Conventional flooding irrigation and over fertilization drives soil pH decrease not only in the top- but also in subsoil layers in solar greenhouse vegetable production systems
•Surface and deep soil pH significantly decrease with greenhouse cultivation years.•The pH decrease in the topsoil is linked to N accumulation and leaching.•Accumulation of mineral N and K drives EC increases and pH decreases in deep soil.•Soil nutrient imbalances of N:P:K ratios (0–3 m) can be expl...
Saved in:
Published in | Geoderma Vol. 363; p. 114156 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0016-7061 1872-6259 |
DOI | 10.1016/j.geoderma.2019.114156 |
Cover
Loading…
Abstract | •Surface and deep soil pH significantly decrease with greenhouse cultivation years.•The pH decrease in the topsoil is linked to N accumulation and leaching.•Accumulation of mineral N and K drives EC increases and pH decreases in deep soil.•Soil nutrient imbalances of N:P:K ratios (0–3 m) can be explained by N leaching.
Conventional flooding irrigation combined with over-fertilization in intensively used solar greenhouse vegetable production systems are jeopardizing soil productivity and groundwater quality due to soil acidification and nitrogen (N) leaching. While it has been shown that excessive application of N fertilizer in greenhouse production systems significantly reduces topsoil pH values, it remains unknown if also subsoil pH values do change too and if surplus N fertilization and hydrological N losses lead to nutrient imbalances. In this study, soil samples from six soil layers from 0 to 300 cm were taken from 45 greenhouse fields with three representative cultivation years (2, 5, and 10 years). Soil samples from 5 adjacent corn fields served as comparison. Results show that (1) compared to soils from adjacent corn fields, the pH in the 0–30 cm soil layer was slightly elevated two years and five years after greenhouse establishment, but was lowered by 0.52 ± 0.06 units after ten years. Moreover, also the pH in deeper soil layers (30–300 cm) significantly decreased with cultivation years. (2) A significant imbalance of N:P:K ratios in greenhouse top soils was found, as P and K accumulates while N is leached to subsoils. (3) Structural equation modeling indicated that changes in the mineral N concentration in the 0–30 cm soil layer was driving soil pH changes. Our results demonstrate that N accumulation in top soils and N leaching to deep soil caused by excessive irrigation explains observed declines in surface and deep soil pH values of conventional greenhouse vegetable production systems. Consequently, for avoiding groundwater contamination with N and for ensuring sustainable soil productivity, current schemes of irrigation and fertilization management need to be adapted to avoid N leaching, soil acidification, nutrient accumulation and imbalances. |
---|---|
AbstractList | •Surface and deep soil pH significantly decrease with greenhouse cultivation years.•The pH decrease in the topsoil is linked to N accumulation and leaching.•Accumulation of mineral N and K drives EC increases and pH decreases in deep soil.•Soil nutrient imbalances of N:P:K ratios (0–3 m) can be explained by N leaching.
Conventional flooding irrigation combined with over-fertilization in intensively used solar greenhouse vegetable production systems are jeopardizing soil productivity and groundwater quality due to soil acidification and nitrogen (N) leaching. While it has been shown that excessive application of N fertilizer in greenhouse production systems significantly reduces topsoil pH values, it remains unknown if also subsoil pH values do change too and if surplus N fertilization and hydrological N losses lead to nutrient imbalances. In this study, soil samples from six soil layers from 0 to 300 cm were taken from 45 greenhouse fields with three representative cultivation years (2, 5, and 10 years). Soil samples from 5 adjacent corn fields served as comparison. Results show that (1) compared to soils from adjacent corn fields, the pH in the 0–30 cm soil layer was slightly elevated two years and five years after greenhouse establishment, but was lowered by 0.52 ± 0.06 units after ten years. Moreover, also the pH in deeper soil layers (30–300 cm) significantly decreased with cultivation years. (2) A significant imbalance of N:P:K ratios in greenhouse top soils was found, as P and K accumulates while N is leached to subsoils. (3) Structural equation modeling indicated that changes in the mineral N concentration in the 0–30 cm soil layer was driving soil pH changes. Our results demonstrate that N accumulation in top soils and N leaching to deep soil caused by excessive irrigation explains observed declines in surface and deep soil pH values of conventional greenhouse vegetable production systems. Consequently, for avoiding groundwater contamination with N and for ensuring sustainable soil productivity, current schemes of irrigation and fertilization management need to be adapted to avoid N leaching, soil acidification, nutrient accumulation and imbalances. Conventional flooding irrigation combined with over-fertilization in intensively used solar greenhouse vegetable production systems are jeopardizing soil productivity and groundwater quality due to soil acidification and nitrogen (N) leaching. While it has been shown that excessive application of N fertilizer in greenhouse production systems significantly reduces topsoil pH values, it remains unknown if also subsoil pH values do change too and if surplus N fertilization and hydrological N losses lead to nutrient imbalances. In this study, soil samples from six soil layers from 0 to 300 cm were taken from 45 greenhouse fields with three representative cultivation years (2, 5, and 10 years). Soil samples from 5 adjacent corn fields served as comparison. Results show that (1) compared to soils from adjacent corn fields, the pH in the 0–30 cm soil layer was slightly elevated two years and five years after greenhouse establishment, but was lowered by 0.52 ± 0.06 units after ten years. Moreover, also the pH in deeper soil layers (30–300 cm) significantly decreased with cultivation years. (2) A significant imbalance of N:P:K ratios in greenhouse top soils was found, as P and K accumulates while N is leached to subsoils. (3) Structural equation modeling indicated that changes in the mineral N concentration in the 0–30 cm soil layer was driving soil pH changes. Our results demonstrate that N accumulation in top soils and N leaching to deep soil caused by excessive irrigation explains observed declines in surface and deep soil pH values of conventional greenhouse vegetable production systems. Consequently, for avoiding groundwater contamination with N and for ensuring sustainable soil productivity, current schemes of irrigation and fertilization management need to be adapted to avoid N leaching, soil acidification, nutrient accumulation and imbalances. |
ArticleNumber | 114156 |
Author | Wan, Li Zhao, Yiming Butterbach-Bahl, Klaus Lv, Haofeng Wang, Jingguo Wang, Yafang Lin, Shan |
Author_xml | – sequence: 1 givenname: Haofeng surname: Lv fullname: Lv, Haofeng organization: College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China – sequence: 2 givenname: Yiming surname: Zhao fullname: Zhao, Yiming organization: College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China – sequence: 3 givenname: Yafang surname: Wang fullname: Wang, Yafang organization: College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China – sequence: 4 givenname: Li surname: Wan fullname: Wan, Li organization: College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China – sequence: 5 givenname: Jingguo surname: Wang fullname: Wang, Jingguo organization: College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China – sequence: 6 givenname: Klaus surname: Butterbach-Bahl fullname: Butterbach-Bahl, Klaus organization: Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, 82467, Germany – sequence: 7 givenname: Shan surname: Lin fullname: Lin, Shan email: linshan@cau.edu.cn organization: College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China |
BookMark | eNqFkcGO0zAURS00SHQGfgF5ySbFdhInkViAKoZBGokNrC3Hfsm4cu3y7FQqX8Un4jawYTMLy_LVPddP796SmxADEPKWsy1nXL7fb2eIFvCgt4LxYct5w1v5gmx434lKina4IRtWnFXHJH9FblPal2fHBNuQ37sYThCyi0F7OvkYrQszdYhu1heV6mBpPAHSCTA7736tskV3gkRTdJ4eH6gFg6AT0BAzjcGfqQs0PwHN8VjRcclU-xQvYlrGK-T1GTBdleg10hkBwlNcSsYJZsh69ECPGO1irh-mc8pwSK_Jy6lEwZu_9x35cf_5--6hevz25evu02Nl6qbNlbG1sHUHepJaGK0H1gzQmGEagcu27iRY2w_9IEaYymGybgVnYDorWls3Y31H3q25ZYSfC6SsDi4Z8F4HKEMqUfd91wopRLF-WK0GY0oIkzIuX7eUUTuvOFOXotRe_StKXYpSa1EFl__hR3QHjefnwY8rCGUPJweoknEQDFiHYLKy0T0X8Qeq8LmO |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_172016 crossref_primary_10_1007_s42729_023_01488_w crossref_primary_10_1016_j_psep_2022_04_025 crossref_primary_10_3390_agronomy13082006 crossref_primary_10_1016_j_agee_2023_108501 crossref_primary_10_1016_j_agwat_2022_108092 crossref_primary_10_3390_agriculture12091366 crossref_primary_10_1016_j_agee_2021_107379 crossref_primary_10_1016_j_geoderma_2024_117087 crossref_primary_10_1371_journal_pone_0267483 crossref_primary_10_3390_ijerph191912262 crossref_primary_10_1080_15226514_2024_2357640 crossref_primary_10_1186_s12870_024_05759_1 crossref_primary_10_1002_csc2_21164 crossref_primary_10_1016_j_agwat_2022_107797 crossref_primary_10_1016_j_scitotenv_2022_159046 crossref_primary_10_3390_horticulturae9030340 crossref_primary_10_3390_agronomy11112232 crossref_primary_10_1111_sum_70018 crossref_primary_10_3390_plants10071435 crossref_primary_10_1007_s11356_022_20636_w crossref_primary_10_1007_s11368_021_03093_9 crossref_primary_10_1016_j_plaphy_2023_108279 crossref_primary_10_1007_s10311_023_01631_0 crossref_primary_10_1016_j_geoderma_2024_117135 crossref_primary_10_3390_agronomy13010006 crossref_primary_10_1016_j_indcrop_2024_119284 crossref_primary_10_1016_j_indic_2024_100483 crossref_primary_10_1007_s11104_024_07014_w crossref_primary_10_3390_agronomy14051060 crossref_primary_10_1016_j_scitotenv_2021_147307 crossref_primary_10_1016_j_jfca_2024_106408 crossref_primary_10_3390_plants13202885 crossref_primary_10_3390_agronomy14112708 crossref_primary_10_1155_sci5_6624984 crossref_primary_10_1016_j_geodrs_2022_e00540 crossref_primary_10_3390_agronomy12071560 crossref_primary_10_3390_ijms231810876 crossref_primary_10_2478_cttr_2024_0003 crossref_primary_10_3390_horticulturae11020126 crossref_primary_10_1109_ACCESS_2024_3352006 crossref_primary_10_3390_plants13111439 crossref_primary_10_3390_agriculture14122319 crossref_primary_10_1007_s00271_020_00712_0 crossref_primary_10_1016_j_agwat_2024_108708 crossref_primary_10_1016_j_agee_2021_107353 crossref_primary_10_1016_j_agee_2021_107474 crossref_primary_10_1007_s11104_021_05136_z crossref_primary_10_1016_j_envpol_2020_116372 crossref_primary_10_1016_j_scitotenv_2024_178294 crossref_primary_10_1080_15320383_2023_2283121 crossref_primary_10_32604_phyton_2023_044051 crossref_primary_10_1111_gwat_13329 crossref_primary_10_3390_agronomy12020321 crossref_primary_10_1007_s13580_024_00622_6 crossref_primary_10_1016_j_agee_2021_107425 crossref_primary_10_3390_horticulturae10101090 crossref_primary_10_1007_s42729_021_00456_6 crossref_primary_10_1016_j_scitotenv_2023_168088 crossref_primary_10_20961_stjssa_v21i1_86312 crossref_primary_10_3390_f15040581 crossref_primary_10_1016_j_scienta_2021_110553 crossref_primary_10_1002_csc2_70013 crossref_primary_10_1016_j_agee_2024_109286 crossref_primary_10_3390_agronomy12071661 crossref_primary_10_3390_w13212973 crossref_primary_10_3390_agronomy13030939 crossref_primary_10_3390_plants12223791 crossref_primary_10_3390_horticulturae10090997 crossref_primary_10_1016_j_envpol_2022_119494 crossref_primary_10_3390_plants13040474 crossref_primary_10_1016_j_envpol_2021_116521 crossref_primary_10_3390_agronomy14122844 |
Cites_doi | 10.1016/j.soilbio.2012.01.007 10.1016/j.scienta.2010.02.014 10.2134/jeq2012.0463 10.1016/j.atmosenv.2019.05.056 10.1088/1748-9326/10/2/024019 10.1016/S1671-2927(09)60166-8 10.1016/j.jenvman.2015.02.045 10.1007/s11356-016-6462-2 10.2134/jeq2012.0224 10.1023/B:FRES.0000025293.99199.ff 10.1098/rstb.2011.0415 10.1016/j.agwat.2014.07.016 10.1073/pnas.1101419108 10.1016/j.envres.2019.02.020 10.1016/j.envpol.2018.11.042 10.1111/j.1365-2486.2012.02694.x 10.1007/BF02182025 10.1002/(SICI)1522-2624(199903)162:2<139::AID-JPLN139>3.0.CO;2-6 10.1890/08-1730.1 10.1016/j.envpol.2008.12.017 10.1023/A:1026290508166 10.1126/science.1182570 10.1126/science.1152509 10.1016/j.soilbio.2004.01.003 10.1111/sum.12270 10.1111/gcb.12461 10.1016/j.tibtech.2012.04.002 10.1016/S0065-2113(02)78006-1 10.2134/jeq2008.0277 10.1016/j.envpol.2010.02.014 10.1016/j.envsci.2003.10.006 10.2136/sssaj2011.0445 10.1016/j.geoderma.2019.04.036 10.1128/AEM.00991-10 10.1016/j.jhydrol.2004.07.044 10.1016/j.fcr.2013.06.005 10.1890/100223 10.1016/j.agee.2014.10.022 10.1007/s13280-015-0631-2 10.1016/S0003-2670(00)88254-9 10.1016/j.envpol.2005.11.005 10.1038/nature13609 10.1073/pnas.1720777115 10.1016/j.apsoil.2013.01.004 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2019.114156 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2019_114156 S0016706119317720 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-c345t-cd32d37eaf6a2caa9049e4c9fbe165376edd89892bef2be0635210ec7d25d34b3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Thu Jul 10 19:27:52 EDT 2025 Tue Jul 01 04:04:52 EDT 2025 Thu Apr 24 23:12:06 EDT 2025 Fri Feb 23 02:48:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nutrient imbalances N leaching Soil acidification Solar greenhouse Cultivation years Soil depths |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-cd32d37eaf6a2caa9049e4c9fbe165376edd89892bef2be0635210ec7d25d34b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2388752622 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2388752622 crossref_citationtrail_10_1016_j_geoderma_2019_114156 crossref_primary_10_1016_j_geoderma_2019_114156 elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_114156 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 2020-04-00 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | National Meteorological Information Center (NMIC). 2012. http://www.nmic.cn/data/ (In Chinese). Bertin, Yang, Weston (b0025) 2003; 256 Kleinman, Sharpley, Withers, Bergström, Johnson, Doody (b0150) 2015; 44 Lu, Vitousek, Mao, Gilliam, Luo, Zhou, Zou, Bai, Scanlon, Hou, Mo (b0170) 2018; 115 Cao, Guo, Song, Liu, Chen, Wang (b0035) 2017; 23 Soto, Gallardo, Thompson, Peña-Fleitas, Padilla (b0225) 2015; 200 Alves, Denardin, Martins, Anghinoni, Carvalho, Tiecher (b0005) 2019; 351 Hong, Choi, Nam, Kang, Jang (b0115) 2014; 146 Tian, Wang, Gao (b0235) 2013; 20 Wan, Ward, Altosaar (b0250) 2012; 30 Yang, Ji, Ma, Wang, Wang, Han, Mohammat, Robinson, Smith (b0265) 2012; 18 Yu, Li, Zhang (b0275) 2010; 9 Ren, Christie, Wang, Chen, Zhang (b0205) 2010; 125 Jones, Shannon, Murphy, Farrar (b0135) 2004; 36 Yao, Yan, Wang, Zheng, Liu, Butterbach-Bahl (b0270) 2019; 212 Schroder, Scholefield, Cabral, Hofman (b0215) 2004; 7 Kartal, Tan, Van de Biezen, Kampschreur, Van Loosdrecht, Jetten (b0145) 2010; 76 Horswill, P., O'sullivan, O., Phoenix, G.K., Lee, J.A., Leake, J.R. 2008. Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition. Environ. Pollut. 155, 336–349. Bao (b0015) 2000 Ju, Kou, Zhang, Christie (b0140) 2006; 143 National Bureau of Statistics of China. China Statistical Yearbook 2018, Agriculture, 12-8. http://www.stats.gov.cn/tjsj/ndsj/2018/indexch.htm. (In Chinese). Thomson, Giannopoulos, Pretty, Baggs, Richardson (b0240) 2012; 367 Chen, Zhang, Zhang, Christie, Li, Horlacher, Liebig (b0045) 2004; 69 Song, Guo, Ren, Chen, Li, Wang (b0220) 2012; 76 Zhang, Y. 2009. Preliminary study on acidification in Chinese agricultural soils: Current status, potential reason and sensitivity. M.S. thesis. China Agricultural Univ., Beijing. (in Chinese). Cui, Yan, Zhou, Zhang, Deng (b0065) 2012; 48 Fei, Zhang, Liang, Li, Jiang, Xu, Ding (b0070) 2018; 33 Ruan, Ren, Chen, Zhu, Wang (b0210) 2013; 66 Oenema, van Liere, Schoumans (b0195) 2005; 304 Goulding (b0085) 2016; 32 Tian, Niu (b0230) 2015; 10 Andersson, Bergström, Djodjic, Ulen, Kirchmann (b0010) 2013; 42 Qu, Wang, Almoy, Bakken (b0200) 2014; 20 Yu, Liu, Wang, Bian (b0280) 2017; 5 Chen, Tian, Gao, Tian (b0060) 2016; 23 Guo, Rahn, Jiang, Chen (b0080) 2010; 158 Hong, Gan, Chen (b0120) 2019; 172 Hoegh-Guldberg, Mumby, Hooten (b0110) 2007; 318 Liu, Lin, Dannenmann, Tao, Saiz, Zuo, Sippel, Wei, Cao, Cai, Butterbach-Bahl (b0160) 2013; 150 Berthrong, Jobbagy, Jackson (b0020) 2009; 19 Bolan, Adriano, Curtin (b0030) 2003; 78 Lv, Lin, Wang, Lian, Zhao, Li, Du, Wang, Wang, Butterbach-Bahl (b0165) 2019; 245 van Kessel, Clough, van Groenigen (b0245) 2009; 38 Wang (b0255) 2017 He, F.F., Jiang, R.F., Chen, Q., Zhang, F.S., 2009. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China. Environ. Pollut. 157, 1666–1672. Liang, Kang, Ren, Li, Chen, Wang (b0155) 2015; 154 Chen, Cui, Fan, Vitousek, Zhao, Ma, Wang, Zhang, Yan, Yang, Deng, Gao, Zhang, Guo, Ren, Li, Ye, Wang, Huang, Tang, Sun, Peng, Zhang, He, Zhu, Xue, Wang, Wu, An, Wu, Ma, Zhang, Zhang (b0055) 2014; 514 Chang, Wu, Wang, Meyerson, Gu, Min, Xue, Peng, Ge (b0040) 2013; 11 Heenan, Campbell (b0105) 1981; 61 Mebius (b0175) 1960; 22 Mengel, Schneider, Kosegarten (b0180) 1999; 162 Chen, Cui, Vitousek, Cassman, Matson, Bai, Meng, Hou, Yue, Romheld, Zhang (b0050) 2011; 108 Guo, Liu, Zhang, Shen, Han, Zhang, Christie, Goulding, Vitousek, Zhang (b0075) 2010; 327 Yan, Liu, Li, Ma, Alva, Dou, Chen, Zhang (b0260) 2013; 42 Yu (10.1016/j.geoderma.2019.114156_b0275) 2010; 9 Ruan (10.1016/j.geoderma.2019.114156_b0210) 2013; 66 Mebius (10.1016/j.geoderma.2019.114156_b0175) 1960; 22 Liang (10.1016/j.geoderma.2019.114156_b0155) 2015; 154 10.1016/j.geoderma.2019.114156_b0190 Bolan (10.1016/j.geoderma.2019.114156_b0030) 2003; 78 Fei (10.1016/j.geoderma.2019.114156_b0070) 2018; 33 Hoegh-Guldberg (10.1016/j.geoderma.2019.114156_b0110) 2007; 318 Ren (10.1016/j.geoderma.2019.114156_b0205) 2010; 125 Oenema (10.1016/j.geoderma.2019.114156_b0195) 2005; 304 Schroder (10.1016/j.geoderma.2019.114156_b0215) 2004; 7 Guo (10.1016/j.geoderma.2019.114156_b0080) 2010; 158 Qu (10.1016/j.geoderma.2019.114156_b0200) 2014; 20 Guo (10.1016/j.geoderma.2019.114156_b0075) 2010; 327 Wan (10.1016/j.geoderma.2019.114156_b0250) 2012; 30 Kleinman (10.1016/j.geoderma.2019.114156_b0150) 2015; 44 Andersson (10.1016/j.geoderma.2019.114156_b0010) 2013; 42 10.1016/j.geoderma.2019.114156_b0185 Chen (10.1016/j.geoderma.2019.114156_b0045) 2004; 69 Lu (10.1016/j.geoderma.2019.114156_b0170) 2018; 115 Tian (10.1016/j.geoderma.2019.114156_b0235) 2013; 20 Goulding (10.1016/j.geoderma.2019.114156_b0085) 2016; 32 Kartal (10.1016/j.geoderma.2019.114156_b0145) 2010; 76 Yao (10.1016/j.geoderma.2019.114156_b0270) 2019; 212 Ju (10.1016/j.geoderma.2019.114156_b0140) 2006; 143 Thomson (10.1016/j.geoderma.2019.114156_b0240) 2012; 367 Lv (10.1016/j.geoderma.2019.114156_b0165) 2019; 245 10.1016/j.geoderma.2019.114156_b0290 Liu (10.1016/j.geoderma.2019.114156_b0160) 2013; 150 Alves (10.1016/j.geoderma.2019.114156_b0005) 2019; 351 10.1016/j.geoderma.2019.114156_b0090 Hong (10.1016/j.geoderma.2019.114156_b0115) 2014; 146 Yu (10.1016/j.geoderma.2019.114156_b0280) 2017; 5 van Kessel (10.1016/j.geoderma.2019.114156_b0245) 2009; 38 Hong (10.1016/j.geoderma.2019.114156_b0120) 2019; 172 Yang (10.1016/j.geoderma.2019.114156_b0265) 2012; 18 Berthrong (10.1016/j.geoderma.2019.114156_b0020) 2009; 19 Soto (10.1016/j.geoderma.2019.114156_b0225) 2015; 200 Bao (10.1016/j.geoderma.2019.114156_b0015) 2000 Cao (10.1016/j.geoderma.2019.114156_b0035) 2017; 23 Chang (10.1016/j.geoderma.2019.114156_b0040) 2013; 11 Mengel (10.1016/j.geoderma.2019.114156_b0180) 1999; 162 Bertin (10.1016/j.geoderma.2019.114156_b0025) 2003; 256 Chen (10.1016/j.geoderma.2019.114156_b0050) 2011; 108 Jones (10.1016/j.geoderma.2019.114156_b0135) 2004; 36 Heenan (10.1016/j.geoderma.2019.114156_b0105) 1981; 61 Song (10.1016/j.geoderma.2019.114156_b0220) 2012; 76 Cui (10.1016/j.geoderma.2019.114156_b0065) 2012; 48 Yan (10.1016/j.geoderma.2019.114156_b0260) 2013; 42 Wang (10.1016/j.geoderma.2019.114156_b0255) 2017 Chen (10.1016/j.geoderma.2019.114156_b0055) 2014; 514 Chen (10.1016/j.geoderma.2019.114156_b0060) 2016; 23 Tian (10.1016/j.geoderma.2019.114156_b0230) 2015; 10 10.1016/j.geoderma.2019.114156_b0125 |
References_xml | – volume: 19 start-page: 2228 year: 2009 end-page: 2241 ident: b0020 article-title: A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation publication-title: Ecol. Appl. – reference: Zhang, Y. 2009. Preliminary study on acidification in Chinese agricultural soils: Current status, potential reason and sensitivity. M.S. thesis. China Agricultural Univ., Beijing. (in Chinese). – volume: 125 start-page: 25 year: 2010 end-page: 33 ident: b0205 article-title: Root zone soil nitrogen management to maintain high tomato yields and minimum nitrogen losses to the environment publication-title: Sci. Hortic. – start-page: 239 year: 2017 ident: b0255 article-title: Biogeochemistry: Material Cycle and Soil Processes – reference: Horswill, P., O'sullivan, O., Phoenix, G.K., Lee, J.A., Leake, J.R. 2008. Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition. Environ. Pollut. 155, 336–349. – volume: 143 start-page: 117 year: 2006 end-page: 125 ident: b0140 article-title: Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain publication-title: Environ. Pollut. – volume: 61 start-page: 447 year: 1981 end-page: 456 ident: b0105 article-title: Influence of potassium and manganese on growth and uptake of magnesium by soybeans ( publication-title: Plant Soil – volume: 36 start-page: 749 year: 2004 end-page: 756 ident: b0135 article-title: Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils publication-title: Soil Biol. Biochem. – volume: 200 start-page: 62 year: 2015 end-page: 70 ident: b0225 article-title: Consideration of total available N supply reduces N fertilizer requirement and potential for nitrate leaching loss in tomato production publication-title: Agric. Ecosyst. Environ. – year: 2000 ident: b0015 article-title: Soil and Agricultural Chemistry Analysis – volume: 5 start-page: 152 year: 2017 end-page: 156 ident: b0280 article-title: Comparison of two methods for determining soil organic carbon in acid soil publication-title: Soil Fertilizer China – volume: 11 start-page: 43 year: 2013 end-page: 49 ident: b0040 article-title: Does growing vegetables in plastic greenhouses enhance regional ecosystem services beyond the food supply? publication-title: Front. Ecol. Environ. – volume: 212 start-page: 183 year: 2019 end-page: 193 ident: b0270 article-title: Drip irrigation or reduced N-fertilizer rate can mitigate the high annual N publication-title: Atmos. Environ. – volume: 304 start-page: 289 year: 2005 end-page: 301 ident: b0195 article-title: Effects of lowering nitrogen and phosphorus surpluses in agriculture on the quality of groundwater and surface water in the Netherlands publication-title: J. Hydrol. – volume: 162 start-page: 139 year: 1999 end-page: 148 ident: b0180 article-title: Nitrogen compounds extracted by electroultrafiltration (EUF) or CaCl publication-title: J. Plant Nutr. Soil Sci. – volume: 38 start-page: 393 year: 2009 end-page: 401 ident: b0245 article-title: Dissolved organic nitrogen: an overlooked pathway of nitrogen loss from agricultural systems? publication-title: J. Environ. Qual. – volume: 69 start-page: 51 year: 2004 end-page: 58 ident: b0045 article-title: Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing region publication-title: Nutr. Cycl. Agroecosyst. – volume: 158 start-page: 2218 year: 2010 end-page: 2229 ident: b0080 article-title: Tracking nitrogen losses in a greenhouse crop rotation experiment in North China using the EU_Rotate_N simulation model publication-title: Environ. Pollut. – volume: 7 start-page: 15 year: 2004 end-page: 23 ident: b0215 article-title: The effects of nutrient losses from agriculture on ground and surface water quality: the position of science in developing indicators for regulation publication-title: Environ. Sci. Policy – volume: 42 start-page: 982 year: 2013 end-page: 989 ident: b0260 article-title: Phosphorus in China’s intensive vegetable production systems: overfertilization, soil enrichment, and environmental implications publication-title: J. Environ. Qual. – volume: 318 start-page: 1737 year: 2007 end-page: 1742 ident: b0110 article-title: Coral reefs under rapid climate change and ocean acidification publication-title: Science – volume: 76 start-page: 6304 year: 2010 end-page: 6306 ident: b0145 article-title: Effect of nitric oxide on anammox bacteria publication-title: Appl. Environ. Microbiol. – volume: 22 start-page: 120 year: 1960 end-page: 124 ident: b0175 article-title: A rapid method for the determination of organic carbon in soil publication-title: Anal. Chim. Acta – volume: 20 start-page: 1685 year: 2014 end-page: 1698 ident: b0200 article-title: Excessive use of nitrogen in Chinese agriculture results in high N publication-title: Glob. Change Biol. – volume: 48 start-page: 10 year: 2012 end-page: 19 ident: b0065 article-title: Annual emissions of nitrous oxide and nitric oxide from a wheat-maize cropping system on a silt loam calcareous soil in the North China Plain publication-title: Soil Biol. Biochem. – volume: 10 year: 2015 ident: b0230 article-title: A global analysis of soil acidification caused by nitrogen addition publication-title: Environ. Res. Lett. – volume: 9 start-page: 871 year: 2010 end-page: 879 ident: b0275 article-title: Nutrient budget and soil nutrient status in greenhouse system publication-title: Agric. Sci. China – volume: 23 start-page: 13076 year: 2016 end-page: 13087 ident: b0060 article-title: Nutrients, heavy metals and phthalate acid esters in solar greenhouse soils in Round-Bohai Bay-Region, China: impacts of cultivation year and biogeography publication-title: Environ. Sci. Pollut. Res. – volume: 30 start-page: 410 year: 2012 end-page: 415 ident: b0250 article-title: Strategy and tactics of disarming GHG at the source: N publication-title: Trends Biotechnol. – volume: 76 start-page: 2074 year: 2012 end-page: 2082 ident: b0220 article-title: Increase of soil pH in a solar greenhouse vegetable production system publication-title: Soil Sci. Soc. Am. J. – reference: National Bureau of Statistics of China. China Statistical Yearbook 2018, Agriculture, 12-8. http://www.stats.gov.cn/tjsj/ndsj/2018/indexch.htm. (In Chinese). – volume: 172 start-page: 159 year: 2019 end-page: 165 ident: b0120 article-title: Environmental controls on soil pH in planted forest and its response to nitrogen deposition publication-title: Environ. Res. – volume: 115 start-page: 5187 year: 2018 end-page: 5192 ident: b0170 article-title: Plant acclimation to long-term high nitrogen deposition in an N rich tropical forest publication-title: PNAS – volume: 23 start-page: 1249 year: 2017 end-page: 1257 ident: b0035 article-title: Effects of pH and initial labile C/NO publication-title: J. Plant Nutr. Fertilizer. – volume: 108 start-page: 6399 year: 2011 end-page: 6404 ident: b0050 article-title: Integrated soil-crop system management for food security publication-title: PNAS – volume: 66 start-page: 48 year: 2013 end-page: 55 ident: b0210 article-title: Effects of conventional and reduced N inputs on nematode communities and plant yield under intensive vegetable production publication-title: Appl. Soil Ecol. – volume: 33 start-page: 195 year: 2018 end-page: 202 ident: b0070 article-title: Characteristics and correlation analysis of soil microbial biomass phosphorus in greenhouse vegetable soil with different planting years publication-title: Acta Agric. Boreali-sinica. – volume: 154 start-page: 351 year: 2015 end-page: 357 ident: b0155 article-title: The impact of exogenous N supply on soluble organic nitrogen dynamics and nitrogen balance in a greenhouse vegetable system publication-title: J. Environ. Manag. – volume: 146 start-page: 11 year: 2014 end-page: 23 ident: b0115 article-title: Monitoring nutrient accumulation and leaching in plastic greenhouse cultivation publication-title: Agric. Water Manag. – volume: 150 start-page: 19 year: 2013 end-page: 28 ident: b0160 article-title: Do water-saving ground cover rice production systems increase grainyields at regional scales? publication-title: Field Crops Res. – volume: 18 start-page: 2292 year: 2012 end-page: 2300 ident: b0265 article-title: Significant soil acidification across northern China’s grasslands during 1980s–2000s publication-title: Global Chang Biology. – volume: 78 start-page: 215 year: 2003 end-page: 272 ident: b0030 article-title: Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability publication-title: Adv. Agron. – volume: 514 start-page: 486 year: 2014 end-page: 489 ident: b0055 article-title: Producing more grain with lower environmental costs publication-title: Nature – volume: 351 start-page: 197 year: 2019 end-page: 208 ident: b0005 article-title: Soil acidification and P, K, Ca and Mg budget as affected by sheep grazing and crop rotation in a long-term integrated crop-livestock system in southern Brazil publication-title: Geoderma – volume: 20 start-page: 1 year: 2013 end-page: 9 ident: b0235 article-title: Research progress on vegetable soil microbial obstacles in protected cropping systems publication-title: China Vegetables. – volume: 327 start-page: 1008 year: 2010 end-page: 1010 ident: b0075 article-title: Significant acidification in major Chinese croplands publication-title: Science – volume: 367 start-page: 1157 year: 2012 end-page: 1168 ident: b0240 article-title: Biological sources and sinks of nitrous oxide and strategies to mitigate emissions publication-title: Philos. Trans. Royal Soc. Biol. Sci. – volume: 44 start-page: 297 year: 2015 end-page: 310 ident: b0150 article-title: Implementing agricultural phosphorus science and management to combat eutrophication publication-title: Ambio – volume: 32 start-page: 390 year: 2016 end-page: 399 ident: b0085 article-title: Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom publication-title: Soil Use Manag. – reference: He, F.F., Jiang, R.F., Chen, Q., Zhang, F.S., 2009. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China. Environ. Pollut. 157, 1666–1672. – volume: 42 start-page: 455 year: 2013 end-page: 463 ident: b0010 article-title: Topsoil and subsoil properties influence phosphorus leaching from for agricultural soils publication-title: J. Environ. Qual. – volume: 256 start-page: 67 year: 2003 end-page: 83 ident: b0025 article-title: The role of root exudates and allelochemicals in the rhizosphere publication-title: Plant Soil – volume: 245 start-page: 694 year: 2019 end-page: 701 ident: b0165 article-title: Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system publication-title: Environ. Pollut. – reference: National Meteorological Information Center (NMIC). 2012. http://www.nmic.cn/data/ (In Chinese). – year: 2000 ident: 10.1016/j.geoderma.2019.114156_b0015 – volume: 48 start-page: 10 year: 2012 ident: 10.1016/j.geoderma.2019.114156_b0065 article-title: Annual emissions of nitrous oxide and nitric oxide from a wheat-maize cropping system on a silt loam calcareous soil in the North China Plain publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.01.007 – volume: 125 start-page: 25 year: 2010 ident: 10.1016/j.geoderma.2019.114156_b0205 article-title: Root zone soil nitrogen management to maintain high tomato yields and minimum nitrogen losses to the environment publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2010.02.014 – volume: 42 start-page: 982 year: 2013 ident: 10.1016/j.geoderma.2019.114156_b0260 article-title: Phosphorus in China’s intensive vegetable production systems: overfertilization, soil enrichment, and environmental implications publication-title: J. Environ. Qual. doi: 10.2134/jeq2012.0463 – volume: 212 start-page: 183 year: 2019 ident: 10.1016/j.geoderma.2019.114156_b0270 article-title: Drip irrigation or reduced N-fertilizer rate can mitigate the high annual N2O+NO fluxes from Chinese intensive greenhouse vegetable systems publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2019.05.056 – volume: 10 year: 2015 ident: 10.1016/j.geoderma.2019.114156_b0230 article-title: A global analysis of soil acidification caused by nitrogen addition publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/10/2/024019 – volume: 9 start-page: 871 year: 2010 ident: 10.1016/j.geoderma.2019.114156_b0275 article-title: Nutrient budget and soil nutrient status in greenhouse system publication-title: Agric. Sci. China doi: 10.1016/S1671-2927(09)60166-8 – volume: 23 start-page: 1249 year: 2017 ident: 10.1016/j.geoderma.2019.114156_b0035 article-title: Effects of pH and initial labile C/NO3– ratio on denitrification in a solar greenhouse vegetable soil publication-title: J. Plant Nutr. Fertilizer. – volume: 154 start-page: 351 year: 2015 ident: 10.1016/j.geoderma.2019.114156_b0155 article-title: The impact of exogenous N supply on soluble organic nitrogen dynamics and nitrogen balance in a greenhouse vegetable system publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2015.02.045 – volume: 23 start-page: 13076 year: 2016 ident: 10.1016/j.geoderma.2019.114156_b0060 article-title: Nutrients, heavy metals and phthalate acid esters in solar greenhouse soils in Round-Bohai Bay-Region, China: impacts of cultivation year and biogeography publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-6462-2 – ident: 10.1016/j.geoderma.2019.114156_b0125 – volume: 42 start-page: 455 year: 2013 ident: 10.1016/j.geoderma.2019.114156_b0010 article-title: Topsoil and subsoil properties influence phosphorus leaching from for agricultural soils publication-title: J. Environ. Qual. doi: 10.2134/jeq2012.0224 – volume: 69 start-page: 51 year: 2004 ident: 10.1016/j.geoderma.2019.114156_b0045 article-title: Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing region publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1023/B:FRES.0000025293.99199.ff – volume: 367 start-page: 1157 year: 2012 ident: 10.1016/j.geoderma.2019.114156_b0240 article-title: Biological sources and sinks of nitrous oxide and strategies to mitigate emissions publication-title: Philos. Trans. Royal Soc. Biol. Sci. doi: 10.1098/rstb.2011.0415 – volume: 146 start-page: 11 year: 2014 ident: 10.1016/j.geoderma.2019.114156_b0115 article-title: Monitoring nutrient accumulation and leaching in plastic greenhouse cultivation publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2014.07.016 – volume: 108 start-page: 6399 year: 2011 ident: 10.1016/j.geoderma.2019.114156_b0050 article-title: Integrated soil-crop system management for food security publication-title: PNAS doi: 10.1073/pnas.1101419108 – volume: 172 start-page: 159 year: 2019 ident: 10.1016/j.geoderma.2019.114156_b0120 article-title: Environmental controls on soil pH in planted forest and its response to nitrogen deposition publication-title: Environ. Res. doi: 10.1016/j.envres.2019.02.020 – volume: 245 start-page: 694 year: 2019 ident: 10.1016/j.geoderma.2019.114156_b0165 article-title: Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.11.042 – start-page: 239 year: 2017 ident: 10.1016/j.geoderma.2019.114156_b0255 – volume: 18 start-page: 2292 year: 2012 ident: 10.1016/j.geoderma.2019.114156_b0265 article-title: Significant soil acidification across northern China’s grasslands during 1980s–2000s publication-title: Global Chang Biology. doi: 10.1111/j.1365-2486.2012.02694.x – volume: 61 start-page: 447 year: 1981 ident: 10.1016/j.geoderma.2019.114156_b0105 article-title: Influence of potassium and manganese on growth and uptake of magnesium by soybeans (Glycine max (L.) Merr. cv. Bragg) publication-title: Plant Soil doi: 10.1007/BF02182025 – volume: 162 start-page: 139 year: 1999 ident: 10.1016/j.geoderma.2019.114156_b0180 article-title: Nitrogen compounds extracted by electroultrafiltration (EUF) or CaCl2 solution and their relationships to nitrogen mineralization in soils publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/(SICI)1522-2624(199903)162:2<139::AID-JPLN139>3.0.CO;2-6 – volume: 19 start-page: 2228 year: 2009 ident: 10.1016/j.geoderma.2019.114156_b0020 article-title: A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation publication-title: Ecol. Appl. doi: 10.1890/08-1730.1 – ident: 10.1016/j.geoderma.2019.114156_b0290 – ident: 10.1016/j.geoderma.2019.114156_b0090 doi: 10.1016/j.envpol.2008.12.017 – volume: 20 start-page: 1 year: 2013 ident: 10.1016/j.geoderma.2019.114156_b0235 article-title: Research progress on vegetable soil microbial obstacles in protected cropping systems publication-title: China Vegetables. – ident: 10.1016/j.geoderma.2019.114156_b0185 – volume: 256 start-page: 67 year: 2003 ident: 10.1016/j.geoderma.2019.114156_b0025 article-title: The role of root exudates and allelochemicals in the rhizosphere publication-title: Plant Soil doi: 10.1023/A:1026290508166 – volume: 327 start-page: 1008 year: 2010 ident: 10.1016/j.geoderma.2019.114156_b0075 article-title: Significant acidification in major Chinese croplands publication-title: Science doi: 10.1126/science.1182570 – volume: 318 start-page: 1737 year: 2007 ident: 10.1016/j.geoderma.2019.114156_b0110 article-title: Coral reefs under rapid climate change and ocean acidification publication-title: Science doi: 10.1126/science.1152509 – volume: 36 start-page: 749 year: 2004 ident: 10.1016/j.geoderma.2019.114156_b0135 article-title: Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2004.01.003 – volume: 32 start-page: 390 year: 2016 ident: 10.1016/j.geoderma.2019.114156_b0085 article-title: Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom publication-title: Soil Use Manag. doi: 10.1111/sum.12270 – volume: 20 start-page: 1685 year: 2014 ident: 10.1016/j.geoderma.2019.114156_b0200 article-title: Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils publication-title: Glob. Change Biol. doi: 10.1111/gcb.12461 – volume: 30 start-page: 410 year: 2012 ident: 10.1016/j.geoderma.2019.114156_b0250 article-title: Strategy and tactics of disarming GHG at the source: N2O reductase crops publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2012.04.002 – volume: 78 start-page: 215 year: 2003 ident: 10.1016/j.geoderma.2019.114156_b0030 article-title: Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability publication-title: Adv. Agron. doi: 10.1016/S0065-2113(02)78006-1 – volume: 38 start-page: 393 year: 2009 ident: 10.1016/j.geoderma.2019.114156_b0245 article-title: Dissolved organic nitrogen: an overlooked pathway of nitrogen loss from agricultural systems? publication-title: J. Environ. Qual. doi: 10.2134/jeq2008.0277 – volume: 158 start-page: 2218 year: 2010 ident: 10.1016/j.geoderma.2019.114156_b0080 article-title: Tracking nitrogen losses in a greenhouse crop rotation experiment in North China using the EU_Rotate_N simulation model publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2010.02.014 – volume: 7 start-page: 15 year: 2004 ident: 10.1016/j.geoderma.2019.114156_b0215 article-title: The effects of nutrient losses from agriculture on ground and surface water quality: the position of science in developing indicators for regulation publication-title: Environ. Sci. Policy doi: 10.1016/j.envsci.2003.10.006 – volume: 76 start-page: 2074 year: 2012 ident: 10.1016/j.geoderma.2019.114156_b0220 article-title: Increase of soil pH in a solar greenhouse vegetable production system publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2011.0445 – volume: 351 start-page: 197 year: 2019 ident: 10.1016/j.geoderma.2019.114156_b0005 article-title: Soil acidification and P, K, Ca and Mg budget as affected by sheep grazing and crop rotation in a long-term integrated crop-livestock system in southern Brazil publication-title: Geoderma doi: 10.1016/j.geoderma.2019.04.036 – volume: 76 start-page: 6304 year: 2010 ident: 10.1016/j.geoderma.2019.114156_b0145 article-title: Effect of nitric oxide on anammox bacteria publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00991-10 – volume: 304 start-page: 289 year: 2005 ident: 10.1016/j.geoderma.2019.114156_b0195 article-title: Effects of lowering nitrogen and phosphorus surpluses in agriculture on the quality of groundwater and surface water in the Netherlands publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.07.044 – volume: 5 start-page: 152 year: 2017 ident: 10.1016/j.geoderma.2019.114156_b0280 article-title: Comparison of two methods for determining soil organic carbon in acid soil publication-title: Soil Fertilizer China – volume: 150 start-page: 19 year: 2013 ident: 10.1016/j.geoderma.2019.114156_b0160 article-title: Do water-saving ground cover rice production systems increase grainyields at regional scales? publication-title: Field Crops Res. doi: 10.1016/j.fcr.2013.06.005 – volume: 11 start-page: 43 year: 2013 ident: 10.1016/j.geoderma.2019.114156_b0040 article-title: Does growing vegetables in plastic greenhouses enhance regional ecosystem services beyond the food supply? publication-title: Front. Ecol. Environ. doi: 10.1890/100223 – volume: 200 start-page: 62 year: 2015 ident: 10.1016/j.geoderma.2019.114156_b0225 article-title: Consideration of total available N supply reduces N fertilizer requirement and potential for nitrate leaching loss in tomato production publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.10.022 – volume: 44 start-page: 297 year: 2015 ident: 10.1016/j.geoderma.2019.114156_b0150 article-title: Implementing agricultural phosphorus science and management to combat eutrophication publication-title: Ambio doi: 10.1007/s13280-015-0631-2 – volume: 22 start-page: 120 year: 1960 ident: 10.1016/j.geoderma.2019.114156_b0175 article-title: A rapid method for the determination of organic carbon in soil publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(00)88254-9 – ident: 10.1016/j.geoderma.2019.114156_b0190 – volume: 33 start-page: 195 issue: 1 year: 2018 ident: 10.1016/j.geoderma.2019.114156_b0070 article-title: Characteristics and correlation analysis of soil microbial biomass phosphorus in greenhouse vegetable soil with different planting years publication-title: Acta Agric. Boreali-sinica. – volume: 143 start-page: 117 year: 2006 ident: 10.1016/j.geoderma.2019.114156_b0140 article-title: Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2005.11.005 – volume: 514 start-page: 486 year: 2014 ident: 10.1016/j.geoderma.2019.114156_b0055 article-title: Producing more grain with lower environmental costs publication-title: Nature doi: 10.1038/nature13609 – volume: 115 start-page: 5187 year: 2018 ident: 10.1016/j.geoderma.2019.114156_b0170 article-title: Plant acclimation to long-term high nitrogen deposition in an N rich tropical forest publication-title: PNAS doi: 10.1073/pnas.1720777115 – volume: 66 start-page: 48 year: 2013 ident: 10.1016/j.geoderma.2019.114156_b0210 article-title: Effects of conventional and reduced N inputs on nematode communities and plant yield under intensive vegetable production publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2013.01.004 |
SSID | ssj0017020 |
Score | 2.5569563 |
Snippet | •Surface and deep soil pH significantly decrease with greenhouse cultivation years.•The pH decrease in the topsoil is linked to N accumulation and... Conventional flooding irrigation combined with over-fertilization in intensively used solar greenhouse vegetable production systems are jeopardizing soil... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114156 |
SubjectTerms | corn Cultivation years fertilizer application greenhouse production greenhouses groundwater groundwater contamination irrigation leaching N leaching nitrogen nitrogen content nitrogen fertilizers Nutrient imbalances production technology Soil acidification Soil depths soil pH soil productivity soil sampling Solar greenhouse structural equation modeling subsoil topsoil vegetable growing water quality |
Title | Conventional flooding irrigation and over fertilization drives soil pH decrease not only in the top- but also in subsoil layers in solar greenhouse vegetable production systems |
URI | https://dx.doi.org/10.1016/j.geoderma.2019.114156 https://www.proquest.com/docview/2388752622 |
Volume | 363 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb5wwELWi9NIeqvRLTdNGU6lXumtjGziuVo02rZpTI-WGDDZbImQQy1bKJb-pP7EzYKI0qpRDD1wsbBAzjN_AmzeMfUqUkyp2NkpVpiPJDY9S-tqkk6WJ07R0uqRq5O8XenMpv16pqwO2nmthiFYZYv8U08doHUYW4WkuurqmGl-OK2qOEIQjRqS8XcqEvPzz7R3NgyfLIM3IdURn36sSvkYbUcOxUX-IZySby6mR9b83qAehetx_zo7Y8wAcYTXd2wt24PxL9my17YN4hnvFfq_vUcihIko6bkxQ9_2oo9F6MN4CcTahIjp1E2owwfYkPgu7tm6g24AdoeTOgW8HaH1zA7UHBIowtF0ExX4A9NmWBncYdmhSYwi5jyOUKsOW2Dw_2z2u8ctt3UD1WdBN4rJ0wUk_eveaXZ59-bHeRKEjQ1TGUg1RaWNh48SZShtRGpNhfuFkmVWF45qEYZy11I9SFK7CA-EPooOlKxMrlI1lEb9hh7717i0DRBqx4cUytUZJzKoyDBSFy5QyVAtsxDFTsxnyMsiVU9eMJp95adf5bL6czJdP5jtmi7t53STY8eiMbLZy_pfr5birPDr34-wWOb6X9LPFeIePN0cohKmg0EK8-4_1T9hTQQn-SBV6zw6Hfu8-IAoaitPRzU_Zk9X5t83FH-S6C-s |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb5wwELaizaHtoepTTZ9TqVe0a8AGjqtVI9Ike0qk3CyDzZYIGcSylfqv-hM7AyZKq0o59MDF0hjEDDPf4JlvGPuSCBuLyJogFZkMYq55kNLfJpmsdJSmpZUldSNfbmV-HX-7ETdHbDP3wlBZpff9k08fvbVfWfq3uezqmnp8Oe4oOUIQjhgR8_ZjYqcSC3a8PjvPt3eHCcnKszNyGZDAvUbhW1QTzRwbKYh4Rsy5nGZZ_ztG_eWtxxB0-ow99dgR1tPjPWdH1r1gT9a73vNn2Jfs1-ZeFTlUVJWOsQnqvh-pNFoH2hmgsk2oqKK68W2YYHrin4V9WzfQ5WBGNLm34NoBWtf8hNoBYkUY2i6A4jAAmm1Li3v0PCTUaALv4wply7Cjgp7v7QH3-GF3dqAWLegmflm64UQhvX_Frk-_Xm3ywA9lCMooFkNQmig0UWJ1JXVYap1himHjMqsKyyVxw1hjaCRlWNgKL0RACBBWtkxMKEwUF9FrtnCts28YINiINC9WqdEixsQqQ19R2EwITe3AOjxhYlaDKj1jOQ3OaNRcmnarZvUpUp-a1HfClndy3cTZ8aBENmtZ_WF9CgPLg7KfZ7NQ-GnSeYt2Fl-vQjSE2WAow_Dtf-z_iT3Kry4v1MXZ9vwdexxSvj9WDr1ni6E_2A8Iiobiozf63_sQDpw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conventional+flooding+irrigation+and+over+fertilization+drives+soil+pH+decrease+not+only+in+the+top-+but+also+in+subsoil+layers+in+solar+greenhouse+vegetable+production+systems&rft.jtitle=Geoderma&rft.au=Lv%2C+Haofeng&rft.au=Zhao%2C+Yiming&rft.au=Wang%2C+Yafang&rft.au=Wan%2C+Li&rft.date=2020-04-01&rft.issn=0016-7061&rft.volume=363+p.114156-&rft_id=info:doi/10.1016%2Fj.geoderma.2019.114156&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |