Conventional flooding irrigation and over fertilization drives soil pH decrease not only in the top- but also in subsoil layers in solar greenhouse vegetable production systems

•Surface and deep soil pH significantly decrease with greenhouse cultivation years.•The pH decrease in the topsoil is linked to N accumulation and leaching.•Accumulation of mineral N and K drives EC increases and pH decreases in deep soil.•Soil nutrient imbalances of N:P:K ratios (0–3 m) can be expl...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 363; p. 114156
Main Authors Lv, Haofeng, Zhao, Yiming, Wang, Yafang, Wan, Li, Wang, Jingguo, Butterbach-Bahl, Klaus, Lin, Shan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2020
Subjects
Online AccessGet full text
ISSN0016-7061
1872-6259
DOI10.1016/j.geoderma.2019.114156

Cover

Loading…
Abstract •Surface and deep soil pH significantly decrease with greenhouse cultivation years.•The pH decrease in the topsoil is linked to N accumulation and leaching.•Accumulation of mineral N and K drives EC increases and pH decreases in deep soil.•Soil nutrient imbalances of N:P:K ratios (0–3 m) can be explained by N leaching. Conventional flooding irrigation combined with over-fertilization in intensively used solar greenhouse vegetable production systems are jeopardizing soil productivity and groundwater quality due to soil acidification and nitrogen (N) leaching. While it has been shown that excessive application of N fertilizer in greenhouse production systems significantly reduces topsoil pH values, it remains unknown if also subsoil pH values do change too and if surplus N fertilization and hydrological N losses lead to nutrient imbalances. In this study, soil samples from six soil layers from 0 to 300 cm were taken from 45 greenhouse fields with three representative cultivation years (2, 5, and 10 years). Soil samples from 5 adjacent corn fields served as comparison. Results show that (1) compared to soils from adjacent corn fields, the pH in the 0–30 cm soil layer was slightly elevated two years and five years after greenhouse establishment, but was lowered by 0.52 ± 0.06 units after ten years. Moreover, also the pH in deeper soil layers (30–300 cm) significantly decreased with cultivation years. (2) A significant imbalance of N:P:K ratios in greenhouse top soils was found, as P and K accumulates while N is leached to subsoils. (3) Structural equation modeling indicated that changes in the mineral N concentration in the 0–30 cm soil layer was driving soil pH changes. Our results demonstrate that N accumulation in top soils and N leaching to deep soil caused by excessive irrigation explains observed declines in surface and deep soil pH values of conventional greenhouse vegetable production systems. Consequently, for avoiding groundwater contamination with N and for ensuring sustainable soil productivity, current schemes of irrigation and fertilization management need to be adapted to avoid N leaching, soil acidification, nutrient accumulation and imbalances.
AbstractList •Surface and deep soil pH significantly decrease with greenhouse cultivation years.•The pH decrease in the topsoil is linked to N accumulation and leaching.•Accumulation of mineral N and K drives EC increases and pH decreases in deep soil.•Soil nutrient imbalances of N:P:K ratios (0–3 m) can be explained by N leaching. Conventional flooding irrigation combined with over-fertilization in intensively used solar greenhouse vegetable production systems are jeopardizing soil productivity and groundwater quality due to soil acidification and nitrogen (N) leaching. While it has been shown that excessive application of N fertilizer in greenhouse production systems significantly reduces topsoil pH values, it remains unknown if also subsoil pH values do change too and if surplus N fertilization and hydrological N losses lead to nutrient imbalances. In this study, soil samples from six soil layers from 0 to 300 cm were taken from 45 greenhouse fields with three representative cultivation years (2, 5, and 10 years). Soil samples from 5 adjacent corn fields served as comparison. Results show that (1) compared to soils from adjacent corn fields, the pH in the 0–30 cm soil layer was slightly elevated two years and five years after greenhouse establishment, but was lowered by 0.52 ± 0.06 units after ten years. Moreover, also the pH in deeper soil layers (30–300 cm) significantly decreased with cultivation years. (2) A significant imbalance of N:P:K ratios in greenhouse top soils was found, as P and K accumulates while N is leached to subsoils. (3) Structural equation modeling indicated that changes in the mineral N concentration in the 0–30 cm soil layer was driving soil pH changes. Our results demonstrate that N accumulation in top soils and N leaching to deep soil caused by excessive irrigation explains observed declines in surface and deep soil pH values of conventional greenhouse vegetable production systems. Consequently, for avoiding groundwater contamination with N and for ensuring sustainable soil productivity, current schemes of irrigation and fertilization management need to be adapted to avoid N leaching, soil acidification, nutrient accumulation and imbalances.
Conventional flooding irrigation combined with over-fertilization in intensively used solar greenhouse vegetable production systems are jeopardizing soil productivity and groundwater quality due to soil acidification and nitrogen (N) leaching. While it has been shown that excessive application of N fertilizer in greenhouse production systems significantly reduces topsoil pH values, it remains unknown if also subsoil pH values do change too and if surplus N fertilization and hydrological N losses lead to nutrient imbalances. In this study, soil samples from six soil layers from 0 to 300 cm were taken from 45 greenhouse fields with three representative cultivation years (2, 5, and 10 years). Soil samples from 5 adjacent corn fields served as comparison. Results show that (1) compared to soils from adjacent corn fields, the pH in the 0–30 cm soil layer was slightly elevated two years and five years after greenhouse establishment, but was lowered by 0.52 ± 0.06 units after ten years. Moreover, also the pH in deeper soil layers (30–300 cm) significantly decreased with cultivation years. (2) A significant imbalance of N:P:K ratios in greenhouse top soils was found, as P and K accumulates while N is leached to subsoils. (3) Structural equation modeling indicated that changes in the mineral N concentration in the 0–30 cm soil layer was driving soil pH changes. Our results demonstrate that N accumulation in top soils and N leaching to deep soil caused by excessive irrigation explains observed declines in surface and deep soil pH values of conventional greenhouse vegetable production systems. Consequently, for avoiding groundwater contamination with N and for ensuring sustainable soil productivity, current schemes of irrigation and fertilization management need to be adapted to avoid N leaching, soil acidification, nutrient accumulation and imbalances.
ArticleNumber 114156
Author Wan, Li
Zhao, Yiming
Butterbach-Bahl, Klaus
Lv, Haofeng
Wang, Jingguo
Wang, Yafang
Lin, Shan
Author_xml – sequence: 1
  givenname: Haofeng
  surname: Lv
  fullname: Lv, Haofeng
  organization: College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
– sequence: 2
  givenname: Yiming
  surname: Zhao
  fullname: Zhao, Yiming
  organization: College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
– sequence: 3
  givenname: Yafang
  surname: Wang
  fullname: Wang, Yafang
  organization: College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
– sequence: 4
  givenname: Li
  surname: Wan
  fullname: Wan, Li
  organization: College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
– sequence: 5
  givenname: Jingguo
  surname: Wang
  fullname: Wang, Jingguo
  organization: College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
– sequence: 6
  givenname: Klaus
  surname: Butterbach-Bahl
  fullname: Butterbach-Bahl, Klaus
  organization: Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, 82467, Germany
– sequence: 7
  givenname: Shan
  surname: Lin
  fullname: Lin, Shan
  email: linshan@cau.edu.cn
  organization: College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
BookMark eNqFkcGO0zAURS00SHQGfgF5ySbFdhInkViAKoZBGokNrC3Hfsm4cu3y7FQqX8Un4jawYTMLy_LVPddP796SmxADEPKWsy1nXL7fb2eIFvCgt4LxYct5w1v5gmx434lKina4IRtWnFXHJH9FblPal2fHBNuQ37sYThCyi0F7OvkYrQszdYhu1heV6mBpPAHSCTA7736tskV3gkRTdJ4eH6gFg6AT0BAzjcGfqQs0PwHN8VjRcclU-xQvYlrGK-T1GTBdleg10hkBwlNcSsYJZsh69ECPGO1irh-mc8pwSK_Jy6lEwZu_9x35cf_5--6hevz25evu02Nl6qbNlbG1sHUHepJaGK0H1gzQmGEagcu27iRY2w_9IEaYymGybgVnYDorWls3Y31H3q25ZYSfC6SsDi4Z8F4HKEMqUfd91wopRLF-WK0GY0oIkzIuX7eUUTuvOFOXotRe_StKXYpSa1EFl__hR3QHjefnwY8rCGUPJweoknEQDFiHYLKy0T0X8Qeq8LmO
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_172016
crossref_primary_10_1007_s42729_023_01488_w
crossref_primary_10_1016_j_psep_2022_04_025
crossref_primary_10_3390_agronomy13082006
crossref_primary_10_1016_j_agee_2023_108501
crossref_primary_10_1016_j_agwat_2022_108092
crossref_primary_10_3390_agriculture12091366
crossref_primary_10_1016_j_agee_2021_107379
crossref_primary_10_1016_j_geoderma_2024_117087
crossref_primary_10_1371_journal_pone_0267483
crossref_primary_10_3390_ijerph191912262
crossref_primary_10_1080_15226514_2024_2357640
crossref_primary_10_1186_s12870_024_05759_1
crossref_primary_10_1002_csc2_21164
crossref_primary_10_1016_j_agwat_2022_107797
crossref_primary_10_1016_j_scitotenv_2022_159046
crossref_primary_10_3390_horticulturae9030340
crossref_primary_10_3390_agronomy11112232
crossref_primary_10_1111_sum_70018
crossref_primary_10_3390_plants10071435
crossref_primary_10_1007_s11356_022_20636_w
crossref_primary_10_1007_s11368_021_03093_9
crossref_primary_10_1016_j_plaphy_2023_108279
crossref_primary_10_1007_s10311_023_01631_0
crossref_primary_10_1016_j_geoderma_2024_117135
crossref_primary_10_3390_agronomy13010006
crossref_primary_10_1016_j_indcrop_2024_119284
crossref_primary_10_1016_j_indic_2024_100483
crossref_primary_10_1007_s11104_024_07014_w
crossref_primary_10_3390_agronomy14051060
crossref_primary_10_1016_j_scitotenv_2021_147307
crossref_primary_10_1016_j_jfca_2024_106408
crossref_primary_10_3390_plants13202885
crossref_primary_10_3390_agronomy14112708
crossref_primary_10_1155_sci5_6624984
crossref_primary_10_1016_j_geodrs_2022_e00540
crossref_primary_10_3390_agronomy12071560
crossref_primary_10_3390_ijms231810876
crossref_primary_10_2478_cttr_2024_0003
crossref_primary_10_3390_horticulturae11020126
crossref_primary_10_1109_ACCESS_2024_3352006
crossref_primary_10_3390_plants13111439
crossref_primary_10_3390_agriculture14122319
crossref_primary_10_1007_s00271_020_00712_0
crossref_primary_10_1016_j_agwat_2024_108708
crossref_primary_10_1016_j_agee_2021_107353
crossref_primary_10_1016_j_agee_2021_107474
crossref_primary_10_1007_s11104_021_05136_z
crossref_primary_10_1016_j_envpol_2020_116372
crossref_primary_10_1016_j_scitotenv_2024_178294
crossref_primary_10_1080_15320383_2023_2283121
crossref_primary_10_32604_phyton_2023_044051
crossref_primary_10_1111_gwat_13329
crossref_primary_10_3390_agronomy12020321
crossref_primary_10_1007_s13580_024_00622_6
crossref_primary_10_1016_j_agee_2021_107425
crossref_primary_10_3390_horticulturae10101090
crossref_primary_10_1007_s42729_021_00456_6
crossref_primary_10_1016_j_scitotenv_2023_168088
crossref_primary_10_20961_stjssa_v21i1_86312
crossref_primary_10_3390_f15040581
crossref_primary_10_1016_j_scienta_2021_110553
crossref_primary_10_1002_csc2_70013
crossref_primary_10_1016_j_agee_2024_109286
crossref_primary_10_3390_agronomy12071661
crossref_primary_10_3390_w13212973
crossref_primary_10_3390_agronomy13030939
crossref_primary_10_3390_plants12223791
crossref_primary_10_3390_horticulturae10090997
crossref_primary_10_1016_j_envpol_2022_119494
crossref_primary_10_3390_plants13040474
crossref_primary_10_1016_j_envpol_2021_116521
crossref_primary_10_3390_agronomy14122844
Cites_doi 10.1016/j.soilbio.2012.01.007
10.1016/j.scienta.2010.02.014
10.2134/jeq2012.0463
10.1016/j.atmosenv.2019.05.056
10.1088/1748-9326/10/2/024019
10.1016/S1671-2927(09)60166-8
10.1016/j.jenvman.2015.02.045
10.1007/s11356-016-6462-2
10.2134/jeq2012.0224
10.1023/B:FRES.0000025293.99199.ff
10.1098/rstb.2011.0415
10.1016/j.agwat.2014.07.016
10.1073/pnas.1101419108
10.1016/j.envres.2019.02.020
10.1016/j.envpol.2018.11.042
10.1111/j.1365-2486.2012.02694.x
10.1007/BF02182025
10.1002/(SICI)1522-2624(199903)162:2<139::AID-JPLN139>3.0.CO;2-6
10.1890/08-1730.1
10.1016/j.envpol.2008.12.017
10.1023/A:1026290508166
10.1126/science.1182570
10.1126/science.1152509
10.1016/j.soilbio.2004.01.003
10.1111/sum.12270
10.1111/gcb.12461
10.1016/j.tibtech.2012.04.002
10.1016/S0065-2113(02)78006-1
10.2134/jeq2008.0277
10.1016/j.envpol.2010.02.014
10.1016/j.envsci.2003.10.006
10.2136/sssaj2011.0445
10.1016/j.geoderma.2019.04.036
10.1128/AEM.00991-10
10.1016/j.jhydrol.2004.07.044
10.1016/j.fcr.2013.06.005
10.1890/100223
10.1016/j.agee.2014.10.022
10.1007/s13280-015-0631-2
10.1016/S0003-2670(00)88254-9
10.1016/j.envpol.2005.11.005
10.1038/nature13609
10.1073/pnas.1720777115
10.1016/j.apsoil.2013.01.004
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2019.114156
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2019_114156
S0016706119317720
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-c345t-cd32d37eaf6a2caa9049e4c9fbe165376edd89892bef2be0635210ec7d25d34b3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Thu Jul 10 19:27:52 EDT 2025
Tue Jul 01 04:04:52 EDT 2025
Thu Apr 24 23:12:06 EDT 2025
Fri Feb 23 02:48:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nutrient imbalances
N leaching
Soil acidification
Solar greenhouse
Cultivation years
Soil depths
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-cd32d37eaf6a2caa9049e4c9fbe165376edd89892bef2be0635210ec7d25d34b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2388752622
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2388752622
crossref_citationtrail_10_1016_j_geoderma_2019_114156
crossref_primary_10_1016_j_geoderma_2019_114156
elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_114156
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References National Meteorological Information Center (NMIC). 2012. http://www.nmic.cn/data/ (In Chinese).
Bertin, Yang, Weston (b0025) 2003; 256
Kleinman, Sharpley, Withers, Bergström, Johnson, Doody (b0150) 2015; 44
Lu, Vitousek, Mao, Gilliam, Luo, Zhou, Zou, Bai, Scanlon, Hou, Mo (b0170) 2018; 115
Cao, Guo, Song, Liu, Chen, Wang (b0035) 2017; 23
Soto, Gallardo, Thompson, Peña-Fleitas, Padilla (b0225) 2015; 200
Alves, Denardin, Martins, Anghinoni, Carvalho, Tiecher (b0005) 2019; 351
Hong, Choi, Nam, Kang, Jang (b0115) 2014; 146
Tian, Wang, Gao (b0235) 2013; 20
Wan, Ward, Altosaar (b0250) 2012; 30
Yang, Ji, Ma, Wang, Wang, Han, Mohammat, Robinson, Smith (b0265) 2012; 18
Yu, Li, Zhang (b0275) 2010; 9
Ren, Christie, Wang, Chen, Zhang (b0205) 2010; 125
Jones, Shannon, Murphy, Farrar (b0135) 2004; 36
Yao, Yan, Wang, Zheng, Liu, Butterbach-Bahl (b0270) 2019; 212
Schroder, Scholefield, Cabral, Hofman (b0215) 2004; 7
Kartal, Tan, Van de Biezen, Kampschreur, Van Loosdrecht, Jetten (b0145) 2010; 76
Horswill, P., O'sullivan, O., Phoenix, G.K., Lee, J.A., Leake, J.R. 2008. Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition. Environ. Pollut. 155, 336–349.
Bao (b0015) 2000
Ju, Kou, Zhang, Christie (b0140) 2006; 143
National Bureau of Statistics of China. China Statistical Yearbook 2018, Agriculture, 12-8. http://www.stats.gov.cn/tjsj/ndsj/2018/indexch.htm. (In Chinese).
Thomson, Giannopoulos, Pretty, Baggs, Richardson (b0240) 2012; 367
Chen, Zhang, Zhang, Christie, Li, Horlacher, Liebig (b0045) 2004; 69
Song, Guo, Ren, Chen, Li, Wang (b0220) 2012; 76
Zhang, Y. 2009. Preliminary study on acidification in Chinese agricultural soils: Current status, potential reason and sensitivity. M.S. thesis. China Agricultural Univ., Beijing. (in Chinese).
Cui, Yan, Zhou, Zhang, Deng (b0065) 2012; 48
Fei, Zhang, Liang, Li, Jiang, Xu, Ding (b0070) 2018; 33
Ruan, Ren, Chen, Zhu, Wang (b0210) 2013; 66
Oenema, van Liere, Schoumans (b0195) 2005; 304
Goulding (b0085) 2016; 32
Tian, Niu (b0230) 2015; 10
Andersson, Bergström, Djodjic, Ulen, Kirchmann (b0010) 2013; 42
Qu, Wang, Almoy, Bakken (b0200) 2014; 20
Yu, Liu, Wang, Bian (b0280) 2017; 5
Chen, Tian, Gao, Tian (b0060) 2016; 23
Guo, Rahn, Jiang, Chen (b0080) 2010; 158
Hong, Gan, Chen (b0120) 2019; 172
Hoegh-Guldberg, Mumby, Hooten (b0110) 2007; 318
Liu, Lin, Dannenmann, Tao, Saiz, Zuo, Sippel, Wei, Cao, Cai, Butterbach-Bahl (b0160) 2013; 150
Berthrong, Jobbagy, Jackson (b0020) 2009; 19
Bolan, Adriano, Curtin (b0030) 2003; 78
Lv, Lin, Wang, Lian, Zhao, Li, Du, Wang, Wang, Butterbach-Bahl (b0165) 2019; 245
van Kessel, Clough, van Groenigen (b0245) 2009; 38
Wang (b0255) 2017
He, F.F., Jiang, R.F., Chen, Q., Zhang, F.S., 2009. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China. Environ. Pollut. 157, 1666–1672.
Liang, Kang, Ren, Li, Chen, Wang (b0155) 2015; 154
Chen, Cui, Fan, Vitousek, Zhao, Ma, Wang, Zhang, Yan, Yang, Deng, Gao, Zhang, Guo, Ren, Li, Ye, Wang, Huang, Tang, Sun, Peng, Zhang, He, Zhu, Xue, Wang, Wu, An, Wu, Ma, Zhang, Zhang (b0055) 2014; 514
Chang, Wu, Wang, Meyerson, Gu, Min, Xue, Peng, Ge (b0040) 2013; 11
Heenan, Campbell (b0105) 1981; 61
Mebius (b0175) 1960; 22
Mengel, Schneider, Kosegarten (b0180) 1999; 162
Chen, Cui, Vitousek, Cassman, Matson, Bai, Meng, Hou, Yue, Romheld, Zhang (b0050) 2011; 108
Guo, Liu, Zhang, Shen, Han, Zhang, Christie, Goulding, Vitousek, Zhang (b0075) 2010; 327
Yan, Liu, Li, Ma, Alva, Dou, Chen, Zhang (b0260) 2013; 42
Yu (10.1016/j.geoderma.2019.114156_b0275) 2010; 9
Ruan (10.1016/j.geoderma.2019.114156_b0210) 2013; 66
Mebius (10.1016/j.geoderma.2019.114156_b0175) 1960; 22
Liang (10.1016/j.geoderma.2019.114156_b0155) 2015; 154
10.1016/j.geoderma.2019.114156_b0190
Bolan (10.1016/j.geoderma.2019.114156_b0030) 2003; 78
Fei (10.1016/j.geoderma.2019.114156_b0070) 2018; 33
Hoegh-Guldberg (10.1016/j.geoderma.2019.114156_b0110) 2007; 318
Ren (10.1016/j.geoderma.2019.114156_b0205) 2010; 125
Oenema (10.1016/j.geoderma.2019.114156_b0195) 2005; 304
Schroder (10.1016/j.geoderma.2019.114156_b0215) 2004; 7
Guo (10.1016/j.geoderma.2019.114156_b0080) 2010; 158
Qu (10.1016/j.geoderma.2019.114156_b0200) 2014; 20
Guo (10.1016/j.geoderma.2019.114156_b0075) 2010; 327
Wan (10.1016/j.geoderma.2019.114156_b0250) 2012; 30
Kleinman (10.1016/j.geoderma.2019.114156_b0150) 2015; 44
Andersson (10.1016/j.geoderma.2019.114156_b0010) 2013; 42
10.1016/j.geoderma.2019.114156_b0185
Chen (10.1016/j.geoderma.2019.114156_b0045) 2004; 69
Lu (10.1016/j.geoderma.2019.114156_b0170) 2018; 115
Tian (10.1016/j.geoderma.2019.114156_b0235) 2013; 20
Goulding (10.1016/j.geoderma.2019.114156_b0085) 2016; 32
Kartal (10.1016/j.geoderma.2019.114156_b0145) 2010; 76
Yao (10.1016/j.geoderma.2019.114156_b0270) 2019; 212
Ju (10.1016/j.geoderma.2019.114156_b0140) 2006; 143
Thomson (10.1016/j.geoderma.2019.114156_b0240) 2012; 367
Lv (10.1016/j.geoderma.2019.114156_b0165) 2019; 245
10.1016/j.geoderma.2019.114156_b0290
Liu (10.1016/j.geoderma.2019.114156_b0160) 2013; 150
Alves (10.1016/j.geoderma.2019.114156_b0005) 2019; 351
10.1016/j.geoderma.2019.114156_b0090
Hong (10.1016/j.geoderma.2019.114156_b0115) 2014; 146
Yu (10.1016/j.geoderma.2019.114156_b0280) 2017; 5
van Kessel (10.1016/j.geoderma.2019.114156_b0245) 2009; 38
Hong (10.1016/j.geoderma.2019.114156_b0120) 2019; 172
Yang (10.1016/j.geoderma.2019.114156_b0265) 2012; 18
Berthrong (10.1016/j.geoderma.2019.114156_b0020) 2009; 19
Soto (10.1016/j.geoderma.2019.114156_b0225) 2015; 200
Bao (10.1016/j.geoderma.2019.114156_b0015) 2000
Cao (10.1016/j.geoderma.2019.114156_b0035) 2017; 23
Chang (10.1016/j.geoderma.2019.114156_b0040) 2013; 11
Mengel (10.1016/j.geoderma.2019.114156_b0180) 1999; 162
Bertin (10.1016/j.geoderma.2019.114156_b0025) 2003; 256
Chen (10.1016/j.geoderma.2019.114156_b0050) 2011; 108
Jones (10.1016/j.geoderma.2019.114156_b0135) 2004; 36
Heenan (10.1016/j.geoderma.2019.114156_b0105) 1981; 61
Song (10.1016/j.geoderma.2019.114156_b0220) 2012; 76
Cui (10.1016/j.geoderma.2019.114156_b0065) 2012; 48
Yan (10.1016/j.geoderma.2019.114156_b0260) 2013; 42
Wang (10.1016/j.geoderma.2019.114156_b0255) 2017
Chen (10.1016/j.geoderma.2019.114156_b0055) 2014; 514
Chen (10.1016/j.geoderma.2019.114156_b0060) 2016; 23
Tian (10.1016/j.geoderma.2019.114156_b0230) 2015; 10
10.1016/j.geoderma.2019.114156_b0125
References_xml – volume: 19
  start-page: 2228
  year: 2009
  end-page: 2241
  ident: b0020
  article-title: A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation
  publication-title: Ecol. Appl.
– reference: Zhang, Y. 2009. Preliminary study on acidification in Chinese agricultural soils: Current status, potential reason and sensitivity. M.S. thesis. China Agricultural Univ., Beijing. (in Chinese).
– volume: 125
  start-page: 25
  year: 2010
  end-page: 33
  ident: b0205
  article-title: Root zone soil nitrogen management to maintain high tomato yields and minimum nitrogen losses to the environment
  publication-title: Sci. Hortic.
– start-page: 239
  year: 2017
  ident: b0255
  article-title: Biogeochemistry: Material Cycle and Soil Processes
– reference: Horswill, P., O'sullivan, O., Phoenix, G.K., Lee, J.A., Leake, J.R. 2008. Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition. Environ. Pollut. 155, 336–349.
– volume: 143
  start-page: 117
  year: 2006
  end-page: 125
  ident: b0140
  article-title: Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain
  publication-title: Environ. Pollut.
– volume: 61
  start-page: 447
  year: 1981
  end-page: 456
  ident: b0105
  article-title: Influence of potassium and manganese on growth and uptake of magnesium by soybeans (
  publication-title: Plant Soil
– volume: 36
  start-page: 749
  year: 2004
  end-page: 756
  ident: b0135
  article-title: Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils
  publication-title: Soil Biol. Biochem.
– volume: 200
  start-page: 62
  year: 2015
  end-page: 70
  ident: b0225
  article-title: Consideration of total available N supply reduces N fertilizer requirement and potential for nitrate leaching loss in tomato production
  publication-title: Agric. Ecosyst. Environ.
– year: 2000
  ident: b0015
  article-title: Soil and Agricultural Chemistry Analysis
– volume: 5
  start-page: 152
  year: 2017
  end-page: 156
  ident: b0280
  article-title: Comparison of two methods for determining soil organic carbon in acid soil
  publication-title: Soil Fertilizer China
– volume: 11
  start-page: 43
  year: 2013
  end-page: 49
  ident: b0040
  article-title: Does growing vegetables in plastic greenhouses enhance regional ecosystem services beyond the food supply?
  publication-title: Front. Ecol. Environ.
– volume: 212
  start-page: 183
  year: 2019
  end-page: 193
  ident: b0270
  article-title: Drip irrigation or reduced N-fertilizer rate can mitigate the high annual N
  publication-title: Atmos. Environ.
– volume: 304
  start-page: 289
  year: 2005
  end-page: 301
  ident: b0195
  article-title: Effects of lowering nitrogen and phosphorus surpluses in agriculture on the quality of groundwater and surface water in the Netherlands
  publication-title: J. Hydrol.
– volume: 162
  start-page: 139
  year: 1999
  end-page: 148
  ident: b0180
  article-title: Nitrogen compounds extracted by electroultrafiltration (EUF) or CaCl
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 38
  start-page: 393
  year: 2009
  end-page: 401
  ident: b0245
  article-title: Dissolved organic nitrogen: an overlooked pathway of nitrogen loss from agricultural systems?
  publication-title: J. Environ. Qual.
– volume: 69
  start-page: 51
  year: 2004
  end-page: 58
  ident: b0045
  article-title: Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing region
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 158
  start-page: 2218
  year: 2010
  end-page: 2229
  ident: b0080
  article-title: Tracking nitrogen losses in a greenhouse crop rotation experiment in North China using the EU_Rotate_N simulation model
  publication-title: Environ. Pollut.
– volume: 7
  start-page: 15
  year: 2004
  end-page: 23
  ident: b0215
  article-title: The effects of nutrient losses from agriculture on ground and surface water quality: the position of science in developing indicators for regulation
  publication-title: Environ. Sci. Policy
– volume: 42
  start-page: 982
  year: 2013
  end-page: 989
  ident: b0260
  article-title: Phosphorus in China’s intensive vegetable production systems: overfertilization, soil enrichment, and environmental implications
  publication-title: J. Environ. Qual.
– volume: 318
  start-page: 1737
  year: 2007
  end-page: 1742
  ident: b0110
  article-title: Coral reefs under rapid climate change and ocean acidification
  publication-title: Science
– volume: 76
  start-page: 6304
  year: 2010
  end-page: 6306
  ident: b0145
  article-title: Effect of nitric oxide on anammox bacteria
  publication-title: Appl. Environ. Microbiol.
– volume: 22
  start-page: 120
  year: 1960
  end-page: 124
  ident: b0175
  article-title: A rapid method for the determination of organic carbon in soil
  publication-title: Anal. Chim. Acta
– volume: 20
  start-page: 1685
  year: 2014
  end-page: 1698
  ident: b0200
  article-title: Excessive use of nitrogen in Chinese agriculture results in high N
  publication-title: Glob. Change Biol.
– volume: 48
  start-page: 10
  year: 2012
  end-page: 19
  ident: b0065
  article-title: Annual emissions of nitrous oxide and nitric oxide from a wheat-maize cropping system on a silt loam calcareous soil in the North China Plain
  publication-title: Soil Biol. Biochem.
– volume: 10
  year: 2015
  ident: b0230
  article-title: A global analysis of soil acidification caused by nitrogen addition
  publication-title: Environ. Res. Lett.
– volume: 9
  start-page: 871
  year: 2010
  end-page: 879
  ident: b0275
  article-title: Nutrient budget and soil nutrient status in greenhouse system
  publication-title: Agric. Sci. China
– volume: 23
  start-page: 13076
  year: 2016
  end-page: 13087
  ident: b0060
  article-title: Nutrients, heavy metals and phthalate acid esters in solar greenhouse soils in Round-Bohai Bay-Region, China: impacts of cultivation year and biogeography
  publication-title: Environ. Sci. Pollut. Res.
– volume: 30
  start-page: 410
  year: 2012
  end-page: 415
  ident: b0250
  article-title: Strategy and tactics of disarming GHG at the source: N
  publication-title: Trends Biotechnol.
– volume: 76
  start-page: 2074
  year: 2012
  end-page: 2082
  ident: b0220
  article-title: Increase of soil pH in a solar greenhouse vegetable production system
  publication-title: Soil Sci. Soc. Am. J.
– reference: National Bureau of Statistics of China. China Statistical Yearbook 2018, Agriculture, 12-8. http://www.stats.gov.cn/tjsj/ndsj/2018/indexch.htm. (In Chinese).
– volume: 172
  start-page: 159
  year: 2019
  end-page: 165
  ident: b0120
  article-title: Environmental controls on soil pH in planted forest and its response to nitrogen deposition
  publication-title: Environ. Res.
– volume: 115
  start-page: 5187
  year: 2018
  end-page: 5192
  ident: b0170
  article-title: Plant acclimation to long-term high nitrogen deposition in an N rich tropical forest
  publication-title: PNAS
– volume: 23
  start-page: 1249
  year: 2017
  end-page: 1257
  ident: b0035
  article-title: Effects of pH and initial labile C/NO
  publication-title: J. Plant Nutr. Fertilizer.
– volume: 108
  start-page: 6399
  year: 2011
  end-page: 6404
  ident: b0050
  article-title: Integrated soil-crop system management for food security
  publication-title: PNAS
– volume: 66
  start-page: 48
  year: 2013
  end-page: 55
  ident: b0210
  article-title: Effects of conventional and reduced N inputs on nematode communities and plant yield under intensive vegetable production
  publication-title: Appl. Soil Ecol.
– volume: 33
  start-page: 195
  year: 2018
  end-page: 202
  ident: b0070
  article-title: Characteristics and correlation analysis of soil microbial biomass phosphorus in greenhouse vegetable soil with different planting years
  publication-title: Acta Agric. Boreali-sinica.
– volume: 154
  start-page: 351
  year: 2015
  end-page: 357
  ident: b0155
  article-title: The impact of exogenous N supply on soluble organic nitrogen dynamics and nitrogen balance in a greenhouse vegetable system
  publication-title: J. Environ. Manag.
– volume: 146
  start-page: 11
  year: 2014
  end-page: 23
  ident: b0115
  article-title: Monitoring nutrient accumulation and leaching in plastic greenhouse cultivation
  publication-title: Agric. Water Manag.
– volume: 150
  start-page: 19
  year: 2013
  end-page: 28
  ident: b0160
  article-title: Do water-saving ground cover rice production systems increase grainyields at regional scales?
  publication-title: Field Crops Res.
– volume: 18
  start-page: 2292
  year: 2012
  end-page: 2300
  ident: b0265
  article-title: Significant soil acidification across northern China’s grasslands during 1980s–2000s
  publication-title: Global Chang Biology.
– volume: 78
  start-page: 215
  year: 2003
  end-page: 272
  ident: b0030
  article-title: Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability
  publication-title: Adv. Agron.
– volume: 514
  start-page: 486
  year: 2014
  end-page: 489
  ident: b0055
  article-title: Producing more grain with lower environmental costs
  publication-title: Nature
– volume: 351
  start-page: 197
  year: 2019
  end-page: 208
  ident: b0005
  article-title: Soil acidification and P, K, Ca and Mg budget as affected by sheep grazing and crop rotation in a long-term integrated crop-livestock system in southern Brazil
  publication-title: Geoderma
– volume: 20
  start-page: 1
  year: 2013
  end-page: 9
  ident: b0235
  article-title: Research progress on vegetable soil microbial obstacles in protected cropping systems
  publication-title: China Vegetables.
– volume: 327
  start-page: 1008
  year: 2010
  end-page: 1010
  ident: b0075
  article-title: Significant acidification in major Chinese croplands
  publication-title: Science
– volume: 367
  start-page: 1157
  year: 2012
  end-page: 1168
  ident: b0240
  article-title: Biological sources and sinks of nitrous oxide and strategies to mitigate emissions
  publication-title: Philos. Trans. Royal Soc. Biol. Sci.
– volume: 44
  start-page: 297
  year: 2015
  end-page: 310
  ident: b0150
  article-title: Implementing agricultural phosphorus science and management to combat eutrophication
  publication-title: Ambio
– volume: 32
  start-page: 390
  year: 2016
  end-page: 399
  ident: b0085
  article-title: Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom
  publication-title: Soil Use Manag.
– reference: He, F.F., Jiang, R.F., Chen, Q., Zhang, F.S., 2009. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China. Environ. Pollut. 157, 1666–1672.
– volume: 42
  start-page: 455
  year: 2013
  end-page: 463
  ident: b0010
  article-title: Topsoil and subsoil properties influence phosphorus leaching from for agricultural soils
  publication-title: J. Environ. Qual.
– volume: 256
  start-page: 67
  year: 2003
  end-page: 83
  ident: b0025
  article-title: The role of root exudates and allelochemicals in the rhizosphere
  publication-title: Plant Soil
– volume: 245
  start-page: 694
  year: 2019
  end-page: 701
  ident: b0165
  article-title: Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system
  publication-title: Environ. Pollut.
– reference: National Meteorological Information Center (NMIC). 2012. http://www.nmic.cn/data/ (In Chinese).
– year: 2000
  ident: 10.1016/j.geoderma.2019.114156_b0015
– volume: 48
  start-page: 10
  year: 2012
  ident: 10.1016/j.geoderma.2019.114156_b0065
  article-title: Annual emissions of nitrous oxide and nitric oxide from a wheat-maize cropping system on a silt loam calcareous soil in the North China Plain
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.01.007
– volume: 125
  start-page: 25
  year: 2010
  ident: 10.1016/j.geoderma.2019.114156_b0205
  article-title: Root zone soil nitrogen management to maintain high tomato yields and minimum nitrogen losses to the environment
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2010.02.014
– volume: 42
  start-page: 982
  year: 2013
  ident: 10.1016/j.geoderma.2019.114156_b0260
  article-title: Phosphorus in China’s intensive vegetable production systems: overfertilization, soil enrichment, and environmental implications
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2012.0463
– volume: 212
  start-page: 183
  year: 2019
  ident: 10.1016/j.geoderma.2019.114156_b0270
  article-title: Drip irrigation or reduced N-fertilizer rate can mitigate the high annual N2O+NO fluxes from Chinese intensive greenhouse vegetable systems
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2019.05.056
– volume: 10
  year: 2015
  ident: 10.1016/j.geoderma.2019.114156_b0230
  article-title: A global analysis of soil acidification caused by nitrogen addition
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/10/2/024019
– volume: 9
  start-page: 871
  year: 2010
  ident: 10.1016/j.geoderma.2019.114156_b0275
  article-title: Nutrient budget and soil nutrient status in greenhouse system
  publication-title: Agric. Sci. China
  doi: 10.1016/S1671-2927(09)60166-8
– volume: 23
  start-page: 1249
  year: 2017
  ident: 10.1016/j.geoderma.2019.114156_b0035
  article-title: Effects of pH and initial labile C/NO3– ratio on denitrification in a solar greenhouse vegetable soil
  publication-title: J. Plant Nutr. Fertilizer.
– volume: 154
  start-page: 351
  year: 2015
  ident: 10.1016/j.geoderma.2019.114156_b0155
  article-title: The impact of exogenous N supply on soluble organic nitrogen dynamics and nitrogen balance in a greenhouse vegetable system
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2015.02.045
– volume: 23
  start-page: 13076
  year: 2016
  ident: 10.1016/j.geoderma.2019.114156_b0060
  article-title: Nutrients, heavy metals and phthalate acid esters in solar greenhouse soils in Round-Bohai Bay-Region, China: impacts of cultivation year and biogeography
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-6462-2
– ident: 10.1016/j.geoderma.2019.114156_b0125
– volume: 42
  start-page: 455
  year: 2013
  ident: 10.1016/j.geoderma.2019.114156_b0010
  article-title: Topsoil and subsoil properties influence phosphorus leaching from for agricultural soils
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2012.0224
– volume: 69
  start-page: 51
  year: 2004
  ident: 10.1016/j.geoderma.2019.114156_b0045
  article-title: Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing region
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1023/B:FRES.0000025293.99199.ff
– volume: 367
  start-page: 1157
  year: 2012
  ident: 10.1016/j.geoderma.2019.114156_b0240
  article-title: Biological sources and sinks of nitrous oxide and strategies to mitigate emissions
  publication-title: Philos. Trans. Royal Soc. Biol. Sci.
  doi: 10.1098/rstb.2011.0415
– volume: 146
  start-page: 11
  year: 2014
  ident: 10.1016/j.geoderma.2019.114156_b0115
  article-title: Monitoring nutrient accumulation and leaching in plastic greenhouse cultivation
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2014.07.016
– volume: 108
  start-page: 6399
  year: 2011
  ident: 10.1016/j.geoderma.2019.114156_b0050
  article-title: Integrated soil-crop system management for food security
  publication-title: PNAS
  doi: 10.1073/pnas.1101419108
– volume: 172
  start-page: 159
  year: 2019
  ident: 10.1016/j.geoderma.2019.114156_b0120
  article-title: Environmental controls on soil pH in planted forest and its response to nitrogen deposition
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2019.02.020
– volume: 245
  start-page: 694
  year: 2019
  ident: 10.1016/j.geoderma.2019.114156_b0165
  article-title: Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.11.042
– start-page: 239
  year: 2017
  ident: 10.1016/j.geoderma.2019.114156_b0255
– volume: 18
  start-page: 2292
  year: 2012
  ident: 10.1016/j.geoderma.2019.114156_b0265
  article-title: Significant soil acidification across northern China’s grasslands during 1980s–2000s
  publication-title: Global Chang Biology.
  doi: 10.1111/j.1365-2486.2012.02694.x
– volume: 61
  start-page: 447
  year: 1981
  ident: 10.1016/j.geoderma.2019.114156_b0105
  article-title: Influence of potassium and manganese on growth and uptake of magnesium by soybeans (Glycine max (L.) Merr. cv. Bragg)
  publication-title: Plant Soil
  doi: 10.1007/BF02182025
– volume: 162
  start-page: 139
  year: 1999
  ident: 10.1016/j.geoderma.2019.114156_b0180
  article-title: Nitrogen compounds extracted by electroultrafiltration (EUF) or CaCl2 solution and their relationships to nitrogen mineralization in soils
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/(SICI)1522-2624(199903)162:2<139::AID-JPLN139>3.0.CO;2-6
– volume: 19
  start-page: 2228
  year: 2009
  ident: 10.1016/j.geoderma.2019.114156_b0020
  article-title: A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation
  publication-title: Ecol. Appl.
  doi: 10.1890/08-1730.1
– ident: 10.1016/j.geoderma.2019.114156_b0290
– ident: 10.1016/j.geoderma.2019.114156_b0090
  doi: 10.1016/j.envpol.2008.12.017
– volume: 20
  start-page: 1
  year: 2013
  ident: 10.1016/j.geoderma.2019.114156_b0235
  article-title: Research progress on vegetable soil microbial obstacles in protected cropping systems
  publication-title: China Vegetables.
– ident: 10.1016/j.geoderma.2019.114156_b0185
– volume: 256
  start-page: 67
  year: 2003
  ident: 10.1016/j.geoderma.2019.114156_b0025
  article-title: The role of root exudates and allelochemicals in the rhizosphere
  publication-title: Plant Soil
  doi: 10.1023/A:1026290508166
– volume: 327
  start-page: 1008
  year: 2010
  ident: 10.1016/j.geoderma.2019.114156_b0075
  article-title: Significant acidification in major Chinese croplands
  publication-title: Science
  doi: 10.1126/science.1182570
– volume: 318
  start-page: 1737
  year: 2007
  ident: 10.1016/j.geoderma.2019.114156_b0110
  article-title: Coral reefs under rapid climate change and ocean acidification
  publication-title: Science
  doi: 10.1126/science.1152509
– volume: 36
  start-page: 749
  year: 2004
  ident: 10.1016/j.geoderma.2019.114156_b0135
  article-title: Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2004.01.003
– volume: 32
  start-page: 390
  year: 2016
  ident: 10.1016/j.geoderma.2019.114156_b0085
  article-title: Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12270
– volume: 20
  start-page: 1685
  year: 2014
  ident: 10.1016/j.geoderma.2019.114156_b0200
  article-title: Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12461
– volume: 30
  start-page: 410
  year: 2012
  ident: 10.1016/j.geoderma.2019.114156_b0250
  article-title: Strategy and tactics of disarming GHG at the source: N2O reductase crops
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2012.04.002
– volume: 78
  start-page: 215
  year: 2003
  ident: 10.1016/j.geoderma.2019.114156_b0030
  article-title: Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(02)78006-1
– volume: 38
  start-page: 393
  year: 2009
  ident: 10.1016/j.geoderma.2019.114156_b0245
  article-title: Dissolved organic nitrogen: an overlooked pathway of nitrogen loss from agricultural systems?
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2008.0277
– volume: 158
  start-page: 2218
  year: 2010
  ident: 10.1016/j.geoderma.2019.114156_b0080
  article-title: Tracking nitrogen losses in a greenhouse crop rotation experiment in North China using the EU_Rotate_N simulation model
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2010.02.014
– volume: 7
  start-page: 15
  year: 2004
  ident: 10.1016/j.geoderma.2019.114156_b0215
  article-title: The effects of nutrient losses from agriculture on ground and surface water quality: the position of science in developing indicators for regulation
  publication-title: Environ. Sci. Policy
  doi: 10.1016/j.envsci.2003.10.006
– volume: 76
  start-page: 2074
  year: 2012
  ident: 10.1016/j.geoderma.2019.114156_b0220
  article-title: Increase of soil pH in a solar greenhouse vegetable production system
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2011.0445
– volume: 351
  start-page: 197
  year: 2019
  ident: 10.1016/j.geoderma.2019.114156_b0005
  article-title: Soil acidification and P, K, Ca and Mg budget as affected by sheep grazing and crop rotation in a long-term integrated crop-livestock system in southern Brazil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.04.036
– volume: 76
  start-page: 6304
  year: 2010
  ident: 10.1016/j.geoderma.2019.114156_b0145
  article-title: Effect of nitric oxide on anammox bacteria
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00991-10
– volume: 304
  start-page: 289
  year: 2005
  ident: 10.1016/j.geoderma.2019.114156_b0195
  article-title: Effects of lowering nitrogen and phosphorus surpluses in agriculture on the quality of groundwater and surface water in the Netherlands
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.07.044
– volume: 5
  start-page: 152
  year: 2017
  ident: 10.1016/j.geoderma.2019.114156_b0280
  article-title: Comparison of two methods for determining soil organic carbon in acid soil
  publication-title: Soil Fertilizer China
– volume: 150
  start-page: 19
  year: 2013
  ident: 10.1016/j.geoderma.2019.114156_b0160
  article-title: Do water-saving ground cover rice production systems increase grainyields at regional scales?
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2013.06.005
– volume: 11
  start-page: 43
  year: 2013
  ident: 10.1016/j.geoderma.2019.114156_b0040
  article-title: Does growing vegetables in plastic greenhouses enhance regional ecosystem services beyond the food supply?
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/100223
– volume: 200
  start-page: 62
  year: 2015
  ident: 10.1016/j.geoderma.2019.114156_b0225
  article-title: Consideration of total available N supply reduces N fertilizer requirement and potential for nitrate leaching loss in tomato production
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.10.022
– volume: 44
  start-page: 297
  year: 2015
  ident: 10.1016/j.geoderma.2019.114156_b0150
  article-title: Implementing agricultural phosphorus science and management to combat eutrophication
  publication-title: Ambio
  doi: 10.1007/s13280-015-0631-2
– volume: 22
  start-page: 120
  year: 1960
  ident: 10.1016/j.geoderma.2019.114156_b0175
  article-title: A rapid method for the determination of organic carbon in soil
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(00)88254-9
– ident: 10.1016/j.geoderma.2019.114156_b0190
– volume: 33
  start-page: 195
  issue: 1
  year: 2018
  ident: 10.1016/j.geoderma.2019.114156_b0070
  article-title: Characteristics and correlation analysis of soil microbial biomass phosphorus in greenhouse vegetable soil with different planting years
  publication-title: Acta Agric. Boreali-sinica.
– volume: 143
  start-page: 117
  year: 2006
  ident: 10.1016/j.geoderma.2019.114156_b0140
  article-title: Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2005.11.005
– volume: 514
  start-page: 486
  year: 2014
  ident: 10.1016/j.geoderma.2019.114156_b0055
  article-title: Producing more grain with lower environmental costs
  publication-title: Nature
  doi: 10.1038/nature13609
– volume: 115
  start-page: 5187
  year: 2018
  ident: 10.1016/j.geoderma.2019.114156_b0170
  article-title: Plant acclimation to long-term high nitrogen deposition in an N rich tropical forest
  publication-title: PNAS
  doi: 10.1073/pnas.1720777115
– volume: 66
  start-page: 48
  year: 2013
  ident: 10.1016/j.geoderma.2019.114156_b0210
  article-title: Effects of conventional and reduced N inputs on nematode communities and plant yield under intensive vegetable production
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2013.01.004
SSID ssj0017020
Score 2.5569563
Snippet •Surface and deep soil pH significantly decrease with greenhouse cultivation years.•The pH decrease in the topsoil is linked to N accumulation and...
Conventional flooding irrigation combined with over-fertilization in intensively used solar greenhouse vegetable production systems are jeopardizing soil...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114156
SubjectTerms corn
Cultivation years
fertilizer application
greenhouse production
greenhouses
groundwater
groundwater contamination
irrigation
leaching
N leaching
nitrogen
nitrogen content
nitrogen fertilizers
Nutrient imbalances
production technology
Soil acidification
Soil depths
soil pH
soil productivity
soil sampling
Solar greenhouse
structural equation modeling
subsoil
topsoil
vegetable growing
water quality
Title Conventional flooding irrigation and over fertilization drives soil pH decrease not only in the top- but also in subsoil layers in solar greenhouse vegetable production systems
URI https://dx.doi.org/10.1016/j.geoderma.2019.114156
https://www.proquest.com/docview/2388752622
Volume 363
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb5wwELWi9NIeqvRLTdNGU6lXumtjGziuVo02rZpTI-WGDDZbImQQy1bKJb-pP7EzYKI0qpRDD1wsbBAzjN_AmzeMfUqUkyp2NkpVpiPJDY9S-tqkk6WJ07R0uqRq5O8XenMpv16pqwO2nmthiFYZYv8U08doHUYW4WkuurqmGl-OK2qOEIQjRqS8XcqEvPzz7R3NgyfLIM3IdURn36sSvkYbUcOxUX-IZySby6mR9b83qAehetx_zo7Y8wAcYTXd2wt24PxL9my17YN4hnvFfq_vUcihIko6bkxQ9_2oo9F6MN4CcTahIjp1E2owwfYkPgu7tm6g24AdoeTOgW8HaH1zA7UHBIowtF0ExX4A9NmWBncYdmhSYwi5jyOUKsOW2Dw_2z2u8ctt3UD1WdBN4rJ0wUk_eveaXZ59-bHeRKEjQ1TGUg1RaWNh48SZShtRGpNhfuFkmVWF45qEYZy11I9SFK7CA-EPooOlKxMrlI1lEb9hh7717i0DRBqx4cUytUZJzKoyDBSFy5QyVAtsxDFTsxnyMsiVU9eMJp95adf5bL6czJdP5jtmi7t53STY8eiMbLZy_pfr5birPDr34-wWOb6X9LPFeIePN0cohKmg0EK8-4_1T9hTQQn-SBV6zw6Hfu8-IAoaitPRzU_Zk9X5t83FH-S6C-s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb5wwELaizaHtoepTTZ9TqVe0a8AGjqtVI9Ike0qk3CyDzZYIGcSylfqv-hM7AyZKq0o59MDF0hjEDDPf4JlvGPuSCBuLyJogFZkMYq55kNLfJpmsdJSmpZUldSNfbmV-HX-7ETdHbDP3wlBZpff9k08fvbVfWfq3uezqmnp8Oe4oOUIQjhgR8_ZjYqcSC3a8PjvPt3eHCcnKszNyGZDAvUbhW1QTzRwbKYh4Rsy5nGZZ_ztG_eWtxxB0-ow99dgR1tPjPWdH1r1gT9a73vNn2Jfs1-ZeFTlUVJWOsQnqvh-pNFoH2hmgsk2oqKK68W2YYHrin4V9WzfQ5WBGNLm34NoBWtf8hNoBYkUY2i6A4jAAmm1Li3v0PCTUaALv4wply7Cjgp7v7QH3-GF3dqAWLegmflm64UQhvX_Frk-_Xm3ywA9lCMooFkNQmig0UWJ1JXVYap1himHjMqsKyyVxw1hjaCRlWNgKL0RACBBWtkxMKEwUF9FrtnCts28YINiINC9WqdEixsQqQ19R2EwITe3AOjxhYlaDKj1jOQ3OaNRcmnarZvUpUp-a1HfClndy3cTZ8aBENmtZ_WF9CgPLg7KfZ7NQ-GnSeYt2Fl-vQjSE2WAow_Dtf-z_iT3Kry4v1MXZ9vwdexxSvj9WDr1ni6E_2A8Iiobiozf63_sQDpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conventional+flooding+irrigation+and+over+fertilization+drives+soil+pH+decrease+not+only+in+the+top-+but+also+in+subsoil+layers+in+solar+greenhouse+vegetable+production+systems&rft.jtitle=Geoderma&rft.au=Lv%2C+Haofeng&rft.au=Zhao%2C+Yiming&rft.au=Wang%2C+Yafang&rft.au=Wan%2C+Li&rft.date=2020-04-01&rft.issn=0016-7061&rft.volume=363+p.114156-&rft_id=info:doi/10.1016%2Fj.geoderma.2019.114156&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon