and polycyclic aromatic hydrocarbon in various biochars: the effect of feedstock, temperature, minerals, and properties
  publication-title: Environ. Pollut.
– volume: 127
  start-page: 153
  year: 2012
  end-page: 160
  ident: b1215
  article-title: Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles
  publication-title: Field Crops Res.
– volume: 80
  start-page: 136
  year: 2015
  end-page: 145
  ident: b0235
  article-title: Effect of temperature on biochar priming effects and its stability in soils
  publication-title: Soil Biol. Biochem.
– volume: 234
  start-page: 77
  year: 2017
  end-page: 85
  ident: b0315
  article-title: Removal of antimony (III) and cadmium (II) from aqueous solution using animal manure-derived hydrochars and pyrochars
  publication-title: Bioresour. Technol.
– volume: 6
  start-page: 389
  year: 2017
  end-page: 398
  ident: b0005
  article-title: Increasing rates of biochar application to soil induce stronger negative priming effect on soil organic carbon decomposition
  publication-title: Agr. Res.
– volume: 27
  start-page: 694
  year: 2017
  end-page: 704
  ident: b0460
  article-title: Incorporation of biochar carbon into stable soil aggregates: the role of clay mineralogy and other soil characteristics
  publication-title: Pedosphere
– volume: 634
  start-page: 1300
  year: 2018
  end-page: 1307
  ident: b1005
  article-title: Speciation of phosphorus in plant-and manure-derived biochars and its dissolution under various aqueous conditions
  publication-title: Sci. Total Environ.
– volume: 8
  year: 2013
  ident: b0295
  article-title: A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy
  publication-title: PloS One
– volume: 17
  start-page: 665
  year: 2017
  end-page: 673
  ident: b0060
  article-title: Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil
  publication-title: J. Soil. Sediment.
– volume: 181
  start-page: 770
  year: 2016
  end-page: 778
  ident: b0340
  article-title: Effects of three different biochars on aggregate stability, organic carbon mobility and micronutrient bioavailability
  publication-title: J. Environ. Manage.
– volume: 146
  start-page: 485
  year: 2013
  end-page: 493
  ident: b1180
  article-title: Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis
  publication-title: Bioresour. Technol.
– year: 2005
  ident: b1035
  article-title: Soils and Soil Fertility
– volume: 13
  start-page: 991
  year: 2013
  end-page: 1002
  ident: b0805
  article-title: Effects of biochar amendment on soil aggregates and hydraulic properties
  publication-title: J. Soil Sci. Plant Nut.
– volume: 43
  start-page: 3285
  year: 2009
  end-page: 3291
  ident: b0105
  article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine
  publication-title: Environ. Sci. Technol.
– volume: 223
  start-page: 3729
  year: 2012
  end-page: 3738
  ident: b0800
  article-title: Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase
  publication-title: Water Air Soil Pollut.
– volume: 33
  start-page: 81
  year: 2013
  end-page: 96
  ident: b0965
  article-title: Agroforestry and biochar to offset climate change: a review
  publication-title: Agron. Sustain. Dev.
– volume: 102
  start-page: 3488
  year: 2011
  end-page: 3497
  ident: b1205
  article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures
  publication-title: Bioresour. Technol.
– volume: 44
  start-page: 1295
  year: 2010
  end-page: 1301
  ident: b1270
  article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)
  publication-title: Environ. Sci. Technol.
– volume: 117
  start-page: 175
  year: 2018
  end-page: 184
  ident: b0900
  article-title: Linking organic matter chemistry with soil aggregate stability: insight from
  publication-title: Soil Biol. Biochem.
– volume: 9
  start-page: 1085
  year: 2017
  end-page: 1099
  ident: b1200
  article-title: Investigating the biochar effects on C-mineralization and sequestration of carbon in soil compared with conventional amendments using the stable isotope (δ
  publication-title: Gcb. Bioenerg.
– volume: 39
  start-page: 839
  year: 2008
  end-page: 845
  ident: b0085
  article-title: Microbial mineralization and assimilation of black carbon: dependency on degree of thermal alteration
  publication-title: Org. Geochem.
– reference: Downie, A., Crosky, A., Munroe, P., 2009. Physical properties of biochar. Biochar for environmental management: science and technology, 13–32.
– volume: 186
  start-page: 986
  year: 2017
  end-page: 993
  ident: b1220
  article-title: Impacts of biochar addition on soil dissolved organic matter characteristics in a wheat-maize rotation system in Loess Plateau of China
  publication-title: Chemosphere
– volume: 17
  start-page: 581
  year: 2017
  end-page: 589
  ident: b0200
  article-title: Biochar addition drives soil aggregation and carbon sequestration in aggregate fractions from an intensive agricultural system
  publication-title: J. Soil. Sediment.
– volume: 376
  start-page: 347
  year: 2014
  end-page: 361
  ident: b0330
  article-title: Does biochar influence soil physical properties and soil water availability?
  publication-title: Plant Soil
– reference: IBI, 2012. Standardized product definition and product testing guidelines for biochar that is used in soil, IBI Biochar Standards.
– volume: 337
  start-page: 1
  year: 2010
  end-page: 18
  ident: b0040
  article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review
  publication-title: Plant Soil
– reference: Steiner, C., Teixeira, W.G., Lehmann, J., Zech, W., 2004. Microbial response to charcoal amendments of highly weathered soils and Amazonian Dark Earths in Central Amazonia—preliminary results. In: Amazonian Dark Earths: Explorations in Space and Time. Springer, pp. 195–212.
– volume: 5
  start-page: 510
  year: 2016
  end-page: 517
  ident: b0275
  article-title: Profiles of volatile organic compounds in biochar: insights into process conditions and quality assessment
  publication-title: ACS Sustain. Chem. Eng.
– volume: 8
  start-page: 588
  year: 2016
  end-page: 599
  ident: b0045
  article-title: A time for every season: soil aggregate turnover stimulates decomposition and reduces carbon loss in grasslands managed for bioenergy
  publication-title: Gcb. Bioenerg.
– volume: 49
  start-page: 1
  year: 2019
  end-page: 42
  ident: b0725
  article-title: Methane production from process water of sewage sludge hydrothermal carbonization. A review. Valorising sludge through hydrothermal carbonization
  publication-title: Crit. Rev. Env. Sci. Tec.
– volume: 16
  start-page: 1366
  year: 2010
  end-page: 1379
  ident: b0665
  article-title: Fate of soil-applied black carbon: downward migration, leaching and soil respiration
  publication-title: Global Change Biol.
– volume: 41
  start-page: 210
  year: 2009
  end-page: 219
  ident: b0525
  article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by
  publication-title: Soil Biol. Biochem.
– volume: 65
  start-page: 95
  year: 2001
  end-page: 109
  ident: b0150
  article-title: Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces
  publication-title: Geochim. Cosmochim. Ac.
– volume: 14
  start-page: 336
  year: 2000
  end-page: 339
  ident: b0435
  article-title: Biochar from the straw-stalk of rapeseed plant
  publication-title: Energ. Fuel.
– volume: 181
  start-page: 60
  year: 2013
  end-page: 67
  ident: b1260
  article-title: Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures
  publication-title: Environ. Pollut.
– volume: 70
  start-page: 555
  year: 2006
  end-page: 569
  ident: b0945
  article-title: Bacterial and fungal contributions to carbon sequestration in agroecosystems
  publication-title: Soil Sci. Soc. Am. J.
– volume: 65
  start-page: 28
  year: 2014
  end-page: 39
  ident: b0280
  article-title: Biochar addition rate influences soil microbial abundance and activity in temperate soils
  publication-title: Eur. J. Soil Sci.
– volume: 103
  start-page: 626
  year: 2006
  end-page: 631
  ident: b0255
  article-title: The diversity and biogeography of soil bacterial communities
  publication-title: P. Natl. Acad. Sci. USA
– volume: 202
  start-page: 183
  year: 2013
  end-page: 191
  ident: b0010
  article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil
  publication-title: Geoderma
– volume: 51
  start-page: 13517
  year: 2017
  end-page: 13532
  ident: b0580
  article-title: Black carbon (biochar) in water/soil environments: molecular Structure, sorption, stability, and potential risk
  publication-title: Environ. Sci. Technol.
– reference: Joseph, S., Peacocke, C., Lehmann, J., Munroe, P., 2009. Developing a biochar classification and test methods. In: Biochar for Environmental Management: Science and Technology, vol. 1, pp. 107–126.
– volume: 49
  start-page: 1
  year: 2019
  end-page: 52
  ident: b1135
  article-title: A critical review on bioremediation technologies for Cr (VI)-contaminated soils and wastewater
  publication-title: Crit. Rev. Env. Sci. Tec.
– volume: 148
  start-page: 33
  year: 2017
  end-page: 84
  ident: b0935
  article-title: Stabilization of soil organic carbon as influenced by clay mineralogy
  publication-title: Adv. Agron.
– volume: 99
  start-page: 320
  year: 2008
  end-page: 326
  ident: b1210
  article-title: Activated carbon from olive kernels in a two-stage process: industrial improvement
  publication-title: Bioresour. Technol.
– volume: 13
  start-page: 1561
  year: 2013
  end-page: 1572
  ident: b0550
  article-title: Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties
  publication-title: J. Soil. Sediment.
– volume: 150
  start-page: 202
  year: 2009
  end-page: 208
  ident: b1115
  article-title: Effects of humic acid and lipid on the sorption of phenanthrene on char
  publication-title: Geoderma
– volume: 53
  start-page: 447
  year: 2003
  end-page: 458
  ident: b0245
  article-title: Characterization of carbonaceous combustion residues: II. Nonpolar organic compounds
  publication-title: Chemosphere
– volume: 692
  start-page: 333
  year: 2019
  end-page: 343
  ident: b0375
  article-title: Structural changes of soil organic matter and the linkage to rhizosphere bacterial communities with biochar amendment in manure fertilized soils
  publication-title: Sci. Total Environ.
– volume: 43
  start-page: 4973
  year: 2009
  end-page: 4978
  ident: b0850
  article-title: Influence of environmental factors on pesticide adsorption by black carbon: pH and model dissolved organic matter
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 7706
  year: 2016
  end-page: 7714
  ident: b0865
  article-title: Mineral-Biochar composites: molecular structure and porosity
  publication-title: Environ. Sci. Technol.
– volume: 30
  start-page: 69
  year: 2009
  end-page: 74
  ident: b0605
  article-title: Toxicity effect of phenol on aerobic granules
  publication-title: Environ. Technol.
– volume: 48
  start-page: 11227
  year: 2014
  end-page: 11234
  ident: b0320
  article-title: Role of structure and microporosity in phenanthrene sorption by natural and engineered organic matter
  publication-title: Environ. Sci. Technol.
– volume: 1
  start-page: 3
  year: 2019
  end-page: 22
  ident: b0815
  article-title: Response of microbial communities to biochar-amended soils: a critical review
  publication-title: Biochar
– volume: 118
  start-page: 158
  year: 2012
  end-page: 162
  ident: b0475
  article-title: Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (
  publication-title: Bioresour. Technol.
– volume: 123
  start-page: 484
  year: 2018
  end-page: 493
  ident: b1245
  article-title: Varying pyrolysis temperature impacts application effects of biochar on soil labile organic carbon and humic fractions
  publication-title: Appl. Soil Ecol.
– volume: 92
  start-page: 2504
  year: 2011
  end-page: 2512
  ident: b0515
  article-title: An assessment of U (VI) removal from groundwater using biochar produced from hydrothermal carbonization
  publication-title: J. Environ. Manage.
– volume: 158
  start-page: 443
  year: 2010
  end-page: 449
  ident: b0535
  article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil
  publication-title: Geoderma
– volume: 51
  start-page: 2635
  year: 2017
  end-page: 2642
  ident: b0405
  article-title: Characterization and phenanthrene sorption of natural and pyrogenic organic matter fractions
  publication-title: Environ. Sci. Technol.
– volume: 81
  start-page: 244
  year: 2015
  end-page: 254
  ident: b0735
  article-title: Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil
  publication-title: Soil Biol. Biochem.
– volume: 163
  start-page: 247
  year: 2011
  end-page: 255
  ident: b0760
  article-title: Surface chemistry variations among a series of laboratory-produced biochars
  publication-title: Geoderma
– volume: 33
  start-page: 141
  year: 1982
  end-page: 163
  ident: b1030
  article-title: Organic matter and water-stable aggregates in soils
  publication-title: Eur. J. Soil Sci.
– volume: 610
  start-page: 951
  year: 2018
  end-page: 960
  ident: b1255
  article-title: Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: roles of soil aggregation and microbial modulation
  publication-title: Sci. Total Environ.
– volume: 7
  start-page: 512
  year: 2015
  end-page: 526
  ident: b0355
  article-title: Experimental evidence for sequestering C with biochar by avoidance of CO
  publication-title: Gcb. Bioenerg.
– volume: 209
  start-page: 188
  year: 2013
  end-page: 197
  ident: b0350
  article-title: Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol
  publication-title: Geoderma
– volume: 121
  start-page: 235
  year: 2012
  end-page: 240
  ident: b0600
  article-title: Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution
  publication-title: Bioresour. Technol.
– volume: 625
  start-page: 1459
  year: 2018
  end-page: 1466
  ident: b0285
  article-title: Carbon stability and mitigation of fertilizer induced N
  publication-title: Sci. Total Environ.
– volume: 321
  year: 2008
  ident: b1045
  article-title: Geology. An uncertain future for soil carbon
  publication-title: Science
– start-page: 35
  year: 1980
  end-page: 53
  ident: b0210
  article-title: Procedures for Kerogen Isolation
– volume: 465
  start-page: 288
  year: 2013
  end-page: 297
  ident: b0240
  article-title: Microbial utilisation of biochar-derived carbon
  publication-title: Sci. Total Environ.
– volume: 218
  start-page: 1303
  year: 2016
  end-page: 1306
  ident: b0125
  article-title: Effect of pyrolysis temperature on the chemical oxidation stability of bamboo biochar
  publication-title: Bioresour. Technol.
– volume: 41
  start-page: 1301
  year: 2009
  end-page: 1310
  ident: b0970
  article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity
  publication-title: Soil Biol. Biochem.
– volume: 31
  start-page: 792
  year: 1997
  end-page: 799
  ident: b1155
  article-title: Dual-mode sorption of low-polarity compounds in glassy poly (vinyl chloride) and soil organic matter
  publication-title: Environ. Sci. Technol.
– volume: 127
  start-page: 26
  year: 2015
  end-page: 31
  ident: b1240
  article-title: A one-year short-term biochar application improved carbon accumulation in large macroaggregate fractions
  publication-title: Catena
– volume: 138
  start-page: 67
  year: 2015
  end-page: 73
  ident: b0215
  article-title: Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar
  publication-title: Chemosphere
– volume: 4
  start-page: 3687
  year: 2014
  ident: b0925
  article-title: Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil
  publication-title: Sci. Rep.
– volume: 118
  start-page: 91
  year: 2018
  end-page: 96
  ident: b1120
  article-title: The accumulation of rhizodeposits in organo-mineral fractions promoted biochar-induced negative priming of native soil organic carbon in Ferralsol
  publication-title: Soil Biol. Biochem.
– volume: 46
  start-page: 11104
  year: 2012
  end-page: 11111
  ident: b0140
  article-title: Fast and slow rates of naphthalene sorption to biochars produced at different temperatures
  publication-title: Environ. Sci. Technol.
– volume: 16
  start-page: 1481
  year: 2016
  end-page: 1497
  ident: b0185
  article-title: Long-term effects of biochar amount on the content and composition of organic matter in soil aggregates under field conditions
  publication-title: J. Soil. Sediment.
– volume: 44
  start-page: 1933
  year: 2010
  end-page: 1939
  ident: b1050
  article-title: Potential for misidentification of environmentally persistent free radicals as molecular pollutants in particulate matter
  publication-title: Environ. Sci. Technol.
– volume: 138
  start-page: 266
  year: 2013
  end-page: 270
  ident: b0480
  article-title: Characterization of cadmium removal from aqueous solution by biochar produced from a giant
  publication-title: Bioresour. Technol.
– volume: 155
  start-page: 35
  year: 2016
  end-page: 44
  ident: b0795
  article-title: In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils
  publication-title: Soil Till. Res.
– reference: Doerr, S., Shakesby, R., 2009. Soil water repellency. Principles, causes and relevance in fire-affected environments, Efectos de los incendios forestales sobre los suelos en España: el estado de la cuestión visto por los científicos españoles. Cátedra Divulgación de la Ciencia, pp. 57–76.
– volume: 121
  start-page: 430
  year: 2011
  end-page: 440
  ident: b0300
  article-title: Effects and fate of biochar from rice residues in rice-based systems
  publication-title: Field Crops Res.
– volume: 40
  start-page: 7757
  year: 2006
  end-page: 7763
  ident: b0835
  article-title: Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids
  publication-title: Environ. Sci. Technol.
– volume: 48
  start-page: 501
  year: 2010
  end-page: 515
  ident: b0420
  article-title: An investigation into the reactions of biochar in soil
  publication-title: Soil Res.
– volume: 50
  start-page: 1197
  year: 2013
  end-page: 1206
  ident: b0335
  article-title: Charcoal function and management in boreal ecosystems
  publication-title: J. Appl. Ecol.
– reference: Busscher, W., Novak, J., Ahmedna, M., 2003. Biochar addition to a southeastern USA coastal sand to decrease soil strength and improve soil quality. In: Proceedings of the ISTRO 18th Triennial Conference, Izmir, Turkey, June, pp. 15–19.
– volume: 165
  start-page: 190
  year: 2017
  end-page: 197
  ident: b0260
  article-title: Aggregate size distribution in a biochar-amended tropical Ultisol under conventional hand-hoe tillage
  publication-title: Soil Till. Res.
– volume: 30
  start-page: 2075
  year: 2011
  end-page: 2080
  ident: b1265
  article-title: The structural characteristics of biochar and its effects on soil available nutrients and humus composition
  publication-title: J. Agro-Environ. Sci.
– volume: 111
  start-page: 54
  year: 1971
  end-page: 63
  ident: b0695
  article-title: Microbial activity in relation to soil humus formation
  publication-title: Soil Sci.
– volume: 42
  start-page: 5137
  year: 2008
  end-page: 5143
  ident: b0115
  article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures
  publication-title: Environ. Sci. Technol.
– volume: 11
  start-page: 5199
  year: 2014
  ident: b0655
  article-title: Carbon losses from pyrolysed and original wood in a forest soil under natural and increased N deposition
  publication-title: Biogeosciences
– volume: 166
  start-page: 303
  year: 2014
  end-page: 308
  ident: b0860
  article-title: Pyrolysis condition affected sulfamethazine sorption by tea waste biochars
  publication-title: Bioresour. Technol.
– volume: 71
  start-page: 370
  year: 2002
  end-page: 374
  ident: b0710
  article-title: Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments
  publication-title: J. Japan. Soc. Hortic. Sci.
– volume: 303
  start-page: 110
  year: 2017
  end-page: 117
  ident: b1085
  article-title: Biochar additions can enhance soil structure and the physical stabilization of C in aggregates
  publication-title: Geoderma
– reference: Xu, Z., Chan, K.Y., 2012. Biochar: Nutrient Properties and Their Enhancement, Biochar for Environmental Management, Routledge, pp. 99–116.
– volume: 239
  start-page: 293
  year: 2015
  end-page: 303
  ident: b0840
  article-title: Characterisation, stability, and microbial effects of four biochars produced from crop residues
  publication-title: Geoderma
– volume: 159
  start-page: 2594
  year: 2011
  end-page: 2601
  ident: b1225
  article-title: Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures
  publication-title: Environ. Pollut.
– volume: 45
  start-page: 9611
  year: 2011
  end-page: 9618
  ident: b0455
  article-title: Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil
  publication-title: Environ. Sci. Technol.
– volume: 46
  start-page: 1367
  year: 2016
  end-page: 1401
  ident: b0680
  article-title: Designing advanced biochar products for maximizing greenhouse gas mitigation potential
  publication-title: Crit. Rev. Env. Sci. Tec.
– volume: 46
  start-page: 11770
  year: 2012
  end-page: 11778
  ident: b0930
  article-title: Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature
  publication-title: Environ. Sci. Technol.
– volume: 65
  start-page: 72
  year: 2014
  end-page: 82
  ident: b0055
  article-title: An incubation study on the stability and biological effects of pyrogenic and hydrothermal biochar in two soils
  publication-title: Eur. J. Soil Sci.
– volume: 204
  start-page: 306
  year: 2015
  end-page: 312
  ident: b0575
  article-title: Effect of humic acid (HA) on sulfonamide sorption by biochars
  publication-title: Environ. Pollut.
– volume: 102
  start-page: 9897
  year: 2011
  end-page: 9903
  ident: b1000
  article-title: Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure
  publication-title: Bioresour. Technol.
– volume: 95
  start-page: 19
  year: 2016
  end-page: 24
  ident: b0265
  article-title: Influence of pig manure and its biochar on soil CO
  publication-title: Ecol. Eng.
– volume: 48
  start-page: 577
  year: 2010
  end-page: 585
  ident: b0485
  article-title: Stability and stabilisation of biochar and green manure in soil with different organic carbon contents
  publication-title: Soil Res.
– volume: 188
  start-page: 319
  year: 2011
  end-page: 333
  ident: b0740
  article-title: Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent
  publication-title: J. Hazard. Mater.
– volume: 87
  start-page: 151
  year: 2012
  end-page: 157
  ident: b0595
  article-title: Water extractable organic carbon in untreated and chemical treated biochars
  publication-title: Chemosphere
– volume: 10
  start-page: 423
  year: 2000
  end-page: 436
  ident: b0410
  article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation
  publication-title: Ecol. Appl.
– volume: 51
  start-page: 2061
  year: 2008
  end-page: 2069
  ident: b0270
  article-title: Effect of low-temperature pyrolysis conditions on biochar for agricultural use
  publication-title: T. ASABE
– volume: 8
  start-page: 512
  year: 2016
  end-page: 523
  ident: b1090
  article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects
  publication-title: Gcb. Bioenerg.
– volume: 45
  start-page: 115
  year: 2008
  end-page: 131
  ident: b0070
  article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review
  publication-title: Biol. Fert. Soils
– volume: 117
  start-page: 10
  year: 2017
  end-page: 15
  ident: b0625
  article-title: Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland
  publication-title: Appl. Soil Ecol.
– volume: 1
  start-page: 1
  year: 2013
  end-page: 41
  ident: b1275
  article-title: The stability of biochar in the environment
  publication-title: Biochar Soil Biota
– volume: 112
  start-page: 103
  year: 2011
  end-page: 143
  ident: b0510
  article-title: Biochar application to soil: agronomic and environmental benefits and unintended consequences
  publication-title: Adv. Agron.
– volume: 118
  start-page: 77
  year: 2004
  end-page: 88
  ident: b0700
  article-title: Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain
  publication-title: Geoderma
– volume: 75
  start-page: 1589
  year: 2009
  end-page: 1596
  ident: b0880
  article-title: Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization
  publication-title: Appl. Environ. Microb.
– start-page: 47
  year: 2010
  end-page: 82
  ident: b0955
  article-title: A review of biochar and its use and function in soil
  publication-title: Adv. Agron. Elsevier
– reference: Verheijen, F., Jeffery, S., Bastos, A., Van der Velde, M., Diafas, I., 2010. Biochar Application to Soils. A Critical Scientific Review of Effects on Soil Properties, Processes, and Functions, EUR 24099, p. 162.
– volume: 45
  start-page: 939
  year: 2015
  end-page: 969
  ident: b1150
  article-title: Characteristics and applications of biochar for environmental remediation: a review
  publication-title: Crit. Rev. Env. Sci. Tec.
– volume: 11
  start-page: 660
  year: 2019
  end-page: 671
  ident: b0895
  article-title: Soil greenhouse gas, carbon content, and tree growth response to biochar amendment in western United States forests
  publication-title: Gcb Bioenerg.
– volume: 80
  start-page: 709
  year: 2010
  end-page: 715
  ident: b0990
  article-title: Sorption of endocrine disrupting chemicals by condensed organic matter in soils and sediments
  publication-title: Chemosphere
– volume: 89
  start-page: 231
  year: 2000
  end-page: 242
  ident: b0830
  article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus
  publication-title: Oikos
– volume: 46
  start-page: 9333
  year: 2012
  end-page: 9341
  ident: b0445
  article-title: Solvent-extractable polycyclic aromatic hydrocarbons in biochar: influence of pyrolysis temperature and feedstock
  publication-title: Environ. Sci. Technol.
– volume: 13
  start-page: 230
  year: 1997
  end-page: 244
  ident: b0820
  article-title: Agricultural soils as a sink to mitigate CO2 emissions
  publication-title: Soil Use Manage.
– volume: 140
  start-page: 406
  year: 2013
  end-page: 413
  ident: b1010
  article-title: Biochars prepared from anaerobic digestion residue, palm bark, and
  publication-title: Bioresour. Technol.
– volume: 66
  start-page: 714
  year: 2015
  end-page: 721
  ident: b0875
  article-title: Negative priming of native soil organic carbon mineralization by oilseed biochars of contrasting quality
  publication-title: Eur. J. Soil Sci.
– volume: 36
  start-page: 177
  year: 2004
  end-page: 190
  ident: b0885
  article-title: Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils
  publication-title: Soil Biol. Biochem.
– volume: 65
  start-page: 52
  year: 2014
  end-page: 59
  ident: b0080
  article-title: Carbon dioxide emissions from biochar in soil: role of clay, microorganisms and carbonates
  publication-title: Eur. J. Soil Sci.
– volume: 193
  start-page: 122
  year: 2013
  end-page: 130
  ident: b0765
  article-title: Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures
  publication-title: Geoderma
– volume: 10
  start-page: 1349
  year: 2013
  end-page: 1356
  ident: b1055
  article-title: Adsorption kinetics of herbicide paraquat in aqueous solution onto a low-cost adsorbent, swine-manure-derived biochar
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 42
  start-page: 2311
  year: 2012
  end-page: 2364
  ident: b0225
  article-title: Biochar: carbon sequestration, land remediation, and impacts on soil microbiology
  publication-title: Crit. Rev. Env. Sci. Tec.
– volume: 176
  start-page: 288
  year: 2015
  end-page: 291
  ident: b1230
  article-title: Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate
  publication-title: Bioresour. Technol.
– volume: 113
  start-page: 211
  year: 2003
  end-page: 235
  ident: b0690
  article-title: Controls of bioavailability and biodegradability of dissolved organic matter in soils
  publication-title: Geoderma
– volume: 65
  start-page: 60
  year: 2014
  end-page: 71
  ident: b0230
  article-title: Biochar carbon stability in four contrasting soils
  publication-title: Eur. J. Soil Sci.
– volume: 115
  start-page: 209
  year: 2017
  end-page: 219
  ident: b0870
  article-title: Changes in biochar physical and chemical properties: accelerated biochar aging in an acidic soil
  publication-title: Carbon
– volume: 245
  start-page: 208
  year: 2019
  end-page: 217
  ident: b1250
  article-title: Insight into interaction between biochar and soil minerals in changing biochar properties and adsorption capacities for sulfamethoxazole
  publication-title: Environ. Pollut.
– volume: 94
  start-page: 107
  year: 2016
  end-page: 121
  ident: b0325
  article-title: Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature
  publication-title: Soil Biol. Biochem.
– volume: 31
  start-page: 711
  year: 2000
  end-page: 725
  ident: b0430
  article-title: The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils
  publication-title: Org. Geochem.
– volume: 43
  start-page: 1169
  year: 2011
  end-page: 1179
  ident: b1280
  article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils
  publication-title: Soil Biol. Biochem.
– volume: 136
  start-page: 119
  year: 2017
  end-page: 125
  ident: b0500
  article-title: Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity
  publication-title: Ecotox. Environ. Safe.
– volume: 107
  start-page: 419
  year: 2012
  end-page: 428
  ident: b0100
  article-title: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar
  publication-title: Bioresour. Technol.
– volume: 104
  start-page: 165
  year: 2012
  end-page: 172
  ident: b0915
  article-title: Removal of hexavalent Cr by coconut coir and derived chars-the effect of surface functionality
  publication-title: Bioresour. Technol.
– reference: Huang, P., Hardie, A., 2009. Formation mechanisms of humic substances in the environment. In: Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems, pp. 41–109.
– volume: 50
  start-page: 2389
  year: 2016
  end-page: 2395
  ident: b1170
  article-title: Biochar-facilitated microbial reduction of hematite
  publication-title: Environ. Sci. Technol.
– reference: Dugan, E., Verhoef, A., Robinson, S., Sohi, S., 2010. Bio-char from sawdust, maize stover and charcoal: impact on water holding capacities (WHC) of three soils from Ghana. In: 19th World Congress of Soil Science, Symposium, pp. 9–12.
– volume: 13
  start-page: 491
  year: 2014
  end-page: 498
  ident: b1195
  article-title: Effects of rice straw and its biochar addition on soil labile carbon and soil organic carbon
  publication-title: J. Integr. Agr.
– volume: 226
  start-page: 270
  year: 2014
  end-page: 278
  ident: b0750
  article-title: Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties
  publication-title: Geoderma
– volume: 62
  start-page: 137
  year: 2013
  end-page: 146
  ident: b0675
  article-title: Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions
  publication-title: Soil Biol. Biochem.
– volume: 4
  start-page: 29
  year: 2001
  end-page: 48
  ident: b0780
  article-title: Dissolved organic carbon in terrestrial ecosystems: synthesis and a model
  publication-title: Ecosystems
– volume: 206
  start-page: 46
  year: 2015
  end-page: 59
  ident: b0290
  article-title: Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions
  publication-title: Agr. Ecosyst. Environ.
– volume: 333
  start-page: 443
  year: 2010
  end-page: 452
  ident: b0960
  article-title: Ethylene: potential key for biochar amendment impacts
  publication-title: Plant Soil
– volume: 14
  start-page: 975
  year: 2012
  end-page: 979
  ident: b0610
  article-title: Effect of biochar on soil aggregates in the Loess Plateau: results from incubation experiments
  publication-title: Int. J. Agr. Biol.
– volume: 64
  start-page: 379
  year: 2013
  end-page: 390
  ident: b0030
  article-title: Interactions between biochar stability and soil organisms: review and research needs
  publication-title: Eur. J. Soil Sci.
– volume: 249
  start-page: 343
  year: 2003
  end-page: 357
  ident: b0540
  article-title: Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments
  publication-title: Plant Soil
– volume: 106
  start-page: 77
  year: 2010
  end-page: 142
  ident: b0490
  article-title: Advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment
  publication-title: Adv. Agron.
– volume: 5
  start-page: 693
  year: 2014
  end-page: 704
  ident: b0755
  article-title: Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging
  publication-title: Solid Earth
– volume: 72
  start-page: 6069
  year: 2008
  end-page: 6078
  ident: b0590
  article-title: Stability of biomass-derived black carbon in soils
  publication-title: Geochim. Cosmochim. Ac.
– volume: 145
  start-page: 135
  year: 2016
  end-page: 141
  ident: b0920
  article-title: Impact of switchgrass biochars with supplemental nitrogen on carbon-nitrogen mineralization in highly weathered Coastal Plain Ultisols
  publication-title: Chemosphere
– volume: 70
  start-page: 229
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b0520
  article-title: Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.12.021
– volume: 41
  start-page: 210
  year: 2009
  ident: 10.1016/j.geoderma.2020.114184_b0525
  article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.10.016
– volume: 379
  start-page: 351
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b0075
  article-title: Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil
  publication-title: Plant Soil
  doi: 10.1007/s11104-014-2074-0
– volume: 241
  start-page: 887
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b1175
  article-title: Indispensable role of biochar-inherent mineral constituents in its environmental applications: a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.06.023
– ident: 10.1016/j.geoderma.2020.114184_b0205
– volume: 48
  start-page: 577
  year: 2010
  ident: 10.1016/j.geoderma.2020.114184_b0485
  article-title: Stability and stabilisation of biochar and green manure in soil with different organic carbon contents
  publication-title: Soil Res.
  doi: 10.1071/SR10036
– volume: 245
  start-page: 56
  year: 2015
  ident: 10.1016/j.geoderma.2020.114184_b0345
  article-title: Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.01.012
– volume: 5
  start-page: 153
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b0980
  article-title: Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils
  publication-title: Gcb. Bioenerg.
  doi: 10.1111/gcbb.12001
– volume: 104
  start-page: 485
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b0745
  article-title: Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2013.05.022
– volume: 51
  start-page: 115
  year: 2012
  ident: 10.1016/j.geoderma.2020.114184_b0890
  article-title: Biological degradation of pyrogenic organic matter in temperate forest soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.04.005
– volume: 44
  start-page: 1295
  year: 2010
  ident: 10.1016/j.geoderma.2020.114184_b1270
  article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903140c
– volume: 118
  start-page: 77
  year: 2004
  ident: 10.1016/j.geoderma.2020.114184_b0700
  article-title: Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00185-X
– volume: 118
  start-page: 91
  year: 2018
  ident: 10.1016/j.geoderma.2020.114184_b1120
  article-title: The accumulation of rhizodeposits in organo-mineral fractions promoted biochar-induced negative priming of native soil organic carbon in Ferralsol
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.12.008
– volume: 118
  start-page: 158
  year: 2012
  ident: 10.1016/j.geoderma.2020.114184_b0475
  article-title: Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida)
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.04.094
– year: 2005
  ident: 10.1016/j.geoderma.2020.114184_b1035
– volume: 43
  start-page: 2304
  year: 2011
  ident: 10.1016/j.geoderma.2020.114184_b0635
  article-title: Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.07.020
– volume: 186
  start-page: 293
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b0910
  article-title: Phytotoxicity attenuation in Vigna radiata under heavy metal stress at the presence of biochar and N fixing bacteria
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2016.07.024
– volume: 7
  start-page: 1150
  year: 2015
  ident: 10.1016/j.geoderma.2020.114184_b1075
  article-title: Biochar mineralization and priming effect on SOM decomposition in two European short rotation coppices
  publication-title: Gcb. Bioenerg.
  doi: 10.1111/gcbb.12219
– volume: 168
  start-page: 252
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b1235
  article-title: The use of biochar-amended composting to improve the humification and degradation of sewage sludge
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.02.080
– volume: 14
  start-page: 336
  year: 2000
  ident: 10.1016/j.geoderma.2020.114184_b0435
  article-title: Biochar from the straw-stalk of rapeseed plant
  publication-title: Energ. Fuel.
  doi: 10.1021/ef9901138
– volume: 188
  start-page: 319
  year: 2011
  ident: 10.1016/j.geoderma.2020.114184_b0740
  article-title: Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.01.127
– volume: 105
  start-page: 255
  year: 2005
  ident: 10.1016/j.geoderma.2020.114184_b0555
  article-title: Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude
  publication-title: Agr. Ecosyst. Environ.
  doi: 10.1016/j.agee.2004.03.006
– volume: 664
  start-page: 11
  year: 2019
  ident: 10.1016/j.geoderma.2020.114184_b0560
  article-title: Biochar stability assessment by incubation and modelling: methods, drawbacks and recommendations
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.298
– volume: 634
  start-page: 1300
  year: 2018
  ident: 10.1016/j.geoderma.2020.114184_b1005
  article-title: Speciation of phosphorus in plant-and manure-derived biochars and its dissolution under various aqueous conditions
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.04.099
– volume: 127
  start-page: 26
  year: 2015
  ident: 10.1016/j.geoderma.2020.114184_b1240
  article-title: A one-year short-term biochar application improved carbon accumulation in large macroaggregate fractions
  publication-title: Catena
  doi: 10.1016/j.catena.2014.12.009
– volume: 123
  start-page: 484
  year: 2018
  ident: 10.1016/j.geoderma.2020.114184_b1245
  article-title: Varying pyrolysis temperature impacts application effects of biochar on soil labile organic carbon and humic fractions
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2017.09.007
– volume: 200
  start-page: 90
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b0770
  article-title: The effects of walnut shell and wood feedstock biochar amendments on greenhouse gas emissions from a fertile soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.02.004
– volume: 111
  start-page: 320
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b1160
  article-title: Cadmium adsorption on plant-and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.04.043
– ident: 10.1016/j.geoderma.2020.114184_b0670
– volume: 41
  start-page: 990
  year: 2012
  ident: 10.1016/j.geoderma.2020.114184_b0495
  article-title: Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0070
– volume: 303
  start-page: 110
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b1085
  article-title: Biochar additions can enhance soil structure and the physical stabilization of C in aggregates
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.05.027
– volume: 610
  start-page: 951
  year: 2018
  ident: 10.1016/j.geoderma.2020.114184_b1255
  article-title: Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: roles of soil aggregation and microbial modulation
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.08.166
– ident: 10.1016/j.geoderma.2020.114184_b1080
– volume: 51
  start-page: 5473
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b1140
  article-title: A direct observation of the fine aromatic clusters and molecular structures of biochars
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b06300
– volume: 35
  start-page: 122
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b0720
  article-title: Effects of maize stalk biochar on humus composition and humic acid structure in black soil
  publication-title: J. Agro-Environ. Sci.
– volume: 5
  start-page: 215
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b0165
  article-title: A method for screening the relative long-term stability of biochar
  publication-title: Gcb. Bioenerg.
  doi: 10.1111/gcbb.12035
– volume: 78
  start-page: 531
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b0785
  article-title: Turnover of soil carbon following addition of switchgrass-derived biochar to four soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2013.07.0258
– volume: 47
  start-page: 151
  year: 1996
  ident: 10.1016/j.geoderma.2020.114184_b0065
  article-title: Total carbon and nitrogen in the soils of the world
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1996.tb01386.x
– volume: 17
  start-page: 543
  year: 1980
  ident: 10.1016/j.geoderma.2020.114184_b0465
  article-title: Microhabitats in soil aggregates. Their relationship with bacterial biomass and the size of the procaryotes present
  publication-title: Revue d'Ecologie et de Biologie du Sol
– volume: 155
  start-page: 35
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b0795
  article-title: In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2015.08.002
– volume: 14
  start-page: 975
  year: 2012
  ident: 10.1016/j.geoderma.2020.114184_b0610
  article-title: Effect of biochar on soil aggregates in the Loess Plateau: results from incubation experiments
  publication-title: Int. J. Agr. Biol.
– volume: 96
  start-page: 265
  year: 2015
  ident: 10.1016/j.geoderma.2020.114184_b1100
  article-title: Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2015.08.018
– volume: 193
  start-page: 122
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b0765
  article-title: Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.10.002
– volume: 245
  start-page: 208
  year: 2019
  ident: 10.1016/j.geoderma.2020.114184_b1250
  article-title: Insight into interaction between biochar and soil minerals in changing biochar properties and adsorption capacities for sulfamethoxazole
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.11.013
– volume: 117
  start-page: 10
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b0625
  article-title: Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2017.04.024
– volume: 17
  start-page: 665
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b0060
  article-title: Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil
  publication-title: J. Soil. Sediment.
  doi: 10.1007/s11368-015-1243-y
– volume: 376
  start-page: 347
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b0330
  article-title: Does biochar influence soil physical properties and soil water availability?
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1980-x
– volume: 46
  start-page: 9333
  year: 2012
  ident: 10.1016/j.geoderma.2020.114184_b0445
  article-title: Solvent-extractable polycyclic aromatic hydrocarbons in biochar: influence of pyrolysis temperature and feedstock
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302125k
– volume: 692
  start-page: 333
  year: 2019
  ident: 10.1016/j.geoderma.2020.114184_b0375
  article-title: Structural changes of soil organic matter and the linkage to rhizosphere bacterial communities with biochar amendment in manure fertilized soils
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.07.262
– volume: 42
  start-page: 5137
  year: 2008
  ident: 10.1016/j.geoderma.2020.114184_b0115
  article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8002684
– volume: 121
  start-page: 430
  year: 2011
  ident: 10.1016/j.geoderma.2020.114184_b0300
  article-title: Effects and fate of biochar from rice residues in rice-based systems
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2011.01.014
– volume: 1
  start-page: 3
  year: 2019
  ident: 10.1016/j.geoderma.2020.114184_b0815
  article-title: Response of microbial communities to biochar-amended soils: a critical review
  publication-title: Biochar
  doi: 10.1007/s42773-019-00009-2
– volume: 239
  start-page: 293
  year: 2015
  ident: 10.1016/j.geoderma.2020.114184_b0840
  article-title: Characterisation, stability, and microbial effects of four biochars produced from crop residues
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.11.009
– volume: 1
  start-page: 1
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b1275
  article-title: The stability of biochar in the environment
  publication-title: Biochar Soil Biota
– volume: 33
  start-page: 941
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b0365
  article-title: Effect of biochar on carbon dioxide release, organic carbon accumulation, and aggregation of soil
  publication-title: Environ. Prog. Sustain.
  doi: 10.1002/ep.11867
– volume: 57
  start-page: 513
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b0640
  article-title: Microbial biomass growth, following incorporation of biochars produced at 350 oC or 700 oC, in a silty-clay loam soil of high and low pH
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.10.033
– volume: 465
  start-page: 288
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b0240
  article-title: Microbial utilisation of biochar-derived carbon
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.03.090
– volume: 165
  start-page: 190
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b0260
  article-title: Aggregate size distribution in a biochar-amended tropical Ultisol under conventional hand-hoe tillage
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2016.08.012
– volume: 70
  start-page: 555
  year: 2006
  ident: 10.1016/j.geoderma.2020.114184_b0945
  article-title: Bacterial and fungal contributions to carbon sequestration in agroecosystems
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2004.0347
– volume: 89
  start-page: 150
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b0020
  article-title: Production and use of biochar from buffalo-weed (Ambrosia trifida L.) for trichloroethylene removal from water
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.4157
– volume: 64
  start-page: 681
  year: 2000
  ident: 10.1016/j.geoderma.2020.114184_b0950
  article-title: Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2000.642681x
– volume: 1
  start-page: 56
  year: 2010
  ident: 10.1016/j.geoderma.2020.114184_b1125
  article-title: Sustainable biochar to mitigate global climate change
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1053
– volume: 50
  start-page: 13274
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b0305
  article-title: New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b02401
– volume: 17
  start-page: 780
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b0630
  article-title: Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China
  publication-title: J. Soil Sediment
  doi: 10.1007/s11368-016-1361-1
– volume: 72
  start-page: 6069
  year: 2008
  ident: 10.1016/j.geoderma.2020.114184_b0590
  article-title: Stability of biomass-derived black carbon in soils
  publication-title: Geochim. Cosmochim. Ac.
  doi: 10.1016/j.gca.2008.09.028
– volume: 76
  start-page: 12
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b0620
  article-title: Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.04.029
– volume: 252
  start-page: 200
  year: 2018
  ident: 10.1016/j.geoderma.2020.114184_b0190
  article-title: Biochar application constrained native soil organic carbon accumulation from wheat residue inputs in a long-term wheat-maize cropping system
  publication-title: Agr. Ecosyst. Environ.
  doi: 10.1016/j.agee.2017.08.026
– year: 1966
  ident: 10.1016/j.geoderma.2020.114184_b0505
– volume: 36
  start-page: 940
  year: 2008
  ident: 10.1016/j.geoderma.2020.114184_b0705
  article-title: Carbon-negative biofuels
  publication-title: Energ. Policy
  doi: 10.1016/j.enpol.2007.11.029
– volume: 43
  start-page: 1812
  year: 2011
  ident: 10.1016/j.geoderma.2020.114184_b0545
  article-title: Biochar effects on soil biota–a review
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.04.022
– volume: 80
  start-page: 709
  year: 2010
  ident: 10.1016/j.geoderma.2020.114184_b0990
  article-title: Sorption of endocrine disrupting chemicals by condensed organic matter in soils and sediments
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.05.028
– volume: 12
  start-page: 494
  year: 2012
  ident: 10.1016/j.geoderma.2020.114184_b1165
  article-title: pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars
  publication-title: J. Soil. Sediment.
  doi: 10.1007/s11368-012-0483-3
– volume: 64
  start-page: 1479
  year: 2000
  ident: 10.1016/j.geoderma.2020.114184_b0145
  article-title: Organic matter influence on clay wettability and soil aggregate stability
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2000.6441479x
– volume: 52
  start-page: 46
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b0810
  article-title: Effects of amendment of different biochars on soil carbon mineralisation and sequestration
  publication-title: Soil Res.
  doi: 10.1071/SR13186
– volume: 66
  start-page: 714
  year: 2015
  ident: 10.1016/j.geoderma.2020.114184_b0875
  article-title: Negative priming of native soil organic carbon mineralization by oilseed biochars of contrasting quality
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12257
– volume: 106
  start-page: 77
  year: 2010
  ident: 10.1016/j.geoderma.2020.114184_b0490
  article-title: Advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(10)06003-7
– volume: 46
  start-page: 11770
  year: 2012
  ident: 10.1016/j.geoderma.2020.114184_b0930
  article-title: Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302545b
– volume: 382
  year: 2020
  ident: 10.1016/j.geoderma.2020.114184_b0855
  article-title: Effects of laboratory biotic aging on the characteristics of biochar and its water-soluble organic products
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121071
– volume: 42
  start-page: 2311
  year: 2012
  ident: 10.1016/j.geoderma.2020.114184_b0225
  article-title: Biochar: carbon sequestration, land remediation, and impacts on soil microbiology
  publication-title: Crit. Rev. Env. Sci. Tec.
  doi: 10.1080/10643389.2011.574115
– volume: 177
  start-page: 26
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b0985
  article-title: Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil
  publication-title: J. Plant Nut. Soil Sci.
  doi: 10.1002/jpln.201200639
– volume: 4
  start-page: 3687
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b0925
  article-title: Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil
  publication-title: Sci. Rep.
  doi: 10.1038/srep03687
– start-page: 5
  year: 1979
  ident: 10.1016/j.geoderma.2020.114184_b1015
– volume: 37
  start-page: 2007
  year: 2005
  ident: 10.1016/j.geoderma.2020.114184_b1065
  article-title: Physiological and molecular characterisation of microbial communities associated with different water-stable aggregate size classes
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2005.02.037
– volume: 36
  start-page: 835
  year: 2004
  ident: 10.1016/j.geoderma.2020.114184_b0390
  article-title: Microbial ethylene production and inhibition of methanotrophic activity in a deciduous forest soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2004.01.013
– volume: 65
  start-page: 60
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b0230
  article-title: Biochar carbon stability in four contrasting soils
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12094
– volume: 204
  start-page: 306
  year: 2015
  ident: 10.1016/j.geoderma.2020.114184_b0575
  article-title: Effect of humic acid (HA) on sulfonamide sorption by biochars
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2015.05.030
– volume: 41
  start-page: 1301
  year: 2009
  ident: 10.1016/j.geoderma.2020.114184_b0970
  article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.03.016
– volume: 146
  start-page: 485
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b1180
  article-title: Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.07.086
– volume: 186
  start-page: 986
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b1220
  article-title: Impacts of biochar addition on soil dissolved organic matter characteristics in a wheat-maize rotation system in Loess Plateau of China
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.08.074
– volume: 5
  start-page: 693
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b0755
  article-title: Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging
  publication-title: Solid Earth
  doi: 10.5194/se-5-693-2014
– volume: 44
  start-page: 1247
  year: 2010
  ident: 10.1016/j.geoderma.2020.114184_b0450
  article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9031419
– volume: 150
  start-page: 202
  year: 2009
  ident: 10.1016/j.geoderma.2020.114184_b1115
  article-title: Effects of humic acid and lipid on the sorption of phenanthrene on char
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.02.009
– volume: 33
  start-page: 141
  year: 1982
  ident: 10.1016/j.geoderma.2020.114184_b1030
  article-title: Organic matter and water-stable aggregates in soils
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1982.tb01755.x
– ident: 10.1016/j.geoderma.2020.114184_b0380
– volume: 62
  start-page: 137
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b0675
  article-title: Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.03.013
– volume: 289
  start-page: 161
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b1095
  article-title: Changes in soil chemical properties as affected by pyrogenic organic matter amendment with different intensity and frequency
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.12.006
– volume: 107
  start-page: 419
  year: 2012
  ident: 10.1016/j.geoderma.2020.114184_b0100
  article-title: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.11.084
– volume: 7
  start-page: 488
  year: 2015
  ident: 10.1016/j.geoderma.2020.114184_b0775
  article-title: Effect of physical weathering on the carbon sequestration potential of biochars and hydrochars in soil
  publication-title: Gcb. Bioenerg.
  doi: 10.1111/gcbb.12158
– start-page: 47
  year: 2010
  ident: 10.1016/j.geoderma.2020.114184_b0955
  article-title: A review of biochar and its use and function in soil
  publication-title: Adv. Agron. Elsevier
  doi: 10.1016/S0065-2113(10)05002-9
– volume: 70
  start-page: 1719
  year: 2006
  ident: 10.1016/j.geoderma.2020.114184_b0585
  article-title: Black carbon increases cation exchange capacity in soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0383
– volume: 127
  start-page: 153
  year: 2012
  ident: 10.1016/j.geoderma.2020.114184_b1215
  article-title: Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2011.11.020
– volume: 65
  start-page: 52
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b0080
  article-title: Carbon dioxide emissions from biochar in soil: role of clay, microorganisms and carbonates
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12073
– volume: 249
  start-page: 343
  year: 2003
  ident: 10.1016/j.geoderma.2020.114184_b0540
  article-title: Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments
  publication-title: Plant Soil
  doi: 10.1023/A:1022833116184
– volume: 176
  start-page: 288
  year: 2015
  ident: 10.1016/j.geoderma.2020.114184_b1230
  article-title: Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.11.011
– volume: 44
  start-page: 1933
  year: 2010
  ident: 10.1016/j.geoderma.2020.114184_b1050
  article-title: Potential for misidentification of environmentally persistent free radicals as molecular pollutants in particulate matter
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902648t
– volume: 50
  start-page: 2264
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b1190
  article-title: The interfacial behavior between biochar and soil minerals and its effect on biochar stability
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b03656
– volume: 64
  start-page: 379
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b0030
  article-title: Interactions between biochar stability and soil organisms: review and research needs
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12064
– volume: 39
  start-page: 839
  year: 2008
  ident: 10.1016/j.geoderma.2020.114184_b0085
  article-title: Microbial mineralization and assimilation of black carbon: dependency on degree of thermal alteration
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2008.04.020
– volume: 13
  start-page: 491
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b1195
  article-title: Effects of rice straw and its biochar addition on soil labile carbon and soil organic carbon
  publication-title: J. Integr. Agr.
  doi: 10.1016/S2095-3119(13)60704-2
– volume: 9
  start-page: 1279
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b0250
  article-title: Impact of six lignocellulosic biochars on C and N dynamics of two contrasting soils
  publication-title: Gcb. Bioenerg.
  doi: 10.1111/gcbb.12414
– volume: 206
  start-page: 46
  year: 2015
  ident: 10.1016/j.geoderma.2020.114184_b0290
  article-title: Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions
  publication-title: Agr. Ecosyst. Environ.
  doi: 10.1016/j.agee.2015.03.015
– volume: 32
  start-page: 1585
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b1105
  article-title: Effects of biochar amendments synthesized at varying temperatures on soil organic carbon mineralization and humus composition
  publication-title: J. Agro-Environ. Sci.
– volume: 43
  start-page: 3285
  year: 2009
  ident: 10.1016/j.geoderma.2020.114184_b0105
  article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803092k
– volume: 40
  start-page: 7757
  year: 2006
  ident: 10.1016/j.geoderma.2020.114184_b0835
  article-title: Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es061307m
– volume: 88
  start-page: 1386
  year: 2007
  ident: 10.1016/j.geoderma.2020.114184_b0905
  article-title: Microbial stress-response physiology and its implications for ecosystem function
  publication-title: Ecology
  doi: 10.1890/06-0219
– volume: 333
  start-page: 443
  year: 2010
  ident: 10.1016/j.geoderma.2020.114184_b0960
  article-title: Ethylene: potential key for biochar amendment impacts
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0359-5
– volume: 48
  start-page: 11227
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b0320
  article-title: Role of structure and microporosity in phenanthrene sorption by natural and engineered organic matter
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5022087
– volume: 138
  start-page: 67
  year: 2015
  ident: 10.1016/j.geoderma.2020.114184_b0215
  article-title: Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.05.052
– volume: 125
  start-page: 70
  year: 2015
  ident: 10.1016/j.geoderma.2020.114184_b1020
  article-title: Application of biochar for the removal of pollutants from aqueous solutions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.12.058
– volume: 131
  start-page: 1222
  year: 2005
  ident: 10.1016/j.geoderma.2020.114184_b0730
  article-title: Biological considerations in geotechnical engineering
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)1090-0241(2005)131:10(1222)
– volume: 71
  start-page: 370
  year: 2002
  ident: 10.1016/j.geoderma.2020.114184_b0710
  article-title: Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments
  publication-title: J. Japan. Soc. Hortic. Sci.
  doi: 10.2503/jjshs.71.370
– volume: 53
  start-page: 447
  year: 2003
  ident: 10.1016/j.geoderma.2020.114184_b0245
  article-title: Characterization of carbonaceous combustion residues: II. Nonpolar organic compounds
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(03)00452-1
– volume: 45
  start-page: 115
  year: 2008
  ident: 10.1016/j.geoderma.2020.114184_b0070
  article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review
  publication-title: Biol. Fert. Soils
  doi: 10.1007/s00374-008-0334-y
– volume: 72
  start-page: 4725
  year: 2008
  ident: 10.1016/j.geoderma.2020.114184_b0715
  article-title: Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter
  publication-title: Geochim. Cosmochim. Ac.
  doi: 10.1016/j.gca.2008.06.015
– volume: 106
  start-page: 28
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b0645
  article-title: Priming effects in biochar enriched soils using a three-source-partitioning approach: 14C labelling and 13C natural abundance
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.12.006
– ident: 10.1016/j.geoderma.2020.114184_b1025
– volume: 234
  start-page: 77
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b0315
  article-title: Removal of antimony (III) and cadmium (II) from aqueous solution using animal manure-derived hydrochars and pyrochars
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.02.130
– volume: 16
  start-page: 1481
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b0185
  article-title: Long-term effects of biochar amount on the content and composition of organic matter in soil aggregates under field conditions
  publication-title: J. Soil. Sediment.
  doi: 10.1007/s11368-015-1338-5
– volume: 148
  start-page: 33
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b0935
  article-title: Stabilization of soil organic carbon as influenced by clay mineralogy
  publication-title: Adv. Agron.
  doi: 10.1016/bs.agron.2017.11.001
– volume: 65
  start-page: 95
  year: 2001
  ident: 10.1016/j.geoderma.2020.114184_b0150
  article-title: Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces
  publication-title: Geochim. Cosmochim. Ac.
  doi: 10.1016/S0016-7037(00)00511-1
– volume: 616
  start-page: 335
  year: 2018
  ident: 10.1016/j.geoderma.2020.114184_b0310
  article-title: Oxidation resistance of biochars as a function of feedstock and pyrolysis condition
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.11.014
– ident: 10.1016/j.geoderma.2020.114184_b0975
  doi: 10.1007/978-3-662-05683-7_15
– volume: 45
  start-page: 939
  year: 2015
  ident: 10.1016/j.geoderma.2020.114184_b1150
  article-title: Characteristics and applications of biochar for environmental remediation: a review
  publication-title: Crit. Rev. Env. Sci. Tec.
  doi: 10.1080/10643389.2014.924180
– volume: 46
  start-page: 7939
  year: 2012
  ident: 10.1016/j.geoderma.2020.114184_b0685
  article-title: Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es301029g
– start-page: 35
  year: 1980
  ident: 10.1016/j.geoderma.2020.114184_b0210
– ident: 10.1016/j.geoderma.2020.114184_b1185
– volume: 13
  start-page: 1561
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b0550
  article-title: Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties
  publication-title: J. Soil. Sediment.
  doi: 10.1007/s11368-013-0738-7
– volume: 17
  start-page: 581
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b0200
  article-title: Biochar addition drives soil aggregation and carbon sequestration in aggregate fractions from an intensive agricultural system
  publication-title: J. Soil. Sediment.
  doi: 10.1007/s11368-015-1349-2
– volume: 327
  start-page: 235
  year: 2010
  ident: 10.1016/j.geoderma.2020.114184_b1070
  article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-0050-x
– volume: 95
  start-page: 19
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b0265
  article-title: Influence of pig manure and its biochar on soil CO2 emissions and soil enzymes
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2016.06.039
– volume: 25
  start-page: 57
  year: 1993
  ident: 10.1016/j.geoderma.2020.114184_b0470
  article-title: Effect of substrate location in soil and soil pore-water regime on carbon turnover
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(93)90241-3
– volume: 31
  start-page: 697
  year: 2000
  ident: 10.1016/j.geoderma.2020.114184_b0050
  article-title: Role of the soil matrix and minerals in protecting natural organic materials against biological attack
  publication-title: Org. Geochem.
  doi: 10.1016/S0146-6380(00)00049-8
– volume: 102
  start-page: 8877
  year: 2011
  ident: 10.1016/j.geoderma.2020.114184_b0135
  article-title: Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.06.078
– volume: 13
  start-page: 991
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b0805
  article-title: Effects of biochar amendment on soil aggregates and hydraulic properties
  publication-title: J. Soil Sci. Plant Nut.
– volume: 50
  start-page: 2389
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b1170
  article-title: Biochar-facilitated microbial reduction of hematite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05517
– volume: 625
  start-page: 1459
  year: 2018
  ident: 10.1016/j.geoderma.2020.114184_b0285
  article-title: Carbon stability and mitigation of fertilizer induced N2O emissions in soil amended with biochar
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.12.196
– volume: 79
  start-page: 7
  year: 2004
  ident: 10.1016/j.geoderma.2020.114184_b0940
  article-title: A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2004.03.008
– volume: 30
  start-page: 69
  year: 2009
  ident: 10.1016/j.geoderma.2020.114184_b0605
  article-title: Toxicity effect of phenol on aerobic granules
  publication-title: Environ. Technol.
  doi: 10.1080/09593330802536339
– volume: 7
  start-page: 512
  year: 2015
  ident: 10.1016/j.geoderma.2020.114184_b0355
  article-title: Experimental evidence for sequestering C with biochar by avoidance of CO2 emissions from original feedstock and protection of native soil organic matter
  publication-title: Gcb. Bioenerg.
  doi: 10.1111/gcbb.12183
– ident: 10.1016/j.geoderma.2020.114184_b0180
– volume: 8
  start-page: 588
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b0045
  article-title: A time for every season: soil aggregate turnover stimulates decomposition and reduces carbon loss in grasslands managed for bioenergy
  publication-title: Gcb. Bioenerg.
  doi: 10.1111/gcbb.12267
– volume: 92
  start-page: 2504
  year: 2011
  ident: 10.1016/j.geoderma.2020.114184_b0515
  article-title: An assessment of U (VI) removal from groundwater using biochar produced from hydrothermal carbonization
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2011.05.013
– volume: 65
  start-page: 72
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b0055
  article-title: An incubation study on the stability and biological effects of pyrogenic and hydrothermal biochar in two soils
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12074
– volume: 48
  start-page: 11211
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b0565
  article-title: Effects of mineral additives on biochar formation: carbon retention, stability, and properties
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es501885n
– ident: 10.1016/j.geoderma.2020.114184_b0095
– volume: 550
  start-page: 504
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b0400
  article-title: Properties of biochar-amended soils and their sorption of imidacloprid, isoproturon, and atrazine
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.01.117
– volume: 115
  start-page: 209
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b0870
  article-title: Changes in biochar physical and chemical properties: accelerated biochar aging in an acidic soil
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.12.096
– volume: 51
  start-page: 2061
  year: 2008
  ident: 10.1016/j.geoderma.2020.114184_b0270
  article-title: Effect of low-temperature pyrolysis conditions on biochar for agricultural use
  publication-title: T. ASABE
  doi: 10.13031/2013.25409
– volume: 226
  start-page: 270
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b0750
  article-title: Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.01.023
– volume: 4
  start-page: 29
  year: 2001
  ident: 10.1016/j.geoderma.2020.114184_b0780
  article-title: Dissolved organic carbon in terrestrial ecosystems: synthesis and a model
  publication-title: Ecosystems
  doi: 10.1007/s100210000058
– volume: 128
  start-page: 63
  year: 2005
  ident: 10.1016/j.geoderma.2020.114184_b0415
  article-title: Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.12.013
– volume: 100
  start-page: 178
  year: 2008
  ident: 10.1016/j.geoderma.2020.114184_b0530
  article-title: The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality
  publication-title: Agron. J.
  doi: 10.2134/agronj2007.0161
– volume: 94
  start-page: 107
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b0325
  article-title: Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.11.023
– volume: 44
  start-page: 6189
  year: 2010
  ident: 10.1016/j.geoderma.2020.114184_b0440
  article-title: Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1014423
– volume: 140
  start-page: 406
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b1010
  article-title: Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.04.116
– volume: 89
  start-page: 510
  year: 2010
  ident: 10.1016/j.geoderma.2020.114184_b0615
  article-title: Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment
  publication-title: Fuel
  doi: 10.1016/j.fuel.2009.08.042
– volume: 145
  start-page: 135
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b0920
  article-title: Impact of switchgrass biochars with supplemental nitrogen on carbon-nitrogen mineralization in highly weathered Coastal Plain Ultisols
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.11.063
– volume: 181
  start-page: 770
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b0340
  article-title: Effects of three different biochars on aggregate stability, organic carbon mobility and micronutrient bioavailability
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2016.07.023
– volume: 143
  start-page: 615
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b0015
  article-title: Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.06.033
– volume: 144
  start-page: 285
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b1110
  article-title: Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.08.042
– volume: 163
  start-page: 247
  year: 2011
  ident: 10.1016/j.geoderma.2020.114184_b0760
  article-title: Surface chemistry variations among a series of laboratory-produced biochars
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.04.021
– volume: 36
  start-page: 177
  year: 2004
  ident: 10.1016/j.geoderma.2020.114184_b0885
  article-title: Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2003.09.005
– volume: 337
  start-page: 1
  year: 2010
  ident: 10.1016/j.geoderma.2020.114184_b0040
  article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0464-5
– volume: 103
  start-page: 626
  year: 2006
  ident: 10.1016/j.geoderma.2020.114184_b0255
  article-title: The diversity and biogeography of soil bacterial communities
  publication-title: P. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0507535103
– volume: 113
  start-page: 211
  year: 2003
  ident: 10.1016/j.geoderma.2020.114184_b0690
  article-title: Controls of bioavailability and biodegradability of dissolved organic matter in soils
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(02)00362-2
– volume: 50
  start-page: 1197
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b0335
  article-title: Charcoal function and management in boreal ecosystems
  publication-title: J. Appl. Ecol.
  doi: 10.1111/1365-2664.12136
– volume: 87
  start-page: 151
  year: 2012
  ident: 10.1016/j.geoderma.2020.114184_b0595
  article-title: Water extractable organic carbon in untreated and chemical treated biochars
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.12.007
– volume: 27
  start-page: 694
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b0460
  article-title: Incorporation of biochar carbon into stable soil aggregates: the role of clay mineralogy and other soil characteristics
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(17)60399-0
– volume: 49
  start-page: 1
  year: 2019
  ident: 10.1016/j.geoderma.2020.114184_b0725
  article-title: Methane production from process water of sewage sludge hydrothermal carbonization. A review. Valorising sludge through hydrothermal carbonization
  publication-title: Crit. Rev. Env. Sci. Tec.
  doi: 10.1080/10643389.2018.1561104
– volume: 46
  start-page: 1367
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b0680
  article-title: Designing advanced biochar products for maximizing greenhouse gas mitigation potential
  publication-title: Crit. Rev. Env. Sci. Tec.
  doi: 10.1080/10643389.2016.1239975
– volume: 190
  start-page: 432
  year: 2011
  ident: 10.1016/j.geoderma.2020.114184_b1060
  article-title: Screening biochars for heavy metal retention in soil: role of oxygen functional groups
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.03.063
– volume: 48
  start-page: 501
  year: 2010
  ident: 10.1016/j.geoderma.2020.114184_b0420
  article-title: An investigation into the reactions of biochar in soil
  publication-title: Soil Res.
  doi: 10.1071/SR10009
– volume: 13
  start-page: 230
  year: 1997
  ident: 10.1016/j.geoderma.2020.114184_b0820
  article-title: Agricultural soils as a sink to mitigate CO2 emissions
  publication-title: Soil Use Manage.
  doi: 10.1111/j.1475-2743.1997.tb00594.x
– volume: 112
  start-page: 159
  year: 2011
  ident: 10.1016/j.geoderma.2020.114184_b0825
  article-title: Temperature-and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2011.01.002
– volume: 142
  start-page: 56
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b0995
  article-title: Variation in sorption of propiconazole with biochars: the effect of temperature, mineral, molecular structure, and nano-porosity
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.07.018
– volume: 38
  start-page: 4649
  year: 2004
  ident: 10.1016/j.geoderma.2020.114184_b0155
  article-title: Compositions and sorptive properties of crop residue-derived chars
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es035034w
– volume: 111
  start-page: 54
  year: 1971
  ident: 10.1016/j.geoderma.2020.114184_b0695
  article-title: Microbial activity in relation to soil humus formation
  publication-title: Soil Sci.
  doi: 10.1097/00010694-197101000-00007
– volume: 10
  start-page: 1349
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b1055
  article-title: Adsorption kinetics of herbicide paraquat in aqueous solution onto a low-cost adsorbent, swine-manure-derived biochar
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-012-0174-z
– volume: 166
  start-page: 303
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b0860
  article-title: Pyrolysis condition affected sulfamethazine sorption by tea waste biochars
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.05.029
– volume: 81
  start-page: 244
  year: 2015
  ident: 10.1016/j.geoderma.2020.114184_b0735
  article-title: Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.11.017
– volume: 8
  start-page: 512
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b1090
  article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects
  publication-title: Gcb. Bioenerg.
  doi: 10.1111/gcbb.12266
– volume: 104
  start-page: 49
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b0170
  article-title: Interactions between biochar and litter priming: a three-source 14C and δ13C partitioning study
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.10.014
– volume: 206
  start-page: 298
  year: 2015
  ident: 10.1016/j.geoderma.2020.114184_b0845
  article-title: Metal/metalloid elements and polycyclic aromatic hydrocarbon in various biochars: the effect of feedstock, temperature, minerals, and properties
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2015.07.026
– volume: 33
  start-page: 81
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b0965
  article-title: Agroforestry and biochar to offset climate change: a review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-012-0081-1
– volume: 128
  start-page: 593
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b0035
  article-title: Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.10.150
– volume: 51
  start-page: 13517
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b0580
  article-title: Black carbon (biochar) in water/soil environments: molecular Structure, sorption, stability, and potential risk
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b02528
– volume: 8
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b0295
  article-title: A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy
  publication-title: PloS One
  doi: 10.1371/journal.pone.0075932
– volume: 223
  start-page: 3729
  year: 2012
  ident: 10.1016/j.geoderma.2020.114184_b0800
  article-title: Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-012-1144-2
– volume: 178
  start-page: 455
  year: 2010
  ident: 10.1016/j.geoderma.2020.114184_b0570
  article-title: Adsorption kinetics and desorption of Cu (II) and Zn (II) from aqueous solution onto humic acid
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.01.103
– volume: 32
  start-page: 597
  year: 2000
  ident: 10.1016/j.geoderma.2020.114184_b0660
  article-title: Variation in soil net mineralization rates with dissolved organic carbon additions
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(99)00186-8
– volume: 43
  start-page: 1169
  year: 2011
  ident: 10.1016/j.geoderma.2020.114184_b1280
  article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.02.005
– volume: 9
  start-page: 1085
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b1200
  article-title: Investigating the biochar effects on C-mineralization and sequestration of carbon in soil compared with conventional amendments using the stable isotope (δ13C) approach
  publication-title: Gcb. Bioenerg.
  doi: 10.1111/gcbb.12401
– volume: 6
  start-page: 389
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b0005
  article-title: Increasing rates of biochar application to soil induce stronger negative priming effect on soil organic carbon decomposition
  publication-title: Agr. Res.
  doi: 10.1007/s40003-017-0281-7
– volume: 75
  start-page: 1589
  year: 2009
  ident: 10.1016/j.geoderma.2020.114184_b0880
  article-title: Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization
  publication-title: Appl. Environ. Microb.
  doi: 10.1128/AEM.02775-08
– volume: 102
  start-page: 3488
  year: 2011
  ident: 10.1016/j.geoderma.2020.114184_b1205
  article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.11.018
– volume: 46
  start-page: 1183
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b0025
  article-title: Biochar properties: transport, fate, and impact
  publication-title: Crit. Rev. Env. Sci. Tec.
  doi: 10.1080/10643389.2016.1212368
– volume: 10
  start-page: 423
  year: 2000
  ident: 10.1016/j.geoderma.2020.114184_b0410
  article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation
  publication-title: Ecol. Appl.
  doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
– volume: 80
  start-page: 136
  year: 2015
  ident: 10.1016/j.geoderma.2020.114184_b0235
  article-title: Effect of temperature on biochar priming effects and its stability in soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.10.006
– volume: 218
  start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b0650
  article-title: Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.08.014
– volume: 46
  start-page: 11104
  year: 2012
  ident: 10.1016/j.geoderma.2020.114184_b0140
  article-title: Fast and slow rates of naphthalene sorption to biochars produced at different temperatures
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302345e
– volume: 99
  start-page: 320
  year: 2008
  ident: 10.1016/j.geoderma.2020.114184_b1210
  article-title: Activated carbon from olive kernels in a two-stage process: industrial improvement
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2006.12.020
– volume: 51
  start-page: 2635
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b0405
  article-title: Characterization and phenanthrene sorption of natural and pyrogenic organic matter fractions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b04573
– volume: 76
  start-page: 127
  year: 2009
  ident: 10.1016/j.geoderma.2020.114184_b0110
  article-title: Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.02.004
– volume: 30
  start-page: 2075
  year: 2011
  ident: 10.1016/j.geoderma.2020.114184_b1265
  article-title: The structural characteristics of biochar and its effects on soil available nutrients and humus composition
  publication-title: J. Agro-Environ. Sci.
– volume: 331
  start-page: 50
  year: 2018
  ident: 10.1016/j.geoderma.2020.114184_b0090
  article-title: Spatial and temporal microscale pH change at the soil-biochar interface
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.06.016
– volume: 138
  start-page: 266
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b0480
  article-title: Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.03.186
– volume: 142
  start-page: 145
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b0220
  article-title: Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.06.044
– volume: 209
  start-page: 188
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b0350
  article-title: Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.06.016
– volume: 159
  start-page: 2594
  year: 2011
  ident: 10.1016/j.geoderma.2020.114184_b1225
  article-title: Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.06.012
– volume: 181
  start-page: 60
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b1260
  article-title: Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2013.05.056
– volume: 5
  start-page: 510
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b0275
  article-title: Profiles of volatile organic compounds in biochar: insights into process conditions and quality assessment
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b01869
– volume: 321
  year: 2008
  ident: 10.1016/j.geoderma.2020.114184_b1045
  article-title: Geology. An uncertain future for soil carbon
  publication-title: Science
  doi: 10.1126/science.1160232
– volume: 36
  start-page: 1480
  year: 2005
  ident: 10.1016/j.geoderma.2020.114184_b1040
  article-title: Characterization of humic like substances obtained by chemical oxidation of eucalyptus charcoal
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2005.08.001
– volume: 65
  start-page: 28
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b0280
  article-title: Biochar addition rate influences soil microbial abundance and activity in temperate soils
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12097
– volume: 126
  start-page: 69
  year: 2019
  ident: 10.1016/j.geoderma.2020.114184_b0175
  article-title: Wheat straw biochar reduces environmental cadmium bioavailability
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.02.022
– volume: 136
  start-page: 119
  year: 2017
  ident: 10.1016/j.geoderma.2020.114184_b0500
  article-title: Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity
  publication-title: Ecotox. Environ. Safe.
  doi: 10.1016/j.ecoenv.2016.10.033
– volume: 158
  start-page: 443
  year: 2010
  ident: 10.1016/j.geoderma.2020.114184_b0535
  article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.05.013
– volume: 89
  start-page: 231
  year: 2000
  ident: 10.1016/j.geoderma.2020.114184_b0830
  article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus
  publication-title: Oikos
  doi: 10.1034/j.1600-0706.2000.890203.x
– ident: 10.1016/j.geoderma.2020.114184_b0425
– volume: 112
  start-page: 103
  year: 2011
  ident: 10.1016/j.geoderma.2020.114184_b0510
  article-title: Biochar application to soil: agronomic and environmental benefits and unintended consequences
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-385538-1.00003-2
– volume: 102
  start-page: 9897
  year: 2011
  ident: 10.1016/j.geoderma.2020.114184_b1000
  article-title: Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.08.036
– volume: 218
  start-page: 1303
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b0125
  article-title: Effect of pyrolysis temperature on the chemical oxidation stability of bamboo biochar
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.07.112
– volume: 202
  start-page: 183
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b0010
  article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.03.003
– volume: 31
  start-page: 792
  year: 1997
  ident: 10.1016/j.geoderma.2020.114184_b1155
  article-title: Dual-mode sorption of low-polarity compounds in glassy poly (vinyl chloride) and soil organic matter
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es960481f
– volume: 31
  start-page: 1187
  year: 2012
  ident: 10.1016/j.geoderma.2020.114184_b1145
  article-title: Reduced adsorption of propanil to black carbon: effect of dissolved organic matter loading mode and molecule size
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.1800
– ident: 10.1016/j.geoderma.2020.114184_b0370
  doi: 10.1002/9780470494950.ch2
– volume: 43
  start-page: 4973
  year: 2009
  ident: 10.1016/j.geoderma.2020.114184_b0850
  article-title: Influence of environmental factors on pesticide adsorption by black carbon: pH and model dissolved organic matter
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es900573d
– volume: 179
  start-page: 359
  year: 2015
  ident: 10.1016/j.geoderma.2020.114184_b0120
  article-title: Sorption characteristics of N-nitrosodimethylamine onto biochar from aqueous solution
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.12.059
– volume: 28
  start-page: 665
  year: 1996
  ident: 10.1016/j.geoderma.2020.114184_b0395
  article-title: Soil aggregate formation and the accrual of particulate and mineral-associated organic matter
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(95)00159-X
– volume: 57
  start-page: 196
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b0360
  article-title: Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.)
  publication-title: Biomass Bioenerg.
  doi: 10.1016/j.biombioe.2013.07.019
– volume: 11
  start-page: 5199
  year: 2014
  ident: 10.1016/j.geoderma.2020.114184_b0655
  article-title: Carbon losses from pyrolysed and original wood in a forest soil under natural and increased N deposition
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-5199-2014
– volume: 16
  start-page: 1366
  year: 2010
  ident: 10.1016/j.geoderma.2020.114184_b0665
  article-title: Fate of soil-applied black carbon: downward migration, leaching and soil respiration
  publication-title: Global Change Biol.
  doi: 10.1111/j.1365-2486.2009.02044.x
– volume: 44
  start-page: 3324
  year: 2010
  ident: 10.1016/j.geoderma.2020.114184_b0790
  article-title: Temperature sensitivity of black carbon decomposition and oxidation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903016y
– volume: 111
  start-page: 83
  year: 2012
  ident: 10.1016/j.geoderma.2020.114184_b1130
  article-title: Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-012-9764-6
– volume: 31
  start-page: 711
  year: 2000
  ident: 10.1016/j.geoderma.2020.114184_b0430
  article-title: The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils
  publication-title: Org. Geochem.
  doi: 10.1016/S0146-6380(00)00046-2
– volume: 49
  start-page: 1
  year: 2019
  ident: 10.1016/j.geoderma.2020.114184_b1135
  article-title: A critical review on bioremediation technologies for Cr (VI)-contaminated soils and wastewater
  publication-title: Crit. Rev. Env. Sci. Tec.
  doi: 10.1080/10643389.2018.1564526
– ident: 10.1016/j.geoderma.2020.114184_b0195
– volume: 71
  start-page: 33
  year: 2013
  ident: 10.1016/j.geoderma.2020.114184_b0130
  article-title: Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2013.05.003
– volume: 45
  start-page: 9611
  year: 2011
  ident: 10.1016/j.geoderma.2020.114184_b0455
  article-title: Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202186j
– volume: 117
  start-page: 175
  year: 2018
  ident: 10.1016/j.geoderma.2020.114184_b0900
  article-title: Linking organic matter chemistry with soil aggregate stability: insight from 13C NMR spectroscopy
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.11.011
– volume: 121
  start-page: 235
  year: 2012
  ident: 10.1016/j.geoderma.2020.114184_b0600
  article-title: Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.06.085
– volume: 43
  start-page: 2127
  year: 2011
  ident: 10.1016/j.geoderma.2020.114184_b0160
  article-title: The priming potential of biochar products in relation to labile carbon contents and soil organic matter status
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.06.016
– volume: 156
  start-page: 1021
  year: 2008
  ident: 10.1016/j.geoderma.2020.114184_b0385
  article-title: Sorption of phenanthrene by dissolved organic matter and its complex with aluminum oxide nanoparticles
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2008.05.003
– volume: 104
  start-page: 165
  year: 2012
  ident: 10.1016/j.geoderma.2020.114184_b0915
  article-title: Removal of hexavalent Cr by coconut coir and derived chars-the effect of surface functionality
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.10.096
– volume: 11
  start-page: 660
  year: 2019
  ident: 10.1016/j.geoderma.2020.114184_b0895
  article-title: Soil greenhouse gas, carbon content, and tree growth response to biochar amendment in western United States forests
  publication-title: Gcb Bioenerg.
  doi: 10.1111/gcbb.12595
– volume: 50
  start-page: 7706
  year: 2016
  ident: 10.1016/j.geoderma.2020.114184_b0865
  article-title: Mineral-Biochar composites: molecular structure and porosity
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b00685
SSID ssj0017020
Score 2.6624708
SecondaryResourceType review_article
Snippet [Display omitted] •Stability of biochar was related with both biochar and soil properties.•Positive priming effect was common for manure biochar and sandy...
Extensive application of biochar to soil exerts a profound effect on organic carbon (OC) in soils. However, the impact of biochar on the content and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114184
SubjectTerms Biochar
clay soils
environmental impact
Humic substance
humic substances
mineralization
Organic carbon
sandy soils
Soil aggregate
soil minerals
soil organic carbon
Stability
temperature
Title Biochar’s stability and effect on the content, composition and turnover of soil organic carbon
URI https://dx.doi.org/10.1016/j.geoderma.2020.114184
https://www.proquest.com/docview/2388764754
Volume 364
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iFz2IT3wTwaN1022SZo-rKKuiJwVvMc1DVqSV3fXgRfwb_j1_iTNtKiqIB48tSQiTdL5J8803hOw5JrxhvSLxSoSEp6lNFC-6iTcB1cyYcRb_Q15cysE1P7sRN1PkqM2FQVpl9P2NT6-9dXzTidbsPA6HmOObyhzgCEMQAEFMNOc8x11-8PJJ80hzFqUZU5lg6y9ZwvewRlhwrNYf6tayuanivwHUD1dd48_JApmPgSPtN3NbJFO-XCJz_btRFM_wy-T2cFhhFtX769uYQtRX816fqSkdbWgbtCopBHwU-ekANvsUCeWRtVU3g3FK5HTSKtBxNXygTdEnS60ZFVW5Qq5Pjq-OBkmsoJDYjItJ4hSzwTmD6aQSTzIZc85lrMitEZ5x64LzvMiNtODncpiK8kFJkQU4NwbPs1UyXValXyNUuq5Q3RC4CgyAT6msyAK4AyVlz8O5cp2I1mzaRnlxrHLxoFse2b1uza3R3Lox9zrpfPZ7bAQ2_uzRa1dFf9sqGlDgz7677TJq-I7wcsSUvnoaawhdABh4LvjGP8bfJLP41FB7tsj0ZPTktyFqmRQ79bbcITP90_PB5QfHYO8m
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3R5dD2gFpaVAoUV-LYaJ2N7XiPCwItX3sCiZvr-AMtQgnaXQ699W_07_WXdCZxUFup4tBrkrGisTNvHL95A3DguQyWj6ssaBkzkecu06IaZcFGUjPj1jv6D3k5U9NrcXYjb9bgqK-FIVpliv1dTG-jdboyTN4cPsznVOObqxLhiFIQBEH5AtZJnUoOYH1yej6dPR0mlDypM-YqI4PfCoXvcJqo51grQTRqlXNzLf6FUX9F6xaCTt7ARsod2aR7vbewFupNeD25XST9jPAOvh7OGyqk-vn9x5Jh4tdSX78xW3vWMTdYUzPM-RhR1BFvvjDilCfiVvsYjlMTrZM1kS2b-T3r-j455uyiaur3cH1yfHU0zVIThcwVQq4yr7mL3luqKFW0mSm4977gVemsDFw4H30QVWmVw1BX4qvoELWSRcStYwyi2IJB3dThAzDlR1KPYhQ6csQ-rYuqiBgRtFLjgFvLbZC924xLCuPU6OLe9FSyO9O725C7TefubRg-2T10GhvPWoz7WTF_rBaDQPCs7ed-Gg1-SnQ-YuvQPC4NZi-IDbiCxMf_GH8fXk6vLi_MxensfAde0Z2O6bMLg9XiMexhErOqPqVF-gv2K_HX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar%E2%80%99s+stability+and+effect+on+the+content%2C+composition+and+turnover+of+soil+organic+carbon&rft.jtitle=Geoderma&rft.au=Han%2C+Lanfang&rft.au=Sun%2C+Ke&rft.au=Yang%2C+Yan&rft.au=Xia%2C+Xinghui&rft.date=2020-04-01&rft.issn=0016-7061&rft.volume=364&rft.spage=114184&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114184&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2020_114184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon