Multiscale Local Phase Quantization for Robust Component-Based Face Recognition Using Kernel Fusion of Multiple Descriptors

Face recognition subject to uncontrolled illumination and blur is challenging. Interestingly, image degradation caused by blurring, often present in real-world imagery, has mostly been overlooked by the face recognition community. Such degradation corrupts face information and affects image alignmen...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 35; no. 5; pp. 1164 - 1177
Main Authors Chan, Chi Ho, Tahir, Muhammad Atif, Kittler, Josef, Pietikainen, Matti
Format Journal Article
LanguageEnglish
Published Los Alamitos, CA IEEE 01.05.2013
IEEE Computer Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Face recognition subject to uncontrolled illumination and blur is challenging. Interestingly, image degradation caused by blurring, often present in real-world imagery, has mostly been overlooked by the face recognition community. Such degradation corrupts face information and affects image alignment, which together negatively impact recognition accuracy. We propose a number of countermeasures designed to achieve system robustness to blurring. First, we propose a novel blur-robust face image descriptor based on Local Phase Quantization (LPQ) and extend it to a multiscale framework (MLPQ) to increase its effectiveness. To maximize the insensitivity to misalignment, the MLPQ descriptor is computed regionally by adopting a component-based framework. Second, the regional features are combined using kernel fusion. Third, the proposed MLPQ representation is combined with the Multiscale Local Binary Pattern (MLBP) descriptor using kernel fusion to increase insensitivity to illumination. Kernel Discriminant Analysis (KDA) of the combined features extracts discriminative information for face recognition. Last, two geometric normalizations are used to generate and combine multiple scores from different face image scales to further enhance the accuracy. The proposed approach has been comprehensively evaluated using the combined Yale and Extended Yale database B (degraded by artificially induced linear motion blur) as well as the FERET, FRGC 2.0, and LFW databases. The combined system is comparable to state-of-the-art approaches using similar system configurations. The reported work provides a new insight into the merits of various face representation and fusion methods, as well as their role in dealing with variable lighting and blur degradation.
AbstractList Face recognition subject to uncontrolled illumination and blur is challenging. Interestingly, image degradation caused by blurring, often present in real-world imagery, has mostly been overlooked by the face recognition community. Such degradation corrupts face information and affects image alignment, which together negatively impact recognition accuracy. We propose a number of countermeasures designed to achieve system robustness to blurring. First, we propose a novel blur-robust face image descriptor based on Local Phase Quantization (LPQ) and extend it to a multiscale framework (MLPQ) to increase its effectiveness. To maximize the insensitivity to misalignment, the MLPQ descriptor is computed regionally by adopting a component-based framework. Second, the regional features are combined using kernel fusion. Third, the proposed MLPQ representation is combined with the Multiscale Local Binary Pattern (MLBP) descriptor using kernel fusion to increase insensitivity to illumination. Kernel Discriminant Analysis (KDA) of the combined features extracts discriminative information for face recognition. Last, two geometric normalizations are used to generate and combine multiple scores from different face image scales to further enhance the accuracy. The proposed approach has been comprehensively evaluated using the combined Yale and Extended Yale database B (degraded by artificially induced linear motion blur) as well as the FERET, FRGC 2.0, and LFW databases. The combined system is comparable to state-of-the-art approaches using similar system configurations. The reported work provides a new insight into the merits of various face representation and fusion methods, as well as their role in dealing with variable lighting and blur degradation.
Face recognition subject to uncontrolled illumination and blur is challenging. Interestingly, image degradation caused by blurring, often present in real-world imagery, has mostly been overlooked by the face recognition community. Such degradation corrupts face information and affects image alignment, which together negatively impact recognition accuracy. We propose a number of countermeasures designed to achieve system robustness to blurring. First, we propose a novel blur-robust face image descriptor based on Local Phase Quantization (LPQ) and extend it to a multiscale framework (MLPQ) to increase its effectiveness. To maximize the insensitivity to misalignment, the MLPQ descriptor is computed regionally by adopting a component-based framework. Second, the regional features are combined using kernel fusion. Third, the proposed MLPQ representation is combined with the Multiscale Local Binary Pattern (MLBP) descriptor using kernel fusion to increase insensitivity to illumination. Kernel Discriminant Analysis (KDA) of the combined features extracts discriminative information for face recognition. Last, two geometric normalizations are used to generate and combine multiple scores from different face image scales to further enhance the accuracy. The proposed approach has been comprehensively evaluated using the combined Yale and Extended Yale database B (degraded by artificially induced linear motion blur) as well as the FERET, FRGC 2.0, and LFW databases. The combined system is comparable to state-of-the-art approaches using similar system configurations. The reported work provides a new insight into the merits of various face representation and fusion methods, as well as their role in dealing with variable lighting and blur degradation.Face recognition subject to uncontrolled illumination and blur is challenging. Interestingly, image degradation caused by blurring, often present in real-world imagery, has mostly been overlooked by the face recognition community. Such degradation corrupts face information and affects image alignment, which together negatively impact recognition accuracy. We propose a number of countermeasures designed to achieve system robustness to blurring. First, we propose a novel blur-robust face image descriptor based on Local Phase Quantization (LPQ) and extend it to a multiscale framework (MLPQ) to increase its effectiveness. To maximize the insensitivity to misalignment, the MLPQ descriptor is computed regionally by adopting a component-based framework. Second, the regional features are combined using kernel fusion. Third, the proposed MLPQ representation is combined with the Multiscale Local Binary Pattern (MLBP) descriptor using kernel fusion to increase insensitivity to illumination. Kernel Discriminant Analysis (KDA) of the combined features extracts discriminative information for face recognition. Last, two geometric normalizations are used to generate and combine multiple scores from different face image scales to further enhance the accuracy. The proposed approach has been comprehensively evaluated using the combined Yale and Extended Yale database B (degraded by artificially induced linear motion blur) as well as the FERET, FRGC 2.0, and LFW databases. The combined system is comparable to state-of-the-art approaches using similar system configurations. The reported work provides a new insight into the merits of various face representation and fusion methods, as well as their role in dealing with variable lighting and blur degradation.
Author Chan, Chi Ho
Kittler, Josef
Tahir, Muhammad Atif
Pietikainen, Matti
Author_xml – sequence: 1
  givenname: Chi Ho
  surname: Chan
  fullname: Chan, Chi Ho
  email: chiho.chan@surrey.ac.uk
  organization: Center for Vision, Speech & Signal Process., Univ. of Surrey, Guildford, UK
– sequence: 2
  givenname: Muhammad Atif
  surname: Tahir
  fullname: Tahir, Muhammad Atif
  email: m.tahir@surrey.ac.uk
  organization: Center for Vision, Speech & Signal Process., Univ. of Surrey, Guildford, UK
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  email: j.kittler@surrey.ac.uk
  organization: Center for Vision, Speech & Signal Process., Univ. of Surrey, Guildford, UK
– sequence: 4
  givenname: Matti
  surname: Pietikainen
  fullname: Pietikainen, Matti
  email: mkp@ee.oulu.fi
  organization: Dept. of Electr. & Inf. Eng., Univ. of Oulu, Oulu, Finland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27317320$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23520257$$D View this record in MEDLINE/PubMed
BookMark eNp1kb1vFDEQxS0URC6BlgYJuUGi2cNj75fLcHAQcREhSmrL650NRnv2YnsL4J_H9xGQkKhGmvm9Gfu9M3LivENCngNbAjD55vb64upyyRnwJUj5iCw41KyQXPITsmBQ86JteXtKzmL8xhiUFRNPyCkXFWe8ahbk19U8JhuNHpFufC70-quOSL_M2iX7UyfrHR18oDe-m2OiK7-d8gtcKt5mrKdrbZDeoPH3zu7Zu2jdPf2EweFI13Pc9fxA92emfOQdRhPslHyIT8njQY8Rnx3rOblbv79dfSw2nz9cri42hRFllQojTdNoBBRoaq470SNCVYKRUrRG9P1gZNcbWZs8K8ueaaxkh1VX67buBiHOyevD3in47zPGpLb5xziO2qGfowIBEtqSiTqjL4_o3G2xV1OwWx1-qAfDMvDqCOidaUPQztj4l2sENIKzzJUHzgQfY8BBGZv2bqag7aiAqV1-ap-f2uWncn5ZtvxH9rD5v4IXB4FFxD9wLRiHkovf8BGnHw
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_ACCESS_2017_2784842
crossref_primary_10_1002_mp_15341
crossref_primary_10_1007_s11042_018_5812_0
crossref_primary_10_1007_s41095_017_0091_7
crossref_primary_10_1109_TIP_2014_2365725
crossref_primary_10_1049_iet_bmt_2017_0194
crossref_primary_10_1080_09298215_2018_1438476
crossref_primary_10_3745_JIPS_02_0037
crossref_primary_10_1007_s10462_016_9474_x
crossref_primary_10_1016_j_patrec_2014_05_017
crossref_primary_10_1007_s11045_016_0450_z
crossref_primary_10_1109_TIFS_2015_2426144
crossref_primary_10_1016_j_asoc_2017_07_057
crossref_primary_10_1016_j_jvcir_2018_08_007
crossref_primary_10_1109_TFUZZ_2016_2633372
crossref_primary_10_1007_s11042_018_7027_9
crossref_primary_10_1007_s11760_024_03466_w
crossref_primary_10_1007_s00521_017_3035_3
crossref_primary_10_1016_j_sigpro_2023_109033
crossref_primary_10_1109_TCYB_2017_2682272
crossref_primary_10_1364_BOE_9_000873
crossref_primary_10_1016_j_ins_2018_10_014
crossref_primary_10_1007_s10710_019_09342_8
crossref_primary_10_1016_j_patcog_2018_06_015
crossref_primary_10_1007_s11704_016_5024_6
crossref_primary_10_1016_j_ins_2016_04_021
crossref_primary_10_1109_TCYB_2014_2361770
crossref_primary_10_1007_s10044_015_0475_1
crossref_primary_10_1007_s41870_023_01335_2
crossref_primary_10_1016_j_neucom_2016_05_097
crossref_primary_10_1364_AO_54_006887
crossref_primary_10_1016_j_micpro_2020_103745
crossref_primary_10_1088_1741_2552_ab9db9
crossref_primary_10_1016_j_heliyon_2024_e37163
crossref_primary_10_1016_j_patcog_2017_09_006
crossref_primary_10_1109_TPAMI_2018_2800008
crossref_primary_10_1016_j_jestch_2015_11_003
crossref_primary_10_1109_ACCESS_2017_2763419
crossref_primary_10_1007_s11042_019_08370_x
crossref_primary_10_1016_j_inffus_2016_05_003
crossref_primary_10_1142_S0219467822500528
crossref_primary_10_1016_j_neucom_2014_09_004
crossref_primary_10_1016_j_patcog_2016_08_032
crossref_primary_10_1016_j_compbiomed_2023_107457
crossref_primary_10_1109_TIFS_2014_2359587
crossref_primary_10_3390_data7060080
crossref_primary_10_1016_j_aci_2016_04_001
crossref_primary_10_1109_ACCESS_2023_3242984
crossref_primary_10_1109_TNNLS_2016_2522431
crossref_primary_10_1109_TPAMI_2017_2700390
crossref_primary_10_1007_s13042_019_00929_2
crossref_primary_10_1109_TCYB_2014_2307067
crossref_primary_10_1186_s13321_016_0117_7
crossref_primary_10_1016_j_sigpro_2015_09_028
crossref_primary_10_1109_ACCESS_2020_3009512
crossref_primary_10_1109_TIP_2015_2409988
crossref_primary_10_1016_j_patcog_2017_01_021
crossref_primary_10_1109_TPAMI_2015_2462338
crossref_primary_10_3390_e17074664
crossref_primary_10_1016_j_neucom_2015_07_127
crossref_primary_10_1109_ACCESS_2017_2749331
crossref_primary_10_1111_cgf_13904
crossref_primary_10_1016_j_imavis_2017_05_006
crossref_primary_10_1016_j_aci_2018_06_002
crossref_primary_10_1007_s00138_018_0943_x
crossref_primary_10_1007_s00521_017_2918_7
crossref_primary_10_1016_j_eswa_2013_07_047
crossref_primary_10_1016_j_patrec_2016_08_008
crossref_primary_10_1007_s00371_017_1429_y
crossref_primary_10_1109_TCSI_2022_3190430
crossref_primary_10_1080_19479832_2017_1384763
crossref_primary_10_1016_j_neucom_2019_10_055
crossref_primary_10_1016_j_imavis_2020_103979
crossref_primary_10_1088_1757_899X_719_1_012074
crossref_primary_10_1049_iet_cvi_2015_0222
crossref_primary_10_1016_j_neucom_2016_06_071
crossref_primary_10_1049_iet_ipr_2013_0792
crossref_primary_10_1007_s11042_019_07908_3
crossref_primary_10_1155_2015_462528
crossref_primary_10_1109_TII_2018_2828811
crossref_primary_10_1007_s12555_013_0294_3
crossref_primary_10_1007_s11121_016_0664_1
crossref_primary_10_1109_TCYB_2015_2484356
crossref_primary_10_1109_TIFS_2015_2458700
crossref_primary_10_1109_ACCESS_2018_2810339
Cites_doi 10.1109/34.598228
10.1109/CVPR.1991.139758
10.1109/CVPR.2009.5206654
10.1109/TIP.2006.884956
10.1007/978-3-540-75690-3_18
10.1109/ICPR.2006.163
10.1016/j.imavis.2012.04.001
10.1007/s11263-006-9794-4
10.1109/TIP.2010.2042645
10.1109/ICCV.2007.4408858
10.1109/TPAMI.2011.104
10.1109/79.581363
10.1109/ICDM.2007.88
10.1109/TPAMI.2006.244
10.1109/TIP.2009.2021737
10.1109/34.244676
10.1007/3-540-44887-X_74
10.5244/C.23.77
10.1109/34.927464
10.1109/ICCV.2009.5459197
10.1109/CVPR.2009.5206605
10.1007/978-3-540-75690-3_13
10.1109/LNLA.2009.5278397
10.1007/978-3-540-69905-7_27
10.1007/978-3-642-14980-1_71
10.1109/PROC.1981.12022
10.1109/TPAMI.2008.79
10.1109/CVPR.2005.268
10.1109/ICIP.2010.5651933
10.1109/AFGR.2004.1301550
10.1145/954339.954342
10.1109/CVPR.1997.609311
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright_xml – notice: 2014 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TPAMI.2012.199
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 2160-9292
1939-3539
EndPage 1177
ExternalDocumentID 23520257
27317320
10_1109_TPAMI_2012_199
6302142
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 045804
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYOK
AAYXX
CITATION
RIG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIC
Z5M
7X8
ID FETCH-LOGICAL-c345t-c9c77ae1e3ec62ab3dee1541c9938c3ddfc9bdc96cab344d0ae59be5b6a86bf33
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Fri Jul 11 04:27:21 EDT 2025
Wed Feb 19 02:15:52 EST 2025
Wed Apr 02 07:25:17 EDT 2025
Tue Jul 01 03:18:20 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Wed Aug 27 02:54:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Image processing
local phase quantization
Electronic countermeasure
Texture
System decomposition
Image matching
local binary pattern
Efficiency
Signal quantization
Classification
Facies
Database
Illumination
Robustness
Combined system
Pattern extraction
Computer vision
Discriminant analysis
Merging sort
kernel discriminant analysis
Face recognition
blurring image
Software component
Blurred image
Computational geometry
Luminance
Multiscale method
kernel fusion
Alignment defect
face image representation
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-c9c77ae1e3ec62ab3dee1541c9938c3ddfc9bdc96cab344d0ae59be5b6a86bf33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23520257
PQID 1319184036
PQPubID 23479
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TPAMI_2012_199
proquest_miscellaneous_1319184036
ieee_primary_6302142
pascalfrancis_primary_27317320
pubmed_primary_23520257
crossref_primary_10_1109_TPAMI_2012_199
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2013
Publisher IEEE
IEEE Computer Society
Publisher_xml – name: IEEE
– name: IEEE Computer Society
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
bailly-bailliére (ref3) 2003
ref30
beveridge (ref6) 2003
chan (ref10) 2009
wolf (ref40) 2009
ref11
ref32
ref1
wang (ref39) 2008
ref17
ref38
ahonen (ref2) 2008
jain (ref20) 2004
li (ref21) 2012; 34
ref24
ref45
ref26
ref25
ref42
ref41
ref43
hwang (ref19) 2006
ref28
ref27
huang (ref18) 2007
ref29
chan (ref9) 2007
ref8
taigman (ref33) 2011
ref7
liu (ref22) 2009
ref4
ojansivu (ref23) 2008
ref5
huang (ref16) 2011
zhao (ref44) 2005; 3
References_xml – start-page: 1574
  year: 2006
  ident: ref19
  article-title: Multiple Face Model of Hybrid Fourier Feature for Large Face Image Set
  publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition
– ident: ref5
  doi: 10.1109/34.598228
– year: 2003
  ident: ref6
  article-title: The CSU Face Identification Evaluation System User's Guide: Version 5.0.
– ident: ref37
  doi: 10.1109/CVPR.1991.139758
– ident: ref38
  doi: 10.1109/CVPR.2009.5206654
– ident: ref42
  doi: 10.1109/TIP.2006.884956
– year: 2011
  ident: ref33
  article-title: Leveraging Billions of Faces to Overcome Performance Barriers in Unconstrained Face Recognition
  publication-title: CoRR
– ident: ref35
  doi: 10.1007/978-3-540-75690-3_18
– ident: ref29
  doi: 10.1109/ICPR.2006.163
– ident: ref28
  doi: 10.1016/j.imavis.2012.04.001
– volume: 3
  start-page: 167
  year: 2005
  ident: ref44
  article-title: LBP Discriminant Analysis for Face Verification
  publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition
– ident: ref43
  doi: 10.1007/s11263-006-9794-4
– ident: ref36
  doi: 10.1109/TIP.2010.2042645
– ident: ref17
  doi: 10.1109/ICCV.2007.4408858
– volume: 34
  start-page: 144
  year: 2012
  ident: ref21
  article-title: Probabilistic Models for Inference About Identity
  publication-title: IEEE Trans Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2011.104
– year: 2008
  ident: ref39
  article-title: Misalignment-Robust Face Recognition
  publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition
– ident: ref4
  doi: 10.1109/79.581363
– ident: ref7
  doi: 10.1109/ICDM.2007.88
– year: 2007
  ident: ref18
  article-title: Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments
– ident: ref1
  doi: 10.1109/TPAMI.2006.244
– start-page: 633
  year: 2009
  ident: ref10
  article-title: (Multiscale) Local Phase Quantization Histogram Discriminant Analysis with Score Normalisation for Robust Face Recognition
  publication-title: Workshop on Video-Oriented Object and Event Classification
– ident: ref31
  doi: 10.1109/TIP.2009.2021737
– start-page: 88
  year: 2009
  ident: ref40
  article-title: Similarity Scores Based on Background Samples
  publication-title: Proc Asian Conf Computer Vision
– start-page: 1
  year: 2008
  ident: ref2
  article-title: Recognition of Blurred Faces Using Local Phase Quantization
  publication-title: Proc Int'l Conf Pattern Recognition
– ident: ref12
  doi: 10.1109/34.244676
– start-page: 625
  year: 2003
  ident: ref3
  article-title: The BANCA Database and Evaluation Protocol
  publication-title: Proc Int'l Conf Audio- and Video-Based Biometric Person Authentication
  doi: 10.1007/3-540-44887-X_74
– ident: ref32
  doi: 10.5244/C.23.77
– ident: ref13
  doi: 10.1109/34.927464
– ident: ref14
  doi: 10.1109/ICCV.2009.5459197
– ident: ref27
  doi: 10.1109/CVPR.2009.5206605
– start-page: 809
  year: 2007
  ident: ref9
  article-title: Multi-Scale Local Binary Pattern Histograms for Face Recognition
  publication-title: Proc Int'l Conf Biometrics
– ident: ref34
  doi: 10.1007/978-3-540-75690-3_13
– ident: ref15
  doi: 10.1109/LNLA.2009.5278397
– start-page: 236
  year: 2008
  ident: ref23
  article-title: Blur Insensitive Texture Classification Using Local Phase Quantization
  publication-title: Proc Int'l Conf Image and Signal Processing
  doi: 10.1007/978-3-540-69905-7_27
– ident: ref11
  doi: 10.1007/978-3-642-14980-1_71
– ident: ref24
  doi: 10.1109/PROC.1981.12022
– ident: ref41
  doi: 10.1109/TPAMI.2008.79
– ident: ref25
  doi: 10.1109/CVPR.2005.268
– start-page: 122
  year: 2009
  ident: ref22
  article-title: Robust Face Recognition Using Color Information
  publication-title: Proc Int'l Conf Biometrics
– ident: ref8
  doi: 10.1109/ICIP.2010.5651933
– year: 2011
  ident: ref16
  article-title: Large Scale Strongly Supervised Ensemble Metric Learning, with Applications to Face Verification and Retrieval
– year: 2004
  ident: ref20
  publication-title: Handbook of Face Recognition
– ident: ref30
  doi: 10.1109/AFGR.2004.1301550
– ident: ref45
  doi: 10.1145/954339.954342
– ident: ref26
  doi: 10.1109/CVPR.1997.609311
SSID ssj0014503
Score 2.4696205
Snippet Face recognition subject to uncontrolled illumination and blur is challenging. Interestingly, image degradation caused by blurring, often present in real-world...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1164
SubjectTerms Algorithms
Applied sciences
Artificial Intelligence
Biometric Identification - methods
Computer science; control theory; systems
Data processing. List processing. Character string processing
Databases, Factual
Discriminant Analysis
Exact sciences and technology
Face
Face - anatomy & histology
face image representation
Face recognition
Histograms
Humans
Image Processing, Computer-Assisted
Kernel
kernel discriminant analysis
kernel fusion
Lighting
local binary pattern
local phase quantization
Memory organisation. Data processing
Pattern recognition. Digital image processing. Computational geometry
Software
Vectors
Title Multiscale Local Phase Quantization for Robust Component-Based Face Recognition Using Kernel Fusion of Multiple Descriptors
URI https://ieeexplore.ieee.org/document/6302142
https://www.ncbi.nlm.nih.gov/pubmed/23520257
https://www.proquest.com/docview/1319184036
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQssjPCojIXEh2yR2XseCWJXHolK1Um9RbE9UiSpBu8ml_fPMOE6giErcImUSO_HY8439zQzAG5OnMeYRhlHRIO9WFWGRlSqMdZYkOldN2XC88-pbdnyuPl-kF1vwbo6FQURHPsMFX7qzfNuZgbfKDjPpMoRtwzY5bmOs1nxioFJXBZkQDM1wciN8gsY4Kg_PTo5Wn5jFlXBsHqf_JdRBtj6_ZYtccRWmRtYb-jvNWNbibtzp7M9yF1ZTz0fayY_F0OuFuf4rqeP_ftpDeOCBqDgaNecRbGG7B7tTkQfh5_we3P8jY-E-3LiAXe46iq9sBsXJJdlB8X2gEfIhnYJwsDjt9LDpBb-va6np8D2JWbGsDYrTibREso6yIL7gusUrsRx47050jVh5nqMgv9ita9168xjOlx_PPhyHvn5DaKRK-9CUJs9rjFGiyZJaS4tIiC02hIkKI61tTKmtKTND95SyUY1pqTHVWV1kupHyCey01MdnTMCy7Klao3JUBHJ1Qi9BpVEmmDa5DCCcRrIyPrk519i4qpyTE5WVU4KKlaAiJQjg7Sz_c0zrcafkPo_WLOUHKoCDW4oy3yc4GOcyiQJ4PWlORTOWj2HqFrthU8W06rFfLbMAno4q9ftpr5nP_93qC7iXuHIcTLh8CTv9esBXBIp6feBmwy8NdQkW
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFpKw6MYCYkL2Sax8zoWxGpLN1WptlJvUexMhESVVLvJBf48M84DiqjELVImsROPPd_Y38wAvDNx6GPsoeslFfJuVeImUapcX0dBoGNVpRXHO2dn0eJSfbkKr7bgwxQLg4iWfIYzvrRn-WVjOt4qO4qkzRB2D-6T3Q-DPlprOjNQoa2DTBiG5jg5EkOKRt9Lj1bnx9kJ87gCjs7jBMCEO8jax7eskS2vwuTIYkP_p-oLW9yNPK0Fmu9ANva9J558n3Wtnpkff6V1_N-PewKPBygqjnvdeQpbWO_CzljmQQyzfhce_ZGzcA9-2pBd7jqKJRtCcf6NLKH42tEYDUGdgpCwuGh0t2kFv6-pqWn3I4mVYl4YFBcjbYlkLWlBnOK6xmsx73j3TjSVyAamoyDP2K5szXrzDC7nn1efFu5QwcE1UoWta1ITxwX6KNFEQaFliUiYzTeEihIjy7IyqS5NGhm6p1TpFRimGkMdFUmkKyn3YbumPh4wBatkX7U0KkZFMFcH9BJUGmWAYRVLB9xxJHMzpDfnKhvXuXVzvDS3SpCzEuSkBA68n-Rv-sQed0ru8WhNUsNAOXB4S1Gm-wQI_VgGngNvR83Jac7yQUxRY9Ntcp_WPfasZeTA816lfj89aOaLf7f6Bh4sVtkyX56cnb6Eh4EtzsH0y1ew3a47fE0QqdWHdmb8AgC0DGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+Local+Phase+Quantization+for+Robust+Component-Based+Face+Recognition+Using+Kernel+Fusion+of+Multiple+Descriptors&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=HO+CHAN%2C+Chi&rft.au=ATIF+TAHIR%2C+Muhammad&rft.au=KITTLER%2C+Josef&rft.au=PIETIK%C3%84INEN%2C+Matti&rft.date=2013-05-01&rft.pub=IEEE+Computer+Society&rft.issn=0162-8828&rft.volume=35&rft.issue=5&rft.spage=1164&rft.epage=1177&rft_id=info:doi/10.1109%2FTPAMI.2012.199&rft.externalDBID=n%2Fa&rft.externalDocID=27317320
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon