Effects of strain rate and confining pressure on the compressive behavior of Kuru granite
•Dynamic compression testing at confining pressures up to 225 MPa.•Effects of confining pressure and strain rate on rock strength are discussed.•Strain rate sensitivity is influenced by the confinement only at low pressures. Understanding the influence of hydrostatic pressure and loading rate on the...
Saved in:
Published in | International journal of impact engineering Vol. 91; pp. 183 - 193 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Dynamic compression testing at confining pressures up to 225 MPa.•Effects of confining pressure and strain rate on rock strength are discussed.•Strain rate sensitivity is influenced by the confinement only at low pressures.
Understanding the influence of hydrostatic pressure and loading rate on the strength and fracture behavior of rocks is very important for the development of deep drilling technology. This paper presents a systematic study on the mechanical properties and behavior of Kuru Gray granite at confining pressures up to 225 MPa and at strain rates of 10−6 s−1 and 600 s−1. The low strain rate compression tests were carried out with a servo-controlled hydraulic testing machine with a radial confining chamber, and the dynamic tests with a special split Hopkinson pressure bar device with axial and radial confining pressure chambers. The results show that the rock strength increases significantly with strain rate and confining pressure. At confinements below 20 MPa, the strength of the material increases faster at the higher strain rate, but at confinements higher than this, the effect of confining pressure is stronger at the lower strain rate. The strain rate sensitivity increases when even a small confining pressure is applied. However, the rate sensitivity remains rather constant when the confining pressure is increased above 10 MPa. The parameters of the Hoek–Brown model and an alternative power-law model were calibrated for low and high rate data. Also, the fracture behavior of the rock was found to be strongly dependent on strain rate and confining pressure. At the low strain rate, the samples fail by axial splitting in the unconfined tests, whereas the dynamic unconfined tests result in a complete pulverization of the samples. At high confining pressures the fracture behavior is shear fracture for both studied strain rates. |
---|---|
AbstractList | Understanding the influence of hydrostatic pressure and loading rate on the strength and fracture behavior of rocks is very important for the development of deep drilling technology. This paper presents a systematic study on the mechanical properties and behavior of Kuru Gray granite at confining pressures up to 225 MPa and at strain rates of 10 super(-6) s super(-1) and 600 s super(-1). The low strain rate compression tests were carried out with a servo-controlled hydraulic testing machine with a radial confining chamber, and the dynamic tests with a special split Hopkinson pressure bar device with axial and radial confining pressure chambers. The results show that the rock strength increases significantly with strain rate and confining pressure. At confinements below 20 MPa, the strength of the material increases faster at the higher strain rate, but at confinements higher than this, the effect of confining pressure is stronger at the lower strain rate. The strain rate sensitivity increases when even a small confining pressure is applied. However, the rate sensitivity remains rather constant when the confining pressure is increased above 10 MPa. The parameters of the Hoek-Brown model and an alternative power-law model were calibrated for low and high rate data. Also, the fracture behavior of the rock was found to be strongly dependent on strain rate and confining pressure. At the low strain rate, the samples fail by axial splitting in the unconfined tests, whereas the dynamic unconfined tests result in a complete pulverization of the samples. At high confining pressures the fracture behavior is shear fracture for both studied strain rates. •Dynamic compression testing at confining pressures up to 225 MPa.•Effects of confining pressure and strain rate on rock strength are discussed.•Strain rate sensitivity is influenced by the confinement only at low pressures. Understanding the influence of hydrostatic pressure and loading rate on the strength and fracture behavior of rocks is very important for the development of deep drilling technology. This paper presents a systematic study on the mechanical properties and behavior of Kuru Gray granite at confining pressures up to 225 MPa and at strain rates of 10−6 s−1 and 600 s−1. The low strain rate compression tests were carried out with a servo-controlled hydraulic testing machine with a radial confining chamber, and the dynamic tests with a special split Hopkinson pressure bar device with axial and radial confining pressure chambers. The results show that the rock strength increases significantly with strain rate and confining pressure. At confinements below 20 MPa, the strength of the material increases faster at the higher strain rate, but at confinements higher than this, the effect of confining pressure is stronger at the lower strain rate. The strain rate sensitivity increases when even a small confining pressure is applied. However, the rate sensitivity remains rather constant when the confining pressure is increased above 10 MPa. The parameters of the Hoek–Brown model and an alternative power-law model were calibrated for low and high rate data. Also, the fracture behavior of the rock was found to be strongly dependent on strain rate and confining pressure. At the low strain rate, the samples fail by axial splitting in the unconfined tests, whereas the dynamic unconfined tests result in a complete pulverization of the samples. At high confining pressures the fracture behavior is shear fracture for both studied strain rates. |
Author | Fourmeau, M. Hokka, M. Kane, A. Kuokkala, V.-T. Li, C.C. Chen, W.W. Tkalich, D. Hoang, N.-H. Black, J. |
Author_xml | – sequence: 1 givenname: M. surname: Hokka fullname: Hokka, M. email: mikko.hokka@tut.fi organization: Department of Materials Science, Tampere University of Technology, Tampere, Finland – sequence: 2 givenname: J. surname: Black fullname: Black, J. organization: School of Aeronautics & Astronautics and Materials Engineering, Purdue University, West Lafayette, IN, USA – sequence: 3 givenname: D. surname: Tkalich fullname: Tkalich, D. organization: Department of Geology and Mineral Resources Engineering, Norwegian University of Science and Technology, Trondheim, Norway – sequence: 4 givenname: M. surname: Fourmeau fullname: Fourmeau, M. organization: Materials and Chemistry, Materials and Nanotechnology, SINTEF, Trondheim, Norway – sequence: 5 givenname: A. surname: Kane fullname: Kane, A. organization: Materials and Chemistry, Materials and Nanotechnology, SINTEF, Trondheim, Norway – sequence: 6 givenname: N.-H. surname: Hoang fullname: Hoang, N.-H. organization: Materials and Chemistry, Materials and Nanotechnology, SINTEF, Trondheim, Norway – sequence: 7 givenname: C.C. surname: Li fullname: Li, C.C. organization: Department of Geology and Mineral Resources Engineering, Norwegian University of Science and Technology, Trondheim, Norway – sequence: 8 givenname: W.W. surname: Chen fullname: Chen, W.W. organization: School of Aeronautics & Astronautics and Materials Engineering, Purdue University, West Lafayette, IN, USA – sequence: 9 givenname: V.-T. surname: Kuokkala fullname: Kuokkala, V.-T. organization: Department of Materials Science, Tampere University of Technology, Tampere, Finland |
BookMark | eNqFkEtLBDEQhIMouD7-guToZdbOZDIP8KCILxS8KOgpZJKeNctusiaZBf-9WVcvXoSCprur6vAdkF3nHRJywmDKgNVn86md2-UK3Wxa5n0KLAt2yIS1TVdwAd0umUDDq6Kp-Os-OYhxDsAaEDAhb9fDgDpF6gcaU1DW0aASUuUM1d4N1lk3o6uAMY4BqXc0vWP-LL9Pdo20x3e1tj5sGh7GMNJZUM4mPCJ7g1pEPP6Zh-Tl5vr56q54fLq9v7p8LDSvRCq0Ylzrvq6gbGrRcC0MG7q-Rw6sNNxgW_YApqkqAQar7Kvbqjai150SQ93xQ3K67V0F_zFiTHJpo8bFQjn0Y5SsZTWIlndlttZbqw4-xoCDXAW7VOFTMpAblnIuf1nKDUsJLAty8PxPUNukkvVug2zxf_xiG8fMYW0xyKgtOo3GhgxfGm__q_gCOCmXtQ |
CitedBy_id | crossref_primary_10_1061__ASCE_GM_1943_5622_0002438 crossref_primary_10_1016_j_compgeo_2017_03_004 crossref_primary_10_1007_s00603_021_02707_5 crossref_primary_10_1016_j_ijrmms_2022_105106 crossref_primary_10_1016_j_ijmst_2023_03_002 crossref_primary_10_3389_feart_2022_960812 crossref_primary_10_3390_ma16083235 crossref_primary_10_1016_j_gete_2024_100592 crossref_primary_10_3390_ma15228264 crossref_primary_10_1007_s00603_018_1691_y crossref_primary_10_1016_j_ijmecsci_2021_106755 crossref_primary_10_1016_j_petrol_2022_110758 crossref_primary_10_1061__ASCE_GM_1943_5622_0001583 crossref_primary_10_1016_j_geoen_2024_212842 crossref_primary_10_1038_s41598_024_70155_6 crossref_primary_10_3390_app14041368 crossref_primary_10_1002_dug2_12063 crossref_primary_10_1016_j_compgeo_2024_106502 crossref_primary_10_1016_j_enggeo_2022_106873 crossref_primary_10_1016_j_tafmec_2022_103633 crossref_primary_10_1016_j_oceaneng_2024_117759 crossref_primary_10_1155_2019_7349584 crossref_primary_10_1016_j_ijmecsci_2022_107162 crossref_primary_10_1016_j_ijrmms_2020_104260 crossref_primary_10_1016_j_jobe_2023_106023 crossref_primary_10_1007_s41939_024_00407_5 crossref_primary_10_1016_j_ijrmms_2020_104266 crossref_primary_10_1016_j_ijrmms_2020_104420 crossref_primary_10_1016_j_mineng_2021_106995 crossref_primary_10_1016_j_conbuildmat_2022_127396 crossref_primary_10_1016_j_soildyn_2019_105927 crossref_primary_10_3389_feart_2021_728366 crossref_primary_10_3390_sym17030372 crossref_primary_10_1061__ASCE_MT_1943_5533_0002229 crossref_primary_10_1016_j_compgeo_2024_106479 crossref_primary_10_3390_ma15165589 crossref_primary_10_1007_s11340_017_0344_5 crossref_primary_10_1016_j_jngse_2018_08_001 crossref_primary_10_1061__ASCE_MT_1943_5533_0003725 crossref_primary_10_1016_j_ijrmms_2023_105523 crossref_primary_10_1016_j_geoen_2024_213361 crossref_primary_10_1007_s00603_024_04160_6 crossref_primary_10_1007_s00603_020_02165_5 crossref_primary_10_1016_j_tust_2017_01_016 crossref_primary_10_1061__ASCE_EM_1943_7889_0001627 crossref_primary_10_1007_s40948_022_00487_y crossref_primary_10_1016_j_engfracmech_2023_109150 crossref_primary_10_1016_j_ijmecsci_2020_105520 crossref_primary_10_1007_s00603_018_1594_y crossref_primary_10_1016_j_ijrmms_2018_05_008 crossref_primary_10_1016_j_geoen_2025_213838 crossref_primary_10_2113_2022_1790417 crossref_primary_10_1007_s40948_023_00589_1 crossref_primary_10_1016_j_rockmb_2024_100169 crossref_primary_10_1061_IJGNAI_GMENG_10144 crossref_primary_10_1520_JTE20170740 crossref_primary_10_1016_j_ijrmms_2024_105894 crossref_primary_10_1016_j_conbuildmat_2022_129157 crossref_primary_10_1142_S0218348X20500061 crossref_primary_10_3389_feart_2022_1112249 crossref_primary_10_1016_j_ijrmms_2022_105172 crossref_primary_10_1016_j_ijrmms_2023_105590 crossref_primary_10_1098_rsta_2016_0179 crossref_primary_10_1155_2024_4400608 crossref_primary_10_3390_app142210486 crossref_primary_10_1080_19648189_2023_2210633 crossref_primary_10_1155_2021_6677077 crossref_primary_10_1080_19648189_2020_1816217 crossref_primary_10_1007_s13369_022_06989_x crossref_primary_10_1007_s40870_016_0063_5 crossref_primary_10_1016_j_ijimpeng_2019_103367 crossref_primary_10_1016_j_jrmge_2024_02_035 crossref_primary_10_1016_j_tafmec_2023_104246 crossref_primary_10_1007_s10704_023_00747_2 crossref_primary_10_1155_2018_2861537 crossref_primary_10_1007_s00603_020_02202_3 crossref_primary_10_1007_s40948_023_00593_5 crossref_primary_10_1098_rsta_2016_0176 crossref_primary_10_1007_s00603_024_03948_w crossref_primary_10_1007_s40948_021_00335_5 crossref_primary_10_1007_s10064_022_02774_0 crossref_primary_10_1520_GTJ20180270 crossref_primary_10_1016_j_jrmge_2021_09_006 crossref_primary_10_1007_s00603_022_02772_4 crossref_primary_10_1007_s00603_024_04017_y crossref_primary_10_1016_j_compgeo_2018_02_006 crossref_primary_10_3390_ma15227890 crossref_primary_10_1007_s40571_023_00589_8 crossref_primary_10_1016_j_geothermics_2020_101828 crossref_primary_10_1016_j_ijrmms_2016_05_012 crossref_primary_10_1061__ASCE_GM_1943_5622_0002196 crossref_primary_10_1016_j_ijrmms_2020_104448 crossref_primary_10_1007_s00603_019_01807_7 crossref_primary_10_1016_j_ijrmms_2023_105538 crossref_primary_10_1080_19648189_2022_2136248 crossref_primary_10_1016_j_tafmec_2024_104416 crossref_primary_10_1016_j_ijimpeng_2021_103955 crossref_primary_10_1016_j_tafmec_2023_103975 crossref_primary_10_1371_journal_pone_0289022 crossref_primary_10_1016_j_ijmst_2020_06_004 crossref_primary_10_1016_j_compgeo_2020_103846 crossref_primary_10_1002_ese3_1062 crossref_primary_10_1016_j_tafmec_2022_103431 crossref_primary_10_1007_s40948_024_00766_w crossref_primary_10_1016_j_ijrmms_2023_105415 crossref_primary_10_1520_GTJ20170237 crossref_primary_10_1007_s10706_022_02079_9 crossref_primary_10_1016_j_ijrmms_2021_104961 crossref_primary_10_1007_s11340_023_00942_1 crossref_primary_10_1016_j_ijmecsci_2019_105219 crossref_primary_10_1016_j_enggeo_2023_107357 crossref_primary_10_1016_j_petrol_2020_107666 crossref_primary_10_1155_2018_1387390 crossref_primary_10_1007_s00603_023_03696_3 crossref_primary_10_3390_su152014796 crossref_primary_10_1007_s00024_024_03641_7 crossref_primary_10_1007_s00603_018_1713_9 crossref_primary_10_1016_j_engfailanal_2023_107344 crossref_primary_10_1016_j_ijmst_2017_11_006 crossref_primary_10_1007_s12517_021_08395_3 crossref_primary_10_1007_s40948_020_00183_9 crossref_primary_10_3989_aeamer_2023_1_10 crossref_primary_10_1155_2020_8835355 crossref_primary_10_1016_j_conbuildmat_2020_119638 crossref_primary_10_1007_s40571_021_00434_w crossref_primary_10_1007_s10064_023_03326_w crossref_primary_10_1016_j_tust_2021_103968 crossref_primary_10_1016_j_fuel_2023_130579 crossref_primary_10_1007_s00603_021_02535_7 crossref_primary_10_1016_j_compgeo_2024_106483 crossref_primary_10_1002_nag_3896 crossref_primary_10_1016_j_deepre_2024_100020 crossref_primary_10_1007_s00603_022_03015_2 crossref_primary_10_1007_s11771_018_3889_2 crossref_primary_10_3390_app122312073 crossref_primary_10_1007_s13369_021_05504_y crossref_primary_10_1016_j_ijsolstr_2017_08_034 crossref_primary_10_1007_s00603_023_03451_8 crossref_primary_10_1007_s12517_022_09749_1 crossref_primary_10_1016_j_ijmst_2021_06_003 crossref_primary_10_1007_s11340_024_01063_z crossref_primary_10_1016_j_enggeo_2016_12_008 crossref_primary_10_3390_math10214082 crossref_primary_10_1007_s00603_022_03205_y crossref_primary_10_1007_s11340_022_00827_9 crossref_primary_10_1016_j_conbuildmat_2017_08_090 crossref_primary_10_1016_j_tafmec_2022_103570 crossref_primary_10_1016_j_engfracmech_2024_110377 crossref_primary_10_1007_s00603_020_02302_0 crossref_primary_10_1007_s11012_023_01669_y crossref_primary_10_1088_1755_1315_1124_1_012066 crossref_primary_10_1007_s00603_023_03560_4 crossref_primary_10_1007_s10064_020_01914_8 crossref_primary_10_1038_s41598_022_16299_9 crossref_primary_10_1007_s00603_018_1523_0 crossref_primary_10_1007_s40948_024_00876_5 crossref_primary_10_1002_ese3_536 crossref_primary_10_1061__ASCE_GM_1943_5622_0001593 crossref_primary_10_1016_j_ijimpeng_2021_103946 crossref_primary_10_1061__ASCE_EM_1943_7889_0002100 crossref_primary_10_1007_s00603_022_02949_x |
Cites_doi | 10.1016/S0040-1951(99)00205-X 10.1007/s100640050017 10.1016/S1365-1609(00)00047-2 10.1088/0957-0233/21/10/105704 10.1016/0148-9062(93)90041-B 10.1007/BF02330054 10.1016/S1365-1609(03)00072-8 10.1016/S1365-1609(99)00120-3 10.1016/j.ijrmms.2012.12.035 10.1063/1.329934 10.1002/pen.760241009 10.1016/j.mechmat.2014.12.006 10.1007/BF02320747 10.1016/S1365-1609(97)00138-X 10.1016/j.ijrmms.2015.03.010 10.1016/S1365-1609(00)00015-0 10.1016/S1365-1609(00)00049-6 10.1063/1.3271538 10.1016/j.engfracmech.2015.02.021 10.1111/j.1151-2916.1994.tb06987.x 10.1016/j.ijimpeng.2009.04.008 10.1016/j.ijrmms.2007.09.013 10.1088/0370-1301/62/11/302 10.1016/j.ijimpeng.2012.10.008 10.1016/0019-1035(91)90040-Z 10.1016/j.ijimpeng.2014.05.006 10.1016/j.engfracmech.2011.06.022 10.1016/j.ijimpeng.2007.04.007 10.1016/j.engfracmech.2011.10.006 10.1016/j.mspro.2014.06.114 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.ijimpeng.2016.01.010 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3509 |
EndPage | 193 |
ExternalDocumentID | 10_1016_j_ijimpeng_2016_01_010 S0734743X16300227 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c345t-ca13ccb640276573c5d1f9bbe3012d3de82b00d74450de46406846d5bc9a5f693 |
IEDL.DBID | .~1 |
ISSN | 0734-743X |
IngestDate | Fri Jul 11 13:51:00 EDT 2025 Tue Jul 01 03:11:39 EDT 2025 Thu Apr 24 23:04:23 EDT 2025 Fri Feb 23 02:28:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Confining pressure Split Hopkinson pressure bar Granite rock Triaxial loading High strain rate |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-ca13ccb640276573c5d1f9bbe3012d3de82b00d74450de46406846d5bc9a5f693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1816058392 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1816058392 crossref_primary_10_1016_j_ijimpeng_2016_01_010 crossref_citationtrail_10_1016_j_ijimpeng_2016_01_010 elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2016_01_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2016 2016-05-00 20160501 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: May 2016 |
PublicationDecade | 2010 |
PublicationTitle | International journal of impact engineering |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kabir, Chen (bib0130) 2009; 80 Qi, Wang, Qian (bib0150) 2009; 36 Hawkings (bib0145) 1998; 57 Doll (bib0160) 1984; 24 Hogan, Rogers, Spray, Boonsue (bib0065) 2012; 79 Zhao (bib0090) 2000; 37 Hoek, Brown (bib0190) 1980 Kolsky (bib0105) 1949; 62 Li, Zhao, Li (bib0080) 1999; 36 Dai, Xia (bib0010) 2013; 60 Liang, Wu, Li, Xin (bib0060) 2015; 76 Liu, Xu (bib0025) 2015; 82 Aubertin, Li, Simon (bib0140) 2000; 37 Dai, Xia, Zheng, Wang (bib0055) 2011; 78 Christensen, Swanson, Brown (bib0110) 1972; 12 Lockner (bib0155) 1993; 30 Hoek, Brown (bib0195) 1980; 106 Saksala, Hokka, Kuokkala, Mäkinen (bib0045) 2013; 59 Kawakata, Cho, Yanagidani, Shimada (bib0075) 1997; 34 Fourmeau, Gomon, Vacher, Hokka, Kane, Kuokkala (bib0050) 2014; 3 Gao, Yao, Xia, Li (bib0015) 2015; 138 Cho, Ogata, Kaneko (bib0030) 2003; 40 Martin, Kabir, Chen (bib0125) 2013; 54 Saksala, Gomon, Hokka, Kuokkala (bib0040) 2013 Gray (bib0100) 2000 Brown (bib0095) 1981 Nakamura, Fujiwara (bib0175) 1991; 92 Grady, Benson (bib0185) 1983; 23 Xia, Nasseri, Mohanty, Lu, Chen, Luo (bib0020) 2008; 45 Ravichandran, Subhash (bib0135) 1994; 77 Frew, Akers, Chen, Green (bib0115) 2010; 21 Zhao, Li (bib0085) 2000; 37 Forquin, Gary, Gatuingt (bib0120) 2008; 35 Kawakata, Cho, Kiyama, Yanagidani, Kusunose, Shimada (bib0070) 1999; 313 Saksala, Gomon, Hokka, Kuokkala (bib0035) 2014; 72 Grady (bib0180) 1982; 53 Mott (bib0165) 1943 Mott (bib0170) 1947 Mott (10.1016/j.ijimpeng.2016.01.010_bib0165) 1943 Kabir (10.1016/j.ijimpeng.2016.01.010_bib0130) 2009; 80 Hawkings (10.1016/j.ijimpeng.2016.01.010_bib0145) 1998; 57 Hoek (10.1016/j.ijimpeng.2016.01.010_bib0195) 1980; 106 Gao (10.1016/j.ijimpeng.2016.01.010_bib0015) 2015; 138 Grady (10.1016/j.ijimpeng.2016.01.010_bib0180) 1982; 53 Frew (10.1016/j.ijimpeng.2016.01.010_bib0115) 2010; 21 Hogan (10.1016/j.ijimpeng.2016.01.010_bib0065) 2012; 79 Mott (10.1016/j.ijimpeng.2016.01.010_bib0170) 1947 Cho (10.1016/j.ijimpeng.2016.01.010_bib0030) 2003; 40 Qi (10.1016/j.ijimpeng.2016.01.010_bib0150) 2009; 36 Ravichandran (10.1016/j.ijimpeng.2016.01.010_bib0135) 1994; 77 Fourmeau (10.1016/j.ijimpeng.2016.01.010_bib0050) 2014; 3 Liu (10.1016/j.ijimpeng.2016.01.010_bib0025) 2015; 82 Li (10.1016/j.ijimpeng.2016.01.010_bib0080) 1999; 36 Aubertin (10.1016/j.ijimpeng.2016.01.010_bib0140) 2000; 37 Saksala (10.1016/j.ijimpeng.2016.01.010_bib0040) 2013 Zhao (10.1016/j.ijimpeng.2016.01.010_bib0085) 2000; 37 Brown (10.1016/j.ijimpeng.2016.01.010_bib0095) 1981 Xia (10.1016/j.ijimpeng.2016.01.010_bib0020) 2008; 45 Liang (10.1016/j.ijimpeng.2016.01.010_bib0060) 2015; 76 Kawakata (10.1016/j.ijimpeng.2016.01.010_bib0070) 1999; 313 Dai (10.1016/j.ijimpeng.2016.01.010_bib0010) 2013; 60 Gray (10.1016/j.ijimpeng.2016.01.010_bib0100) 2000 Forquin (10.1016/j.ijimpeng.2016.01.010_bib0120) 2008; 35 Grady (10.1016/j.ijimpeng.2016.01.010_bib0185) 1983; 23 Dai (10.1016/j.ijimpeng.2016.01.010_bib0055) 2011; 78 Kolsky (10.1016/j.ijimpeng.2016.01.010_bib0105) 1949; 62 Hoek (10.1016/j.ijimpeng.2016.01.010_bib0190) 1980 Zhao (10.1016/j.ijimpeng.2016.01.010_bib0090) 2000; 37 Lockner (10.1016/j.ijimpeng.2016.01.010_bib0155) 1993; 30 Christensen (10.1016/j.ijimpeng.2016.01.010_bib0110) 1972; 12 Kawakata (10.1016/j.ijimpeng.2016.01.010_bib0075) 1997; 34 Saksala (10.1016/j.ijimpeng.2016.01.010_bib0035) 2014; 72 Martin (10.1016/j.ijimpeng.2016.01.010_bib0125) 2013; 54 Nakamura (10.1016/j.ijimpeng.2016.01.010_bib0175) 1991; 92 Saksala (10.1016/j.ijimpeng.2016.01.010_bib0045) 2013; 59 Doll (10.1016/j.ijimpeng.2016.01.010_bib0160) 1984; 24 |
References_xml | – volume: 37 start-page: 1115 year: 2000 end-page: 1121 ident: bib0090 article-title: Applicability of Mohr–Coulomb and Hoek–Brown strenght criteria to the dynamic strength of brittle rock publication-title: Int J Rock Mech Min – year: 1947 ident: bib0170 article-title: Fragmentation of shell cases – volume: 92 start-page: 132:146 year: 1991 ident: bib0175 article-title: Velocity distribution of fragments formed in a simulated collisional disruptions publication-title: Icarus – volume: 313 start-page: 293 year: 1999 end-page: 305 ident: bib0070 article-title: Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan publication-title: Tectonophysics – volume: 45 start-page: 879 year: 2008 end-page: 887 ident: bib0020 article-title: Effects of microstructures on dynamic compression of Barre granite publication-title: Int J Rock Mech Min – volume: 80 year: 2009 ident: bib0130 article-title: Measurement of specimen dimensions and dynamic pressure in dynamic triaxial experiments publication-title: Rev Sci Instrum – volume: 23 start-page: 383 year: 1983 end-page: 400 ident: bib0185 article-title: Fragmentation of metal rings by electromagnetic loading publication-title: Exp Mech – volume: 77 start-page: 263 year: 1994 end-page: 267 ident: bib0135 article-title: Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar publication-title: J Am Ceram Soc – volume: 35 start-page: 425 year: 2008 end-page: 446 ident: bib0120 article-title: A testing technique for concrete under confinement at high rates of strain publication-title: Int J Impact Eng – volume: 36 start-page: 1057 year: 1999 end-page: 1063 ident: bib0080 article-title: Triaxial testing on a granite at different strain rates and confining pressures publication-title: Int J Rock Mech Min – volume: 24 start-page: 798 year: 1984 end-page: 808 ident: bib0160 article-title: Kinetics of the crack tip craze zone before and during fracture publication-title: Polym Eng Sci – volume: 34 year: 1997 ident: bib0075 article-title: The observations of faulting in westerly granite under triaxial compression by X-ray CT scan publication-title: Int J Rock Mech Min – volume: 37 start-page: 861 year: 2000 end-page: 866 ident: bib0085 article-title: Experimental determination of dynamic tensile properties of a granite publication-title: Int J Rock Mech Min – volume: 59 year: 2013 ident: bib0045 article-title: Numerical modeling and experimentation of dynamic Brazilian disc test on Kuru granite publication-title: Int J Rock Mech Min – year: 1980 ident: bib0190 article-title: Underground excavations in rock – volume: 12 start-page: 508 year: 1972 end-page: 513 ident: bib0110 article-title: Split Hopkinson pressure bar test on rocks under confining pressure publication-title: Exp Mech – volume: 53 start-page: 322 year: 1982 end-page: 325 ident: bib0180 article-title: Local inertia effects in dynamic fragmentation publication-title: J Appl Phys – volume: 82 start-page: 28 year: 2015 end-page: 38 ident: bib0025 article-title: Effect of strain rate on the dynamic compressive mechanical behaviors of rock materials subjected to high temperatures publication-title: Mech Mater – volume: 36 start-page: 1355 year: 2009 end-page: 1364 ident: bib0150 article-title: Strain–rate effects on the strength and fragmentation size of rocks publication-title: Int J Impact Eng – volume: 106 start-page: 1013 year: 1980 end-page: 1035 ident: bib0195 article-title: Empirical strength criterion for rock masses publication-title: J Geotech Geoenviron – volume: 54 start-page: 51 year: 2013 end-page: 63 ident: bib0125 article-title: Undrained high-pressure and high strain–rate response of dry sand under triaxial loading publication-title: Int J Impact Eng – year: 1943 ident: bib0165 article-title: A theory of the fragmentation of shells and bombs – volume: 21 year: 2010 ident: bib0115 article-title: Development of a dynamic triaxial Kolsky bar publication-title: Meas Sci Technol – volume: 37 start-page: 1169 year: 2000 end-page: 1193 ident: bib0140 article-title: A multiaxial stress criterion for short- and long-term strength of isotropic rock media publication-title: Int J Rock Mech Min – volume: 40 start-page: 763 year: 2003 end-page: 777 ident: bib0030 article-title: Strain–rate dependency of the dynamic tensile strength of rock publication-title: Int J Rock Mech Min – volume: 62 start-page: 676 year: 1949 end-page: 700 ident: bib0105 article-title: An investigation of the mechanical properties of materials at very high rates of loading publication-title: Proc Phys Soc Lond B – volume: 76 start-page: 146 year: 2015 end-page: 154 ident: bib0060 article-title: Effect of strain rate on the fracture characteristics and mesoscopic failure mechanisms of granite publication-title: Int J Rock Mech Min – volume: 79 start-page: 103 year: 2012 end-page: 125 ident: bib0065 article-title: Dynamic fragmentation of granite for impact energies of 6-28J publication-title: Eng Fract Mech – volume: 30 start-page: 883 year: 1993 end-page: 899 ident: bib0155 article-title: The role of acoustic emission in the study of rock fracture publication-title: Int J Rock Mech Min – volume: 72 start-page: 55 year: 2014 end-page: 66 ident: bib0035 article-title: Numerical and experimental study of percussive drilling with a triple-button bit on Kuru granite publication-title: Int J Impact Eng – volume: 3 start-page: 691 year: 2014 end-page: 697 ident: bib0050 article-title: Application of DIC technique for studies of Kuru granite rock under static and dynamic loading publication-title: Procedia Mater Sci – volume: 60 start-page: 57 year: 2013 end-page: 65 ident: bib0010 article-title: Laboratory measurements of the rate dependence of the fracture toughness anisotropy of Barre granite publication-title: Int J Rock Mech Min – year: 2000 ident: bib0100 article-title: Classic split-Hopkinson pressure bar technique publication-title: ASM handbook mechanical testing and evaluation – volume: 138 start-page: 146 year: 2015 end-page: 155 ident: bib0015 article-title: Investigation of the rate dependence of fracture propagation in rocks using digital image correlation method publication-title: Eng Fract Mech – year: 2013 ident: bib0040 article-title: Numerical modeling and experimentation of dynamic indentation with single and triple indenters on Kuru granite publication-title: Rock dynamics and applications – volume: 78 start-page: 2633 year: 2011 end-page: 2644 ident: bib0055 article-title: Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimens publication-title: Eng Fract Mech – year: 1981 ident: bib0095 article-title: ISRM suggested methods, rock characterization testing & monitoring – volume: 57 start-page: 17 year: 1998 end-page: 30 ident: bib0145 article-title: Aspects of rock strength publication-title: B Eng Geol Environ – volume: 59 year: 2013 ident: 10.1016/j.ijimpeng.2016.01.010_bib0045 article-title: Numerical modeling and experimentation of dynamic Brazilian disc test on Kuru granite publication-title: Int J Rock Mech Min – volume: 313 start-page: 293 year: 1999 ident: 10.1016/j.ijimpeng.2016.01.010_bib0070 article-title: Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan publication-title: Tectonophysics doi: 10.1016/S0040-1951(99)00205-X – volume: 57 start-page: 17 year: 1998 ident: 10.1016/j.ijimpeng.2016.01.010_bib0145 article-title: Aspects of rock strength publication-title: B Eng Geol Environ doi: 10.1007/s100640050017 – volume: 37 start-page: 1169 year: 2000 ident: 10.1016/j.ijimpeng.2016.01.010_bib0140 article-title: A multiaxial stress criterion for short- and long-term strength of isotropic rock media publication-title: Int J Rock Mech Min doi: 10.1016/S1365-1609(00)00047-2 – volume: 21 year: 2010 ident: 10.1016/j.ijimpeng.2016.01.010_bib0115 article-title: Development of a dynamic triaxial Kolsky bar publication-title: Meas Sci Technol doi: 10.1088/0957-0233/21/10/105704 – volume: 30 start-page: 883 year: 1993 ident: 10.1016/j.ijimpeng.2016.01.010_bib0155 article-title: The role of acoustic emission in the study of rock fracture publication-title: Int J Rock Mech Min doi: 10.1016/0148-9062(93)90041-B – volume: 23 start-page: 383 year: 1983 ident: 10.1016/j.ijimpeng.2016.01.010_bib0185 article-title: Fragmentation of metal rings by electromagnetic loading publication-title: Exp Mech doi: 10.1007/BF02330054 – year: 1980 ident: 10.1016/j.ijimpeng.2016.01.010_bib0190 – volume: 40 start-page: 763 year: 2003 ident: 10.1016/j.ijimpeng.2016.01.010_bib0030 article-title: Strain–rate dependency of the dynamic tensile strength of rock publication-title: Int J Rock Mech Min doi: 10.1016/S1365-1609(03)00072-8 – volume: 36 start-page: 1057 year: 1999 ident: 10.1016/j.ijimpeng.2016.01.010_bib0080 article-title: Triaxial testing on a granite at different strain rates and confining pressures publication-title: Int J Rock Mech Min doi: 10.1016/S1365-1609(99)00120-3 – year: 1943 ident: 10.1016/j.ijimpeng.2016.01.010_bib0165 – volume: 60 start-page: 57 year: 2013 ident: 10.1016/j.ijimpeng.2016.01.010_bib0010 article-title: Laboratory measurements of the rate dependence of the fracture toughness anisotropy of Barre granite publication-title: Int J Rock Mech Min doi: 10.1016/j.ijrmms.2012.12.035 – volume: 53 start-page: 322 year: 1982 ident: 10.1016/j.ijimpeng.2016.01.010_bib0180 article-title: Local inertia effects in dynamic fragmentation publication-title: J Appl Phys doi: 10.1063/1.329934 – volume: 24 start-page: 798 year: 1984 ident: 10.1016/j.ijimpeng.2016.01.010_bib0160 article-title: Kinetics of the crack tip craze zone before and during fracture publication-title: Polym Eng Sci doi: 10.1002/pen.760241009 – volume: 82 start-page: 28 year: 2015 ident: 10.1016/j.ijimpeng.2016.01.010_bib0025 article-title: Effect of strain rate on the dynamic compressive mechanical behaviors of rock materials subjected to high temperatures publication-title: Mech Mater doi: 10.1016/j.mechmat.2014.12.006 – volume: 12 start-page: 508 year: 1972 ident: 10.1016/j.ijimpeng.2016.01.010_bib0110 article-title: Split Hopkinson pressure bar test on rocks under confining pressure publication-title: Exp Mech doi: 10.1007/BF02320747 – volume: 34 year: 1997 ident: 10.1016/j.ijimpeng.2016.01.010_bib0075 article-title: The observations of faulting in westerly granite under triaxial compression by X-ray CT scan publication-title: Int J Rock Mech Min doi: 10.1016/S1365-1609(97)00138-X – volume: 76 start-page: 146 year: 2015 ident: 10.1016/j.ijimpeng.2016.01.010_bib0060 article-title: Effect of strain rate on the fracture characteristics and mesoscopic failure mechanisms of granite publication-title: Int J Rock Mech Min doi: 10.1016/j.ijrmms.2015.03.010 – volume: 37 start-page: 861 year: 2000 ident: 10.1016/j.ijimpeng.2016.01.010_bib0085 article-title: Experimental determination of dynamic tensile properties of a granite publication-title: Int J Rock Mech Min doi: 10.1016/S1365-1609(00)00015-0 – volume: 106 start-page: 1013 year: 1980 ident: 10.1016/j.ijimpeng.2016.01.010_bib0195 article-title: Empirical strength criterion for rock masses publication-title: J Geotech Geoenviron – volume: 37 start-page: 1115 year: 2000 ident: 10.1016/j.ijimpeng.2016.01.010_bib0090 article-title: Applicability of Mohr–Coulomb and Hoek–Brown strenght criteria to the dynamic strength of brittle rock publication-title: Int J Rock Mech Min doi: 10.1016/S1365-1609(00)00049-6 – year: 2013 ident: 10.1016/j.ijimpeng.2016.01.010_bib0040 article-title: Numerical modeling and experimentation of dynamic indentation with single and triple indenters on Kuru granite – year: 1981 ident: 10.1016/j.ijimpeng.2016.01.010_bib0095 – volume: 80 issue: 12 year: 2009 ident: 10.1016/j.ijimpeng.2016.01.010_bib0130 article-title: Measurement of specimen dimensions and dynamic pressure in dynamic triaxial experiments publication-title: Rev Sci Instrum doi: 10.1063/1.3271538 – volume: 138 start-page: 146 year: 2015 ident: 10.1016/j.ijimpeng.2016.01.010_bib0015 article-title: Investigation of the rate dependence of fracture propagation in rocks using digital image correlation method publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2015.02.021 – volume: 77 start-page: 263 year: 1994 ident: 10.1016/j.ijimpeng.2016.01.010_bib0135 article-title: Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar publication-title: J Am Ceram Soc doi: 10.1111/j.1151-2916.1994.tb06987.x – volume: 36 start-page: 1355 year: 2009 ident: 10.1016/j.ijimpeng.2016.01.010_bib0150 article-title: Strain–rate effects on the strength and fragmentation size of rocks publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2009.04.008 – volume: 45 start-page: 879 year: 2008 ident: 10.1016/j.ijimpeng.2016.01.010_bib0020 article-title: Effects of microstructures on dynamic compression of Barre granite publication-title: Int J Rock Mech Min doi: 10.1016/j.ijrmms.2007.09.013 – volume: 62 start-page: 676 year: 1949 ident: 10.1016/j.ijimpeng.2016.01.010_bib0105 article-title: An investigation of the mechanical properties of materials at very high rates of loading publication-title: Proc Phys Soc Lond B doi: 10.1088/0370-1301/62/11/302 – volume: 54 start-page: 51 year: 2013 ident: 10.1016/j.ijimpeng.2016.01.010_bib0125 article-title: Undrained high-pressure and high strain–rate response of dry sand under triaxial loading publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2012.10.008 – volume: 92 start-page: 132:146 year: 1991 ident: 10.1016/j.ijimpeng.2016.01.010_bib0175 article-title: Velocity distribution of fragments formed in a simulated collisional disruptions publication-title: Icarus doi: 10.1016/0019-1035(91)90040-Z – volume: 72 start-page: 55 year: 2014 ident: 10.1016/j.ijimpeng.2016.01.010_bib0035 article-title: Numerical and experimental study of percussive drilling with a triple-button bit on Kuru granite publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2014.05.006 – year: 2000 ident: 10.1016/j.ijimpeng.2016.01.010_bib0100 article-title: Classic split-Hopkinson pressure bar technique – volume: 78 start-page: 2633 year: 2011 ident: 10.1016/j.ijimpeng.2016.01.010_bib0055 article-title: Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimens publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2011.06.022 – year: 1947 ident: 10.1016/j.ijimpeng.2016.01.010_bib0170 – volume: 35 start-page: 425 issue: 6 year: 2008 ident: 10.1016/j.ijimpeng.2016.01.010_bib0120 article-title: A testing technique for concrete under confinement at high rates of strain publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2007.04.007 – volume: 79 start-page: 103 year: 2012 ident: 10.1016/j.ijimpeng.2016.01.010_bib0065 article-title: Dynamic fragmentation of granite for impact energies of 6-28J publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2011.10.006 – volume: 3 start-page: 691 year: 2014 ident: 10.1016/j.ijimpeng.2016.01.010_bib0050 article-title: Application of DIC technique for studies of Kuru granite rock under static and dynamic loading publication-title: Procedia Mater Sci doi: 10.1016/j.mspro.2014.06.114 |
SSID | ssj0017050 |
Score | 2.5428228 |
Snippet | •Dynamic compression testing at confining pressures up to 225 MPa.•Effects of confining pressure and strain rate on rock strength are discussed.•Strain rate... Understanding the influence of hydrostatic pressure and loading rate on the strength and fracture behavior of rocks is very important for the development of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 183 |
SubjectTerms | Confinement Confining Confining pressure Constants Fracture mechanics Granite Granite rock High strain rate Rocks Split Hopkinson pressure bar Strain rate Strength Triaxial loading |
Title | Effects of strain rate and confining pressure on the compressive behavior of Kuru granite |
URI | https://dx.doi.org/10.1016/j.ijimpeng.2016.01.010 https://www.proquest.com/docview/1816058392 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXvQgPvHNCl7T5rG7aY6lWKrFXrRQT0v2EWmRtLSNR3-7M5ukVBF6EHJJmF2S2dnZmew33xJyH_Eg1r6BTNXPhMcyprxURMpLYi2yJAitdVVpz0PRH7GnMR83SLeuhUFYZeX7S5_uvHX1pFVpszWfTFovYJwM1r9xgKxRYYgV5YzFaOXNrzXMA9li3H8WEPZQeqNKeNqcTCcQnObvCPESjr4TK2n_XqB-uWq3_vQOyUEVONJO-W5HpGHzY7K_QSd4Qt5KKuIlnWV06c5-oEgEQdPcUEh7M3cWBHXI12Jh6SynEP1RBJU7MOynpXXRPvYwKBYFfV8gPYY9JaPew2u371VHJ3g6Ynzl6TSItFYCssNY8DjS3ARZopSF-RyayNh2CPPNxIxx31gGcgICEcOVTlKeiSQ6Izv5LLfnhMboguJAGZsoZts8zdoJByFItdIwDdgF4bW-pK54xfETP2QNIJvKWs8S9Sz9AC7_grTW7eYls8bWFkk9HPKHjUhw_1vb3tXjJ2EC4a5ImttZsZQQ4uDWMMSJl__o_4rs4V0JhbwmO6tFYW8gXFmpW2ePt2S38zjoD78BsTbrLQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RRvjMSaNg_baUZUgQoFFlqpTFb8CGqFUtQ2jPx27pwEFYTEgJQpOVvJ2Xe-i7_7TMhlxINY-wYyVT8THsuY8lIRKS-JtciSILTWVaU9PIrekN2N-KhBunUtDMIqK99f-nTnras77Uqb7bfxuP0Ek5PB-jcKkDUqDOMVssrAfPEYg9bHF84D6WLcjxaQ9lB8qUx40hpPxhCd5i-I8RKOvxNLaX9foX74arcA3WyRzSpypFfly22Ths13yMYSn-AueS65iOd0mtG5O_yBIhMETXNDIe_N3GEQ1EFfi5ml05xC-EcRVe7QsO-W1lX72EO_mBX0ZYb8GHaPDG-uB92eV52d4OmI8YWn0yDSWglID2PB40hzE2SJUhYMOjSRsZ0QDM7EjHHfWAZyAiIRw5VOUp6JJNonzXya2wNCY_RBcaCMTRSzHZ5mnYSDEORaaZgG7JDwWl9SV8Ti-ImvskaQTWStZ4l6ln4Al39I2l_t3kpqjT9bJPVwyG-TRIL__7PtRT1-EiwIt0XS3E6LuYQYB_eGIVA8-kf_52StN3i4l_e3j_1jso5PSlzkCWkuZoU9hdhloc7c3PwEG2jsuw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+strain+rate+and+confining+pressure+on+the+compressive+behavior+of+Kuru+granite&rft.jtitle=International+journal+of+impact+engineering&rft.au=Hokka%2C+M.&rft.au=Black%2C+J.&rft.au=Tkalich%2C+D.&rft.au=Fourmeau%2C+M.&rft.date=2016-05-01&rft.issn=0734-743X&rft.volume=91&rft.spage=183&rft.epage=193&rft_id=info:doi/10.1016%2Fj.ijimpeng.2016.01.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijimpeng_2016_01_010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon |