Effects of strain rate and confining pressure on the compressive behavior of Kuru granite

•Dynamic compression testing at confining pressures up to 225 MPa.•Effects of confining pressure and strain rate on rock strength are discussed.•Strain rate sensitivity is influenced by the confinement only at low pressures. Understanding the influence of hydrostatic pressure and loading rate on the...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of impact engineering Vol. 91; pp. 183 - 193
Main Authors Hokka, M., Black, J., Tkalich, D., Fourmeau, M., Kane, A., Hoang, N.-H., Li, C.C., Chen, W.W., Kuokkala, V.-T.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Dynamic compression testing at confining pressures up to 225 MPa.•Effects of confining pressure and strain rate on rock strength are discussed.•Strain rate sensitivity is influenced by the confinement only at low pressures. Understanding the influence of hydrostatic pressure and loading rate on the strength and fracture behavior of rocks is very important for the development of deep drilling technology. This paper presents a systematic study on the mechanical properties and behavior of Kuru Gray granite at confining pressures up to 225 MPa and at strain rates of 10−6 s−1 and 600 s−1. The low strain rate compression tests were carried out with a servo-controlled hydraulic testing machine with a radial confining chamber, and the dynamic tests with a special split Hopkinson pressure bar device with axial and radial confining pressure chambers. The results show that the rock strength increases significantly with strain rate and confining pressure. At confinements below 20 MPa, the strength of the material increases faster at the higher strain rate, but at confinements higher than this, the effect of confining pressure is stronger at the lower strain rate. The strain rate sensitivity increases when even a small confining pressure is applied. However, the rate sensitivity remains rather constant when the confining pressure is increased above 10 MPa. The parameters of the Hoek–Brown model and an alternative power-law model were calibrated for low and high rate data. Also, the fracture behavior of the rock was found to be strongly dependent on strain rate and confining pressure. At the low strain rate, the samples fail by axial splitting in the unconfined tests, whereas the dynamic unconfined tests result in a complete pulverization of the samples. At high confining pressures the fracture behavior is shear fracture for both studied strain rates.
AbstractList Understanding the influence of hydrostatic pressure and loading rate on the strength and fracture behavior of rocks is very important for the development of deep drilling technology. This paper presents a systematic study on the mechanical properties and behavior of Kuru Gray granite at confining pressures up to 225 MPa and at strain rates of 10 super(-6) s super(-1) and 600 s super(-1). The low strain rate compression tests were carried out with a servo-controlled hydraulic testing machine with a radial confining chamber, and the dynamic tests with a special split Hopkinson pressure bar device with axial and radial confining pressure chambers. The results show that the rock strength increases significantly with strain rate and confining pressure. At confinements below 20 MPa, the strength of the material increases faster at the higher strain rate, but at confinements higher than this, the effect of confining pressure is stronger at the lower strain rate. The strain rate sensitivity increases when even a small confining pressure is applied. However, the rate sensitivity remains rather constant when the confining pressure is increased above 10 MPa. The parameters of the Hoek-Brown model and an alternative power-law model were calibrated for low and high rate data. Also, the fracture behavior of the rock was found to be strongly dependent on strain rate and confining pressure. At the low strain rate, the samples fail by axial splitting in the unconfined tests, whereas the dynamic unconfined tests result in a complete pulverization of the samples. At high confining pressures the fracture behavior is shear fracture for both studied strain rates.
•Dynamic compression testing at confining pressures up to 225 MPa.•Effects of confining pressure and strain rate on rock strength are discussed.•Strain rate sensitivity is influenced by the confinement only at low pressures. Understanding the influence of hydrostatic pressure and loading rate on the strength and fracture behavior of rocks is very important for the development of deep drilling technology. This paper presents a systematic study on the mechanical properties and behavior of Kuru Gray granite at confining pressures up to 225 MPa and at strain rates of 10−6 s−1 and 600 s−1. The low strain rate compression tests were carried out with a servo-controlled hydraulic testing machine with a radial confining chamber, and the dynamic tests with a special split Hopkinson pressure bar device with axial and radial confining pressure chambers. The results show that the rock strength increases significantly with strain rate and confining pressure. At confinements below 20 MPa, the strength of the material increases faster at the higher strain rate, but at confinements higher than this, the effect of confining pressure is stronger at the lower strain rate. The strain rate sensitivity increases when even a small confining pressure is applied. However, the rate sensitivity remains rather constant when the confining pressure is increased above 10 MPa. The parameters of the Hoek–Brown model and an alternative power-law model were calibrated for low and high rate data. Also, the fracture behavior of the rock was found to be strongly dependent on strain rate and confining pressure. At the low strain rate, the samples fail by axial splitting in the unconfined tests, whereas the dynamic unconfined tests result in a complete pulverization of the samples. At high confining pressures the fracture behavior is shear fracture for both studied strain rates.
Author Fourmeau, M.
Hokka, M.
Kane, A.
Kuokkala, V.-T.
Li, C.C.
Chen, W.W.
Tkalich, D.
Hoang, N.-H.
Black, J.
Author_xml – sequence: 1
  givenname: M.
  surname: Hokka
  fullname: Hokka, M.
  email: mikko.hokka@tut.fi
  organization: Department of Materials Science, Tampere University of Technology, Tampere, Finland
– sequence: 2
  givenname: J.
  surname: Black
  fullname: Black, J.
  organization: School of Aeronautics & Astronautics and Materials Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 3
  givenname: D.
  surname: Tkalich
  fullname: Tkalich, D.
  organization: Department of Geology and Mineral Resources Engineering, Norwegian University of Science and Technology, Trondheim, Norway
– sequence: 4
  givenname: M.
  surname: Fourmeau
  fullname: Fourmeau, M.
  organization: Materials and Chemistry, Materials and Nanotechnology, SINTEF, Trondheim, Norway
– sequence: 5
  givenname: A.
  surname: Kane
  fullname: Kane, A.
  organization: Materials and Chemistry, Materials and Nanotechnology, SINTEF, Trondheim, Norway
– sequence: 6
  givenname: N.-H.
  surname: Hoang
  fullname: Hoang, N.-H.
  organization: Materials and Chemistry, Materials and Nanotechnology, SINTEF, Trondheim, Norway
– sequence: 7
  givenname: C.C.
  surname: Li
  fullname: Li, C.C.
  organization: Department of Geology and Mineral Resources Engineering, Norwegian University of Science and Technology, Trondheim, Norway
– sequence: 8
  givenname: W.W.
  surname: Chen
  fullname: Chen, W.W.
  organization: School of Aeronautics & Astronautics and Materials Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 9
  givenname: V.-T.
  surname: Kuokkala
  fullname: Kuokkala, V.-T.
  organization: Department of Materials Science, Tampere University of Technology, Tampere, Finland
BookMark eNqFkEtLBDEQhIMouD7-guToZdbOZDIP8KCILxS8KOgpZJKeNctusiaZBf-9WVcvXoSCprur6vAdkF3nHRJywmDKgNVn86md2-UK3Wxa5n0KLAt2yIS1TVdwAd0umUDDq6Kp-Os-OYhxDsAaEDAhb9fDgDpF6gcaU1DW0aASUuUM1d4N1lk3o6uAMY4BqXc0vWP-LL9Pdo20x3e1tj5sGh7GMNJZUM4mPCJ7g1pEPP6Zh-Tl5vr56q54fLq9v7p8LDSvRCq0Ylzrvq6gbGrRcC0MG7q-Rw6sNNxgW_YApqkqAQar7Kvbqjai150SQ93xQ3K67V0F_zFiTHJpo8bFQjn0Y5SsZTWIlndlttZbqw4-xoCDXAW7VOFTMpAblnIuf1nKDUsJLAty8PxPUNukkvVug2zxf_xiG8fMYW0xyKgtOo3GhgxfGm__q_gCOCmXtQ
CitedBy_id crossref_primary_10_1061__ASCE_GM_1943_5622_0002438
crossref_primary_10_1016_j_compgeo_2017_03_004
crossref_primary_10_1007_s00603_021_02707_5
crossref_primary_10_1016_j_ijrmms_2022_105106
crossref_primary_10_1016_j_ijmst_2023_03_002
crossref_primary_10_3389_feart_2022_960812
crossref_primary_10_3390_ma16083235
crossref_primary_10_1016_j_gete_2024_100592
crossref_primary_10_3390_ma15228264
crossref_primary_10_1007_s00603_018_1691_y
crossref_primary_10_1016_j_ijmecsci_2021_106755
crossref_primary_10_1016_j_petrol_2022_110758
crossref_primary_10_1061__ASCE_GM_1943_5622_0001583
crossref_primary_10_1016_j_geoen_2024_212842
crossref_primary_10_1038_s41598_024_70155_6
crossref_primary_10_3390_app14041368
crossref_primary_10_1002_dug2_12063
crossref_primary_10_1016_j_compgeo_2024_106502
crossref_primary_10_1016_j_enggeo_2022_106873
crossref_primary_10_1016_j_tafmec_2022_103633
crossref_primary_10_1016_j_oceaneng_2024_117759
crossref_primary_10_1155_2019_7349584
crossref_primary_10_1016_j_ijmecsci_2022_107162
crossref_primary_10_1016_j_ijrmms_2020_104260
crossref_primary_10_1016_j_jobe_2023_106023
crossref_primary_10_1007_s41939_024_00407_5
crossref_primary_10_1016_j_ijrmms_2020_104266
crossref_primary_10_1016_j_ijrmms_2020_104420
crossref_primary_10_1016_j_mineng_2021_106995
crossref_primary_10_1016_j_conbuildmat_2022_127396
crossref_primary_10_1016_j_soildyn_2019_105927
crossref_primary_10_3389_feart_2021_728366
crossref_primary_10_3390_sym17030372
crossref_primary_10_1061__ASCE_MT_1943_5533_0002229
crossref_primary_10_1016_j_compgeo_2024_106479
crossref_primary_10_3390_ma15165589
crossref_primary_10_1007_s11340_017_0344_5
crossref_primary_10_1016_j_jngse_2018_08_001
crossref_primary_10_1061__ASCE_MT_1943_5533_0003725
crossref_primary_10_1016_j_ijrmms_2023_105523
crossref_primary_10_1016_j_geoen_2024_213361
crossref_primary_10_1007_s00603_024_04160_6
crossref_primary_10_1007_s00603_020_02165_5
crossref_primary_10_1016_j_tust_2017_01_016
crossref_primary_10_1061__ASCE_EM_1943_7889_0001627
crossref_primary_10_1007_s40948_022_00487_y
crossref_primary_10_1016_j_engfracmech_2023_109150
crossref_primary_10_1016_j_ijmecsci_2020_105520
crossref_primary_10_1007_s00603_018_1594_y
crossref_primary_10_1016_j_ijrmms_2018_05_008
crossref_primary_10_1016_j_geoen_2025_213838
crossref_primary_10_2113_2022_1790417
crossref_primary_10_1007_s40948_023_00589_1
crossref_primary_10_1016_j_rockmb_2024_100169
crossref_primary_10_1061_IJGNAI_GMENG_10144
crossref_primary_10_1520_JTE20170740
crossref_primary_10_1016_j_ijrmms_2024_105894
crossref_primary_10_1016_j_conbuildmat_2022_129157
crossref_primary_10_1142_S0218348X20500061
crossref_primary_10_3389_feart_2022_1112249
crossref_primary_10_1016_j_ijrmms_2022_105172
crossref_primary_10_1016_j_ijrmms_2023_105590
crossref_primary_10_1098_rsta_2016_0179
crossref_primary_10_1155_2024_4400608
crossref_primary_10_3390_app142210486
crossref_primary_10_1080_19648189_2023_2210633
crossref_primary_10_1155_2021_6677077
crossref_primary_10_1080_19648189_2020_1816217
crossref_primary_10_1007_s13369_022_06989_x
crossref_primary_10_1007_s40870_016_0063_5
crossref_primary_10_1016_j_ijimpeng_2019_103367
crossref_primary_10_1016_j_jrmge_2024_02_035
crossref_primary_10_1016_j_tafmec_2023_104246
crossref_primary_10_1007_s10704_023_00747_2
crossref_primary_10_1155_2018_2861537
crossref_primary_10_1007_s00603_020_02202_3
crossref_primary_10_1007_s40948_023_00593_5
crossref_primary_10_1098_rsta_2016_0176
crossref_primary_10_1007_s00603_024_03948_w
crossref_primary_10_1007_s40948_021_00335_5
crossref_primary_10_1007_s10064_022_02774_0
crossref_primary_10_1520_GTJ20180270
crossref_primary_10_1016_j_jrmge_2021_09_006
crossref_primary_10_1007_s00603_022_02772_4
crossref_primary_10_1007_s00603_024_04017_y
crossref_primary_10_1016_j_compgeo_2018_02_006
crossref_primary_10_3390_ma15227890
crossref_primary_10_1007_s40571_023_00589_8
crossref_primary_10_1016_j_geothermics_2020_101828
crossref_primary_10_1016_j_ijrmms_2016_05_012
crossref_primary_10_1061__ASCE_GM_1943_5622_0002196
crossref_primary_10_1016_j_ijrmms_2020_104448
crossref_primary_10_1007_s00603_019_01807_7
crossref_primary_10_1016_j_ijrmms_2023_105538
crossref_primary_10_1080_19648189_2022_2136248
crossref_primary_10_1016_j_tafmec_2024_104416
crossref_primary_10_1016_j_ijimpeng_2021_103955
crossref_primary_10_1016_j_tafmec_2023_103975
crossref_primary_10_1371_journal_pone_0289022
crossref_primary_10_1016_j_ijmst_2020_06_004
crossref_primary_10_1016_j_compgeo_2020_103846
crossref_primary_10_1002_ese3_1062
crossref_primary_10_1016_j_tafmec_2022_103431
crossref_primary_10_1007_s40948_024_00766_w
crossref_primary_10_1016_j_ijrmms_2023_105415
crossref_primary_10_1520_GTJ20170237
crossref_primary_10_1007_s10706_022_02079_9
crossref_primary_10_1016_j_ijrmms_2021_104961
crossref_primary_10_1007_s11340_023_00942_1
crossref_primary_10_1016_j_ijmecsci_2019_105219
crossref_primary_10_1016_j_enggeo_2023_107357
crossref_primary_10_1016_j_petrol_2020_107666
crossref_primary_10_1155_2018_1387390
crossref_primary_10_1007_s00603_023_03696_3
crossref_primary_10_3390_su152014796
crossref_primary_10_1007_s00024_024_03641_7
crossref_primary_10_1007_s00603_018_1713_9
crossref_primary_10_1016_j_engfailanal_2023_107344
crossref_primary_10_1016_j_ijmst_2017_11_006
crossref_primary_10_1007_s12517_021_08395_3
crossref_primary_10_1007_s40948_020_00183_9
crossref_primary_10_3989_aeamer_2023_1_10
crossref_primary_10_1155_2020_8835355
crossref_primary_10_1016_j_conbuildmat_2020_119638
crossref_primary_10_1007_s40571_021_00434_w
crossref_primary_10_1007_s10064_023_03326_w
crossref_primary_10_1016_j_tust_2021_103968
crossref_primary_10_1016_j_fuel_2023_130579
crossref_primary_10_1007_s00603_021_02535_7
crossref_primary_10_1016_j_compgeo_2024_106483
crossref_primary_10_1002_nag_3896
crossref_primary_10_1016_j_deepre_2024_100020
crossref_primary_10_1007_s00603_022_03015_2
crossref_primary_10_1007_s11771_018_3889_2
crossref_primary_10_3390_app122312073
crossref_primary_10_1007_s13369_021_05504_y
crossref_primary_10_1016_j_ijsolstr_2017_08_034
crossref_primary_10_1007_s00603_023_03451_8
crossref_primary_10_1007_s12517_022_09749_1
crossref_primary_10_1016_j_ijmst_2021_06_003
crossref_primary_10_1007_s11340_024_01063_z
crossref_primary_10_1016_j_enggeo_2016_12_008
crossref_primary_10_3390_math10214082
crossref_primary_10_1007_s00603_022_03205_y
crossref_primary_10_1007_s11340_022_00827_9
crossref_primary_10_1016_j_conbuildmat_2017_08_090
crossref_primary_10_1016_j_tafmec_2022_103570
crossref_primary_10_1016_j_engfracmech_2024_110377
crossref_primary_10_1007_s00603_020_02302_0
crossref_primary_10_1007_s11012_023_01669_y
crossref_primary_10_1088_1755_1315_1124_1_012066
crossref_primary_10_1007_s00603_023_03560_4
crossref_primary_10_1007_s10064_020_01914_8
crossref_primary_10_1038_s41598_022_16299_9
crossref_primary_10_1007_s00603_018_1523_0
crossref_primary_10_1007_s40948_024_00876_5
crossref_primary_10_1002_ese3_536
crossref_primary_10_1061__ASCE_GM_1943_5622_0001593
crossref_primary_10_1016_j_ijimpeng_2021_103946
crossref_primary_10_1061__ASCE_EM_1943_7889_0002100
crossref_primary_10_1007_s00603_022_02949_x
Cites_doi 10.1016/S0040-1951(99)00205-X
10.1007/s100640050017
10.1016/S1365-1609(00)00047-2
10.1088/0957-0233/21/10/105704
10.1016/0148-9062(93)90041-B
10.1007/BF02330054
10.1016/S1365-1609(03)00072-8
10.1016/S1365-1609(99)00120-3
10.1016/j.ijrmms.2012.12.035
10.1063/1.329934
10.1002/pen.760241009
10.1016/j.mechmat.2014.12.006
10.1007/BF02320747
10.1016/S1365-1609(97)00138-X
10.1016/j.ijrmms.2015.03.010
10.1016/S1365-1609(00)00015-0
10.1016/S1365-1609(00)00049-6
10.1063/1.3271538
10.1016/j.engfracmech.2015.02.021
10.1111/j.1151-2916.1994.tb06987.x
10.1016/j.ijimpeng.2009.04.008
10.1016/j.ijrmms.2007.09.013
10.1088/0370-1301/62/11/302
10.1016/j.ijimpeng.2012.10.008
10.1016/0019-1035(91)90040-Z
10.1016/j.ijimpeng.2014.05.006
10.1016/j.engfracmech.2011.06.022
10.1016/j.ijimpeng.2007.04.007
10.1016/j.engfracmech.2011.10.006
10.1016/j.mspro.2014.06.114
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.ijimpeng.2016.01.010
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3509
EndPage 193
ExternalDocumentID 10_1016_j_ijimpeng_2016_01_010
S0734743X16300227
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c345t-ca13ccb640276573c5d1f9bbe3012d3de82b00d74450de46406846d5bc9a5f693
IEDL.DBID .~1
ISSN 0734-743X
IngestDate Fri Jul 11 13:51:00 EDT 2025
Tue Jul 01 03:11:39 EDT 2025
Thu Apr 24 23:04:23 EDT 2025
Fri Feb 23 02:28:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Confining pressure
Split Hopkinson pressure bar
Granite rock
Triaxial loading
High strain rate
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-ca13ccb640276573c5d1f9bbe3012d3de82b00d74450de46406846d5bc9a5f693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1816058392
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1816058392
crossref_primary_10_1016_j_ijimpeng_2016_01_010
crossref_citationtrail_10_1016_j_ijimpeng_2016_01_010
elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2016_01_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2016
2016-05-00
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: May 2016
PublicationDecade 2010
PublicationTitle International journal of impact engineering
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kabir, Chen (bib0130) 2009; 80
Qi, Wang, Qian (bib0150) 2009; 36
Hawkings (bib0145) 1998; 57
Doll (bib0160) 1984; 24
Hogan, Rogers, Spray, Boonsue (bib0065) 2012; 79
Zhao (bib0090) 2000; 37
Hoek, Brown (bib0190) 1980
Kolsky (bib0105) 1949; 62
Li, Zhao, Li (bib0080) 1999; 36
Dai, Xia (bib0010) 2013; 60
Liang, Wu, Li, Xin (bib0060) 2015; 76
Liu, Xu (bib0025) 2015; 82
Aubertin, Li, Simon (bib0140) 2000; 37
Dai, Xia, Zheng, Wang (bib0055) 2011; 78
Christensen, Swanson, Brown (bib0110) 1972; 12
Lockner (bib0155) 1993; 30
Hoek, Brown (bib0195) 1980; 106
Saksala, Hokka, Kuokkala, Mäkinen (bib0045) 2013; 59
Kawakata, Cho, Yanagidani, Shimada (bib0075) 1997; 34
Fourmeau, Gomon, Vacher, Hokka, Kane, Kuokkala (bib0050) 2014; 3
Gao, Yao, Xia, Li (bib0015) 2015; 138
Cho, Ogata, Kaneko (bib0030) 2003; 40
Martin, Kabir, Chen (bib0125) 2013; 54
Saksala, Gomon, Hokka, Kuokkala (bib0040) 2013
Gray (bib0100) 2000
Brown (bib0095) 1981
Nakamura, Fujiwara (bib0175) 1991; 92
Grady, Benson (bib0185) 1983; 23
Xia, Nasseri, Mohanty, Lu, Chen, Luo (bib0020) 2008; 45
Ravichandran, Subhash (bib0135) 1994; 77
Frew, Akers, Chen, Green (bib0115) 2010; 21
Zhao, Li (bib0085) 2000; 37
Forquin, Gary, Gatuingt (bib0120) 2008; 35
Kawakata, Cho, Kiyama, Yanagidani, Kusunose, Shimada (bib0070) 1999; 313
Saksala, Gomon, Hokka, Kuokkala (bib0035) 2014; 72
Grady (bib0180) 1982; 53
Mott (bib0165) 1943
Mott (bib0170) 1947
Mott (10.1016/j.ijimpeng.2016.01.010_bib0165) 1943
Kabir (10.1016/j.ijimpeng.2016.01.010_bib0130) 2009; 80
Hawkings (10.1016/j.ijimpeng.2016.01.010_bib0145) 1998; 57
Hoek (10.1016/j.ijimpeng.2016.01.010_bib0195) 1980; 106
Gao (10.1016/j.ijimpeng.2016.01.010_bib0015) 2015; 138
Grady (10.1016/j.ijimpeng.2016.01.010_bib0180) 1982; 53
Frew (10.1016/j.ijimpeng.2016.01.010_bib0115) 2010; 21
Hogan (10.1016/j.ijimpeng.2016.01.010_bib0065) 2012; 79
Mott (10.1016/j.ijimpeng.2016.01.010_bib0170) 1947
Cho (10.1016/j.ijimpeng.2016.01.010_bib0030) 2003; 40
Qi (10.1016/j.ijimpeng.2016.01.010_bib0150) 2009; 36
Ravichandran (10.1016/j.ijimpeng.2016.01.010_bib0135) 1994; 77
Fourmeau (10.1016/j.ijimpeng.2016.01.010_bib0050) 2014; 3
Liu (10.1016/j.ijimpeng.2016.01.010_bib0025) 2015; 82
Li (10.1016/j.ijimpeng.2016.01.010_bib0080) 1999; 36
Aubertin (10.1016/j.ijimpeng.2016.01.010_bib0140) 2000; 37
Saksala (10.1016/j.ijimpeng.2016.01.010_bib0040) 2013
Zhao (10.1016/j.ijimpeng.2016.01.010_bib0085) 2000; 37
Brown (10.1016/j.ijimpeng.2016.01.010_bib0095) 1981
Xia (10.1016/j.ijimpeng.2016.01.010_bib0020) 2008; 45
Liang (10.1016/j.ijimpeng.2016.01.010_bib0060) 2015; 76
Kawakata (10.1016/j.ijimpeng.2016.01.010_bib0070) 1999; 313
Dai (10.1016/j.ijimpeng.2016.01.010_bib0010) 2013; 60
Gray (10.1016/j.ijimpeng.2016.01.010_bib0100) 2000
Forquin (10.1016/j.ijimpeng.2016.01.010_bib0120) 2008; 35
Grady (10.1016/j.ijimpeng.2016.01.010_bib0185) 1983; 23
Dai (10.1016/j.ijimpeng.2016.01.010_bib0055) 2011; 78
Kolsky (10.1016/j.ijimpeng.2016.01.010_bib0105) 1949; 62
Hoek (10.1016/j.ijimpeng.2016.01.010_bib0190) 1980
Zhao (10.1016/j.ijimpeng.2016.01.010_bib0090) 2000; 37
Lockner (10.1016/j.ijimpeng.2016.01.010_bib0155) 1993; 30
Christensen (10.1016/j.ijimpeng.2016.01.010_bib0110) 1972; 12
Kawakata (10.1016/j.ijimpeng.2016.01.010_bib0075) 1997; 34
Saksala (10.1016/j.ijimpeng.2016.01.010_bib0035) 2014; 72
Martin (10.1016/j.ijimpeng.2016.01.010_bib0125) 2013; 54
Nakamura (10.1016/j.ijimpeng.2016.01.010_bib0175) 1991; 92
Saksala (10.1016/j.ijimpeng.2016.01.010_bib0045) 2013; 59
Doll (10.1016/j.ijimpeng.2016.01.010_bib0160) 1984; 24
References_xml – volume: 37
  start-page: 1115
  year: 2000
  end-page: 1121
  ident: bib0090
  article-title: Applicability of Mohr–Coulomb and Hoek–Brown strenght criteria to the dynamic strength of brittle rock
  publication-title: Int J Rock Mech Min
– year: 1947
  ident: bib0170
  article-title: Fragmentation of shell cases
– volume: 92
  start-page: 132:146
  year: 1991
  ident: bib0175
  article-title: Velocity distribution of fragments formed in a simulated collisional disruptions
  publication-title: Icarus
– volume: 313
  start-page: 293
  year: 1999
  end-page: 305
  ident: bib0070
  article-title: Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan
  publication-title: Tectonophysics
– volume: 45
  start-page: 879
  year: 2008
  end-page: 887
  ident: bib0020
  article-title: Effects of microstructures on dynamic compression of Barre granite
  publication-title: Int J Rock Mech Min
– volume: 80
  year: 2009
  ident: bib0130
  article-title: Measurement of specimen dimensions and dynamic pressure in dynamic triaxial experiments
  publication-title: Rev Sci Instrum
– volume: 23
  start-page: 383
  year: 1983
  end-page: 400
  ident: bib0185
  article-title: Fragmentation of metal rings by electromagnetic loading
  publication-title: Exp Mech
– volume: 77
  start-page: 263
  year: 1994
  end-page: 267
  ident: bib0135
  article-title: Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar
  publication-title: J Am Ceram Soc
– volume: 35
  start-page: 425
  year: 2008
  end-page: 446
  ident: bib0120
  article-title: A testing technique for concrete under confinement at high rates of strain
  publication-title: Int J Impact Eng
– volume: 36
  start-page: 1057
  year: 1999
  end-page: 1063
  ident: bib0080
  article-title: Triaxial testing on a granite at different strain rates and confining pressures
  publication-title: Int J Rock Mech Min
– volume: 24
  start-page: 798
  year: 1984
  end-page: 808
  ident: bib0160
  article-title: Kinetics of the crack tip craze zone before and during fracture
  publication-title: Polym Eng Sci
– volume: 34
  year: 1997
  ident: bib0075
  article-title: The observations of faulting in westerly granite under triaxial compression by X-ray CT scan
  publication-title: Int J Rock Mech Min
– volume: 37
  start-page: 861
  year: 2000
  end-page: 866
  ident: bib0085
  article-title: Experimental determination of dynamic tensile properties of a granite
  publication-title: Int J Rock Mech Min
– volume: 59
  year: 2013
  ident: bib0045
  article-title: Numerical modeling and experimentation of dynamic Brazilian disc test on Kuru granite
  publication-title: Int J Rock Mech Min
– year: 1980
  ident: bib0190
  article-title: Underground excavations in rock
– volume: 12
  start-page: 508
  year: 1972
  end-page: 513
  ident: bib0110
  article-title: Split Hopkinson pressure bar test on rocks under confining pressure
  publication-title: Exp Mech
– volume: 53
  start-page: 322
  year: 1982
  end-page: 325
  ident: bib0180
  article-title: Local inertia effects in dynamic fragmentation
  publication-title: J Appl Phys
– volume: 82
  start-page: 28
  year: 2015
  end-page: 38
  ident: bib0025
  article-title: Effect of strain rate on the dynamic compressive mechanical behaviors of rock materials subjected to high temperatures
  publication-title: Mech Mater
– volume: 36
  start-page: 1355
  year: 2009
  end-page: 1364
  ident: bib0150
  article-title: Strain–rate effects on the strength and fragmentation size of rocks
  publication-title: Int J Impact Eng
– volume: 106
  start-page: 1013
  year: 1980
  end-page: 1035
  ident: bib0195
  article-title: Empirical strength criterion for rock masses
  publication-title: J Geotech Geoenviron
– volume: 54
  start-page: 51
  year: 2013
  end-page: 63
  ident: bib0125
  article-title: Undrained high-pressure and high strain–rate response of dry sand under triaxial loading
  publication-title: Int J Impact Eng
– year: 1943
  ident: bib0165
  article-title: A theory of the fragmentation of shells and bombs
– volume: 21
  year: 2010
  ident: bib0115
  article-title: Development of a dynamic triaxial Kolsky bar
  publication-title: Meas Sci Technol
– volume: 37
  start-page: 1169
  year: 2000
  end-page: 1193
  ident: bib0140
  article-title: A multiaxial stress criterion for short- and long-term strength of isotropic rock media
  publication-title: Int J Rock Mech Min
– volume: 40
  start-page: 763
  year: 2003
  end-page: 777
  ident: bib0030
  article-title: Strain–rate dependency of the dynamic tensile strength of rock
  publication-title: Int J Rock Mech Min
– volume: 62
  start-page: 676
  year: 1949
  end-page: 700
  ident: bib0105
  article-title: An investigation of the mechanical properties of materials at very high rates of loading
  publication-title: Proc Phys Soc Lond B
– volume: 76
  start-page: 146
  year: 2015
  end-page: 154
  ident: bib0060
  article-title: Effect of strain rate on the fracture characteristics and mesoscopic failure mechanisms of granite
  publication-title: Int J Rock Mech Min
– volume: 79
  start-page: 103
  year: 2012
  end-page: 125
  ident: bib0065
  article-title: Dynamic fragmentation of granite for impact energies of 6-28J
  publication-title: Eng Fract Mech
– volume: 30
  start-page: 883
  year: 1993
  end-page: 899
  ident: bib0155
  article-title: The role of acoustic emission in the study of rock fracture
  publication-title: Int J Rock Mech Min
– volume: 72
  start-page: 55
  year: 2014
  end-page: 66
  ident: bib0035
  article-title: Numerical and experimental study of percussive drilling with a triple-button bit on Kuru granite
  publication-title: Int J Impact Eng
– volume: 3
  start-page: 691
  year: 2014
  end-page: 697
  ident: bib0050
  article-title: Application of DIC technique for studies of Kuru granite rock under static and dynamic loading
  publication-title: Procedia Mater Sci
– volume: 60
  start-page: 57
  year: 2013
  end-page: 65
  ident: bib0010
  article-title: Laboratory measurements of the rate dependence of the fracture toughness anisotropy of Barre granite
  publication-title: Int J Rock Mech Min
– year: 2000
  ident: bib0100
  article-title: Classic split-Hopkinson pressure bar technique
  publication-title: ASM handbook mechanical testing and evaluation
– volume: 138
  start-page: 146
  year: 2015
  end-page: 155
  ident: bib0015
  article-title: Investigation of the rate dependence of fracture propagation in rocks using digital image correlation method
  publication-title: Eng Fract Mech
– year: 2013
  ident: bib0040
  article-title: Numerical modeling and experimentation of dynamic indentation with single and triple indenters on Kuru granite
  publication-title: Rock dynamics and applications
– volume: 78
  start-page: 2633
  year: 2011
  end-page: 2644
  ident: bib0055
  article-title: Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimens
  publication-title: Eng Fract Mech
– year: 1981
  ident: bib0095
  article-title: ISRM suggested methods, rock characterization testing & monitoring
– volume: 57
  start-page: 17
  year: 1998
  end-page: 30
  ident: bib0145
  article-title: Aspects of rock strength
  publication-title: B Eng Geol Environ
– volume: 59
  year: 2013
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0045
  article-title: Numerical modeling and experimentation of dynamic Brazilian disc test on Kuru granite
  publication-title: Int J Rock Mech Min
– volume: 313
  start-page: 293
  year: 1999
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0070
  article-title: Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan
  publication-title: Tectonophysics
  doi: 10.1016/S0040-1951(99)00205-X
– volume: 57
  start-page: 17
  year: 1998
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0145
  article-title: Aspects of rock strength
  publication-title: B Eng Geol Environ
  doi: 10.1007/s100640050017
– volume: 37
  start-page: 1169
  year: 2000
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0140
  article-title: A multiaxial stress criterion for short- and long-term strength of isotropic rock media
  publication-title: Int J Rock Mech Min
  doi: 10.1016/S1365-1609(00)00047-2
– volume: 21
  year: 2010
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0115
  article-title: Development of a dynamic triaxial Kolsky bar
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/21/10/105704
– volume: 30
  start-page: 883
  year: 1993
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0155
  article-title: The role of acoustic emission in the study of rock fracture
  publication-title: Int J Rock Mech Min
  doi: 10.1016/0148-9062(93)90041-B
– volume: 23
  start-page: 383
  year: 1983
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0185
  article-title: Fragmentation of metal rings by electromagnetic loading
  publication-title: Exp Mech
  doi: 10.1007/BF02330054
– year: 1980
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0190
– volume: 40
  start-page: 763
  year: 2003
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0030
  article-title: Strain–rate dependency of the dynamic tensile strength of rock
  publication-title: Int J Rock Mech Min
  doi: 10.1016/S1365-1609(03)00072-8
– volume: 36
  start-page: 1057
  year: 1999
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0080
  article-title: Triaxial testing on a granite at different strain rates and confining pressures
  publication-title: Int J Rock Mech Min
  doi: 10.1016/S1365-1609(99)00120-3
– year: 1943
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0165
– volume: 60
  start-page: 57
  year: 2013
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0010
  article-title: Laboratory measurements of the rate dependence of the fracture toughness anisotropy of Barre granite
  publication-title: Int J Rock Mech Min
  doi: 10.1016/j.ijrmms.2012.12.035
– volume: 53
  start-page: 322
  year: 1982
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0180
  article-title: Local inertia effects in dynamic fragmentation
  publication-title: J Appl Phys
  doi: 10.1063/1.329934
– volume: 24
  start-page: 798
  year: 1984
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0160
  article-title: Kinetics of the crack tip craze zone before and during fracture
  publication-title: Polym Eng Sci
  doi: 10.1002/pen.760241009
– volume: 82
  start-page: 28
  year: 2015
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0025
  article-title: Effect of strain rate on the dynamic compressive mechanical behaviors of rock materials subjected to high temperatures
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2014.12.006
– volume: 12
  start-page: 508
  year: 1972
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0110
  article-title: Split Hopkinson pressure bar test on rocks under confining pressure
  publication-title: Exp Mech
  doi: 10.1007/BF02320747
– volume: 34
  year: 1997
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0075
  article-title: The observations of faulting in westerly granite under triaxial compression by X-ray CT scan
  publication-title: Int J Rock Mech Min
  doi: 10.1016/S1365-1609(97)00138-X
– volume: 76
  start-page: 146
  year: 2015
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0060
  article-title: Effect of strain rate on the fracture characteristics and mesoscopic failure mechanisms of granite
  publication-title: Int J Rock Mech Min
  doi: 10.1016/j.ijrmms.2015.03.010
– volume: 37
  start-page: 861
  year: 2000
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0085
  article-title: Experimental determination of dynamic tensile properties of a granite
  publication-title: Int J Rock Mech Min
  doi: 10.1016/S1365-1609(00)00015-0
– volume: 106
  start-page: 1013
  year: 1980
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0195
  article-title: Empirical strength criterion for rock masses
  publication-title: J Geotech Geoenviron
– volume: 37
  start-page: 1115
  year: 2000
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0090
  article-title: Applicability of Mohr–Coulomb and Hoek–Brown strenght criteria to the dynamic strength of brittle rock
  publication-title: Int J Rock Mech Min
  doi: 10.1016/S1365-1609(00)00049-6
– year: 2013
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0040
  article-title: Numerical modeling and experimentation of dynamic indentation with single and triple indenters on Kuru granite
– year: 1981
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0095
– volume: 80
  issue: 12
  year: 2009
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0130
  article-title: Measurement of specimen dimensions and dynamic pressure in dynamic triaxial experiments
  publication-title: Rev Sci Instrum
  doi: 10.1063/1.3271538
– volume: 138
  start-page: 146
  year: 2015
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0015
  article-title: Investigation of the rate dependence of fracture propagation in rocks using digital image correlation method
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2015.02.021
– volume: 77
  start-page: 263
  year: 1994
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0135
  article-title: Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1151-2916.1994.tb06987.x
– volume: 36
  start-page: 1355
  year: 2009
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0150
  article-title: Strain–rate effects on the strength and fragmentation size of rocks
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2009.04.008
– volume: 45
  start-page: 879
  year: 2008
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0020
  article-title: Effects of microstructures on dynamic compression of Barre granite
  publication-title: Int J Rock Mech Min
  doi: 10.1016/j.ijrmms.2007.09.013
– volume: 62
  start-page: 676
  year: 1949
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0105
  article-title: An investigation of the mechanical properties of materials at very high rates of loading
  publication-title: Proc Phys Soc Lond B
  doi: 10.1088/0370-1301/62/11/302
– volume: 54
  start-page: 51
  year: 2013
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0125
  article-title: Undrained high-pressure and high strain–rate response of dry sand under triaxial loading
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2012.10.008
– volume: 92
  start-page: 132:146
  year: 1991
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0175
  article-title: Velocity distribution of fragments formed in a simulated collisional disruptions
  publication-title: Icarus
  doi: 10.1016/0019-1035(91)90040-Z
– volume: 72
  start-page: 55
  year: 2014
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0035
  article-title: Numerical and experimental study of percussive drilling with a triple-button bit on Kuru granite
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2014.05.006
– year: 2000
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0100
  article-title: Classic split-Hopkinson pressure bar technique
– volume: 78
  start-page: 2633
  year: 2011
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0055
  article-title: Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimens
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2011.06.022
– year: 1947
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0170
– volume: 35
  start-page: 425
  issue: 6
  year: 2008
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0120
  article-title: A testing technique for concrete under confinement at high rates of strain
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2007.04.007
– volume: 79
  start-page: 103
  year: 2012
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0065
  article-title: Dynamic fragmentation of granite for impact energies of 6-28J
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2011.10.006
– volume: 3
  start-page: 691
  year: 2014
  ident: 10.1016/j.ijimpeng.2016.01.010_bib0050
  article-title: Application of DIC technique for studies of Kuru granite rock under static and dynamic loading
  publication-title: Procedia Mater Sci
  doi: 10.1016/j.mspro.2014.06.114
SSID ssj0017050
Score 2.5428228
Snippet •Dynamic compression testing at confining pressures up to 225 MPa.•Effects of confining pressure and strain rate on rock strength are discussed.•Strain rate...
Understanding the influence of hydrostatic pressure and loading rate on the strength and fracture behavior of rocks is very important for the development of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 183
SubjectTerms Confinement
Confining
Confining pressure
Constants
Fracture mechanics
Granite
Granite rock
High strain rate
Rocks
Split Hopkinson pressure bar
Strain rate
Strength
Triaxial loading
Title Effects of strain rate and confining pressure on the compressive behavior of Kuru granite
URI https://dx.doi.org/10.1016/j.ijimpeng.2016.01.010
https://www.proquest.com/docview/1816058392
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXvQgPvHNCl7T5rG7aY6lWKrFXrRQT0v2EWmRtLSNR3-7M5ukVBF6EHJJmF2S2dnZmew33xJyH_Eg1r6BTNXPhMcyprxURMpLYi2yJAitdVVpz0PRH7GnMR83SLeuhUFYZeX7S5_uvHX1pFVpszWfTFovYJwM1r9xgKxRYYgV5YzFaOXNrzXMA9li3H8WEPZQeqNKeNqcTCcQnObvCPESjr4TK2n_XqB-uWq3_vQOyUEVONJO-W5HpGHzY7K_QSd4Qt5KKuIlnWV06c5-oEgEQdPcUEh7M3cWBHXI12Jh6SynEP1RBJU7MOynpXXRPvYwKBYFfV8gPYY9JaPew2u371VHJ3g6Ynzl6TSItFYCssNY8DjS3ARZopSF-RyayNh2CPPNxIxx31gGcgICEcOVTlKeiSQ6Izv5LLfnhMboguJAGZsoZts8zdoJByFItdIwDdgF4bW-pK54xfETP2QNIJvKWs8S9Sz9AC7_grTW7eYls8bWFkk9HPKHjUhw_1vb3tXjJ2EC4a5ImttZsZQQ4uDWMMSJl__o_4rs4V0JhbwmO6tFYW8gXFmpW2ePt2S38zjoD78BsTbrLQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RRvjMSaNg_baUZUgQoFFlqpTFb8CGqFUtQ2jPx27pwEFYTEgJQpOVvJ2Xe-i7_7TMhlxINY-wYyVT8THsuY8lIRKS-JtciSILTWVaU9PIrekN2N-KhBunUtDMIqK99f-nTnras77Uqb7bfxuP0Ek5PB-jcKkDUqDOMVssrAfPEYg9bHF84D6WLcjxaQ9lB8qUx40hpPxhCd5i-I8RKOvxNLaX9foX74arcA3WyRzSpypFfly22Ths13yMYSn-AueS65iOd0mtG5O_yBIhMETXNDIe_N3GEQ1EFfi5ml05xC-EcRVe7QsO-W1lX72EO_mBX0ZYb8GHaPDG-uB92eV52d4OmI8YWn0yDSWglID2PB40hzE2SJUhYMOjSRsZ0QDM7EjHHfWAZyAiIRw5VOUp6JJNonzXya2wNCY_RBcaCMTRSzHZ5mnYSDEORaaZgG7JDwWl9SV8Ti-ImvskaQTWStZ4l6ln4Al39I2l_t3kpqjT9bJPVwyG-TRIL__7PtRT1-EiwIt0XS3E6LuYQYB_eGIVA8-kf_52StN3i4l_e3j_1jso5PSlzkCWkuZoU9hdhloc7c3PwEG2jsuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+strain+rate+and+confining+pressure+on+the+compressive+behavior+of+Kuru+granite&rft.jtitle=International+journal+of+impact+engineering&rft.au=Hokka%2C+M.&rft.au=Black%2C+J.&rft.au=Tkalich%2C+D.&rft.au=Fourmeau%2C+M.&rft.date=2016-05-01&rft.issn=0734-743X&rft.volume=91&rft.spage=183&rft.epage=193&rft_id=info:doi/10.1016%2Fj.ijimpeng.2016.01.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijimpeng_2016_01_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon