Biochar’s stability and effect on the content, composition and turnover of soil organic carbon
[Display omitted] •Stability of biochar was related with both biochar and soil properties.•Positive priming effect was common for manure biochar and sandy soil.•Manure-based and low temperature biochar more intensely promoted soil aggregation.•Influential mechanisms of biochar on HS amount and compo...
Saved in:
Published in | Geoderma Vol. 364; p. 114184 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Stability of biochar was related with both biochar and soil properties.•Positive priming effect was common for manure biochar and sandy soil.•Manure-based and low temperature biochar more intensely promoted soil aggregation.•Influential mechanisms of biochar on HS amount and composition were proposed.
Extensive application of biochar to soil exerts a profound effect on organic carbon (OC) in soils. However, the impact of biochar on the content and composition of OC has not been comprehensively summarized. This review provided a detailed examination on the stability of biochar and its effect on the amount, composition and turnover of soil OC, with key limitations and issues recognized. The direct input of labile and stable OC of biochar to soil OC pool, and indirect effects of biochar on soil OC by affecting soil physicochemical and biological properties were discussed. Both low stability of biochar and biochar-induced strong positive priming effect on OC mineralization were commonly observed in sandy soil added with biochar produced from manure at low temperature. The stable OC of biochar was composed of both aromatic OC and the OC fractions stabilized by soil minerals. Biochar mainly increased the formation of macro-aggregates, and this promotion was more intense for clayey soil added with manure-based low temperature-biochar. Additionally, potential influential mechanisms were proposed to explain the effect of biochar addition on amount and composition of humic substances in soils. This review will shed lights on the effect of biochar application on the amount, composition and turnover of native soil OC, and improve the understanding of the ecological effect of biochar on the soil functions. |
---|---|
AbstractList | Extensive application of biochar to soil exerts a profound effect on organic carbon (OC) in soils. However, the impact of biochar on the content and composition of OC has not been comprehensively summarized. This review provided a detailed examination on the stability of biochar and its effect on the amount, composition and turnover of soil OC, with key limitations and issues recognized. The direct input of labile and stable OC of biochar to soil OC pool, and indirect effects of biochar on soil OC by affecting soil physicochemical and biological properties were discussed. Both low stability of biochar and biochar-induced strong positive priming effect on OC mineralization were commonly observed in sandy soil added with biochar produced from manure at low temperature. The stable OC of biochar was composed of both aromatic OC and the OC fractions stabilized by soil minerals. Biochar mainly increased the formation of macro-aggregates, and this promotion was more intense for clayey soil added with manure-based low temperature-biochar. Additionally, potential influential mechanisms were proposed to explain the effect of biochar addition on amount and composition of humic substances in soils. This review will shed lights on the effect of biochar application on the amount, composition and turnover of native soil OC, and improve the understanding of the ecological effect of biochar on the soil functions. [Display omitted] •Stability of biochar was related with both biochar and soil properties.•Positive priming effect was common for manure biochar and sandy soil.•Manure-based and low temperature biochar more intensely promoted soil aggregation.•Influential mechanisms of biochar on HS amount and composition were proposed. Extensive application of biochar to soil exerts a profound effect on organic carbon (OC) in soils. However, the impact of biochar on the content and composition of OC has not been comprehensively summarized. This review provided a detailed examination on the stability of biochar and its effect on the amount, composition and turnover of soil OC, with key limitations and issues recognized. The direct input of labile and stable OC of biochar to soil OC pool, and indirect effects of biochar on soil OC by affecting soil physicochemical and biological properties were discussed. Both low stability of biochar and biochar-induced strong positive priming effect on OC mineralization were commonly observed in sandy soil added with biochar produced from manure at low temperature. The stable OC of biochar was composed of both aromatic OC and the OC fractions stabilized by soil minerals. Biochar mainly increased the formation of macro-aggregates, and this promotion was more intense for clayey soil added with manure-based low temperature-biochar. Additionally, potential influential mechanisms were proposed to explain the effect of biochar addition on amount and composition of humic substances in soils. This review will shed lights on the effect of biochar application on the amount, composition and turnover of native soil OC, and improve the understanding of the ecological effect of biochar on the soil functions. |
ArticleNumber | 114184 |
Author | Li, Fangbai Xing, Baoshan Sun, Ke Xia, Xinghui Han, Lanfang Yang, Yan Yang, Zhifeng |
Author_xml | – sequence: 1 givenname: Lanfang surname: Han fullname: Han, Lanfang organization: Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China – sequence: 2 givenname: Ke surname: Sun fullname: Sun, Ke email: sunke@bnu.edu.cn organization: State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China – sequence: 3 givenname: Yan surname: Yang fullname: Yang, Yan organization: State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China – sequence: 4 givenname: Xinghui surname: Xia fullname: Xia, Xinghui organization: State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China – sequence: 5 givenname: Fangbai surname: Li fullname: Li, Fangbai organization: Guangdong Public Laboratory of Environmental Science and Technology, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China – sequence: 6 givenname: Zhifeng surname: Yang fullname: Yang, Zhifeng organization: Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China – sequence: 7 givenname: Baoshan surname: Xing fullname: Xing, Baoshan organization: Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA |
BookMark | eNqFkMtOAyEUhonRxLb6CoalC6fC3BgTF2rjLWniRtfIwKGlmUIF2qQ7X8PX80lkUt24aVgczuH7T8g3RIfWWUDojJIxJbS-XIxn4BT4pRjnJE9DWtKmPEAD2rA8q_Pq6hANSCIzRmp6jIYhLFLLEjtA73fGybnw359fAYcoWtOZuMXCKgxag4zYWRzngKWzEWy8SJflygUTTXrosbj21m3AY6dxcKbDzs-ENRJL4VtnT9CRFl2A0986Qm8P96-Tp2z68vg8uZ1msiirmKmGSK2UYA2ldTqsIEqpgrRMigpIKZVWULZM1FIoxdLXGtBNXRU6r0oNZTFC57u9K-8-1hAiX5ogoeuEBbcOPC-ahtUlq3q03qHSuxA8aL7yZin8llPCe6V8wf-U8l4p3ylNwet_QWmi6E1EL0y3P36zi0PysDHgeZAGrARlfDLNlTP7VvwAuvmcLw |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2021_125785 crossref_primary_10_1007_s12665_022_10586_4 crossref_primary_10_1007_s42729_024_01847_1 crossref_primary_10_3390_su13116392 crossref_primary_10_3390_agronomy14030455 crossref_primary_10_1016_j_eti_2024_103612 crossref_primary_10_1002_ldr_4948 crossref_primary_10_1016_j_still_2024_106365 crossref_primary_10_1016_j_ejsobi_2021_103350 crossref_primary_10_1016_j_envpol_2024_124014 crossref_primary_10_1016_j_apenergy_2022_120192 crossref_primary_10_3390_f14040731 crossref_primary_10_1186_s40562_023_00285_8 crossref_primary_10_3390_agronomy14071449 crossref_primary_10_3390_toxics12080535 crossref_primary_10_1016_j_envpol_2021_118655 crossref_primary_10_3389_fpls_2023_1146416 crossref_primary_10_1111_gcbb_13110 crossref_primary_10_1016_j_jhazmat_2024_135065 crossref_primary_10_3390_su17052214 crossref_primary_10_1016_j_eti_2024_103743 crossref_primary_10_1016_j_envres_2022_114949 crossref_primary_10_3390_su141710922 crossref_primary_10_3389_fsoil_2023_1010677 crossref_primary_10_3390_agronomy14010153 crossref_primary_10_1016_j_scitotenv_2023_166364 crossref_primary_10_1016_j_chemosphere_2024_142918 crossref_primary_10_1007_s42773_021_00097_z crossref_primary_10_1016_j_chemosphere_2021_132925 crossref_primary_10_1016_j_apsoil_2023_105065 crossref_primary_10_1016_j_catena_2024_108082 crossref_primary_10_37908_mkutbd_1512410 crossref_primary_10_1007_s40726_020_00172_2 crossref_primary_10_1007_s11368_024_03718_9 crossref_primary_10_1111_gcbb_12813 crossref_primary_10_1016_j_jenvman_2024_121042 crossref_primary_10_1007_s00449_024_03063_8 crossref_primary_10_1007_s42773_020_00084_w crossref_primary_10_1016_j_jenvman_2023_118377 crossref_primary_10_1007_s11368_023_03546_3 crossref_primary_10_3390_en16010410 crossref_primary_10_1016_j_scitotenv_2022_153783 crossref_primary_10_1016_j_chemosphere_2024_141293 crossref_primary_10_2139_ssrn_4022382 crossref_primary_10_1007_s13399_020_00991_9 crossref_primary_10_1016_j_jhazmat_2024_133589 crossref_primary_10_1016_j_scitotenv_2023_164845 crossref_primary_10_1016_j_scitotenv_2020_142457 crossref_primary_10_1111_gcb_17480 crossref_primary_10_1007_s44246_024_00170_9 crossref_primary_10_1016_j_apsoil_2022_104593 crossref_primary_10_3390_agronomy13051385 crossref_primary_10_1007_s42729_025_02222_4 crossref_primary_10_1016_j_rser_2021_111133 crossref_primary_10_1007_s44378_025_00041_8 crossref_primary_10_1007_s42773_024_00321_6 crossref_primary_10_1016_j_scitotenv_2022_157460 crossref_primary_10_1016_j_seh_2024_100095 crossref_primary_10_1016_j_conbuildmat_2023_133373 crossref_primary_10_1134_S106422932112005X crossref_primary_10_3390_appliedchem4020011 crossref_primary_10_1016_j_jenvman_2024_121066 crossref_primary_10_3390_f15040622 crossref_primary_10_1007_s42729_024_01810_0 crossref_primary_10_1016_j_biteb_2022_101259 crossref_primary_10_1016_j_still_2020_104926 crossref_primary_10_1016_j_watres_2024_122815 crossref_primary_10_1016_j_still_2021_105189 crossref_primary_10_1016_j_scitotenv_2022_158322 crossref_primary_10_3390_soilsystems8030082 crossref_primary_10_1007_s11368_021_02928_9 crossref_primary_10_1186_s40562_023_00276_9 crossref_primary_10_1016_j_scitotenv_2021_150304 crossref_primary_10_3390_agronomy12071560 crossref_primary_10_3390_agronomy13061512 crossref_primary_10_1016_j_jenvman_2024_122964 crossref_primary_10_1021_acs_est_1c08302 crossref_primary_10_1186_s13065_025_01418_0 crossref_primary_10_1007_s11356_021_16526_2 crossref_primary_10_1007_s42773_021_00090_6 crossref_primary_10_1016_j_scitotenv_2023_167924 crossref_primary_10_5194_gmd_17_4871_2024 crossref_primary_10_1016_j_eti_2021_102070 crossref_primary_10_3390_su132413726 crossref_primary_10_1016_j_jenvman_2022_114972 crossref_primary_10_1007_s44246_024_00103_6 crossref_primary_10_1021_acsestengg_3c00401 crossref_primary_10_1007_s42773_021_00125_y crossref_primary_10_1016_j_envres_2024_120369 crossref_primary_10_1029_2024GL110618 crossref_primary_10_48130_TIA_2023_0016 crossref_primary_10_1016_j_jwpe_2024_106484 crossref_primary_10_1016_j_agee_2022_108233 crossref_primary_10_1016_j_scitotenv_2020_142531 crossref_primary_10_3390_land11040473 crossref_primary_10_1016_j_jhazmat_2024_135721 crossref_primary_10_1016_j_jenvman_2024_121196 crossref_primary_10_3390_agronomy13061532 crossref_primary_10_1016_j_jenvman_2024_121653 crossref_primary_10_1016_j_soilbio_2022_108657 crossref_primary_10_1515_gps_2022_0044 crossref_primary_10_3390_agronomy13092209 crossref_primary_10_1016_j_ijbiomac_2025_140665 crossref_primary_10_1007_s44246_022_00017_1 crossref_primary_10_1016_j_soilbio_2024_109500 crossref_primary_10_1016_j_scitotenv_2022_156333 crossref_primary_10_3390_molecules28135225 crossref_primary_10_3389_fmicb_2021_641913 crossref_primary_10_3390_land12081645 crossref_primary_10_1186_s40068_024_00379_y crossref_primary_10_1016_j_chemosphere_2023_138891 crossref_primary_10_1038_s41598_024_76082_w crossref_primary_10_1039_D3VA00197K crossref_primary_10_3389_fenvs_2022_899935 crossref_primary_10_3390_su17052170 crossref_primary_10_1016_j_scitotenv_2021_148793 crossref_primary_10_3390_agronomy13010004 crossref_primary_10_1016_j_scitotenv_2023_167290 crossref_primary_10_1016_j_scitotenv_2024_170522 crossref_primary_10_1016_j_scitotenv_2021_152495 crossref_primary_10_1016_j_jenvman_2023_119603 crossref_primary_10_1016_j_envres_2022_114543 crossref_primary_10_3389_fpls_2023_1172425 crossref_primary_10_1007_s10653_024_02355_y crossref_primary_10_1016_j_still_2022_105442 crossref_primary_10_1016_j_envpol_2021_118243 crossref_primary_10_1016_j_scitotenv_2021_150629 crossref_primary_10_1016_S1002_0160_21_60087_5 crossref_primary_10_1016_j_chemosphere_2021_129914 crossref_primary_10_1016_j_scitotenv_2023_169585 crossref_primary_10_1007_s42729_024_02052_w crossref_primary_10_1016_j_biortech_2021_125555 crossref_primary_10_1016_j_enconman_2023_116658 crossref_primary_10_1021_acssuschemeng_1c08074 crossref_primary_10_1007_s42773_024_00346_x crossref_primary_10_1016_j_seh_2023_100033 crossref_primary_10_1016_j_still_2023_105978 crossref_primary_10_1016_j_jenvman_2021_112993 crossref_primary_10_1111_sum_12965 crossref_primary_10_2478_agri_2020_0016 crossref_primary_10_1007_s10653_023_01602_y crossref_primary_10_1016_j_chemosphere_2022_137025 crossref_primary_10_1016_j_indcrop_2024_119972 crossref_primary_10_1111_sum_12848 crossref_primary_10_1016_j_ecoenv_2024_117630 crossref_primary_10_3390_en14196157 crossref_primary_10_1111_rec_13909 crossref_primary_10_1007_s42729_021_00631_9 crossref_primary_10_1016_j_agee_2021_107445 crossref_primary_10_3390_microorganisms12040783 crossref_primary_10_1080_10643389_2023_2221155 crossref_primary_10_3390_agriculture14122165 crossref_primary_10_1016_j_scitotenv_2024_176283 crossref_primary_10_1111_gcbb_12763 crossref_primary_10_1016_j_clema_2022_100045 crossref_primary_10_1111_sum_12712 crossref_primary_10_1007_s42773_025_00451_5 crossref_primary_10_54097_hset_v40i_6659 crossref_primary_10_1016_j_scitotenv_2022_157219 crossref_primary_10_22207_JPAM_18_1_58 crossref_primary_10_1002_ldr_5285 crossref_primary_10_18006_2023_11_5__854_865 crossref_primary_10_1111_gcb_16865 crossref_primary_10_17221_426_2021_PSE crossref_primary_10_1007_s10973_025_14065_3 crossref_primary_10_1016_j_ecoenv_2023_115228 crossref_primary_10_3390_su15054081 crossref_primary_10_1007_s40726_024_00327_5 crossref_primary_10_1007_s42729_023_01489_9 crossref_primary_10_1016_j_apsoil_2025_105950 crossref_primary_10_1016_j_scitotenv_2021_151124 crossref_primary_10_1016_j_jhazmat_2022_129557 crossref_primary_10_3389_fmicb_2023_1233465 crossref_primary_10_1016_j_bgtech_2024_100096 crossref_primary_10_1080_10934529_2021_2020503 crossref_primary_10_1016_j_biombioe_2023_106914 crossref_primary_10_1021_acs_est_3c09003 crossref_primary_10_3390_su15042893 crossref_primary_10_1007_s42773_024_00411_5 crossref_primary_10_1007_s42773_023_00244_8 crossref_primary_10_3390_pr10112385 crossref_primary_10_1016_j_rser_2023_113890 crossref_primary_10_1021_acsestengg_2c00266 crossref_primary_10_1007_s00344_024_11600_8 crossref_primary_10_1016_j_scitotenv_2023_168734 crossref_primary_10_1016_j_eti_2024_103872 crossref_primary_10_1016_j_rser_2022_112963 crossref_primary_10_1007_s42773_021_00094_2 crossref_primary_10_1016_j_eti_2025_104133 crossref_primary_10_1016_j_scitotenv_2023_166678 crossref_primary_10_1016_j_scitotenv_2022_159025 crossref_primary_10_1016_j_scitotenv_2022_156674 crossref_primary_10_3390_agronomy14040676 crossref_primary_10_1007_s42452_024_06125_4 crossref_primary_10_1016_j_catena_2022_106860 crossref_primary_10_1016_j_catena_2024_107877 crossref_primary_10_3390_agriculture11040290 crossref_primary_10_1016_j_scitotenv_2022_154831 crossref_primary_10_1016_j_scitotenv_2024_176889 crossref_primary_10_1016_j_scitotenv_2023_168046 crossref_primary_10_1007_s11368_022_03335_4 crossref_primary_10_1021_acs_est_4c07027 crossref_primary_10_5194_soil_8_199_2022 crossref_primary_10_1016_j_envpol_2021_118386 crossref_primary_10_1016_j_scitotenv_2020_141840 crossref_primary_10_1016_j_scitotenv_2022_159155 crossref_primary_10_1007_s11368_024_03788_9 crossref_primary_10_1007_s12600_021_00887_y |
Cites_doi | 10.1016/j.soilbio.2013.12.021 10.1016/j.soilbio.2008.10.016 10.1007/s11104-014-2074-0 10.1016/j.biortech.2017.06.023 10.1071/SR10036 10.1016/j.geoderma.2015.01.012 10.1111/gcbb.12001 10.1016/j.jaap.2013.05.022 10.1016/j.soilbio.2012.04.005 10.1021/es903140c 10.1016/S0016-7061(03)00185-X 10.1016/j.soilbio.2017.12.008 10.1016/j.biortech.2012.04.094 10.1016/j.soilbio.2011.07.020 10.1016/j.jenvman.2016.07.024 10.1111/gcbb.12219 10.1016/j.biortech.2014.02.080 10.1021/ef9901138 10.1016/j.jhazmat.2011.01.127 10.1016/j.agee.2004.03.006 10.1016/j.scitotenv.2019.01.298 10.1016/j.scitotenv.2018.04.099 10.1016/j.catena.2014.12.009 10.1016/j.apsoil.2017.09.007 10.1016/j.geoderma.2013.02.004 10.1016/j.chemosphere.2014.04.043 10.2134/jeq2011.0070 10.1016/j.geoderma.2017.05.027 10.1016/j.scitotenv.2017.08.166 10.1021/acs.est.6b06300 10.1111/gcbb.12035 10.2136/sssaj2013.07.0258 10.1111/j.1365-2389.1996.tb01386.x 10.1016/j.still.2015.08.002 10.1016/j.apsoil.2015.08.018 10.1016/j.geoderma.2012.10.002 10.1016/j.envpol.2018.11.013 10.1016/j.apsoil.2017.04.024 10.1007/s11368-015-1243-y 10.1007/s11104-013-1980-x 10.1021/es302125k 10.1016/j.scitotenv.2019.07.262 10.1021/es8002684 10.1016/j.fcr.2011.01.014 10.1007/s42773-019-00009-2 10.1016/j.geoderma.2014.11.009 10.1002/ep.11867 10.1016/j.soilbio.2012.10.033 10.1016/j.scitotenv.2013.03.090 10.1016/j.still.2016.08.012 10.2136/sssaj2004.0347 10.1002/jctb.4157 10.2136/sssaj2000.642681x 10.1038/ncomms1053 10.1021/acs.est.6b02401 10.1007/s11368-016-1361-1 10.1016/j.gca.2008.09.028 10.1016/j.soilbio.2014.04.029 10.1016/j.agee.2017.08.026 10.1016/j.enpol.2007.11.029 10.1016/j.soilbio.2011.04.022 10.1016/j.chemosphere.2010.05.028 10.1007/s11368-012-0483-3 10.2136/sssaj2000.6441479x 10.1071/SR13186 10.1111/ejss.12257 10.1016/S0065-2113(10)06003-7 10.1021/es302545b 10.1016/j.jhazmat.2019.121071 10.1080/10643389.2011.574115 10.1002/jpln.201200639 10.1038/srep03687 10.1016/j.soilbio.2005.02.037 10.1016/j.soilbio.2004.01.013 10.1111/ejss.12094 10.1016/j.envpol.2015.05.030 10.1016/j.soilbio.2009.03.016 10.1016/j.biortech.2013.07.086 10.1016/j.chemosphere.2017.08.074 10.5194/se-5-693-2014 10.1021/es9031419 10.1016/j.geoderma.2009.02.009 10.1111/j.1365-2389.1982.tb01755.x 10.1016/j.soilbio.2013.03.013 10.1016/j.geoderma.2016.12.006 10.1016/j.biortech.2011.11.084 10.1111/gcbb.12158 10.1016/S0065-2113(10)05002-9 10.2136/sssaj2005.0383 10.1016/j.fcr.2011.11.020 10.1111/ejss.12073 10.1023/A:1022833116184 10.1016/j.biortech.2014.11.011 10.1021/es902648t 10.1021/acs.est.5b03656 10.1111/ejss.12064 10.1016/j.orggeochem.2008.04.020 10.1016/S2095-3119(13)60704-2 10.1111/gcbb.12414 10.1016/j.agee.2015.03.015 10.1021/es803092k 10.1021/es061307m 10.1890/06-0219 10.1007/s11104-010-0359-5 10.1021/es5022087 10.1016/j.chemosphere.2015.05.052 10.1016/j.chemosphere.2014.12.058 10.1061/(ASCE)1090-0241(2005)131:10(1222) 10.2503/jjshs.71.370 10.1016/S0045-6535(03)00452-1 10.1007/s00374-008-0334-y 10.1016/j.gca.2008.06.015 10.1016/j.soilbio.2016.12.006 10.1016/j.biortech.2017.02.130 10.1007/s11368-015-1338-5 10.1016/bs.agron.2017.11.001 10.1016/S0016-7037(00)00511-1 10.1016/j.scitotenv.2017.11.014 10.1007/978-3-662-05683-7_15 10.1080/10643389.2014.924180 10.1021/es301029g 10.1007/s11368-013-0738-7 10.1007/s11368-015-1349-2 10.1007/s11104-009-0050-x 10.1016/j.ecoleng.2016.06.039 10.1016/0038-0717(93)90241-3 10.1016/S0146-6380(00)00049-8 10.1016/j.biortech.2011.06.078 10.1021/acs.est.5b05517 10.1016/j.scitotenv.2017.12.196 10.1016/j.still.2004.03.008 10.1080/09593330802536339 10.1111/gcbb.12183 10.1111/gcbb.12267 10.1016/j.jenvman.2011.05.013 10.1111/ejss.12074 10.1021/es501885n 10.1016/j.scitotenv.2016.01.117 10.1016/j.carbon.2016.12.096 10.13031/2013.25409 10.1016/j.geoderma.2014.01.023 10.1007/s100210000058 10.1016/j.geoderma.2004.12.013 10.2134/agronj2007.0161 10.1016/j.soilbio.2015.11.023 10.1021/es1014423 10.1016/j.biortech.2013.04.116 10.1016/j.fuel.2009.08.042 10.1016/j.chemosphere.2015.11.063 10.1016/j.jenvman.2016.07.023 10.1016/j.biortech.2013.06.033 10.1016/j.chemosphere.2015.08.042 10.1016/j.geoderma.2011.04.021 10.1016/j.soilbio.2003.09.005 10.1007/s11104-010-0464-5 10.1073/pnas.0507535103 10.1016/S0016-7061(02)00362-2 10.1111/1365-2664.12136 10.1016/j.chemosphere.2011.12.007 10.1016/S1002-0160(17)60399-0 10.1080/10643389.2018.1561104 10.1080/10643389.2016.1239975 10.1016/j.jhazmat.2011.03.063 10.1071/SR10009 10.1111/j.1475-2743.1997.tb00594.x 10.1016/j.still.2011.01.002 10.1016/j.chemosphere.2015.07.018 10.1021/es035034w 10.1097/00010694-197101000-00007 10.1007/s13762-012-0174-z 10.1016/j.biortech.2014.05.029 10.1016/j.soilbio.2014.11.017 10.1111/gcbb.12266 10.1016/j.soilbio.2016.10.014 10.1016/j.envpol.2015.07.026 10.1007/s13593-012-0081-1 10.1016/j.biortech.2012.10.150 10.1021/acs.est.7b02528 10.1371/journal.pone.0075932 10.1007/s11270-012-1144-2 10.1016/j.jhazmat.2010.01.103 10.1016/S0038-0717(99)00186-8 10.1016/j.soilbio.2011.02.005 10.1111/gcbb.12401 10.1007/s40003-017-0281-7 10.1128/AEM.02775-08 10.1016/j.biortech.2010.11.018 10.1080/10643389.2016.1212368 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 10.1016/j.soilbio.2014.10.006 10.1016/j.envpol.2016.08.014 10.1021/es302345e 10.1016/j.biortech.2006.12.020 10.1021/acs.est.6b04573 10.1016/j.chemosphere.2009.02.004 10.1016/j.geoderma.2018.06.016 10.1016/j.biortech.2013.03.186 10.1016/j.chemosphere.2015.06.044 10.1016/j.geoderma.2013.06.016 10.1016/j.envpol.2011.06.012 10.1016/j.envpol.2013.05.056 10.1021/acssuschemeng.6b01869 10.1126/science.1160232 10.1016/j.orggeochem.2005.08.001 10.1111/ejss.12097 10.1016/j.envint.2019.02.022 10.1016/j.ecoenv.2016.10.033 10.1016/j.geoderma.2010.05.013 10.1034/j.1600-0706.2000.890203.x 10.1016/B978-0-12-385538-1.00003-2 10.1016/j.biortech.2011.08.036 10.1016/j.biortech.2016.07.112 10.1016/j.geoderma.2013.03.003 10.1021/es960481f 10.1002/etc.1800 10.1002/9780470494950.ch2 10.1021/es900573d 10.1016/j.biortech.2014.12.059 10.1016/0038-0717(95)00159-X 10.1016/j.biombioe.2013.07.019 10.5194/bg-11-5199-2014 10.1111/j.1365-2486.2009.02044.x 10.1021/es903016y 10.1007/s10533-012-9764-6 10.1016/S0146-6380(00)00046-2 10.1080/10643389.2018.1564526 10.1016/j.apsoil.2013.05.003 10.1021/es202186j 10.1016/j.soilbio.2017.11.011 10.1016/j.biortech.2012.06.085 10.1016/j.soilbio.2011.06.016 10.1016/j.envpol.2008.05.003 10.1016/j.biortech.2011.10.096 10.1111/gcbb.12595 10.1021/acs.est.6b00685 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2020.114184 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2020_114184 S0016706119321755 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-c345t-d80cfdda78116161730ddd30b7ca5e04cdfde4b7a6cadd7ffe8ef8653f254fe43 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 02:29:57 EDT 2025 Tue Jul 01 04:04:52 EDT 2025 Thu Apr 24 23:13:00 EDT 2025 Fri Feb 23 02:45:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Organic carbon Soil aggregate Humic substance Stability Biochar |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-d80cfdda78116161730ddd30b7ca5e04cdfde4b7a6cadd7ffe8ef8653f254fe43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2388764754 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2388764754 crossref_primary_10_1016_j_geoderma_2020_114184 crossref_citationtrail_10_1016_j_geoderma_2020_114184 elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114184 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 2020-04-00 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ouyang, Yu, Zhang (b0810) 2014; 52 Pietikäinen, Kiikkilä, Fritze (b0830) 2000; 89 Sun, Gao, Zhang, Zhang, Liu, Zhao, Xing (b0990) 2010; 80 Wang, Fonte, Parikh, Six, Scow (b1085) 2017; 303 Xu, Chen (b1180) 2013; 146 Chenu, Le Bissonnais, Arrouays (b0145) 2000; 64 Durand, Nicaise (b0210) 1980 Gascó, Paz-Ferreiro, Cely, Plaza, Méndez (b0265) 2016; 95 Keiluweit, Nico, Johnson, Kleber (b0450) 2010; 44 Kloss, Zehetner, Dellantonio, Hamid, Ottner, Liedtke, Schwanninger, Gerzabek, Soja (b0495) 2012; 41 Zhang, Zhou, Li, Wu (b1220) 2017; 186 Fierer, Jackson (b0255) 2006; 103 Sun, Lu (b0985) 2014; 177 Tsai, Chen (b1055) 2013; 10 Nguyen, Koide, Dell, Drohan, Skinner, Adler, Nord (b0785) 2014; 78 Hua, Lu, Ma, Jin (b0365) 2014; 33 Lyu, He, Tang, Hecker, Liu, Jones, Codling, Giesy (b0650) 2016; 218 Lian, Xing (b0580) 2017; 51 Chen, Chen, Chiou (b0140) 2012; 46 Dugan, E., Verhoef, A., Robinson, S., Sohi, S., 2010. Bio-char from sawdust, maize stover and charcoal: impact on water holding capacities (WHC) of three soils from Ghana. In: 19th World Congress of Soil Science, Symposium, pp. 9–12. Cao, Ma, Gao, Harris (b0105) 2009; 43 Major, J., Steiner, C., Downie, A., Lehmann, J., Joseph, S., 2009. Biochar effects on nutrient leaching. In: Biochar for Environmental Management: Science and Technology, vol. 271, pp. 303–320. Steinbeiss, Gleixner, Antonietti (b0970) 2009; 41 Abel, Peters, Trinks, Schonsky, Facklam, Wessolek (b0010) 2013; 202 Luo, Wang, Tian, Li, Li, Shen, Tian (b0625) 2017; 117 Liu, Zhang, Wu (b0615) 2010; 89 Du, Zhao, Wang, Zhang (b0200) 2017; 17 Kaiser, Guggenberger (b0430) 2000; 31 Rawal, Joseph, Hook, Chia, Munroe, Donne, Lin, Phelan, Mitchell, Pace (b0865) 2016; 50 Pignatello, Kwon, Lu (b0835) 2006; 40 Truong, Lomnicki, Dellinger (b1050) 2010; 44 Luo, Zang, Yu, Chen, Gunina, Kuzyakov, Xu, Zhang, Brookes (b0645) 2017; 106 Swift, Heal, Anderson (b1015) 1979 Malghani, Gleixner, Trumbore (b0675) 2013; 62 Laird (b0530) 2008; 100 Kelly, Benjamin, CALDERóN, Mikha, Rutherford, Rostad (b0460) 2017; 27 Mitchell, Santamarina (b0730) 2005; 131 Wang, Song, Liang, Zhang, Ai, Zhou (b1100) 2015; 96 Zhang, Bian, Pan, Cui, Hussain, Li, Zheng, Zheng, Zhang, Han (b1215) 2012; 127 Singh, Cowie, Smernik (b0930) 2012; 46 Kołtowski, Charmas, Skubiszewska-Zięba, Oleszczuk (b0500) 2017; 136 John, Yamashita, Ludwig, Flessa (b0415) 2005; 128 Thies, J.E., Rillig, M.C., 2009. Characteristics of biochar: biological properties. In: Biochar for Environmental Management: Science and Technology, pp. 85–105. Zimmerman, Gao (b1275) 2013; 1 Seneviratne, Weerasundara, Ok, Rinklebe, Vithanage (b0910) 2017; 186 Han, Sun, Jin, Wei, Xia, Wu, Gao, Xing (b0320) 2014; 48 Mataix-Solera, Doerr (b0700) 2004; 118 Sohi, Krull, Lopez-Capel, Bol (b0955) 2010 Hartley, Riby, Waterson (b0340) 2016; 181 Ventura, Alberti, Viger, Jenkins, Girardin, Baronti, Zaldei, Taylor, Rumpel, Miglietta (b1075) 2015; 7 Verheijen, F., Jeffery, S., Bastos, A., Van der Velde, M., Diafas, I., 2010. Biochar Application to Soils. A Critical Scientific Review of Effects on Soil Properties, Processes, and Functions, EUR 24099, p. 162. Schimel, Balser, Wallenstein (b0905) 2007; 88 Aller (b0025) 2016; 46 Qiu, Xiao, Cheng, Zhou, Sheng (b0850) 2009; 43 Major, Lehmann, Rondon, Goodale (b0665) 2010; 16 Zabaniotou, Stavropoulos, Skoulou (b1210) 2008; 99 Mitchell, Simpson, Soong, Simpson (b0735) 2015; 81 Gaskin, Steiner, Harris, Das, Bibens (b0270) 2008; 51 Gomez, Denef, Stewart, Zheng, Cotrufo (b0280) 2014; 65 Liu, Han, Zhang (b0610) 2012; 14 Kleber, Johnson (b0490) 2010; 106 Liu, Liu, Show, Tay (b0605) 2009; 30 Marschner, Kalbitz (b0690) 2003; 113 Mukherjee, Zimmerman (b0765) 2013; 193 Chen, Liu, Zheng, Zhang, Lu, Chi, Pan, Li, Zheng, Zhang (b0130) 2013; 71 Purakayastha, Kumari, Pathak (b0840) 2015; 239 Chen, Chen (b0110) 2009; 76 Iorio, Pan, Capasso, Xing (b0385) 2008; 156 Fang, Singh, Singh (b0235) 2015; 80 Atkinson, Fitzgerald, Hipps (b0040) 2010; 337 Han, Sun, Ro, Sun, Libra, Xing (b0315) 2017; 234 Houben, Evrard, Sonnet (b0360) 2013; 57 Meng, Dou, Yin, Zhang, Zhong (b0720) 2016; 35 Quan, Fan, Zimmerman, Sun, Cui, Wang, Gao, Yan (b0855) 2020.; 382 Zhang, Lü, Shao, He (b1235) 2014; 168 Doerr, S., Shakesby, R., 2009. Soil water repellency. Principles, causes and relevance in fire-affected environments, Efectos de los incendios forestales sobre los suelos en España: el estado de la cuestión visto por los científicos españoles. Cátedra Divulgación de la Ciencia, pp. 57–76. Han, Sun, Jin, Xing (b0325) 2016; 94 Zhao, Ta, Li, Yang, Zhang, Liu, Zhang, Wang (b1245) 2018; 123 Laird, Fleming, Davis, Horton, Wang, Karlen (b0535) 2010; 158 Kasozi, Zimmerman, Nkedi-Kizza, Gao (b0440) 2010; 44 Six, Bossuyt, Degryze, Denef (b0940) 2004; 79 Gul, Whalen, Thomas, Sachdeva, Deng (b0290) 2015; 206 Rumpel, Eusterhues, Kögel-Knabner (b0885) 2004; 36 Chun, Sheng, Chiou, Xing (b0155) 2004; 38 Paustian, Andrén, Janzen, Lal, Smith, Tian, Tiessen, Noordwijk, Woomer (b0820) 1997; 13 Xu, Adhikari, Huang, Zhang, Tang, Roden, Yang (b1170) 2016; 50 Heitkötter, Marschner (b0345) 2015; 245 Qiu, Sun, Jin, Han, Sun, Zhao, Xia, Wu, Xing (b0845) 2015; 206 Sarauer, Page-Dumroese, Coleman (b0895) 2019; 11 Huang, Zhang, Xiao, Zhang, Wang, Yang, Xu, Liang (b0375) 2019; 692 Sun, Qiu, Han, Jin, Wang, Pan, Xing (b1005) 2018; 634 Tisdall, Oades (b1030) 1982; 33 Weng, Van Zwieten, Singh, Tavakkoli, Kimber, Morris, Macdonald, Cowie (b1120) 2018; 118 Dong, Guan, Li, Lin, Zhao (b0185) 2016; 16 Li, Cao, Zhao, Wang, Ding (b0565) 2014; 48 Xiao, Li, Huang, Sheng, Qiu (b1145) 2012; 31 Zheng, Wang, Luo, Wang, Xing (b1255) 2018; 610 Zhou, Dou, Liu (b1265) 2011; 30 Abbruzzini, Moreira, de Camargo, Conz, Cerri (b0005) 2017; 6 Cantrell, Hunt, Uchimiya, Novak, Ro (b0100) 2012; 107 McCarthy, Ilavsky, Jastrow, Mayer, Perfect, Zhuang (b0715) 2008; 72 Spokas, Baker, Reicosky (b0960) 2010; 333 Xiao, Chen (b1140) 2017; 51 Nguyen, Lehmann, Hockaday, Joseph, Masiello (b0790) 2010; 44 Xu, Zhao, Sun, Gao, Wang, Jin, Zhang, Wang, Yan, Liu (b1160) 2014; 111 Hart, Luckai (b0335) 2013; 50 Han, Ro, Sun, Sun, Wang, Libra, Xing (b0305) 2016; 50 Wang, Xiong, Kuzyakov (b1090) 2016; 8 Luo, Durenkamp, De Nobili, Lin, Brookes (b0635) 2011; 43 Li, Yue, Gao (b0570) 2010; 178 Hardie, Clothier, Bound, Oliver, Close (b0330) 2014; 376 Shen, Wang, Tzou, Yan, Kuan (b0915) 2012; 104 Singh, Sarkar, Sarkar, Churchman, Bolan, Mandal, Menon, Purakayastha, Beerling (b0935) 2017; 148 Kookana, Sarmah, Van Zwieten, Krull, Singh (b0510) 2011; 112 Wang, Zhang, Cerdà, Cao, Zhang, Yin, Jiang, Chen (b1095) 2017; 289 Ameloot, Graber, Verheijen, De Neve (b0030) 2013; 64 Keiluweit, Kleber, Sparrow, Simoneit, Prahl (b0445) 2012; 46 Herath, Camps-Arbestain, Hedley (b0350) 2013; 209 Fungo, Lehmann, Kalbitz, Thionģo, Okeyo, Tenywa, Neufeldt (b0260) 2017; 165 Magill, Aber (b0660) 2000; 32 Yuan, Xu, Zhang (b1205) 2011; 102 Yin, He, Ren, Yang (b1195) 2014; 13 Angın (b0035) 2013; 128 Chen, Zhou, Zhu (b0115) 2008; 42 Maestrini, Abiven, Singh, Bird, Torn, Schmidt (b0655) 2014; 11 Stavi, Lal (b0965) 2013; 33 Jastrow (b0395) 1996; 28 Wen, Huang, Li, Gong, Zhang, Pei, Fang, Shan, Khan (b1115) 2009; 150 Zimmerman (b1270) 2010; 44 Muhammad, Dai, Xiao, Meng, Brookes, Liu, Wang, Wu, Xu (b0750) 2014; 226 Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (b0545) 2011; 43 Brennan, Jiménez, Puschenreiter, Alburquerque, Switzer (b0075) 2014; 379 Kim, Kim, Cho, Choi (b0475) 2012; 118 Sun, Kang, Ro, Libra, Zhao, Xing (b0995) 2016; 142 Chen, Chen, Chen, Chen, Lehmann, McBride, Hay (b0135) 2011; 102 Sarker, Incerti, Spaccini, Piccolo, Mazzoleni, Bonanomi (b0900) 2018; 117 Bandara, Herath, Kumarathilaka, Seneviratne, Seneviratne, Rajakaruna, Vithanage, Ok (b0060) 2017; 17 Bach, Hofmockel (b0045) 2016; 8 Xing, Pignatello (b1155) 1997; 31 Bruun, Jensen, Jensen (b0085) 2008; 39 Matsubara, Hasegawa, Fukui (b0710) 2002; 71 Gurwick, Moore, Kelly, Elias (b0295) 2013; 8 Bamminger, Marschner, Jüschke (b0055) 2014; 65 Stewart, Zheng, Botte, Cotrufo (b0980) 2013; 5 IBI, 2012. Standardized product definition and product testing guidelines for biochar that is used in soil, IBI Biochar Standards. Zhang, Du, Lou, He (b1240) 2015; 127 Liang, Lehmann, Solomon, Sohi, Thies, Skjemstad, Luizao, Engelhard, Neves, Wirick (b0590) 2008; 72 Baldock, Skjemstad (b0050) 2000; 31 Trumbore, Czimczik (b1045) 2008; 321 Trompowsky, de Melo Benites, Madari, Pimenta, Hockaday, Hatcher (b1040) 2005; 36 Fernandes, Brooks (b0245) 2003; 53 Manyà (b0685) 2012; 46 Karaosmanoǧlu, Işıgıgür-Ergüdenler, Sever (b0435) 2000; 14 Mohan, Rajput, Singh, Steele, Pittman (b0740) 2011; 188 Zhao, Zhou (b1250) 2019; 245 Mathews (b0705) 2008; 36 Luo, Liu, Xia, Chen, Jiang, Zheng, Wang (b0630) 2017; 17 Merzari, Langone, Andreottola, Fiori (b0725) 2019; 49 Downie, A., Crosky, A., Munroe, P., 2009. Physical properties of biochar. Biochar for environmental management: science and technology, 13–32. Xu, Zhao, Sima, Zhao, Mašek, Cao (b1175) 2017; 241 Kimetu, Lehmann (b0485) 2010; 48 Van Zwieten, Kimber, Morris, Chan, Downie, Rust, Joseph, Cowie (b1070) 2010; 327 Lian, Sun, Chen, Zhu, Liu, Xing (b0575) 2015; 204 Mukome, Six, Parikh (b0770) 2013; 200 Jin, Kang, Sun, Pan, Wu, Xing (b0400) 2016; 550 Herath, Camps-Arbestain, Hedley, Kirschbaum, Wang, Hale (b0355) 2015; 7 Jäckel, Schnell, Conrad (b0390) 2004; 36 Troeh, Thompson (b1035) 2005 Fidel, Laird, Parkin (b0250) 2017; 9 Xie, Reddy, Wang, Yargicoglu, Spokas (b1150) 2015; 45 Steiner, C., Teixeira, W.G., Lehmann, J., Zech, W., 2004. Microbial response to charcoal amendments of highly weathered soils and Amazonian Dark Earths in Central Amazonia—preliminary results. In: Amazonian Dark Earths: Explorations in Space and Time. Springer, pp. 195–212. Blagodatskaya, Kuzyakov (b0070) 2008; 45 Jin, Sun, Wang, Yang, Han, Xing (b0405) 2017; 51 Grutzmacher, Puga, Bibar, Coscione, Packer, de Andrade (b0285) 2018; 625 Dong, Singh, Li, Lin, Zhao (b0190) 2018; 252 Six, Paustian, Elliott, Combrink (b0950) 2000; 64 Woolf, Lehmann (b1130) 2012; 111 Cross, Sohi (b0160) 2011; 43 Chen, Zhou, Lin (b0120) 2015; 179 Naisse, Girardin, Lefevre, Pozzi, Maas, Stark, Rumpel (b0775) 2015; 7 Neff, Asner (b0780) 2001; 4 El-Naggar, Usman, Al-Omra Fang (10.1016/j.geoderma.2020.114184_b0230) 2014; 65 Stavi (10.1016/j.geoderma.2020.114184_b0965) 2013; 33 Uchimiya (10.1016/j.geoderma.2020.114184_b1060) 2011; 190 Peng (10.1016/j.geoderma.2020.114184_b0825) 2011; 112 Han (10.1016/j.geoderma.2020.114184_b0315) 2017; 234 Naisse (10.1016/j.geoderma.2020.114184_b0775) 2015; 7 Singh (10.1016/j.geoderma.2020.114184_b0930) 2012; 46 Luo (10.1016/j.geoderma.2020.114184_b0625) 2017; 117 Zhang (10.1016/j.geoderma.2020.114184_b1240) 2015; 127 Kookana (10.1016/j.geoderma.2020.114184_b0510) 2011; 112 Ouyang (10.1016/j.geoderma.2020.114184_b0810) 2014; 52 Rechberger (10.1016/j.geoderma.2020.114184_b0870) 2017; 115 Fidel (10.1016/j.geoderma.2020.114184_b0250) 2017; 9 Kim (10.1016/j.geoderma.2020.114184_b0475) 2012; 118 Weng (10.1016/j.geoderma.2020.114184_b1120) 2018; 118 Zhang (10.1016/j.geoderma.2020.114184_b1235) 2014; 168 Manyà (10.1016/j.geoderma.2020.114184_b0685) 2012; 46 John (10.1016/j.geoderma.2020.114184_b0415) 2005; 128 Leng (10.1016/j.geoderma.2020.114184_b0560) 2019; 664 Dong (10.1016/j.geoderma.2020.114184_b0185) 2016; 16 Lyu (10.1016/j.geoderma.2020.114184_b0650) 2016; 218 Ventura (10.1016/j.geoderma.2020.114184_b1075) 2015; 7 10.1016/j.geoderma.2020.114184_b0370 Sun (10.1016/j.geoderma.2020.114184_b0995) 2016; 142 Martin (10.1016/j.geoderma.2020.114184_b0695) 1971; 111 Luo (10.1016/j.geoderma.2020.114184_b0645) 2017; 106 Bruun (10.1016/j.geoderma.2020.114184_b0085) 2008; 39 Spokas (10.1016/j.geoderma.2020.114184_b0960) 2010; 333 Chen (10.1016/j.geoderma.2020.114184_b0110) 2009; 76 Grutzmacher (10.1016/j.geoderma.2020.114184_b0285) 2018; 625 Dong (10.1016/j.geoderma.2020.114184_b0190) 2018; 252 Seneviratne (10.1016/j.geoderma.2020.114184_b0910) 2017; 186 Van Zwieten (10.1016/j.geoderma.2020.114184_b1070) 2010; 327 Fungo (10.1016/j.geoderma.2020.114184_b0260) 2017; 165 Han (10.1016/j.geoderma.2020.114184_b0325) 2016; 94 Gurwick (10.1016/j.geoderma.2020.114184_b0295) 2013; 8 Palansooriya (10.1016/j.geoderma.2020.114184_b0815) 2019; 1 Mukherjee (10.1016/j.geoderma.2020.114184_b0755) 2014; 5 Väisänen (10.1016/j.geoderma.2020.114184_b1065) 2005; 37 Wang (10.1016/j.geoderma.2020.114184_b1095) 2017; 289 Matsubara (10.1016/j.geoderma.2020.114184_b0710) 2002; 71 Paustian (10.1016/j.geoderma.2020.114184_b0820) 1997; 13 Baldock (10.1016/j.geoderma.2020.114184_b0050) 2000; 31 Troeh (10.1016/j.geoderma.2020.114184_b1035) 2005 Han (10.1016/j.geoderma.2020.114184_b0305) 2016; 50 Cui (10.1016/j.geoderma.2020.114184_b0175) 2019; 126 Keith (10.1016/j.geoderma.2020.114184_b0455) 2011; 45 Herath (10.1016/j.geoderma.2020.114184_b0350) 2013; 209 Lu (10.1016/j.geoderma.2020.114184_b0620) 2014; 76 Liang (10.1016/j.geoderma.2020.114184_b0590) 2008; 72 10.1016/j.geoderma.2020.114184_b0380 Kasozi (10.1016/j.geoderma.2020.114184_b0440) 2010; 44 Chen (10.1016/j.geoderma.2020.114184_b0115) 2008; 42 Trumbore (10.1016/j.geoderma.2020.114184_b1045) 2008; 321 Zhao (10.1016/j.geoderma.2020.114184_b1250) 2019; 245 Luo (10.1016/j.geoderma.2020.114184_b0640) 2013; 57 Zhang (10.1016/j.geoderma.2020.114184_b1215) 2012; 127 Chen (10.1016/j.geoderma.2020.114184_b0140) 2012; 46 Chenu (10.1016/j.geoderma.2020.114184_b0145) 2000; 64 Mitchell (10.1016/j.geoderma.2020.114184_b0730) 2005; 131 Pignatello (10.1016/j.geoderma.2020.114184_b0835) 2006; 40 Wang (10.1016/j.geoderma.2020.114184_b1090) 2016; 8 Zhao (10.1016/j.geoderma.2020.114184_b1245) 2018; 123 Swift (10.1016/j.geoderma.2020.114184_b1015) 1979 Fierer (10.1016/j.geoderma.2020.114184_b0255) 2006; 103 Tsai (10.1016/j.geoderma.2020.114184_b1055) 2013; 10 Pietikäinen (10.1016/j.geoderma.2020.114184_b0830) 2000; 89 Kuzyakov (10.1016/j.geoderma.2020.114184_b0520) 2014; 70 Xu (10.1016/j.geoderma.2020.114184_b1170) 2016; 50 10.1016/j.geoderma.2020.114184_b0205 Kilbertus (10.1016/j.geoderma.2020.114184_b0465) 1980; 17 Magill (10.1016/j.geoderma.2020.114184_b0660) 2000; 32 Kelly (10.1016/j.geoderma.2020.114184_b0460) 2017; 27 Fernandes (10.1016/j.geoderma.2020.114184_b0245) 2003; 53 Tisdall (10.1016/j.geoderma.2020.114184_b1030) 1982; 33 Luo (10.1016/j.geoderma.2020.114184_b0635) 2011; 43 Sun (10.1016/j.geoderma.2020.114184_b0985) 2014; 177 Xiao (10.1016/j.geoderma.2020.114184_b1140) 2017; 51 Ennis (10.1016/j.geoderma.2020.114184_b0225) 2012; 42 Mohanty (10.1016/j.geoderma.2020.114184_b0745) 2013; 104 Xie (10.1016/j.geoderma.2020.114184_b1150) 2015; 45 Xiao (10.1016/j.geoderma.2020.114184_b1145) 2012; 31 Han (10.1016/j.geoderma.2020.114184_b0320) 2014; 48 Gomez (10.1016/j.geoderma.2020.114184_b0280) 2014; 65 Gul (10.1016/j.geoderma.2020.114184_b0290) 2015; 206 Xia (10.1016/j.geoderma.2020.114184_b1135) 2019; 49 Aller (10.1016/j.geoderma.2020.114184_b0025) 2016; 46 Wen (10.1016/j.geoderma.2020.114184_b1115) 2009; 150 Hart (10.1016/j.geoderma.2020.114184_b0335) 2013; 50 Hua (10.1016/j.geoderma.2020.114184_b0365) 2014; 33 Zabaniotou (10.1016/j.geoderma.2020.114184_b1210) 2008; 99 Xu (10.1016/j.geoderma.2020.114184_b1175) 2017; 241 Huang (10.1016/j.geoderma.2020.114184_b0375) 2019; 692 Rawal (10.1016/j.geoderma.2020.114184_b0865) 2016; 50 Shen (10.1016/j.geoderma.2020.114184_b0915) 2012; 104 Li (10.1016/j.geoderma.2020.114184_b0565) 2014; 48 Gaskin (10.1016/j.geoderma.2020.114184_b0270) 2008; 51 Maestrini (10.1016/j.geoderma.2020.114184_b0655) 2014; 11 Singh (10.1016/j.geoderma.2020.114184_b0935) 2017; 148 Karaosmanoǧlu (10.1016/j.geoderma.2020.114184_b0435) 2000; 14 Sarauer (10.1016/j.geoderma.2020.114184_b0895) 2019; 11 Ahmad (10.1016/j.geoderma.2020.114184_b0015) 2013; 143 Cross (10.1016/j.geoderma.2020.114184_b0160) 2011; 43 Bandara (10.1016/j.geoderma.2020.114184_b0060) 2017; 17 Xu (10.1016/j.geoderma.2020.114184_b1165) 2012; 12 Chen (10.1016/j.geoderma.2020.114184_b0135) 2011; 102 Liu (10.1016/j.geoderma.2020.114184_b0600) 2012; 121 Kumar (10.1016/j.geoderma.2020.114184_b0515) 2011; 92 Ouyang (10.1016/j.geoderma.2020.114184_b0805) 2013; 13 Meng (10.1016/j.geoderma.2020.114184_b0720) 2016; 35 Kleber (10.1016/j.geoderma.2020.114184_b0490) 2010; 106 Zheng (10.1016/j.geoderma.2020.114184_b1255) 2018; 610 Elzobair (10.1016/j.geoderma.2020.114184_b0220) 2016; 142 Qiu (10.1016/j.geoderma.2020.114184_b0845) 2015; 206 Sun (10.1016/j.geoderma.2020.114184_b1005) 2018; 634 Major (10.1016/j.geoderma.2020.114184_b0665) 2010; 16 Mathews (10.1016/j.geoderma.2020.114184_b0705) 2008; 36 Sun (10.1016/j.geoderma.2020.114184_b0990) 2010; 80 Merzari (10.1016/j.geoderma.2020.114184_b0725) 2019; 49 Nguyen (10.1016/j.geoderma.2020.114184_b0790) 2010; 44 Liang (10.1016/j.geoderma.2020.114184_b0585) 2006; 70 Durand (10.1016/j.geoderma.2020.114184_b0210) 1980 Nguyen (10.1016/j.geoderma.2020.114184_b0785) 2014; 78 Purakayastha (10.1016/j.geoderma.2020.114184_b0840) 2015; 239 Wang (10.1016/j.geoderma.2020.114184_b1085) 2017; 303 Houben (10.1016/j.geoderma.2020.114184_b0360) 2013; 57 Chen (10.1016/j.geoderma.2020.114184_b0120) 2015; 179 Six (10.1016/j.geoderma.2020.114184_b0945) 2006; 70 Bach (10.1016/j.geoderma.2020.114184_b0045) 2016; 8 Jäckel (10.1016/j.geoderma.2020.114184_b0390) 2004; 36 Yin (10.1016/j.geoderma.2020.114184_b1195) 2014; 13 Hardie (10.1016/j.geoderma.2020.114184_b0330) 2014; 376 Cao (10.1016/j.geoderma.2020.114184_b0105) 2009; 43 Mukome (10.1016/j.geoderma.2020.114184_b0770) 2013; 200 Quan (10.1016/j.geoderma.2020.114184_b0855) 2020; 382 Fang (10.1016/j.geoderma.2020.114184_b0235) 2015; 80 Brennan (10.1016/j.geoderma.2020.114184_b0075) 2014; 379 McCarthy (10.1016/j.geoderma.2020.114184_b0715) 2008; 72 Zheng (10.1016/j.geoderma.2020.114184_b1260) 2013; 181 Li (10.1016/j.geoderma.2020.114184_b0570) 2010; 178 10.1016/j.geoderma.2020.114184_b0095 Lehmann (10.1016/j.geoderma.2020.114184_b0540) 2003; 249 10.1016/j.geoderma.2020.114184_b1185 Wang (10.1016/j.geoderma.2020.114184_b1105) 2013; 32 Kuzyakov (10.1016/j.geoderma.2020.114184_b0525) 2009; 41 Heitkötter (10.1016/j.geoderma.2020.114184_b0345) 2015; 245 Sun (10.1016/j.geoderma.2020.114184_b1000) 2011; 102 Angın (10.1016/j.geoderma.2020.114184_b0035) 2013; 128 Lei (10.1016/j.geoderma.2020.114184_b0550) 2013; 13 Mohan (10.1016/j.geoderma.2020.114184_b0740) 2011; 188 Hartley (10.1016/j.geoderma.2020.114184_b0340) 2016; 181 Steinbeiss (10.1016/j.geoderma.2020.114184_b0970) 2009; 41 El-Naggar (10.1016/j.geoderma.2020.114184_b0215) 2015; 138 Yuan (10.1016/j.geoderma.2020.114184_b1205) 2011; 102 Jastrow (10.1016/j.geoderma.2020.114184_b0395) 1996; 28 Xing (10.1016/j.geoderma.2020.114184_b1155) 1997; 31 Sarker (10.1016/j.geoderma.2020.114184_b0900) 2018; 117 Mataix-Solera (10.1016/j.geoderma.2020.114184_b0700) 2004; 118 Blagodatskaya (10.1016/j.geoderma.2020.114184_b0070) 2008; 45 Kaiser (10.1016/j.geoderma.2020.114184_b0430) 2000; 31 Sohi (10.1016/j.geoderma.2020.114184_b0955) 2010 10.1016/j.geoderma.2020.114184_b0425 Buss (10.1016/j.geoderma.2020.114184_b0090) 2018; 331 Lehmann (10.1016/j.geoderma.2020.114184_b0545) 2011; 43 Ameloot (10.1016/j.geoderma.2020.114184_b0030) 2013; 64 Rousk (10.1016/j.geoderma.2020.114184_b0880) 2009; 75 Cross (10.1016/j.geoderma.2020.114184_b0165) 2013; 5 Cui (10.1016/j.geoderma.2020.114184_b0170) 2017; 104 Oh (10.1016/j.geoderma.2020.114184_b0800) 2012; 223 Iorio (10.1016/j.geoderma.2020.114184_b0385) 2008; 156 Chen (10.1016/j.geoderma.2020.114184_b0125) 2016; 218 10.1016/j.geoderma.2020.114184_b0670 Joseph (10.1016/j.geoderma.2020.114184_b0420) 2010; 48 Kononova (10.1016/j.geoderma.2020.114184_b0505) 1966 Rittl (10.1016/j.geoderma.2020.114184_b0875) 2015; 66 Batjes (10.1016/j.geoderma.2020.114184_b0065) 1996; 47 Sun (10.1016/j.geoderma.2020.114184_b1010) 2013; 140 Chorover (10.1016/j.geoderma.2020.114184_b0150) 2001; 65 Farrell (10.1016/j.geoderma.2020.114184_b0240) 2013; 465 Yang (10.1016/j.geoderma.2020.114184_b1190) 2016; 50 Zhang (10.1016/j.geoderma.2020.114184_b1220) 2017; 186 Zhang (10.1016/j.geoderma.2020.114184_b1225) 2011; 159 10.1016/j.geoderma.2020.114184_b1080 Six (10.1016/j.geoderma.2020.114184_b0940) 2004; 79 Wang (10.1016/j.geoderma.2020.114184_b1100) 2015; 96 Abbruzzini (10.1016/j.geoderma.2020.114184_b0005) 2017; 6 Han (10.1016/j.geoderma.2020.114184_b0310) 2018; 616 Trompowsky (10.1016/j.geoderma.2020.114184_b1040) 2005; 36 Lin (10.1016/j.geoderma.2020.1141 |
References_xml | – volume: 36 start-page: 835 year: 2004 end-page: 840 ident: b0390 article-title: Microbial ethylene production and inhibition of methanotrophic activity in a deciduous forest soil publication-title: Soil Biol. Biochem. – volume: 218 start-page: 1 year: 2016 end-page: 7 ident: b0650 article-title: Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment publication-title: Environ. Pollut. – volume: 156 start-page: 1021 year: 2008 end-page: 1029 ident: b0385 article-title: Sorption of phenanthrene by dissolved organic matter and its complex with aluminum oxide nanoparticles publication-title: Environ. Pollut. – volume: 112 start-page: 159 year: 2011 end-page: 166 ident: b0825 article-title: Temperature-and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China publication-title: Soil Till. Res. – volume: 177 start-page: 26 year: 2014 end-page: 33 ident: b0985 article-title: Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil publication-title: J. Plant Nut. Soil Sci. – volume: 43 start-page: 1812 year: 2011 end-page: 1836 ident: b0545 article-title: Biochar effects on soil biota–a review publication-title: Soil Biol. Biochem. – volume: 5 start-page: 153 year: 2013 end-page: 164 ident: b0980 article-title: Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils publication-title: Gcb. Bioenerg. – reference: Thies, J.E., Rillig, M.C., 2009. Characteristics of biochar: biological properties. In: Biochar for Environmental Management: Science and Technology, pp. 85–105. – volume: 100 start-page: 178 year: 2008 end-page: 181 ident: b0530 article-title: The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality publication-title: Agron. J. – volume: 32 start-page: 597 year: 2000 end-page: 601 ident: b0660 article-title: Variation in soil net mineralization rates with dissolved organic carbon additions publication-title: Soil Biol. Biochem. – volume: 51 start-page: 5473 year: 2017 end-page: 5482 ident: b1140 article-title: A direct observation of the fine aromatic clusters and molecular structures of biochars publication-title: Environ. Sci. Technol. – volume: 71 start-page: 33 year: 2013 end-page: 44 ident: b0130 article-title: Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China publication-title: Appl. Soil Ecol. – volume: 7 start-page: 488 year: 2015 end-page: 496 ident: b0775 article-title: Effect of physical weathering on the carbon sequestration potential of biochars and hydrochars in soil publication-title: Gcb. Bioenerg. – volume: 111 start-page: 320 year: 2014 end-page: 326 ident: b1160 article-title: Cadmium adsorption on plant-and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties publication-title: Chemosphere – volume: 72 start-page: 4725 year: 2008 end-page: 4744 ident: b0715 article-title: Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter publication-title: Geochim. Cosmochim. Ac. – volume: 179 start-page: 359 year: 2015 end-page: 366 ident: b0120 article-title: Sorption characteristics of N-nitrosodimethylamine onto biochar from aqueous solution publication-title: Bioresour. Technol. – volume: 43 start-page: 2127 year: 2011 end-page: 2134 ident: b0160 article-title: The priming potential of biochar products in relation to labile carbon contents and soil organic matter status publication-title: Soil Biol. Biochem. – volume: 7 start-page: 1150 year: 2015 end-page: 1160 ident: b1075 article-title: Biochar mineralization and priming effect on SOM decomposition in two European short rotation coppices publication-title: Gcb. Bioenerg. – volume: 78 start-page: 531 year: 2014 end-page: 537 ident: b0785 article-title: Turnover of soil carbon following addition of switchgrass-derived biochar to four soils publication-title: Soil Sci. Soc. Am. J. – volume: 111 start-page: 83 year: 2012 end-page: 95 ident: b1130 article-title: Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon publication-title: Biogeochemistry – volume: 51 start-page: 115 year: 2012 end-page: 124 ident: b0890 article-title: Biological degradation of pyrogenic organic matter in temperate forest soils publication-title: Soil Biol. Biochem. – volume: 50 start-page: 2264 year: 2016 end-page: 2271 ident: b1190 article-title: The interfacial behavior between biochar and soil minerals and its effect on biochar stability publication-title: Environ. Sci. Technol. – volume: 79 start-page: 7 year: 2004 end-page: 31 ident: b0940 article-title: A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics publication-title: Soil Till. Res. – volume: 44 start-page: 3324 year: 2010 end-page: 3331 ident: b0790 article-title: Temperature sensitivity of black carbon decomposition and oxidation publication-title: Environ. Sci. Technol. – volume: 200 start-page: 90 year: 2013 end-page: 98 ident: b0770 article-title: The effects of walnut shell and wood feedstock biochar amendments on greenhouse gas emissions from a fertile soil publication-title: Geoderma – volume: 12 start-page: 494 year: 2012 end-page: 502 ident: b1165 article-title: pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars publication-title: J. Soil. Sediment. – volume: 38 start-page: 4649 year: 2004 end-page: 4655 ident: b0155 article-title: Compositions and sorptive properties of crop residue-derived chars publication-title: Environ. Sci. Technol. – volume: 664 start-page: 11 year: 2019 end-page: 23 ident: b0560 article-title: Biochar stability assessment by incubation and modelling: methods, drawbacks and recommendations publication-title: Sci. Total Environ. – volume: 241 start-page: 887 year: 2017 end-page: 899 ident: b1175 article-title: Indispensable role of biochar-inherent mineral constituents in its environmental applications: a review publication-title: Bioresour. Technol. – volume: 33 start-page: 941 year: 2014 end-page: 946 ident: b0365 article-title: Effect of biochar on carbon dioxide release, organic carbon accumulation, and aggregation of soil publication-title: Environ. Prog. Sustain. – volume: 43 start-page: 2304 year: 2011 end-page: 2314 ident: b0635 article-title: Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH publication-title: Soil Biol. Biochem. – volume: 186 start-page: 293 year: 2017 end-page: 300 ident: b0910 article-title: Phytotoxicity attenuation in publication-title: J. Environ. Manage. – volume: 96 start-page: 265 year: 2015 end-page: 272 ident: b1100 article-title: Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil publication-title: Appl. Soil Ecol. – volume: 32 start-page: 1585 year: 2013 end-page: 1591 ident: b1105 article-title: Effects of biochar amendments synthesized at varying temperatures on soil organic carbon mineralization and humus composition publication-title: J. Agro-Environ. Sci. – volume: 17 start-page: 780 year: 2017 end-page: 789 ident: b0630 article-title: Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China publication-title: J. Soil Sediment – volume: 46 start-page: 7939 year: 2012 end-page: 7954 ident: b0685 article-title: Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs publication-title: Environ. Sci. Technol. – volume: 88 start-page: 1386 year: 2007 end-page: 1394 ident: b0905 article-title: Microbial stress-response physiology and its implications for ecosystem function publication-title: Ecology – volume: 47 start-page: 151 year: 1996 end-page: 163 ident: b0065 article-title: Total carbon and nitrogen in the soils of the world publication-title: Eur. J. Soil Sci. – volume: 48 start-page: 11211 year: 2014 end-page: 11217 ident: b0565 article-title: Effects of mineral additives on biochar formation: carbon retention, stability, and properties publication-title: Environ. Sci. Technol. – volume: 128 start-page: 63 year: 2005 end-page: 79 ident: b0415 article-title: Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use publication-title: Geoderma – volume: 190 start-page: 432 year: 2011 end-page: 441 ident: b1060 article-title: Screening biochars for heavy metal retention in soil: role of oxygen functional groups publication-title: J. Hazard. Mater. – volume: 128 start-page: 593 year: 2013 end-page: 597 ident: b0035 article-title: Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake publication-title: Bioresour. Technol. – volume: 616 start-page: 335 year: 2018 end-page: 344 ident: b0310 article-title: Oxidation resistance of biochars as a function of feedstock and pyrolysis condition publication-title: Sci. Total Environ. – volume: 17 start-page: 543 year: 1980 end-page: 557 ident: b0465 article-title: Microhabitats in soil aggregates. Their relationship with bacterial biomass and the size of the procaryotes present publication-title: Revue d'Ecologie et de Biologie du Sol – volume: 41 start-page: 990 year: 2012 end-page: 1000 ident: b0495 article-title: Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties publication-title: J. Environ. Qual. – volume: 44 start-page: 6189 year: 2010 end-page: 6195 ident: b0440 article-title: Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars) publication-title: Environ. Sci. Technol. – volume: 102 start-page: 8877 year: 2011 end-page: 8884 ident: b0135 article-title: Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution publication-title: Bioresour. Technol. – volume: 245 start-page: 56 year: 2015 end-page: 64 ident: b0345 article-title: Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production publication-title: Geoderma – volume: 382 year: 2020. ident: b0855 article-title: Effects of laboratory biotic aging on the characteristics of biochar and its water-soluble organic products publication-title: J. Hazard. Mater. – volume: 252 start-page: 200 year: 2018 end-page: 207 ident: b0190 article-title: Biochar application constrained native soil organic carbon accumulation from wheat residue inputs in a long-term wheat-maize cropping system publication-title: Agr. Ecosyst. Environ. – volume: 168 start-page: 252 year: 2014 end-page: 258 ident: b1235 article-title: The use of biochar-amended composting to improve the humification and degradation of sewage sludge publication-title: Bioresour. Technol. – volume: 25 start-page: 57 year: 1993 end-page: 62 ident: b0470 article-title: Effect of substrate location in soil and soil pore-water regime on carbon turnover publication-title: Soil Biol. Biochem. – volume: 142 start-page: 56 year: 2016 end-page: 63 ident: b0995 article-title: Variation in sorption of propiconazole with biochars: the effect of temperature, mineral, molecular structure, and nano-porosity publication-title: Chemosphere – volume: 36 start-page: 1480 year: 2005 end-page: 1489 ident: b1040 article-title: Characterization of humic like substances obtained by chemical oxidation of publication-title: Org. Geochem. – volume: 105 start-page: 255 year: 2005 end-page: 266 ident: b0555 article-title: Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude publication-title: Agr. Ecosyst. Environ. – volume: 64 start-page: 681 year: 2000 end-page: 689 ident: b0950 article-title: Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon publication-title: Soil Sci. Soc. Am. J. – volume: 57 start-page: 196 year: 2013 end-page: 204 ident: b0360 article-title: Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed ( publication-title: Biomass Bioenerg. – volume: 70 start-page: 229 year: 2014 end-page: 236 ident: b0520 article-title: Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific publication-title: Soil Biol. Biochem. – volume: 131 start-page: 1222 year: 2005 end-page: 1233 ident: b0730 article-title: Biological considerations in geotechnical engineering publication-title: J. Geotech. Geoenviron. Eng. – volume: 550 start-page: 504 year: 2016 end-page: 513 ident: b0400 article-title: Properties of biochar-amended soils and their sorption of imidacloprid, isoproturon, and atrazine publication-title: Sci. Total Environ. – volume: 44 start-page: 1247 year: 2010 end-page: 1253 ident: b0450 article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. – volume: 31 start-page: 697 year: 2000 end-page: 710 ident: b0050 article-title: Role of the soil matrix and minerals in protecting natural organic materials against biological attack publication-title: Org. Geochem. – volume: 64 start-page: 1479 year: 2000 end-page: 1486 ident: b0145 article-title: Organic matter influence on clay wettability and soil aggregate stability publication-title: Soil Sci. Soc. Am. J. – volume: 70 start-page: 1719 year: 2006 end-page: 1730 ident: b0585 article-title: Black carbon increases cation exchange capacity in soils publication-title: Soil Sci. Soc. Am. J. – volume: 178 start-page: 455 year: 2010 end-page: 461 ident: b0570 article-title: Adsorption kinetics and desorption of Cu (II) and Zn (II) from aqueous solution onto humic acid publication-title: J. Hazard. Mater. – volume: 36 start-page: 940 year: 2008 end-page: 945 ident: b0705 article-title: Carbon-negative biofuels publication-title: Energ. Policy – year: 1966 ident: b0505 article-title: Soil Organic Matter; Its Nature, Its Role in Soil Formation and in Soil Fertility – reference: Major, J., Steiner, C., Downie, A., Lehmann, J., Joseph, S., 2009. Biochar effects on nutrient leaching. In: Biochar for Environmental Management: Science and Technology, vol. 271, pp. 303–320. – volume: 35 start-page: 122 year: 2016 end-page: 128 ident: b0720 article-title: Effects of maize stalk biochar on humus composition and humic acid structure in black soil publication-title: J. Agro-Environ. Sci. – volume: 37 start-page: 2007 year: 2005 end-page: 2016 ident: b1065 article-title: Physiological and molecular characterisation of microbial communities associated with different water-stable aggregate size classes publication-title: Soil Biol. Biochem. – volume: 327 start-page: 235 year: 2010 end-page: 246 ident: b1070 article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility publication-title: Plant Soil – volume: 104 start-page: 49 year: 2017 end-page: 58 ident: b0170 article-title: Interactions between biochar and litter priming: a three-source publication-title: Soil Biol. Biochem. – volume: 143 start-page: 615 year: 2013 end-page: 622 ident: b0015 article-title: Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures publication-title: Bioresour. Technol. – volume: 76 start-page: 127 year: 2009 end-page: 133 ident: b0110 article-title: Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures publication-title: Chemosphere – volume: 126 start-page: 69 year: 2019 end-page: 75 ident: b0175 article-title: Wheat straw biochar reduces environmental cadmium bioavailability publication-title: Environ. Int. – volume: 89 start-page: 150 year: 2014 end-page: 157 ident: b0020 article-title: Production and use of biochar from buffalo-weed ( publication-title: J. Chem. Technol. Biotechnol. – volume: 57 start-page: 513 year: 2013 end-page: 523 ident: b0640 article-title: Microbial biomass growth, following incorporation of biochars produced at 350 publication-title: Soil Biol. Biochem. – volume: 125 start-page: 70 year: 2015 end-page: 85 ident: b1020 article-title: Application of biochar for the removal of pollutants from aqueous solutions publication-title: Chemosphere – volume: 46 start-page: 1183 year: 2016 end-page: 1296 ident: b0025 article-title: Biochar properties: transport, fate, and impact publication-title: Crit. Rev. Env. Sci. Tec. – volume: 76 start-page: 12 year: 2014 end-page: 21 ident: b0620 article-title: Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect publication-title: Soil Biol. Biochem. – volume: 331 start-page: 50 year: 2018 end-page: 52 ident: b0090 article-title: Spatial and temporal microscale pH change at the soil-biochar interface publication-title: Geoderma – volume: 50 start-page: 13274 year: 2016 end-page: 13282 ident: b0305 article-title: New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants publication-title: Environ. Sci. Technol. – volume: 106 start-page: 28 year: 2017 end-page: 35 ident: b0645 article-title: Priming effects in biochar enriched soils using a three-source-partitioning approach: publication-title: Soil Biol. Biochem. – volume: 144 start-page: 285 year: 2016 end-page: 291 ident: b1110 article-title: Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures publication-title: Chemosphere – volume: 142 start-page: 145 year: 2016 end-page: 152 ident: b0220 article-title: Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol publication-title: Chemosphere – volume: 31 start-page: 1187 year: 2012 end-page: 1193 ident: b1145 article-title: Reduced adsorption of propanil to black carbon: effect of dissolved organic matter loading mode and molecule size publication-title: Environ. Toxicol. Chem. – volume: 5 start-page: 215 year: 2013 end-page: 220 ident: b0165 article-title: A method for screening the relative long-term stability of biochar publication-title: Gcb. Bioenerg. – volume: 289 start-page: 161 year: 2017 end-page: 168 ident: b1095 article-title: Changes in soil chemical properties as affected by pyrogenic organic matter amendment with different intensity and frequency publication-title: Geoderma – volume: 28 start-page: 665 year: 1996 end-page: 676 ident: b0395 article-title: Soil aggregate formation and the accrual of particulate and mineral-associated organic matter publication-title: Soil Biol. Biochem. – volume: 379 start-page: 351 year: 2014 end-page: 360 ident: b0075 article-title: Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil publication-title: Plant Soil – volume: 104 start-page: 485 year: 2013 end-page: 493 ident: b0745 article-title: Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate publication-title: J. Anal. Appl. Pyrol. – volume: 52 start-page: 46 year: 2014 end-page: 54 ident: b0810 article-title: Effects of amendment of different biochars on soil carbon mineralisation and sequestration publication-title: Soil Res. – volume: 89 start-page: 510 year: 2010 end-page: 514 ident: b0615 article-title: Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment publication-title: Fuel – volume: 9 start-page: 1279 year: 2017 end-page: 1291 ident: b0250 article-title: Impact of six lignocellulosic biochars on C and N dynamics of two contrasting soils publication-title: Gcb. Bioenerg. – start-page: 5 year: 1979 ident: b1015 article-title: Decomposition in Terrestrial Ecosystems – volume: 1 start-page: 56 year: 2010 ident: b1125 article-title: Sustainable biochar to mitigate global climate change publication-title: Nat. Commun. – volume: 206 start-page: 298 year: 2015 end-page: 305 ident: b0845 article-title: Metal/metalloid elements and polycyclic aromatic hydrocarbon in various biochars: the effect of feedstock, temperature, minerals, and properties publication-title: Environ. Pollut. – volume: 127 start-page: 153 year: 2012 end-page: 160 ident: b1215 article-title: Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles publication-title: Field Crops Res. – volume: 80 start-page: 136 year: 2015 end-page: 145 ident: b0235 article-title: Effect of temperature on biochar priming effects and its stability in soils publication-title: Soil Biol. Biochem. – volume: 234 start-page: 77 year: 2017 end-page: 85 ident: b0315 article-title: Removal of antimony (III) and cadmium (II) from aqueous solution using animal manure-derived hydrochars and pyrochars publication-title: Bioresour. Technol. – volume: 6 start-page: 389 year: 2017 end-page: 398 ident: b0005 article-title: Increasing rates of biochar application to soil induce stronger negative priming effect on soil organic carbon decomposition publication-title: Agr. Res. – volume: 27 start-page: 694 year: 2017 end-page: 704 ident: b0460 article-title: Incorporation of biochar carbon into stable soil aggregates: the role of clay mineralogy and other soil characteristics publication-title: Pedosphere – volume: 634 start-page: 1300 year: 2018 end-page: 1307 ident: b1005 article-title: Speciation of phosphorus in plant-and manure-derived biochars and its dissolution under various aqueous conditions publication-title: Sci. Total Environ. – volume: 8 year: 2013 ident: b0295 article-title: A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy publication-title: PloS One – volume: 17 start-page: 665 year: 2017 end-page: 673 ident: b0060 article-title: Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil publication-title: J. Soil. Sediment. – volume: 181 start-page: 770 year: 2016 end-page: 778 ident: b0340 article-title: Effects of three different biochars on aggregate stability, organic carbon mobility and micronutrient bioavailability publication-title: J. Environ. Manage. – volume: 146 start-page: 485 year: 2013 end-page: 493 ident: b1180 article-title: Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis publication-title: Bioresour. Technol. – year: 2005 ident: b1035 article-title: Soils and Soil Fertility – volume: 13 start-page: 991 year: 2013 end-page: 1002 ident: b0805 article-title: Effects of biochar amendment on soil aggregates and hydraulic properties publication-title: J. Soil Sci. Plant Nut. – volume: 43 start-page: 3285 year: 2009 end-page: 3291 ident: b0105 article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine publication-title: Environ. Sci. Technol. – volume: 223 start-page: 3729 year: 2012 end-page: 3738 ident: b0800 article-title: Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase publication-title: Water Air Soil Pollut. – volume: 33 start-page: 81 year: 2013 end-page: 96 ident: b0965 article-title: Agroforestry and biochar to offset climate change: a review publication-title: Agron. Sustain. Dev. – volume: 102 start-page: 3488 year: 2011 end-page: 3497 ident: b1205 article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures publication-title: Bioresour. Technol. – volume: 44 start-page: 1295 year: 2010 end-page: 1301 ident: b1270 article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) publication-title: Environ. Sci. Technol. – volume: 117 start-page: 175 year: 2018 end-page: 184 ident: b0900 article-title: Linking organic matter chemistry with soil aggregate stability: insight from publication-title: Soil Biol. Biochem. – volume: 9 start-page: 1085 year: 2017 end-page: 1099 ident: b1200 article-title: Investigating the biochar effects on C-mineralization and sequestration of carbon in soil compared with conventional amendments using the stable isotope (δ publication-title: Gcb. Bioenerg. – volume: 39 start-page: 839 year: 2008 end-page: 845 ident: b0085 article-title: Microbial mineralization and assimilation of black carbon: dependency on degree of thermal alteration publication-title: Org. Geochem. – reference: Downie, A., Crosky, A., Munroe, P., 2009. Physical properties of biochar. Biochar for environmental management: science and technology, 13–32. – volume: 186 start-page: 986 year: 2017 end-page: 993 ident: b1220 article-title: Impacts of biochar addition on soil dissolved organic matter characteristics in a wheat-maize rotation system in Loess Plateau of China publication-title: Chemosphere – volume: 17 start-page: 581 year: 2017 end-page: 589 ident: b0200 article-title: Biochar addition drives soil aggregation and carbon sequestration in aggregate fractions from an intensive agricultural system publication-title: J. Soil. Sediment. – volume: 376 start-page: 347 year: 2014 end-page: 361 ident: b0330 article-title: Does biochar influence soil physical properties and soil water availability? publication-title: Plant Soil – reference: IBI, 2012. Standardized product definition and product testing guidelines for biochar that is used in soil, IBI Biochar Standards. – volume: 337 start-page: 1 year: 2010 end-page: 18 ident: b0040 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review publication-title: Plant Soil – reference: Steiner, C., Teixeira, W.G., Lehmann, J., Zech, W., 2004. Microbial response to charcoal amendments of highly weathered soils and Amazonian Dark Earths in Central Amazonia—preliminary results. In: Amazonian Dark Earths: Explorations in Space and Time. Springer, pp. 195–212. – volume: 5 start-page: 510 year: 2016 end-page: 517 ident: b0275 article-title: Profiles of volatile organic compounds in biochar: insights into process conditions and quality assessment publication-title: ACS Sustain. Chem. Eng. – volume: 8 start-page: 588 year: 2016 end-page: 599 ident: b0045 article-title: A time for every season: soil aggregate turnover stimulates decomposition and reduces carbon loss in grasslands managed for bioenergy publication-title: Gcb. Bioenerg. – volume: 49 start-page: 1 year: 2019 end-page: 42 ident: b0725 article-title: Methane production from process water of sewage sludge hydrothermal carbonization. A review. Valorising sludge through hydrothermal carbonization publication-title: Crit. Rev. Env. Sci. Tec. – volume: 16 start-page: 1366 year: 2010 end-page: 1379 ident: b0665 article-title: Fate of soil-applied black carbon: downward migration, leaching and soil respiration publication-title: Global Change Biol. – volume: 41 start-page: 210 year: 2009 end-page: 219 ident: b0525 article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by publication-title: Soil Biol. Biochem. – volume: 65 start-page: 95 year: 2001 end-page: 109 ident: b0150 article-title: Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces publication-title: Geochim. Cosmochim. Ac. – volume: 14 start-page: 336 year: 2000 end-page: 339 ident: b0435 article-title: Biochar from the straw-stalk of rapeseed plant publication-title: Energ. Fuel. – volume: 181 start-page: 60 year: 2013 end-page: 67 ident: b1260 article-title: Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures publication-title: Environ. Pollut. – volume: 70 start-page: 555 year: 2006 end-page: 569 ident: b0945 article-title: Bacterial and fungal contributions to carbon sequestration in agroecosystems publication-title: Soil Sci. Soc. Am. J. – volume: 65 start-page: 28 year: 2014 end-page: 39 ident: b0280 article-title: Biochar addition rate influences soil microbial abundance and activity in temperate soils publication-title: Eur. J. Soil Sci. – volume: 103 start-page: 626 year: 2006 end-page: 631 ident: b0255 article-title: The diversity and biogeography of soil bacterial communities publication-title: P. Natl. Acad. Sci. USA – volume: 202 start-page: 183 year: 2013 end-page: 191 ident: b0010 article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil publication-title: Geoderma – volume: 51 start-page: 13517 year: 2017 end-page: 13532 ident: b0580 article-title: Black carbon (biochar) in water/soil environments: molecular Structure, sorption, stability, and potential risk publication-title: Environ. Sci. Technol. – reference: Joseph, S., Peacocke, C., Lehmann, J., Munroe, P., 2009. Developing a biochar classification and test methods. In: Biochar for Environmental Management: Science and Technology, vol. 1, pp. 107–126. – volume: 49 start-page: 1 year: 2019 end-page: 52 ident: b1135 article-title: A critical review on bioremediation technologies for Cr (VI)-contaminated soils and wastewater publication-title: Crit. Rev. Env. Sci. Tec. – volume: 148 start-page: 33 year: 2017 end-page: 84 ident: b0935 article-title: Stabilization of soil organic carbon as influenced by clay mineralogy publication-title: Adv. Agron. – volume: 99 start-page: 320 year: 2008 end-page: 326 ident: b1210 article-title: Activated carbon from olive kernels in a two-stage process: industrial improvement publication-title: Bioresour. Technol. – volume: 13 start-page: 1561 year: 2013 end-page: 1572 ident: b0550 article-title: Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties publication-title: J. Soil. Sediment. – volume: 150 start-page: 202 year: 2009 end-page: 208 ident: b1115 article-title: Effects of humic acid and lipid on the sorption of phenanthrene on char publication-title: Geoderma – volume: 53 start-page: 447 year: 2003 end-page: 458 ident: b0245 article-title: Characterization of carbonaceous combustion residues: II. Nonpolar organic compounds publication-title: Chemosphere – volume: 692 start-page: 333 year: 2019 end-page: 343 ident: b0375 article-title: Structural changes of soil organic matter and the linkage to rhizosphere bacterial communities with biochar amendment in manure fertilized soils publication-title: Sci. Total Environ. – volume: 43 start-page: 4973 year: 2009 end-page: 4978 ident: b0850 article-title: Influence of environmental factors on pesticide adsorption by black carbon: pH and model dissolved organic matter publication-title: Environ. Sci. Technol. – volume: 50 start-page: 7706 year: 2016 end-page: 7714 ident: b0865 article-title: Mineral-Biochar composites: molecular structure and porosity publication-title: Environ. Sci. Technol. – volume: 30 start-page: 69 year: 2009 end-page: 74 ident: b0605 article-title: Toxicity effect of phenol on aerobic granules publication-title: Environ. Technol. – volume: 48 start-page: 11227 year: 2014 end-page: 11234 ident: b0320 article-title: Role of structure and microporosity in phenanthrene sorption by natural and engineered organic matter publication-title: Environ. Sci. Technol. – volume: 1 start-page: 3 year: 2019 end-page: 22 ident: b0815 article-title: Response of microbial communities to biochar-amended soils: a critical review publication-title: Biochar – volume: 118 start-page: 158 year: 2012 end-page: 162 ident: b0475 article-title: Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine ( publication-title: Bioresour. Technol. – volume: 123 start-page: 484 year: 2018 end-page: 493 ident: b1245 article-title: Varying pyrolysis temperature impacts application effects of biochar on soil labile organic carbon and humic fractions publication-title: Appl. Soil Ecol. – volume: 92 start-page: 2504 year: 2011 end-page: 2512 ident: b0515 article-title: An assessment of U (VI) removal from groundwater using biochar produced from hydrothermal carbonization publication-title: J. Environ. Manage. – volume: 158 start-page: 443 year: 2010 end-page: 449 ident: b0535 article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil publication-title: Geoderma – volume: 51 start-page: 2635 year: 2017 end-page: 2642 ident: b0405 article-title: Characterization and phenanthrene sorption of natural and pyrogenic organic matter fractions publication-title: Environ. Sci. Technol. – volume: 81 start-page: 244 year: 2015 end-page: 254 ident: b0735 article-title: Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil publication-title: Soil Biol. Biochem. – volume: 163 start-page: 247 year: 2011 end-page: 255 ident: b0760 article-title: Surface chemistry variations among a series of laboratory-produced biochars publication-title: Geoderma – volume: 33 start-page: 141 year: 1982 end-page: 163 ident: b1030 article-title: Organic matter and water-stable aggregates in soils publication-title: Eur. J. Soil Sci. – volume: 610 start-page: 951 year: 2018 end-page: 960 ident: b1255 article-title: Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: roles of soil aggregation and microbial modulation publication-title: Sci. Total Environ. – volume: 7 start-page: 512 year: 2015 end-page: 526 ident: b0355 article-title: Experimental evidence for sequestering C with biochar by avoidance of CO publication-title: Gcb. Bioenerg. – volume: 209 start-page: 188 year: 2013 end-page: 197 ident: b0350 article-title: Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol publication-title: Geoderma – volume: 121 start-page: 235 year: 2012 end-page: 240 ident: b0600 article-title: Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution publication-title: Bioresour. Technol. – volume: 625 start-page: 1459 year: 2018 end-page: 1466 ident: b0285 article-title: Carbon stability and mitigation of fertilizer induced N publication-title: Sci. Total Environ. – volume: 321 year: 2008 ident: b1045 article-title: Geology. An uncertain future for soil carbon publication-title: Science – start-page: 35 year: 1980 end-page: 53 ident: b0210 article-title: Procedures for Kerogen Isolation – volume: 465 start-page: 288 year: 2013 end-page: 297 ident: b0240 article-title: Microbial utilisation of biochar-derived carbon publication-title: Sci. Total Environ. – volume: 218 start-page: 1303 year: 2016 end-page: 1306 ident: b0125 article-title: Effect of pyrolysis temperature on the chemical oxidation stability of bamboo biochar publication-title: Bioresour. Technol. – volume: 41 start-page: 1301 year: 2009 end-page: 1310 ident: b0970 article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity publication-title: Soil Biol. Biochem. – volume: 31 start-page: 792 year: 1997 end-page: 799 ident: b1155 article-title: Dual-mode sorption of low-polarity compounds in glassy poly (vinyl chloride) and soil organic matter publication-title: Environ. Sci. Technol. – volume: 127 start-page: 26 year: 2015 end-page: 31 ident: b1240 article-title: A one-year short-term biochar application improved carbon accumulation in large macroaggregate fractions publication-title: Catena – volume: 138 start-page: 67 year: 2015 end-page: 73 ident: b0215 article-title: Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar publication-title: Chemosphere – volume: 4 start-page: 3687 year: 2014 ident: b0925 article-title: Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil publication-title: Sci. Rep. – volume: 118 start-page: 91 year: 2018 end-page: 96 ident: b1120 article-title: The accumulation of rhizodeposits in organo-mineral fractions promoted biochar-induced negative priming of native soil organic carbon in Ferralsol publication-title: Soil Biol. Biochem. – volume: 46 start-page: 11104 year: 2012 end-page: 11111 ident: b0140 article-title: Fast and slow rates of naphthalene sorption to biochars produced at different temperatures publication-title: Environ. Sci. Technol. – volume: 16 start-page: 1481 year: 2016 end-page: 1497 ident: b0185 article-title: Long-term effects of biochar amount on the content and composition of organic matter in soil aggregates under field conditions publication-title: J. Soil. Sediment. – volume: 44 start-page: 1933 year: 2010 end-page: 1939 ident: b1050 article-title: Potential for misidentification of environmentally persistent free radicals as molecular pollutants in particulate matter publication-title: Environ. Sci. Technol. – volume: 138 start-page: 266 year: 2013 end-page: 270 ident: b0480 article-title: Characterization of cadmium removal from aqueous solution by biochar produced from a giant publication-title: Bioresour. Technol. – volume: 155 start-page: 35 year: 2016 end-page: 44 ident: b0795 article-title: In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils publication-title: Soil Till. Res. – reference: Doerr, S., Shakesby, R., 2009. Soil water repellency. Principles, causes and relevance in fire-affected environments, Efectos de los incendios forestales sobre los suelos en España: el estado de la cuestión visto por los científicos españoles. Cátedra Divulgación de la Ciencia, pp. 57–76. – volume: 121 start-page: 430 year: 2011 end-page: 440 ident: b0300 article-title: Effects and fate of biochar from rice residues in rice-based systems publication-title: Field Crops Res. – volume: 40 start-page: 7757 year: 2006 end-page: 7763 ident: b0835 article-title: Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids publication-title: Environ. Sci. Technol. – volume: 48 start-page: 501 year: 2010 end-page: 515 ident: b0420 article-title: An investigation into the reactions of biochar in soil publication-title: Soil Res. – volume: 50 start-page: 1197 year: 2013 end-page: 1206 ident: b0335 article-title: Charcoal function and management in boreal ecosystems publication-title: J. Appl. Ecol. – reference: Busscher, W., Novak, J., Ahmedna, M., 2003. Biochar addition to a southeastern USA coastal sand to decrease soil strength and improve soil quality. In: Proceedings of the ISTRO 18th Triennial Conference, Izmir, Turkey, June, pp. 15–19. – volume: 165 start-page: 190 year: 2017 end-page: 197 ident: b0260 article-title: Aggregate size distribution in a biochar-amended tropical Ultisol under conventional hand-hoe tillage publication-title: Soil Till. Res. – volume: 30 start-page: 2075 year: 2011 end-page: 2080 ident: b1265 article-title: The structural characteristics of biochar and its effects on soil available nutrients and humus composition publication-title: J. Agro-Environ. Sci. – volume: 111 start-page: 54 year: 1971 end-page: 63 ident: b0695 article-title: Microbial activity in relation to soil humus formation publication-title: Soil Sci. – volume: 42 start-page: 5137 year: 2008 end-page: 5143 ident: b0115 article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures publication-title: Environ. Sci. Technol. – volume: 11 start-page: 5199 year: 2014 ident: b0655 article-title: Carbon losses from pyrolysed and original wood in a forest soil under natural and increased N deposition publication-title: Biogeosciences – volume: 166 start-page: 303 year: 2014 end-page: 308 ident: b0860 article-title: Pyrolysis condition affected sulfamethazine sorption by tea waste biochars publication-title: Bioresour. Technol. – volume: 71 start-page: 370 year: 2002 end-page: 374 ident: b0710 article-title: Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments publication-title: J. Japan. Soc. Hortic. Sci. – volume: 303 start-page: 110 year: 2017 end-page: 117 ident: b1085 article-title: Biochar additions can enhance soil structure and the physical stabilization of C in aggregates publication-title: Geoderma – reference: Xu, Z., Chan, K.Y., 2012. Biochar: Nutrient Properties and Their Enhancement, Biochar for Environmental Management, Routledge, pp. 99–116. – volume: 239 start-page: 293 year: 2015 end-page: 303 ident: b0840 article-title: Characterisation, stability, and microbial effects of four biochars produced from crop residues publication-title: Geoderma – volume: 159 start-page: 2594 year: 2011 end-page: 2601 ident: b1225 article-title: Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures publication-title: Environ. Pollut. – volume: 45 start-page: 9611 year: 2011 end-page: 9618 ident: b0455 article-title: Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil publication-title: Environ. Sci. Technol. – volume: 46 start-page: 1367 year: 2016 end-page: 1401 ident: b0680 article-title: Designing advanced biochar products for maximizing greenhouse gas mitigation potential publication-title: Crit. Rev. Env. Sci. Tec. – volume: 46 start-page: 11770 year: 2012 end-page: 11778 ident: b0930 article-title: Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature publication-title: Environ. Sci. Technol. – volume: 65 start-page: 72 year: 2014 end-page: 82 ident: b0055 article-title: An incubation study on the stability and biological effects of pyrogenic and hydrothermal biochar in two soils publication-title: Eur. J. Soil Sci. – volume: 204 start-page: 306 year: 2015 end-page: 312 ident: b0575 article-title: Effect of humic acid (HA) on sulfonamide sorption by biochars publication-title: Environ. Pollut. – volume: 102 start-page: 9897 year: 2011 end-page: 9903 ident: b1000 article-title: Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure publication-title: Bioresour. Technol. – volume: 95 start-page: 19 year: 2016 end-page: 24 ident: b0265 article-title: Influence of pig manure and its biochar on soil CO publication-title: Ecol. Eng. – volume: 48 start-page: 577 year: 2010 end-page: 585 ident: b0485 article-title: Stability and stabilisation of biochar and green manure in soil with different organic carbon contents publication-title: Soil Res. – volume: 188 start-page: 319 year: 2011 end-page: 333 ident: b0740 article-title: Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent publication-title: J. Hazard. Mater. – volume: 87 start-page: 151 year: 2012 end-page: 157 ident: b0595 article-title: Water extractable organic carbon in untreated and chemical treated biochars publication-title: Chemosphere – volume: 10 start-page: 423 year: 2000 end-page: 436 ident: b0410 article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation publication-title: Ecol. Appl. – volume: 51 start-page: 2061 year: 2008 end-page: 2069 ident: b0270 article-title: Effect of low-temperature pyrolysis conditions on biochar for agricultural use publication-title: T. ASABE – volume: 8 start-page: 512 year: 2016 end-page: 523 ident: b1090 article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects publication-title: Gcb. Bioenerg. – volume: 45 start-page: 115 year: 2008 end-page: 131 ident: b0070 article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review publication-title: Biol. Fert. Soils – volume: 117 start-page: 10 year: 2017 end-page: 15 ident: b0625 article-title: Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland publication-title: Appl. Soil Ecol. – volume: 1 start-page: 1 year: 2013 end-page: 41 ident: b1275 article-title: The stability of biochar in the environment publication-title: Biochar Soil Biota – volume: 112 start-page: 103 year: 2011 end-page: 143 ident: b0510 article-title: Biochar application to soil: agronomic and environmental benefits and unintended consequences publication-title: Adv. Agron. – volume: 118 start-page: 77 year: 2004 end-page: 88 ident: b0700 article-title: Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain publication-title: Geoderma – volume: 75 start-page: 1589 year: 2009 end-page: 1596 ident: b0880 article-title: Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization publication-title: Appl. Environ. Microb. – start-page: 47 year: 2010 end-page: 82 ident: b0955 article-title: A review of biochar and its use and function in soil publication-title: Adv. Agron. Elsevier – reference: Verheijen, F., Jeffery, S., Bastos, A., Van der Velde, M., Diafas, I., 2010. Biochar Application to Soils. A Critical Scientific Review of Effects on Soil Properties, Processes, and Functions, EUR 24099, p. 162. – volume: 45 start-page: 939 year: 2015 end-page: 969 ident: b1150 article-title: Characteristics and applications of biochar for environmental remediation: a review publication-title: Crit. Rev. Env. Sci. Tec. – volume: 11 start-page: 660 year: 2019 end-page: 671 ident: b0895 article-title: Soil greenhouse gas, carbon content, and tree growth response to biochar amendment in western United States forests publication-title: Gcb Bioenerg. – volume: 80 start-page: 709 year: 2010 end-page: 715 ident: b0990 article-title: Sorption of endocrine disrupting chemicals by condensed organic matter in soils and sediments publication-title: Chemosphere – volume: 89 start-page: 231 year: 2000 end-page: 242 ident: b0830 article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus publication-title: Oikos – volume: 46 start-page: 9333 year: 2012 end-page: 9341 ident: b0445 article-title: Solvent-extractable polycyclic aromatic hydrocarbons in biochar: influence of pyrolysis temperature and feedstock publication-title: Environ. Sci. Technol. – volume: 13 start-page: 230 year: 1997 end-page: 244 ident: b0820 article-title: Agricultural soils as a sink to mitigate CO2 emissions publication-title: Soil Use Manage. – volume: 140 start-page: 406 year: 2013 end-page: 413 ident: b1010 article-title: Biochars prepared from anaerobic digestion residue, palm bark, and publication-title: Bioresour. Technol. – volume: 66 start-page: 714 year: 2015 end-page: 721 ident: b0875 article-title: Negative priming of native soil organic carbon mineralization by oilseed biochars of contrasting quality publication-title: Eur. J. Soil Sci. – volume: 36 start-page: 177 year: 2004 end-page: 190 ident: b0885 article-title: Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils publication-title: Soil Biol. Biochem. – volume: 65 start-page: 52 year: 2014 end-page: 59 ident: b0080 article-title: Carbon dioxide emissions from biochar in soil: role of clay, microorganisms and carbonates publication-title: Eur. J. Soil Sci. – volume: 193 start-page: 122 year: 2013 end-page: 130 ident: b0765 article-title: Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures publication-title: Geoderma – volume: 10 start-page: 1349 year: 2013 end-page: 1356 ident: b1055 article-title: Adsorption kinetics of herbicide paraquat in aqueous solution onto a low-cost adsorbent, swine-manure-derived biochar publication-title: Int. J. Environ. Sci. Technol. – volume: 42 start-page: 2311 year: 2012 end-page: 2364 ident: b0225 article-title: Biochar: carbon sequestration, land remediation, and impacts on soil microbiology publication-title: Crit. Rev. Env. Sci. Tec. – volume: 176 start-page: 288 year: 2015 end-page: 291 ident: b1230 article-title: Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate publication-title: Bioresour. Technol. – volume: 113 start-page: 211 year: 2003 end-page: 235 ident: b0690 article-title: Controls of bioavailability and biodegradability of dissolved organic matter in soils publication-title: Geoderma – volume: 65 start-page: 60 year: 2014 end-page: 71 ident: b0230 article-title: Biochar carbon stability in four contrasting soils publication-title: Eur. J. Soil Sci. – volume: 115 start-page: 209 year: 2017 end-page: 219 ident: b0870 article-title: Changes in biochar physical and chemical properties: accelerated biochar aging in an acidic soil publication-title: Carbon – volume: 245 start-page: 208 year: 2019 end-page: 217 ident: b1250 article-title: Insight into interaction between biochar and soil minerals in changing biochar properties and adsorption capacities for sulfamethoxazole publication-title: Environ. Pollut. – volume: 94 start-page: 107 year: 2016 end-page: 121 ident: b0325 article-title: Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature publication-title: Soil Biol. Biochem. – volume: 31 start-page: 711 year: 2000 end-page: 725 ident: b0430 article-title: The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils publication-title: Org. Geochem. – volume: 43 start-page: 1169 year: 2011 end-page: 1179 ident: b1280 article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils publication-title: Soil Biol. Biochem. – volume: 136 start-page: 119 year: 2017 end-page: 125 ident: b0500 article-title: Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity publication-title: Ecotox. Environ. Safe. – volume: 107 start-page: 419 year: 2012 end-page: 428 ident: b0100 article-title: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar publication-title: Bioresour. Technol. – volume: 104 start-page: 165 year: 2012 end-page: 172 ident: b0915 article-title: Removal of hexavalent Cr by coconut coir and derived chars-the effect of surface functionality publication-title: Bioresour. Technol. – reference: Huang, P., Hardie, A., 2009. Formation mechanisms of humic substances in the environment. In: Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems, pp. 41–109. – volume: 50 start-page: 2389 year: 2016 end-page: 2395 ident: b1170 article-title: Biochar-facilitated microbial reduction of hematite publication-title: Environ. Sci. Technol. – reference: Dugan, E., Verhoef, A., Robinson, S., Sohi, S., 2010. Bio-char from sawdust, maize stover and charcoal: impact on water holding capacities (WHC) of three soils from Ghana. In: 19th World Congress of Soil Science, Symposium, pp. 9–12. – volume: 13 start-page: 491 year: 2014 end-page: 498 ident: b1195 article-title: Effects of rice straw and its biochar addition on soil labile carbon and soil organic carbon publication-title: J. Integr. Agr. – volume: 226 start-page: 270 year: 2014 end-page: 278 ident: b0750 article-title: Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties publication-title: Geoderma – volume: 62 start-page: 137 year: 2013 end-page: 146 ident: b0675 article-title: Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions publication-title: Soil Biol. Biochem. – volume: 4 start-page: 29 year: 2001 end-page: 48 ident: b0780 article-title: Dissolved organic carbon in terrestrial ecosystems: synthesis and a model publication-title: Ecosystems – volume: 206 start-page: 46 year: 2015 end-page: 59 ident: b0290 article-title: Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions publication-title: Agr. Ecosyst. Environ. – volume: 333 start-page: 443 year: 2010 end-page: 452 ident: b0960 article-title: Ethylene: potential key for biochar amendment impacts publication-title: Plant Soil – volume: 14 start-page: 975 year: 2012 end-page: 979 ident: b0610 article-title: Effect of biochar on soil aggregates in the Loess Plateau: results from incubation experiments publication-title: Int. J. Agr. Biol. – volume: 64 start-page: 379 year: 2013 end-page: 390 ident: b0030 article-title: Interactions between biochar stability and soil organisms: review and research needs publication-title: Eur. J. Soil Sci. – volume: 249 start-page: 343 year: 2003 end-page: 357 ident: b0540 article-title: Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments publication-title: Plant Soil – volume: 106 start-page: 77 year: 2010 end-page: 142 ident: b0490 article-title: Advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment publication-title: Adv. Agron. – volume: 5 start-page: 693 year: 2014 end-page: 704 ident: b0755 article-title: Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging publication-title: Solid Earth – volume: 72 start-page: 6069 year: 2008 end-page: 6078 ident: b0590 article-title: Stability of biomass-derived black carbon in soils publication-title: Geochim. Cosmochim. Ac. – volume: 145 start-page: 135 year: 2016 end-page: 141 ident: b0920 article-title: Impact of switchgrass biochars with supplemental nitrogen on carbon-nitrogen mineralization in highly weathered Coastal Plain Ultisols publication-title: Chemosphere – volume: 70 start-page: 229 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b0520 article-title: Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.12.021 – volume: 41 start-page: 210 year: 2009 ident: 10.1016/j.geoderma.2020.114184_b0525 article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.10.016 – volume: 379 start-page: 351 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b0075 article-title: Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil publication-title: Plant Soil doi: 10.1007/s11104-014-2074-0 – volume: 241 start-page: 887 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b1175 article-title: Indispensable role of biochar-inherent mineral constituents in its environmental applications: a review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.06.023 – ident: 10.1016/j.geoderma.2020.114184_b0205 – volume: 48 start-page: 577 year: 2010 ident: 10.1016/j.geoderma.2020.114184_b0485 article-title: Stability and stabilisation of biochar and green manure in soil with different organic carbon contents publication-title: Soil Res. doi: 10.1071/SR10036 – volume: 245 start-page: 56 year: 2015 ident: 10.1016/j.geoderma.2020.114184_b0345 article-title: Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production publication-title: Geoderma doi: 10.1016/j.geoderma.2015.01.012 – volume: 5 start-page: 153 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b0980 article-title: Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils publication-title: Gcb. Bioenerg. doi: 10.1111/gcbb.12001 – volume: 104 start-page: 485 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b0745 article-title: Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2013.05.022 – volume: 51 start-page: 115 year: 2012 ident: 10.1016/j.geoderma.2020.114184_b0890 article-title: Biological degradation of pyrogenic organic matter in temperate forest soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.04.005 – volume: 44 start-page: 1295 year: 2010 ident: 10.1016/j.geoderma.2020.114184_b1270 article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es903140c – volume: 118 start-page: 77 year: 2004 ident: 10.1016/j.geoderma.2020.114184_b0700 article-title: Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain publication-title: Geoderma doi: 10.1016/S0016-7061(03)00185-X – volume: 118 start-page: 91 year: 2018 ident: 10.1016/j.geoderma.2020.114184_b1120 article-title: The accumulation of rhizodeposits in organo-mineral fractions promoted biochar-induced negative priming of native soil organic carbon in Ferralsol publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.12.008 – volume: 118 start-page: 158 year: 2012 ident: 10.1016/j.geoderma.2020.114184_b0475 article-title: Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida) publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.04.094 – year: 2005 ident: 10.1016/j.geoderma.2020.114184_b1035 – volume: 43 start-page: 2304 year: 2011 ident: 10.1016/j.geoderma.2020.114184_b0635 article-title: Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.07.020 – volume: 186 start-page: 293 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b0910 article-title: Phytotoxicity attenuation in Vigna radiata under heavy metal stress at the presence of biochar and N fixing bacteria publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2016.07.024 – volume: 7 start-page: 1150 year: 2015 ident: 10.1016/j.geoderma.2020.114184_b1075 article-title: Biochar mineralization and priming effect on SOM decomposition in two European short rotation coppices publication-title: Gcb. Bioenerg. doi: 10.1111/gcbb.12219 – volume: 168 start-page: 252 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b1235 article-title: The use of biochar-amended composting to improve the humification and degradation of sewage sludge publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.02.080 – volume: 14 start-page: 336 year: 2000 ident: 10.1016/j.geoderma.2020.114184_b0435 article-title: Biochar from the straw-stalk of rapeseed plant publication-title: Energ. Fuel. doi: 10.1021/ef9901138 – volume: 188 start-page: 319 year: 2011 ident: 10.1016/j.geoderma.2020.114184_b0740 article-title: Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.01.127 – volume: 105 start-page: 255 year: 2005 ident: 10.1016/j.geoderma.2020.114184_b0555 article-title: Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude publication-title: Agr. Ecosyst. Environ. doi: 10.1016/j.agee.2004.03.006 – volume: 664 start-page: 11 year: 2019 ident: 10.1016/j.geoderma.2020.114184_b0560 article-title: Biochar stability assessment by incubation and modelling: methods, drawbacks and recommendations publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.298 – volume: 634 start-page: 1300 year: 2018 ident: 10.1016/j.geoderma.2020.114184_b1005 article-title: Speciation of phosphorus in plant-and manure-derived biochars and its dissolution under various aqueous conditions publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.099 – volume: 127 start-page: 26 year: 2015 ident: 10.1016/j.geoderma.2020.114184_b1240 article-title: A one-year short-term biochar application improved carbon accumulation in large macroaggregate fractions publication-title: Catena doi: 10.1016/j.catena.2014.12.009 – volume: 123 start-page: 484 year: 2018 ident: 10.1016/j.geoderma.2020.114184_b1245 article-title: Varying pyrolysis temperature impacts application effects of biochar on soil labile organic carbon and humic fractions publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2017.09.007 – volume: 200 start-page: 90 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b0770 article-title: The effects of walnut shell and wood feedstock biochar amendments on greenhouse gas emissions from a fertile soil publication-title: Geoderma doi: 10.1016/j.geoderma.2013.02.004 – volume: 111 start-page: 320 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b1160 article-title: Cadmium adsorption on plant-and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.04.043 – ident: 10.1016/j.geoderma.2020.114184_b0670 – volume: 41 start-page: 990 year: 2012 ident: 10.1016/j.geoderma.2020.114184_b0495 article-title: Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0070 – volume: 303 start-page: 110 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b1085 article-title: Biochar additions can enhance soil structure and the physical stabilization of C in aggregates publication-title: Geoderma doi: 10.1016/j.geoderma.2017.05.027 – volume: 610 start-page: 951 year: 2018 ident: 10.1016/j.geoderma.2020.114184_b1255 article-title: Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: roles of soil aggregation and microbial modulation publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.08.166 – ident: 10.1016/j.geoderma.2020.114184_b1080 – volume: 51 start-page: 5473 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b1140 article-title: A direct observation of the fine aromatic clusters and molecular structures of biochars publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b06300 – volume: 35 start-page: 122 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b0720 article-title: Effects of maize stalk biochar on humus composition and humic acid structure in black soil publication-title: J. Agro-Environ. Sci. – volume: 5 start-page: 215 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b0165 article-title: A method for screening the relative long-term stability of biochar publication-title: Gcb. Bioenerg. doi: 10.1111/gcbb.12035 – volume: 78 start-page: 531 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b0785 article-title: Turnover of soil carbon following addition of switchgrass-derived biochar to four soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2013.07.0258 – volume: 47 start-page: 151 year: 1996 ident: 10.1016/j.geoderma.2020.114184_b0065 article-title: Total carbon and nitrogen in the soils of the world publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1996.tb01386.x – volume: 17 start-page: 543 year: 1980 ident: 10.1016/j.geoderma.2020.114184_b0465 article-title: Microhabitats in soil aggregates. Their relationship with bacterial biomass and the size of the procaryotes present publication-title: Revue d'Ecologie et de Biologie du Sol – volume: 155 start-page: 35 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b0795 article-title: In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils publication-title: Soil Till. Res. doi: 10.1016/j.still.2015.08.002 – volume: 14 start-page: 975 year: 2012 ident: 10.1016/j.geoderma.2020.114184_b0610 article-title: Effect of biochar on soil aggregates in the Loess Plateau: results from incubation experiments publication-title: Int. J. Agr. Biol. – volume: 96 start-page: 265 year: 2015 ident: 10.1016/j.geoderma.2020.114184_b1100 article-title: Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2015.08.018 – volume: 193 start-page: 122 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b0765 article-title: Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures publication-title: Geoderma doi: 10.1016/j.geoderma.2012.10.002 – volume: 245 start-page: 208 year: 2019 ident: 10.1016/j.geoderma.2020.114184_b1250 article-title: Insight into interaction between biochar and soil minerals in changing biochar properties and adsorption capacities for sulfamethoxazole publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.11.013 – volume: 117 start-page: 10 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b0625 article-title: Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2017.04.024 – volume: 17 start-page: 665 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b0060 article-title: Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil publication-title: J. Soil. Sediment. doi: 10.1007/s11368-015-1243-y – volume: 376 start-page: 347 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b0330 article-title: Does biochar influence soil physical properties and soil water availability? publication-title: Plant Soil doi: 10.1007/s11104-013-1980-x – volume: 46 start-page: 9333 year: 2012 ident: 10.1016/j.geoderma.2020.114184_b0445 article-title: Solvent-extractable polycyclic aromatic hydrocarbons in biochar: influence of pyrolysis temperature and feedstock publication-title: Environ. Sci. Technol. doi: 10.1021/es302125k – volume: 692 start-page: 333 year: 2019 ident: 10.1016/j.geoderma.2020.114184_b0375 article-title: Structural changes of soil organic matter and the linkage to rhizosphere bacterial communities with biochar amendment in manure fertilized soils publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.07.262 – volume: 42 start-page: 5137 year: 2008 ident: 10.1016/j.geoderma.2020.114184_b0115 article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures publication-title: Environ. Sci. Technol. doi: 10.1021/es8002684 – volume: 121 start-page: 430 year: 2011 ident: 10.1016/j.geoderma.2020.114184_b0300 article-title: Effects and fate of biochar from rice residues in rice-based systems publication-title: Field Crops Res. doi: 10.1016/j.fcr.2011.01.014 – volume: 1 start-page: 3 year: 2019 ident: 10.1016/j.geoderma.2020.114184_b0815 article-title: Response of microbial communities to biochar-amended soils: a critical review publication-title: Biochar doi: 10.1007/s42773-019-00009-2 – volume: 239 start-page: 293 year: 2015 ident: 10.1016/j.geoderma.2020.114184_b0840 article-title: Characterisation, stability, and microbial effects of four biochars produced from crop residues publication-title: Geoderma doi: 10.1016/j.geoderma.2014.11.009 – volume: 1 start-page: 1 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b1275 article-title: The stability of biochar in the environment publication-title: Biochar Soil Biota – volume: 33 start-page: 941 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b0365 article-title: Effect of biochar on carbon dioxide release, organic carbon accumulation, and aggregation of soil publication-title: Environ. Prog. Sustain. doi: 10.1002/ep.11867 – volume: 57 start-page: 513 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b0640 article-title: Microbial biomass growth, following incorporation of biochars produced at 350 oC or 700 oC, in a silty-clay loam soil of high and low pH publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.10.033 – volume: 465 start-page: 288 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b0240 article-title: Microbial utilisation of biochar-derived carbon publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.03.090 – volume: 165 start-page: 190 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b0260 article-title: Aggregate size distribution in a biochar-amended tropical Ultisol under conventional hand-hoe tillage publication-title: Soil Till. Res. doi: 10.1016/j.still.2016.08.012 – volume: 70 start-page: 555 year: 2006 ident: 10.1016/j.geoderma.2020.114184_b0945 article-title: Bacterial and fungal contributions to carbon sequestration in agroecosystems publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2004.0347 – volume: 89 start-page: 150 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b0020 article-title: Production and use of biochar from buffalo-weed (Ambrosia trifida L.) for trichloroethylene removal from water publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.4157 – volume: 64 start-page: 681 year: 2000 ident: 10.1016/j.geoderma.2020.114184_b0950 article-title: Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2000.642681x – volume: 1 start-page: 56 year: 2010 ident: 10.1016/j.geoderma.2020.114184_b1125 article-title: Sustainable biochar to mitigate global climate change publication-title: Nat. Commun. doi: 10.1038/ncomms1053 – volume: 50 start-page: 13274 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b0305 article-title: New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02401 – volume: 17 start-page: 780 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b0630 article-title: Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China publication-title: J. Soil Sediment doi: 10.1007/s11368-016-1361-1 – volume: 72 start-page: 6069 year: 2008 ident: 10.1016/j.geoderma.2020.114184_b0590 article-title: Stability of biomass-derived black carbon in soils publication-title: Geochim. Cosmochim. Ac. doi: 10.1016/j.gca.2008.09.028 – volume: 76 start-page: 12 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b0620 article-title: Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.04.029 – volume: 252 start-page: 200 year: 2018 ident: 10.1016/j.geoderma.2020.114184_b0190 article-title: Biochar application constrained native soil organic carbon accumulation from wheat residue inputs in a long-term wheat-maize cropping system publication-title: Agr. Ecosyst. Environ. doi: 10.1016/j.agee.2017.08.026 – year: 1966 ident: 10.1016/j.geoderma.2020.114184_b0505 – volume: 36 start-page: 940 year: 2008 ident: 10.1016/j.geoderma.2020.114184_b0705 article-title: Carbon-negative biofuels publication-title: Energ. Policy doi: 10.1016/j.enpol.2007.11.029 – volume: 43 start-page: 1812 year: 2011 ident: 10.1016/j.geoderma.2020.114184_b0545 article-title: Biochar effects on soil biota–a review publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.04.022 – volume: 80 start-page: 709 year: 2010 ident: 10.1016/j.geoderma.2020.114184_b0990 article-title: Sorption of endocrine disrupting chemicals by condensed organic matter in soils and sediments publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.05.028 – volume: 12 start-page: 494 year: 2012 ident: 10.1016/j.geoderma.2020.114184_b1165 article-title: pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars publication-title: J. Soil. Sediment. doi: 10.1007/s11368-012-0483-3 – volume: 64 start-page: 1479 year: 2000 ident: 10.1016/j.geoderma.2020.114184_b0145 article-title: Organic matter influence on clay wettability and soil aggregate stability publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2000.6441479x – volume: 52 start-page: 46 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b0810 article-title: Effects of amendment of different biochars on soil carbon mineralisation and sequestration publication-title: Soil Res. doi: 10.1071/SR13186 – volume: 66 start-page: 714 year: 2015 ident: 10.1016/j.geoderma.2020.114184_b0875 article-title: Negative priming of native soil organic carbon mineralization by oilseed biochars of contrasting quality publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12257 – volume: 106 start-page: 77 year: 2010 ident: 10.1016/j.geoderma.2020.114184_b0490 article-title: Advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment publication-title: Adv. Agron. doi: 10.1016/S0065-2113(10)06003-7 – volume: 46 start-page: 11770 year: 2012 ident: 10.1016/j.geoderma.2020.114184_b0930 article-title: Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature publication-title: Environ. Sci. Technol. doi: 10.1021/es302545b – volume: 382 year: 2020 ident: 10.1016/j.geoderma.2020.114184_b0855 article-title: Effects of laboratory biotic aging on the characteristics of biochar and its water-soluble organic products publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121071 – volume: 42 start-page: 2311 year: 2012 ident: 10.1016/j.geoderma.2020.114184_b0225 article-title: Biochar: carbon sequestration, land remediation, and impacts on soil microbiology publication-title: Crit. Rev. Env. Sci. Tec. doi: 10.1080/10643389.2011.574115 – volume: 177 start-page: 26 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b0985 article-title: Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil publication-title: J. Plant Nut. Soil Sci. doi: 10.1002/jpln.201200639 – volume: 4 start-page: 3687 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b0925 article-title: Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil publication-title: Sci. Rep. doi: 10.1038/srep03687 – start-page: 5 year: 1979 ident: 10.1016/j.geoderma.2020.114184_b1015 – volume: 37 start-page: 2007 year: 2005 ident: 10.1016/j.geoderma.2020.114184_b1065 article-title: Physiological and molecular characterisation of microbial communities associated with different water-stable aggregate size classes publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.02.037 – volume: 36 start-page: 835 year: 2004 ident: 10.1016/j.geoderma.2020.114184_b0390 article-title: Microbial ethylene production and inhibition of methanotrophic activity in a deciduous forest soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2004.01.013 – volume: 65 start-page: 60 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b0230 article-title: Biochar carbon stability in four contrasting soils publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12094 – volume: 204 start-page: 306 year: 2015 ident: 10.1016/j.geoderma.2020.114184_b0575 article-title: Effect of humic acid (HA) on sulfonamide sorption by biochars publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2015.05.030 – volume: 41 start-page: 1301 year: 2009 ident: 10.1016/j.geoderma.2020.114184_b0970 article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.03.016 – volume: 146 start-page: 485 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b1180 article-title: Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.07.086 – volume: 186 start-page: 986 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b1220 article-title: Impacts of biochar addition on soil dissolved organic matter characteristics in a wheat-maize rotation system in Loess Plateau of China publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.08.074 – volume: 5 start-page: 693 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b0755 article-title: Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging publication-title: Solid Earth doi: 10.5194/se-5-693-2014 – volume: 44 start-page: 1247 year: 2010 ident: 10.1016/j.geoderma.2020.114184_b0450 article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es9031419 – volume: 150 start-page: 202 year: 2009 ident: 10.1016/j.geoderma.2020.114184_b1115 article-title: Effects of humic acid and lipid on the sorption of phenanthrene on char publication-title: Geoderma doi: 10.1016/j.geoderma.2009.02.009 – volume: 33 start-page: 141 year: 1982 ident: 10.1016/j.geoderma.2020.114184_b1030 article-title: Organic matter and water-stable aggregates in soils publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1982.tb01755.x – ident: 10.1016/j.geoderma.2020.114184_b0380 – volume: 62 start-page: 137 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b0675 article-title: Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.03.013 – volume: 289 start-page: 161 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b1095 article-title: Changes in soil chemical properties as affected by pyrogenic organic matter amendment with different intensity and frequency publication-title: Geoderma doi: 10.1016/j.geoderma.2016.12.006 – volume: 107 start-page: 419 year: 2012 ident: 10.1016/j.geoderma.2020.114184_b0100 article-title: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.11.084 – volume: 7 start-page: 488 year: 2015 ident: 10.1016/j.geoderma.2020.114184_b0775 article-title: Effect of physical weathering on the carbon sequestration potential of biochars and hydrochars in soil publication-title: Gcb. Bioenerg. doi: 10.1111/gcbb.12158 – start-page: 47 year: 2010 ident: 10.1016/j.geoderma.2020.114184_b0955 article-title: A review of biochar and its use and function in soil publication-title: Adv. Agron. Elsevier doi: 10.1016/S0065-2113(10)05002-9 – volume: 70 start-page: 1719 year: 2006 ident: 10.1016/j.geoderma.2020.114184_b0585 article-title: Black carbon increases cation exchange capacity in soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0383 – volume: 127 start-page: 153 year: 2012 ident: 10.1016/j.geoderma.2020.114184_b1215 article-title: Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles publication-title: Field Crops Res. doi: 10.1016/j.fcr.2011.11.020 – volume: 65 start-page: 52 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b0080 article-title: Carbon dioxide emissions from biochar in soil: role of clay, microorganisms and carbonates publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12073 – volume: 249 start-page: 343 year: 2003 ident: 10.1016/j.geoderma.2020.114184_b0540 article-title: Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments publication-title: Plant Soil doi: 10.1023/A:1022833116184 – volume: 176 start-page: 288 year: 2015 ident: 10.1016/j.geoderma.2020.114184_b1230 article-title: Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.11.011 – volume: 44 start-page: 1933 year: 2010 ident: 10.1016/j.geoderma.2020.114184_b1050 article-title: Potential for misidentification of environmentally persistent free radicals as molecular pollutants in particulate matter publication-title: Environ. Sci. Technol. doi: 10.1021/es902648t – volume: 50 start-page: 2264 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b1190 article-title: The interfacial behavior between biochar and soil minerals and its effect on biochar stability publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03656 – volume: 64 start-page: 379 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b0030 article-title: Interactions between biochar stability and soil organisms: review and research needs publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12064 – volume: 39 start-page: 839 year: 2008 ident: 10.1016/j.geoderma.2020.114184_b0085 article-title: Microbial mineralization and assimilation of black carbon: dependency on degree of thermal alteration publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2008.04.020 – volume: 13 start-page: 491 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b1195 article-title: Effects of rice straw and its biochar addition on soil labile carbon and soil organic carbon publication-title: J. Integr. Agr. doi: 10.1016/S2095-3119(13)60704-2 – volume: 9 start-page: 1279 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b0250 article-title: Impact of six lignocellulosic biochars on C and N dynamics of two contrasting soils publication-title: Gcb. Bioenerg. doi: 10.1111/gcbb.12414 – volume: 206 start-page: 46 year: 2015 ident: 10.1016/j.geoderma.2020.114184_b0290 article-title: Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions publication-title: Agr. Ecosyst. Environ. doi: 10.1016/j.agee.2015.03.015 – volume: 32 start-page: 1585 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b1105 article-title: Effects of biochar amendments synthesized at varying temperatures on soil organic carbon mineralization and humus composition publication-title: J. Agro-Environ. Sci. – volume: 43 start-page: 3285 year: 2009 ident: 10.1016/j.geoderma.2020.114184_b0105 article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine publication-title: Environ. Sci. Technol. doi: 10.1021/es803092k – volume: 40 start-page: 7757 year: 2006 ident: 10.1016/j.geoderma.2020.114184_b0835 article-title: Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids publication-title: Environ. Sci. Technol. doi: 10.1021/es061307m – volume: 88 start-page: 1386 year: 2007 ident: 10.1016/j.geoderma.2020.114184_b0905 article-title: Microbial stress-response physiology and its implications for ecosystem function publication-title: Ecology doi: 10.1890/06-0219 – volume: 333 start-page: 443 year: 2010 ident: 10.1016/j.geoderma.2020.114184_b0960 article-title: Ethylene: potential key for biochar amendment impacts publication-title: Plant Soil doi: 10.1007/s11104-010-0359-5 – volume: 48 start-page: 11227 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b0320 article-title: Role of structure and microporosity in phenanthrene sorption by natural and engineered organic matter publication-title: Environ. Sci. Technol. doi: 10.1021/es5022087 – volume: 138 start-page: 67 year: 2015 ident: 10.1016/j.geoderma.2020.114184_b0215 article-title: Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.05.052 – volume: 125 start-page: 70 year: 2015 ident: 10.1016/j.geoderma.2020.114184_b1020 article-title: Application of biochar for the removal of pollutants from aqueous solutions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.12.058 – volume: 131 start-page: 1222 year: 2005 ident: 10.1016/j.geoderma.2020.114184_b0730 article-title: Biological considerations in geotechnical engineering publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)1090-0241(2005)131:10(1222) – volume: 71 start-page: 370 year: 2002 ident: 10.1016/j.geoderma.2020.114184_b0710 article-title: Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments publication-title: J. Japan. Soc. Hortic. Sci. doi: 10.2503/jjshs.71.370 – volume: 53 start-page: 447 year: 2003 ident: 10.1016/j.geoderma.2020.114184_b0245 article-title: Characterization of carbonaceous combustion residues: II. Nonpolar organic compounds publication-title: Chemosphere doi: 10.1016/S0045-6535(03)00452-1 – volume: 45 start-page: 115 year: 2008 ident: 10.1016/j.geoderma.2020.114184_b0070 article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review publication-title: Biol. Fert. Soils doi: 10.1007/s00374-008-0334-y – volume: 72 start-page: 4725 year: 2008 ident: 10.1016/j.geoderma.2020.114184_b0715 article-title: Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter publication-title: Geochim. Cosmochim. Ac. doi: 10.1016/j.gca.2008.06.015 – volume: 106 start-page: 28 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b0645 article-title: Priming effects in biochar enriched soils using a three-source-partitioning approach: 14C labelling and 13C natural abundance publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.12.006 – ident: 10.1016/j.geoderma.2020.114184_b1025 – volume: 234 start-page: 77 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b0315 article-title: Removal of antimony (III) and cadmium (II) from aqueous solution using animal manure-derived hydrochars and pyrochars publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.02.130 – volume: 16 start-page: 1481 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b0185 article-title: Long-term effects of biochar amount on the content and composition of organic matter in soil aggregates under field conditions publication-title: J. Soil. Sediment. doi: 10.1007/s11368-015-1338-5 – volume: 148 start-page: 33 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b0935 article-title: Stabilization of soil organic carbon as influenced by clay mineralogy publication-title: Adv. Agron. doi: 10.1016/bs.agron.2017.11.001 – volume: 65 start-page: 95 year: 2001 ident: 10.1016/j.geoderma.2020.114184_b0150 article-title: Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces publication-title: Geochim. Cosmochim. Ac. doi: 10.1016/S0016-7037(00)00511-1 – volume: 616 start-page: 335 year: 2018 ident: 10.1016/j.geoderma.2020.114184_b0310 article-title: Oxidation resistance of biochars as a function of feedstock and pyrolysis condition publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.11.014 – ident: 10.1016/j.geoderma.2020.114184_b0975 doi: 10.1007/978-3-662-05683-7_15 – volume: 45 start-page: 939 year: 2015 ident: 10.1016/j.geoderma.2020.114184_b1150 article-title: Characteristics and applications of biochar for environmental remediation: a review publication-title: Crit. Rev. Env. Sci. Tec. doi: 10.1080/10643389.2014.924180 – volume: 46 start-page: 7939 year: 2012 ident: 10.1016/j.geoderma.2020.114184_b0685 article-title: Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs publication-title: Environ. Sci. Technol. doi: 10.1021/es301029g – start-page: 35 year: 1980 ident: 10.1016/j.geoderma.2020.114184_b0210 – ident: 10.1016/j.geoderma.2020.114184_b1185 – volume: 13 start-page: 1561 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b0550 article-title: Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties publication-title: J. Soil. Sediment. doi: 10.1007/s11368-013-0738-7 – volume: 17 start-page: 581 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b0200 article-title: Biochar addition drives soil aggregation and carbon sequestration in aggregate fractions from an intensive agricultural system publication-title: J. Soil. Sediment. doi: 10.1007/s11368-015-1349-2 – volume: 327 start-page: 235 year: 2010 ident: 10.1016/j.geoderma.2020.114184_b1070 article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility publication-title: Plant Soil doi: 10.1007/s11104-009-0050-x – volume: 95 start-page: 19 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b0265 article-title: Influence of pig manure and its biochar on soil CO2 emissions and soil enzymes publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2016.06.039 – volume: 25 start-page: 57 year: 1993 ident: 10.1016/j.geoderma.2020.114184_b0470 article-title: Effect of substrate location in soil and soil pore-water regime on carbon turnover publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(93)90241-3 – volume: 31 start-page: 697 year: 2000 ident: 10.1016/j.geoderma.2020.114184_b0050 article-title: Role of the soil matrix and minerals in protecting natural organic materials against biological attack publication-title: Org. Geochem. doi: 10.1016/S0146-6380(00)00049-8 – volume: 102 start-page: 8877 year: 2011 ident: 10.1016/j.geoderma.2020.114184_b0135 article-title: Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.06.078 – volume: 13 start-page: 991 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b0805 article-title: Effects of biochar amendment on soil aggregates and hydraulic properties publication-title: J. Soil Sci. Plant Nut. – volume: 50 start-page: 2389 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b1170 article-title: Biochar-facilitated microbial reduction of hematite publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05517 – volume: 625 start-page: 1459 year: 2018 ident: 10.1016/j.geoderma.2020.114184_b0285 article-title: Carbon stability and mitigation of fertilizer induced N2O emissions in soil amended with biochar publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.196 – volume: 79 start-page: 7 year: 2004 ident: 10.1016/j.geoderma.2020.114184_b0940 article-title: A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics publication-title: Soil Till. Res. doi: 10.1016/j.still.2004.03.008 – volume: 30 start-page: 69 year: 2009 ident: 10.1016/j.geoderma.2020.114184_b0605 article-title: Toxicity effect of phenol on aerobic granules publication-title: Environ. Technol. doi: 10.1080/09593330802536339 – volume: 7 start-page: 512 year: 2015 ident: 10.1016/j.geoderma.2020.114184_b0355 article-title: Experimental evidence for sequestering C with biochar by avoidance of CO2 emissions from original feedstock and protection of native soil organic matter publication-title: Gcb. Bioenerg. doi: 10.1111/gcbb.12183 – ident: 10.1016/j.geoderma.2020.114184_b0180 – volume: 8 start-page: 588 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b0045 article-title: A time for every season: soil aggregate turnover stimulates decomposition and reduces carbon loss in grasslands managed for bioenergy publication-title: Gcb. Bioenerg. doi: 10.1111/gcbb.12267 – volume: 92 start-page: 2504 year: 2011 ident: 10.1016/j.geoderma.2020.114184_b0515 article-title: An assessment of U (VI) removal from groundwater using biochar produced from hydrothermal carbonization publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2011.05.013 – volume: 65 start-page: 72 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b0055 article-title: An incubation study on the stability and biological effects of pyrogenic and hydrothermal biochar in two soils publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12074 – volume: 48 start-page: 11211 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b0565 article-title: Effects of mineral additives on biochar formation: carbon retention, stability, and properties publication-title: Environ. Sci. Technol. doi: 10.1021/es501885n – ident: 10.1016/j.geoderma.2020.114184_b0095 – volume: 550 start-page: 504 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b0400 article-title: Properties of biochar-amended soils and their sorption of imidacloprid, isoproturon, and atrazine publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.01.117 – volume: 115 start-page: 209 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b0870 article-title: Changes in biochar physical and chemical properties: accelerated biochar aging in an acidic soil publication-title: Carbon doi: 10.1016/j.carbon.2016.12.096 – volume: 51 start-page: 2061 year: 2008 ident: 10.1016/j.geoderma.2020.114184_b0270 article-title: Effect of low-temperature pyrolysis conditions on biochar for agricultural use publication-title: T. ASABE doi: 10.13031/2013.25409 – volume: 226 start-page: 270 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b0750 article-title: Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties publication-title: Geoderma doi: 10.1016/j.geoderma.2014.01.023 – volume: 4 start-page: 29 year: 2001 ident: 10.1016/j.geoderma.2020.114184_b0780 article-title: Dissolved organic carbon in terrestrial ecosystems: synthesis and a model publication-title: Ecosystems doi: 10.1007/s100210000058 – volume: 128 start-page: 63 year: 2005 ident: 10.1016/j.geoderma.2020.114184_b0415 article-title: Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use publication-title: Geoderma doi: 10.1016/j.geoderma.2004.12.013 – volume: 100 start-page: 178 year: 2008 ident: 10.1016/j.geoderma.2020.114184_b0530 article-title: The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality publication-title: Agron. J. doi: 10.2134/agronj2007.0161 – volume: 94 start-page: 107 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b0325 article-title: Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.11.023 – volume: 44 start-page: 6189 year: 2010 ident: 10.1016/j.geoderma.2020.114184_b0440 article-title: Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars) publication-title: Environ. Sci. Technol. doi: 10.1021/es1014423 – volume: 140 start-page: 406 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b1010 article-title: Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.04.116 – volume: 89 start-page: 510 year: 2010 ident: 10.1016/j.geoderma.2020.114184_b0615 article-title: Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment publication-title: Fuel doi: 10.1016/j.fuel.2009.08.042 – volume: 145 start-page: 135 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b0920 article-title: Impact of switchgrass biochars with supplemental nitrogen on carbon-nitrogen mineralization in highly weathered Coastal Plain Ultisols publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.11.063 – volume: 181 start-page: 770 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b0340 article-title: Effects of three different biochars on aggregate stability, organic carbon mobility and micronutrient bioavailability publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2016.07.023 – volume: 143 start-page: 615 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b0015 article-title: Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.06.033 – volume: 144 start-page: 285 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b1110 article-title: Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.08.042 – volume: 163 start-page: 247 year: 2011 ident: 10.1016/j.geoderma.2020.114184_b0760 article-title: Surface chemistry variations among a series of laboratory-produced biochars publication-title: Geoderma doi: 10.1016/j.geoderma.2011.04.021 – volume: 36 start-page: 177 year: 2004 ident: 10.1016/j.geoderma.2020.114184_b0885 article-title: Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2003.09.005 – volume: 337 start-page: 1 year: 2010 ident: 10.1016/j.geoderma.2020.114184_b0040 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review publication-title: Plant Soil doi: 10.1007/s11104-010-0464-5 – volume: 103 start-page: 626 year: 2006 ident: 10.1016/j.geoderma.2020.114184_b0255 article-title: The diversity and biogeography of soil bacterial communities publication-title: P. Natl. Acad. Sci. USA doi: 10.1073/pnas.0507535103 – volume: 113 start-page: 211 year: 2003 ident: 10.1016/j.geoderma.2020.114184_b0690 article-title: Controls of bioavailability and biodegradability of dissolved organic matter in soils publication-title: Geoderma doi: 10.1016/S0016-7061(02)00362-2 – volume: 50 start-page: 1197 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b0335 article-title: Charcoal function and management in boreal ecosystems publication-title: J. Appl. Ecol. doi: 10.1111/1365-2664.12136 – volume: 87 start-page: 151 year: 2012 ident: 10.1016/j.geoderma.2020.114184_b0595 article-title: Water extractable organic carbon in untreated and chemical treated biochars publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.12.007 – volume: 27 start-page: 694 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b0460 article-title: Incorporation of biochar carbon into stable soil aggregates: the role of clay mineralogy and other soil characteristics publication-title: Pedosphere doi: 10.1016/S1002-0160(17)60399-0 – volume: 49 start-page: 1 year: 2019 ident: 10.1016/j.geoderma.2020.114184_b0725 article-title: Methane production from process water of sewage sludge hydrothermal carbonization. A review. Valorising sludge through hydrothermal carbonization publication-title: Crit. Rev. Env. Sci. Tec. doi: 10.1080/10643389.2018.1561104 – volume: 46 start-page: 1367 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b0680 article-title: Designing advanced biochar products for maximizing greenhouse gas mitigation potential publication-title: Crit. Rev. Env. Sci. Tec. doi: 10.1080/10643389.2016.1239975 – volume: 190 start-page: 432 year: 2011 ident: 10.1016/j.geoderma.2020.114184_b1060 article-title: Screening biochars for heavy metal retention in soil: role of oxygen functional groups publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.03.063 – volume: 48 start-page: 501 year: 2010 ident: 10.1016/j.geoderma.2020.114184_b0420 article-title: An investigation into the reactions of biochar in soil publication-title: Soil Res. doi: 10.1071/SR10009 – volume: 13 start-page: 230 year: 1997 ident: 10.1016/j.geoderma.2020.114184_b0820 article-title: Agricultural soils as a sink to mitigate CO2 emissions publication-title: Soil Use Manage. doi: 10.1111/j.1475-2743.1997.tb00594.x – volume: 112 start-page: 159 year: 2011 ident: 10.1016/j.geoderma.2020.114184_b0825 article-title: Temperature-and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China publication-title: Soil Till. Res. doi: 10.1016/j.still.2011.01.002 – volume: 142 start-page: 56 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b0995 article-title: Variation in sorption of propiconazole with biochars: the effect of temperature, mineral, molecular structure, and nano-porosity publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.07.018 – volume: 38 start-page: 4649 year: 2004 ident: 10.1016/j.geoderma.2020.114184_b0155 article-title: Compositions and sorptive properties of crop residue-derived chars publication-title: Environ. Sci. Technol. doi: 10.1021/es035034w – volume: 111 start-page: 54 year: 1971 ident: 10.1016/j.geoderma.2020.114184_b0695 article-title: Microbial activity in relation to soil humus formation publication-title: Soil Sci. doi: 10.1097/00010694-197101000-00007 – volume: 10 start-page: 1349 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b1055 article-title: Adsorption kinetics of herbicide paraquat in aqueous solution onto a low-cost adsorbent, swine-manure-derived biochar publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-012-0174-z – volume: 166 start-page: 303 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b0860 article-title: Pyrolysis condition affected sulfamethazine sorption by tea waste biochars publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.05.029 – volume: 81 start-page: 244 year: 2015 ident: 10.1016/j.geoderma.2020.114184_b0735 article-title: Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.11.017 – volume: 8 start-page: 512 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b1090 article-title: Biochar stability in soil: meta-analysis of decomposition and priming effects publication-title: Gcb. Bioenerg. doi: 10.1111/gcbb.12266 – volume: 104 start-page: 49 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b0170 article-title: Interactions between biochar and litter priming: a three-source 14C and δ13C partitioning study publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.10.014 – volume: 206 start-page: 298 year: 2015 ident: 10.1016/j.geoderma.2020.114184_b0845 article-title: Metal/metalloid elements and polycyclic aromatic hydrocarbon in various biochars: the effect of feedstock, temperature, minerals, and properties publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2015.07.026 – volume: 33 start-page: 81 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b0965 article-title: Agroforestry and biochar to offset climate change: a review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-012-0081-1 – volume: 128 start-page: 593 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b0035 article-title: Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.10.150 – volume: 51 start-page: 13517 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b0580 article-title: Black carbon (biochar) in water/soil environments: molecular Structure, sorption, stability, and potential risk publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02528 – volume: 8 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b0295 article-title: A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy publication-title: PloS One doi: 10.1371/journal.pone.0075932 – volume: 223 start-page: 3729 year: 2012 ident: 10.1016/j.geoderma.2020.114184_b0800 article-title: Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-012-1144-2 – volume: 178 start-page: 455 year: 2010 ident: 10.1016/j.geoderma.2020.114184_b0570 article-title: Adsorption kinetics and desorption of Cu (II) and Zn (II) from aqueous solution onto humic acid publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.01.103 – volume: 32 start-page: 597 year: 2000 ident: 10.1016/j.geoderma.2020.114184_b0660 article-title: Variation in soil net mineralization rates with dissolved organic carbon additions publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(99)00186-8 – volume: 43 start-page: 1169 year: 2011 ident: 10.1016/j.geoderma.2020.114184_b1280 article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.02.005 – volume: 9 start-page: 1085 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b1200 article-title: Investigating the biochar effects on C-mineralization and sequestration of carbon in soil compared with conventional amendments using the stable isotope (δ13C) approach publication-title: Gcb. Bioenerg. doi: 10.1111/gcbb.12401 – volume: 6 start-page: 389 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b0005 article-title: Increasing rates of biochar application to soil induce stronger negative priming effect on soil organic carbon decomposition publication-title: Agr. Res. doi: 10.1007/s40003-017-0281-7 – volume: 75 start-page: 1589 year: 2009 ident: 10.1016/j.geoderma.2020.114184_b0880 article-title: Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization publication-title: Appl. Environ. Microb. doi: 10.1128/AEM.02775-08 – volume: 102 start-page: 3488 year: 2011 ident: 10.1016/j.geoderma.2020.114184_b1205 article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.11.018 – volume: 46 start-page: 1183 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b0025 article-title: Biochar properties: transport, fate, and impact publication-title: Crit. Rev. Env. Sci. Tec. doi: 10.1080/10643389.2016.1212368 – volume: 10 start-page: 423 year: 2000 ident: 10.1016/j.geoderma.2020.114184_b0410 article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation publication-title: Ecol. Appl. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 – volume: 80 start-page: 136 year: 2015 ident: 10.1016/j.geoderma.2020.114184_b0235 article-title: Effect of temperature on biochar priming effects and its stability in soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.10.006 – volume: 218 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b0650 article-title: Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.08.014 – volume: 46 start-page: 11104 year: 2012 ident: 10.1016/j.geoderma.2020.114184_b0140 article-title: Fast and slow rates of naphthalene sorption to biochars produced at different temperatures publication-title: Environ. Sci. Technol. doi: 10.1021/es302345e – volume: 99 start-page: 320 year: 2008 ident: 10.1016/j.geoderma.2020.114184_b1210 article-title: Activated carbon from olive kernels in a two-stage process: industrial improvement publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2006.12.020 – volume: 51 start-page: 2635 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b0405 article-title: Characterization and phenanthrene sorption of natural and pyrogenic organic matter fractions publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b04573 – volume: 76 start-page: 127 year: 2009 ident: 10.1016/j.geoderma.2020.114184_b0110 article-title: Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.02.004 – volume: 30 start-page: 2075 year: 2011 ident: 10.1016/j.geoderma.2020.114184_b1265 article-title: The structural characteristics of biochar and its effects on soil available nutrients and humus composition publication-title: J. Agro-Environ. Sci. – volume: 331 start-page: 50 year: 2018 ident: 10.1016/j.geoderma.2020.114184_b0090 article-title: Spatial and temporal microscale pH change at the soil-biochar interface publication-title: Geoderma doi: 10.1016/j.geoderma.2018.06.016 – volume: 138 start-page: 266 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b0480 article-title: Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.03.186 – volume: 142 start-page: 145 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b0220 article-title: Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.06.044 – volume: 209 start-page: 188 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b0350 article-title: Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol publication-title: Geoderma doi: 10.1016/j.geoderma.2013.06.016 – volume: 159 start-page: 2594 year: 2011 ident: 10.1016/j.geoderma.2020.114184_b1225 article-title: Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.06.012 – volume: 181 start-page: 60 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b1260 article-title: Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.05.056 – volume: 5 start-page: 510 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b0275 article-title: Profiles of volatile organic compounds in biochar: insights into process conditions and quality assessment publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b01869 – volume: 321 year: 2008 ident: 10.1016/j.geoderma.2020.114184_b1045 article-title: Geology. An uncertain future for soil carbon publication-title: Science doi: 10.1126/science.1160232 – volume: 36 start-page: 1480 year: 2005 ident: 10.1016/j.geoderma.2020.114184_b1040 article-title: Characterization of humic like substances obtained by chemical oxidation of eucalyptus charcoal publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2005.08.001 – volume: 65 start-page: 28 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b0280 article-title: Biochar addition rate influences soil microbial abundance and activity in temperate soils publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12097 – volume: 126 start-page: 69 year: 2019 ident: 10.1016/j.geoderma.2020.114184_b0175 article-title: Wheat straw biochar reduces environmental cadmium bioavailability publication-title: Environ. Int. doi: 10.1016/j.envint.2019.02.022 – volume: 136 start-page: 119 year: 2017 ident: 10.1016/j.geoderma.2020.114184_b0500 article-title: Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity publication-title: Ecotox. Environ. Safe. doi: 10.1016/j.ecoenv.2016.10.033 – volume: 158 start-page: 443 year: 2010 ident: 10.1016/j.geoderma.2020.114184_b0535 article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil publication-title: Geoderma doi: 10.1016/j.geoderma.2010.05.013 – volume: 89 start-page: 231 year: 2000 ident: 10.1016/j.geoderma.2020.114184_b0830 article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus publication-title: Oikos doi: 10.1034/j.1600-0706.2000.890203.x – ident: 10.1016/j.geoderma.2020.114184_b0425 – volume: 112 start-page: 103 year: 2011 ident: 10.1016/j.geoderma.2020.114184_b0510 article-title: Biochar application to soil: agronomic and environmental benefits and unintended consequences publication-title: Adv. Agron. doi: 10.1016/B978-0-12-385538-1.00003-2 – volume: 102 start-page: 9897 year: 2011 ident: 10.1016/j.geoderma.2020.114184_b1000 article-title: Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.08.036 – volume: 218 start-page: 1303 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b0125 article-title: Effect of pyrolysis temperature on the chemical oxidation stability of bamboo biochar publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.07.112 – volume: 202 start-page: 183 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b0010 article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil publication-title: Geoderma doi: 10.1016/j.geoderma.2013.03.003 – volume: 31 start-page: 792 year: 1997 ident: 10.1016/j.geoderma.2020.114184_b1155 article-title: Dual-mode sorption of low-polarity compounds in glassy poly (vinyl chloride) and soil organic matter publication-title: Environ. Sci. Technol. doi: 10.1021/es960481f – volume: 31 start-page: 1187 year: 2012 ident: 10.1016/j.geoderma.2020.114184_b1145 article-title: Reduced adsorption of propanil to black carbon: effect of dissolved organic matter loading mode and molecule size publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.1800 – ident: 10.1016/j.geoderma.2020.114184_b0370 doi: 10.1002/9780470494950.ch2 – volume: 43 start-page: 4973 year: 2009 ident: 10.1016/j.geoderma.2020.114184_b0850 article-title: Influence of environmental factors on pesticide adsorption by black carbon: pH and model dissolved organic matter publication-title: Environ. Sci. Technol. doi: 10.1021/es900573d – volume: 179 start-page: 359 year: 2015 ident: 10.1016/j.geoderma.2020.114184_b0120 article-title: Sorption characteristics of N-nitrosodimethylamine onto biochar from aqueous solution publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.12.059 – volume: 28 start-page: 665 year: 1996 ident: 10.1016/j.geoderma.2020.114184_b0395 article-title: Soil aggregate formation and the accrual of particulate and mineral-associated organic matter publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(95)00159-X – volume: 57 start-page: 196 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b0360 article-title: Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.) publication-title: Biomass Bioenerg. doi: 10.1016/j.biombioe.2013.07.019 – volume: 11 start-page: 5199 year: 2014 ident: 10.1016/j.geoderma.2020.114184_b0655 article-title: Carbon losses from pyrolysed and original wood in a forest soil under natural and increased N deposition publication-title: Biogeosciences doi: 10.5194/bg-11-5199-2014 – volume: 16 start-page: 1366 year: 2010 ident: 10.1016/j.geoderma.2020.114184_b0665 article-title: Fate of soil-applied black carbon: downward migration, leaching and soil respiration publication-title: Global Change Biol. doi: 10.1111/j.1365-2486.2009.02044.x – volume: 44 start-page: 3324 year: 2010 ident: 10.1016/j.geoderma.2020.114184_b0790 article-title: Temperature sensitivity of black carbon decomposition and oxidation publication-title: Environ. Sci. Technol. doi: 10.1021/es903016y – volume: 111 start-page: 83 year: 2012 ident: 10.1016/j.geoderma.2020.114184_b1130 article-title: Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon publication-title: Biogeochemistry doi: 10.1007/s10533-012-9764-6 – volume: 31 start-page: 711 year: 2000 ident: 10.1016/j.geoderma.2020.114184_b0430 article-title: The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils publication-title: Org. Geochem. doi: 10.1016/S0146-6380(00)00046-2 – volume: 49 start-page: 1 year: 2019 ident: 10.1016/j.geoderma.2020.114184_b1135 article-title: A critical review on bioremediation technologies for Cr (VI)-contaminated soils and wastewater publication-title: Crit. Rev. Env. Sci. Tec. doi: 10.1080/10643389.2018.1564526 – ident: 10.1016/j.geoderma.2020.114184_b0195 – volume: 71 start-page: 33 year: 2013 ident: 10.1016/j.geoderma.2020.114184_b0130 article-title: Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2013.05.003 – volume: 45 start-page: 9611 year: 2011 ident: 10.1016/j.geoderma.2020.114184_b0455 article-title: Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil publication-title: Environ. Sci. Technol. doi: 10.1021/es202186j – volume: 117 start-page: 175 year: 2018 ident: 10.1016/j.geoderma.2020.114184_b0900 article-title: Linking organic matter chemistry with soil aggregate stability: insight from 13C NMR spectroscopy publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.11.011 – volume: 121 start-page: 235 year: 2012 ident: 10.1016/j.geoderma.2020.114184_b0600 article-title: Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.06.085 – volume: 43 start-page: 2127 year: 2011 ident: 10.1016/j.geoderma.2020.114184_b0160 article-title: The priming potential of biochar products in relation to labile carbon contents and soil organic matter status publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.06.016 – volume: 156 start-page: 1021 year: 2008 ident: 10.1016/j.geoderma.2020.114184_b0385 article-title: Sorption of phenanthrene by dissolved organic matter and its complex with aluminum oxide nanoparticles publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2008.05.003 – volume: 104 start-page: 165 year: 2012 ident: 10.1016/j.geoderma.2020.114184_b0915 article-title: Removal of hexavalent Cr by coconut coir and derived chars-the effect of surface functionality publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.10.096 – volume: 11 start-page: 660 year: 2019 ident: 10.1016/j.geoderma.2020.114184_b0895 article-title: Soil greenhouse gas, carbon content, and tree growth response to biochar amendment in western United States forests publication-title: Gcb Bioenerg. doi: 10.1111/gcbb.12595 – volume: 50 start-page: 7706 year: 2016 ident: 10.1016/j.geoderma.2020.114184_b0865 article-title: Mineral-Biochar composites: molecular structure and porosity publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b00685 |
SSID | ssj0017020 |
Score | 2.6624708 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Stability of biochar was related with both biochar and soil properties.•Positive priming effect was common for manure biochar and sandy... Extensive application of biochar to soil exerts a profound effect on organic carbon (OC) in soils. However, the impact of biochar on the content and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114184 |
SubjectTerms | Biochar clay soils environmental impact Humic substance humic substances mineralization Organic carbon sandy soils Soil aggregate soil minerals soil organic carbon Stability temperature |
Title | Biochar’s stability and effect on the content, composition and turnover of soil organic carbon |
URI | https://dx.doi.org/10.1016/j.geoderma.2020.114184 https://www.proquest.com/docview/2388764754 |
Volume | 364 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iFz2IT3wTwaN1022SZo-rKKuiJwVvMc1DVqSV3fXgRfwb_j1_iTNtKiqIB48tSQiTdL5J8803hOw5JrxhvSLxSoSEp6lNFC-6iTcB1cyYcRb_Q15cysE1P7sRN1PkqM2FQVpl9P2NT6-9dXzTidbsPA6HmOObyhzgCEMQAEFMNOc8x11-8PJJ80hzFqUZU5lg6y9ZwvewRlhwrNYf6tayuanivwHUD1dd48_JApmPgSPtN3NbJFO-XCJz_btRFM_wy-T2cFhhFtX769uYQtRX816fqSkdbWgbtCopBHwU-ekANvsUCeWRtVU3g3FK5HTSKtBxNXygTdEnS60ZFVW5Qq5Pjq-OBkmsoJDYjItJ4hSzwTmD6aQSTzIZc85lrMitEZ5x64LzvMiNtODncpiK8kFJkQU4NwbPs1UyXValXyNUuq5Q3RC4CgyAT6msyAK4AyVlz8O5cp2I1mzaRnlxrHLxoFse2b1uza3R3Lox9zrpfPZ7bAQ2_uzRa1dFf9sqGlDgz7677TJq-I7wcsSUvnoaawhdABh4LvjGP8bfJLP41FB7tsj0ZPTktyFqmRQ79bbcITP90_PB5QfHYO8m |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3R5dD2gFpaVAoUV-LYaJ2N7XiPCwItX3sCiZvr-AMtQgnaXQ699W_07_WXdCZxUFup4tBrkrGisTNvHL95A3DguQyWj6ssaBkzkecu06IaZcFGUjPj1jv6D3k5U9NrcXYjb9bgqK-FIVpliv1dTG-jdboyTN4cPsznVOObqxLhiFIQBEH5AtZJnUoOYH1yej6dPR0mlDypM-YqI4PfCoXvcJqo51grQTRqlXNzLf6FUX9F6xaCTt7ARsod2aR7vbewFupNeD25XST9jPAOvh7OGyqk-vn9x5Jh4tdSX78xW3vWMTdYUzPM-RhR1BFvvjDilCfiVvsYjlMTrZM1kS2b-T3r-j455uyiaur3cH1yfHU0zVIThcwVQq4yr7mL3luqKFW0mSm4977gVemsDFw4H30QVWmVw1BX4qvoELWSRcStYwyi2IJB3dThAzDlR1KPYhQ6csQ-rYuqiBgRtFLjgFvLbZC924xLCuPU6OLe9FSyO9O725C7TefubRg-2T10GhvPWoz7WTF_rBaDQPCs7ed-Gg1-SnQ-YuvQPC4NZi-IDbiCxMf_GH8fXk6vLi_MxensfAde0Z2O6bMLg9XiMexhErOqPqVF-gv2K_HX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar%E2%80%99s+stability+and+effect+on+the+content%2C+composition+and+turnover+of+soil+organic+carbon&rft.jtitle=Geoderma&rft.au=Han%2C+Lanfang&rft.au=Sun%2C+Ke&rft.au=Yang%2C+Yan&rft.au=Xia%2C+Xinghui&rft.date=2020-04-01&rft.issn=0016-7061&rft.volume=364&rft.spage=114184&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114184&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2020_114184 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |