Multiscale Local Phase Quantization for Robust Component-Based Face Recognition Using Kernel Fusion of Multiple Descriptors
Face recognition subject to uncontrolled illumination and blur is challenging. Interestingly, image degradation caused by blurring, often present in real-world imagery, has mostly been overlooked by the face recognition community. Such degradation corrupts face information and affects image alignmen...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 35; no. 5; pp. 1164 - 1177 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Los Alamitos, CA
IEEE
01.05.2013
IEEE Computer Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Face recognition subject to uncontrolled illumination and blur is challenging. Interestingly, image degradation caused by blurring, often present in real-world imagery, has mostly been overlooked by the face recognition community. Such degradation corrupts face information and affects image alignment, which together negatively impact recognition accuracy. We propose a number of countermeasures designed to achieve system robustness to blurring. First, we propose a novel blur-robust face image descriptor based on Local Phase Quantization (LPQ) and extend it to a multiscale framework (MLPQ) to increase its effectiveness. To maximize the insensitivity to misalignment, the MLPQ descriptor is computed regionally by adopting a component-based framework. Second, the regional features are combined using kernel fusion. Third, the proposed MLPQ representation is combined with the Multiscale Local Binary Pattern (MLBP) descriptor using kernel fusion to increase insensitivity to illumination. Kernel Discriminant Analysis (KDA) of the combined features extracts discriminative information for face recognition. Last, two geometric normalizations are used to generate and combine multiple scores from different face image scales to further enhance the accuracy. The proposed approach has been comprehensively evaluated using the combined Yale and Extended Yale database B (degraded by artificially induced linear motion blur) as well as the FERET, FRGC 2.0, and LFW databases. The combined system is comparable to state-of-the-art approaches using similar system configurations. The reported work provides a new insight into the merits of various face representation and fusion methods, as well as their role in dealing with variable lighting and blur degradation. |
---|---|
AbstractList | Face recognition subject to uncontrolled illumination and blur is challenging. Interestingly, image degradation caused by blurring, often present in real-world imagery, has mostly been overlooked by the face recognition community. Such degradation corrupts face information and affects image alignment, which together negatively impact recognition accuracy. We propose a number of countermeasures designed to achieve system robustness to blurring. First, we propose a novel blur-robust face image descriptor based on Local Phase Quantization (LPQ) and extend it to a multiscale framework (MLPQ) to increase its effectiveness. To maximize the insensitivity to misalignment, the MLPQ descriptor is computed regionally by adopting a component-based framework. Second, the regional features are combined using kernel fusion. Third, the proposed MLPQ representation is combined with the Multiscale Local Binary Pattern (MLBP) descriptor using kernel fusion to increase insensitivity to illumination. Kernel Discriminant Analysis (KDA) of the combined features extracts discriminative information for face recognition. Last, two geometric normalizations are used to generate and combine multiple scores from different face image scales to further enhance the accuracy. The proposed approach has been comprehensively evaluated using the combined Yale and Extended Yale database B (degraded by artificially induced linear motion blur) as well as the FERET, FRGC 2.0, and LFW databases. The combined system is comparable to state-of-the-art approaches using similar system configurations. The reported work provides a new insight into the merits of various face representation and fusion methods, as well as their role in dealing with variable lighting and blur degradation. Face recognition subject to uncontrolled illumination and blur is challenging. Interestingly, image degradation caused by blurring, often present in real-world imagery, has mostly been overlooked by the face recognition community. Such degradation corrupts face information and affects image alignment, which together negatively impact recognition accuracy. We propose a number of countermeasures designed to achieve system robustness to blurring. First, we propose a novel blur-robust face image descriptor based on Local Phase Quantization (LPQ) and extend it to a multiscale framework (MLPQ) to increase its effectiveness. To maximize the insensitivity to misalignment, the MLPQ descriptor is computed regionally by adopting a component-based framework. Second, the regional features are combined using kernel fusion. Third, the proposed MLPQ representation is combined with the Multiscale Local Binary Pattern (MLBP) descriptor using kernel fusion to increase insensitivity to illumination. Kernel Discriminant Analysis (KDA) of the combined features extracts discriminative information for face recognition. Last, two geometric normalizations are used to generate and combine multiple scores from different face image scales to further enhance the accuracy. The proposed approach has been comprehensively evaluated using the combined Yale and Extended Yale database B (degraded by artificially induced linear motion blur) as well as the FERET, FRGC 2.0, and LFW databases. The combined system is comparable to state-of-the-art approaches using similar system configurations. The reported work provides a new insight into the merits of various face representation and fusion methods, as well as their role in dealing with variable lighting and blur degradation.Face recognition subject to uncontrolled illumination and blur is challenging. Interestingly, image degradation caused by blurring, often present in real-world imagery, has mostly been overlooked by the face recognition community. Such degradation corrupts face information and affects image alignment, which together negatively impact recognition accuracy. We propose a number of countermeasures designed to achieve system robustness to blurring. First, we propose a novel blur-robust face image descriptor based on Local Phase Quantization (LPQ) and extend it to a multiscale framework (MLPQ) to increase its effectiveness. To maximize the insensitivity to misalignment, the MLPQ descriptor is computed regionally by adopting a component-based framework. Second, the regional features are combined using kernel fusion. Third, the proposed MLPQ representation is combined with the Multiscale Local Binary Pattern (MLBP) descriptor using kernel fusion to increase insensitivity to illumination. Kernel Discriminant Analysis (KDA) of the combined features extracts discriminative information for face recognition. Last, two geometric normalizations are used to generate and combine multiple scores from different face image scales to further enhance the accuracy. The proposed approach has been comprehensively evaluated using the combined Yale and Extended Yale database B (degraded by artificially induced linear motion blur) as well as the FERET, FRGC 2.0, and LFW databases. The combined system is comparable to state-of-the-art approaches using similar system configurations. The reported work provides a new insight into the merits of various face representation and fusion methods, as well as their role in dealing with variable lighting and blur degradation. |
Author | Chan, Chi Ho Kittler, Josef Tahir, Muhammad Atif Pietikainen, Matti |
Author_xml | – sequence: 1 givenname: Chi Ho surname: Chan fullname: Chan, Chi Ho email: chiho.chan@surrey.ac.uk organization: Center for Vision, Speech & Signal Process., Univ. of Surrey, Guildford, UK – sequence: 2 givenname: Muhammad Atif surname: Tahir fullname: Tahir, Muhammad Atif email: m.tahir@surrey.ac.uk organization: Center for Vision, Speech & Signal Process., Univ. of Surrey, Guildford, UK – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef email: j.kittler@surrey.ac.uk organization: Center for Vision, Speech & Signal Process., Univ. of Surrey, Guildford, UK – sequence: 4 givenname: Matti surname: Pietikainen fullname: Pietikainen, Matti email: mkp@ee.oulu.fi organization: Dept. of Electr. & Inf. Eng., Univ. of Oulu, Oulu, Finland |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27317320$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23520257$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kb1vFDEQxS0URC6BlgYJuUGi2cNj75fLcHAQcREhSmrL650NRnv2YnsL4J_H9xGQkKhGmvm9Gfu9M3LivENCngNbAjD55vb64upyyRnwJUj5iCw41KyQXPITsmBQ86JteXtKzmL8xhiUFRNPyCkXFWe8ahbk19U8JhuNHpFufC70-quOSL_M2iX7UyfrHR18oDe-m2OiK7-d8gtcKt5mrKdrbZDeoPH3zu7Zu2jdPf2EweFI13Pc9fxA92emfOQdRhPslHyIT8njQY8Rnx3rOblbv79dfSw2nz9cri42hRFllQojTdNoBBRoaq470SNCVYKRUrRG9P1gZNcbWZs8K8ueaaxkh1VX67buBiHOyevD3in47zPGpLb5xziO2qGfowIBEtqSiTqjL4_o3G2xV1OwWx1-qAfDMvDqCOidaUPQztj4l2sENIKzzJUHzgQfY8BBGZv2bqag7aiAqV1-ap-f2uWncn5ZtvxH9rD5v4IXB4FFxD9wLRiHkovf8BGnHw |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2017_2784842 crossref_primary_10_1002_mp_15341 crossref_primary_10_1007_s11042_018_5812_0 crossref_primary_10_1007_s41095_017_0091_7 crossref_primary_10_1109_TIP_2014_2365725 crossref_primary_10_1049_iet_bmt_2017_0194 crossref_primary_10_1080_09298215_2018_1438476 crossref_primary_10_3745_JIPS_02_0037 crossref_primary_10_1007_s10462_016_9474_x crossref_primary_10_1016_j_patrec_2014_05_017 crossref_primary_10_1007_s11045_016_0450_z crossref_primary_10_1109_TIFS_2015_2426144 crossref_primary_10_1016_j_asoc_2017_07_057 crossref_primary_10_1016_j_jvcir_2018_08_007 crossref_primary_10_1109_TFUZZ_2016_2633372 crossref_primary_10_1007_s11042_018_7027_9 crossref_primary_10_1007_s11760_024_03466_w crossref_primary_10_1007_s00521_017_3035_3 crossref_primary_10_1016_j_sigpro_2023_109033 crossref_primary_10_1109_TCYB_2017_2682272 crossref_primary_10_1364_BOE_9_000873 crossref_primary_10_1016_j_ins_2018_10_014 crossref_primary_10_1007_s10710_019_09342_8 crossref_primary_10_1016_j_patcog_2018_06_015 crossref_primary_10_1007_s11704_016_5024_6 crossref_primary_10_1016_j_ins_2016_04_021 crossref_primary_10_1109_TCYB_2014_2361770 crossref_primary_10_1007_s10044_015_0475_1 crossref_primary_10_1007_s41870_023_01335_2 crossref_primary_10_1016_j_neucom_2016_05_097 crossref_primary_10_1364_AO_54_006887 crossref_primary_10_1016_j_micpro_2020_103745 crossref_primary_10_1088_1741_2552_ab9db9 crossref_primary_10_1016_j_heliyon_2024_e37163 crossref_primary_10_1016_j_patcog_2017_09_006 crossref_primary_10_1109_TPAMI_2018_2800008 crossref_primary_10_1016_j_jestch_2015_11_003 crossref_primary_10_1109_ACCESS_2017_2763419 crossref_primary_10_1007_s11042_019_08370_x crossref_primary_10_1016_j_inffus_2016_05_003 crossref_primary_10_1142_S0219467822500528 crossref_primary_10_1016_j_neucom_2014_09_004 crossref_primary_10_1016_j_patcog_2016_08_032 crossref_primary_10_1016_j_compbiomed_2023_107457 crossref_primary_10_1109_TIFS_2014_2359587 crossref_primary_10_3390_data7060080 crossref_primary_10_1016_j_aci_2016_04_001 crossref_primary_10_1109_ACCESS_2023_3242984 crossref_primary_10_1109_TNNLS_2016_2522431 crossref_primary_10_1109_TPAMI_2017_2700390 crossref_primary_10_1007_s13042_019_00929_2 crossref_primary_10_1109_TCYB_2014_2307067 crossref_primary_10_1186_s13321_016_0117_7 crossref_primary_10_1016_j_sigpro_2015_09_028 crossref_primary_10_1109_ACCESS_2020_3009512 crossref_primary_10_1109_TIP_2015_2409988 crossref_primary_10_1016_j_patcog_2017_01_021 crossref_primary_10_1109_TPAMI_2015_2462338 crossref_primary_10_3390_e17074664 crossref_primary_10_1016_j_neucom_2015_07_127 crossref_primary_10_1109_ACCESS_2017_2749331 crossref_primary_10_1111_cgf_13904 crossref_primary_10_1016_j_imavis_2017_05_006 crossref_primary_10_1016_j_aci_2018_06_002 crossref_primary_10_1007_s00138_018_0943_x crossref_primary_10_1007_s00521_017_2918_7 crossref_primary_10_1016_j_eswa_2013_07_047 crossref_primary_10_1016_j_patrec_2016_08_008 crossref_primary_10_1007_s00371_017_1429_y crossref_primary_10_1109_TCSI_2022_3190430 crossref_primary_10_1080_19479832_2017_1384763 crossref_primary_10_1016_j_neucom_2019_10_055 crossref_primary_10_1016_j_imavis_2020_103979 crossref_primary_10_1088_1757_899X_719_1_012074 crossref_primary_10_1049_iet_cvi_2015_0222 crossref_primary_10_1016_j_neucom_2016_06_071 crossref_primary_10_1049_iet_ipr_2013_0792 crossref_primary_10_1007_s11042_019_07908_3 crossref_primary_10_1155_2015_462528 crossref_primary_10_1109_TII_2018_2828811 crossref_primary_10_1007_s12555_013_0294_3 crossref_primary_10_1007_s11121_016_0664_1 crossref_primary_10_1109_TCYB_2015_2484356 crossref_primary_10_1109_TIFS_2015_2458700 crossref_primary_10_1109_ACCESS_2018_2810339 |
Cites_doi | 10.1109/34.598228 10.1109/CVPR.1991.139758 10.1109/CVPR.2009.5206654 10.1109/TIP.2006.884956 10.1007/978-3-540-75690-3_18 10.1109/ICPR.2006.163 10.1016/j.imavis.2012.04.001 10.1007/s11263-006-9794-4 10.1109/TIP.2010.2042645 10.1109/ICCV.2007.4408858 10.1109/TPAMI.2011.104 10.1109/79.581363 10.1109/ICDM.2007.88 10.1109/TPAMI.2006.244 10.1109/TIP.2009.2021737 10.1109/34.244676 10.1007/3-540-44887-X_74 10.5244/C.23.77 10.1109/34.927464 10.1109/ICCV.2009.5459197 10.1109/CVPR.2009.5206605 10.1007/978-3-540-75690-3_13 10.1109/LNLA.2009.5278397 10.1007/978-3-540-69905-7_27 10.1007/978-3-642-14980-1_71 10.1109/PROC.1981.12022 10.1109/TPAMI.2008.79 10.1109/CVPR.2005.268 10.1109/ICIP.2010.5651933 10.1109/AFGR.2004.1301550 10.1145/954339.954342 10.1109/CVPR.1997.609311 |
ContentType | Journal Article |
Copyright | 2014 INIST-CNRS |
Copyright_xml | – notice: 2014 INIST-CNRS |
DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1109/TPAMI.2012.199 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Applied Sciences |
EISSN | 2160-9292 1939-3539 |
EndPage | 1177 |
ExternalDocumentID | 23520257 27317320 10_1109_TPAMI_2012_199 6302142 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 045804 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYOK AAYXX CITATION RIG IQODW CGR CUY CVF ECM EIF NPM PKN RIC Z5M 7X8 |
ID | FETCH-LOGICAL-c345t-c9c77ae1e3ec62ab3dee1541c9938c3ddfc9bdc96cab344d0ae59be5b6a86bf33 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Fri Jul 11 04:27:21 EDT 2025 Wed Feb 19 02:15:52 EST 2025 Wed Apr 02 07:25:17 EDT 2025 Tue Jul 01 03:18:20 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Wed Aug 27 02:54:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Image processing local phase quantization Electronic countermeasure Texture System decomposition Image matching local binary pattern Efficiency Signal quantization Classification Facies Database Illumination Robustness Combined system Pattern extraction Computer vision Discriminant analysis Merging sort kernel discriminant analysis Face recognition blurring image Software component Blurred image Computational geometry Luminance Multiscale method kernel fusion Alignment defect face image representation |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-c9c77ae1e3ec62ab3dee1541c9938c3ddfc9bdc96cab344d0ae59be5b6a86bf33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23520257 |
PQID | 1319184036 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_TPAMI_2012_199 proquest_miscellaneous_1319184036 ieee_primary_6302142 pascalfrancis_primary_27317320 pubmed_primary_23520257 crossref_primary_10_1109_TPAMI_2012_199 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Los Alamitos, CA |
PublicationPlace_xml | – name: Los Alamitos, CA – name: United States |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2013 |
Publisher | IEEE IEEE Computer Society |
Publisher_xml | – name: IEEE – name: IEEE Computer Society |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 bailly-bailliére (ref3) 2003 ref30 beveridge (ref6) 2003 chan (ref10) 2009 wolf (ref40) 2009 ref11 ref32 ref1 wang (ref39) 2008 ref17 ref38 ahonen (ref2) 2008 jain (ref20) 2004 li (ref21) 2012; 34 ref24 ref45 ref26 ref25 ref42 ref41 ref43 hwang (ref19) 2006 ref28 ref27 huang (ref18) 2007 ref29 chan (ref9) 2007 ref8 taigman (ref33) 2011 ref7 liu (ref22) 2009 ref4 ojansivu (ref23) 2008 ref5 huang (ref16) 2011 zhao (ref44) 2005; 3 |
References_xml | – start-page: 1574 year: 2006 ident: ref19 article-title: Multiple Face Model of Hybrid Fourier Feature for Large Face Image Set publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition – ident: ref5 doi: 10.1109/34.598228 – year: 2003 ident: ref6 article-title: The CSU Face Identification Evaluation System User's Guide: Version 5.0. – ident: ref37 doi: 10.1109/CVPR.1991.139758 – ident: ref38 doi: 10.1109/CVPR.2009.5206654 – ident: ref42 doi: 10.1109/TIP.2006.884956 – year: 2011 ident: ref33 article-title: Leveraging Billions of Faces to Overcome Performance Barriers in Unconstrained Face Recognition publication-title: CoRR – ident: ref35 doi: 10.1007/978-3-540-75690-3_18 – ident: ref29 doi: 10.1109/ICPR.2006.163 – ident: ref28 doi: 10.1016/j.imavis.2012.04.001 – volume: 3 start-page: 167 year: 2005 ident: ref44 article-title: LBP Discriminant Analysis for Face Verification publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition – ident: ref43 doi: 10.1007/s11263-006-9794-4 – ident: ref36 doi: 10.1109/TIP.2010.2042645 – ident: ref17 doi: 10.1109/ICCV.2007.4408858 – volume: 34 start-page: 144 year: 2012 ident: ref21 article-title: Probabilistic Models for Inference About Identity publication-title: IEEE Trans Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2011.104 – year: 2008 ident: ref39 article-title: Misalignment-Robust Face Recognition publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition – ident: ref4 doi: 10.1109/79.581363 – ident: ref7 doi: 10.1109/ICDM.2007.88 – year: 2007 ident: ref18 article-title: Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments – ident: ref1 doi: 10.1109/TPAMI.2006.244 – start-page: 633 year: 2009 ident: ref10 article-title: (Multiscale) Local Phase Quantization Histogram Discriminant Analysis with Score Normalisation for Robust Face Recognition publication-title: Workshop on Video-Oriented Object and Event Classification – ident: ref31 doi: 10.1109/TIP.2009.2021737 – start-page: 88 year: 2009 ident: ref40 article-title: Similarity Scores Based on Background Samples publication-title: Proc Asian Conf Computer Vision – start-page: 1 year: 2008 ident: ref2 article-title: Recognition of Blurred Faces Using Local Phase Quantization publication-title: Proc Int'l Conf Pattern Recognition – ident: ref12 doi: 10.1109/34.244676 – start-page: 625 year: 2003 ident: ref3 article-title: The BANCA Database and Evaluation Protocol publication-title: Proc Int'l Conf Audio- and Video-Based Biometric Person Authentication doi: 10.1007/3-540-44887-X_74 – ident: ref32 doi: 10.5244/C.23.77 – ident: ref13 doi: 10.1109/34.927464 – ident: ref14 doi: 10.1109/ICCV.2009.5459197 – ident: ref27 doi: 10.1109/CVPR.2009.5206605 – start-page: 809 year: 2007 ident: ref9 article-title: Multi-Scale Local Binary Pattern Histograms for Face Recognition publication-title: Proc Int'l Conf Biometrics – ident: ref34 doi: 10.1007/978-3-540-75690-3_13 – ident: ref15 doi: 10.1109/LNLA.2009.5278397 – start-page: 236 year: 2008 ident: ref23 article-title: Blur Insensitive Texture Classification Using Local Phase Quantization publication-title: Proc Int'l Conf Image and Signal Processing doi: 10.1007/978-3-540-69905-7_27 – ident: ref11 doi: 10.1007/978-3-642-14980-1_71 – ident: ref24 doi: 10.1109/PROC.1981.12022 – ident: ref41 doi: 10.1109/TPAMI.2008.79 – ident: ref25 doi: 10.1109/CVPR.2005.268 – start-page: 122 year: 2009 ident: ref22 article-title: Robust Face Recognition Using Color Information publication-title: Proc Int'l Conf Biometrics – ident: ref8 doi: 10.1109/ICIP.2010.5651933 – year: 2011 ident: ref16 article-title: Large Scale Strongly Supervised Ensemble Metric Learning, with Applications to Face Verification and Retrieval – year: 2004 ident: ref20 publication-title: Handbook of Face Recognition – ident: ref30 doi: 10.1109/AFGR.2004.1301550 – ident: ref45 doi: 10.1145/954339.954342 – ident: ref26 doi: 10.1109/CVPR.1997.609311 |
SSID | ssj0014503 |
Score | 2.4696205 |
Snippet | Face recognition subject to uncontrolled illumination and blur is challenging. Interestingly, image degradation caused by blurring, often present in real-world... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1164 |
SubjectTerms | Algorithms Applied sciences Artificial Intelligence Biometric Identification - methods Computer science; control theory; systems Data processing. List processing. Character string processing Databases, Factual Discriminant Analysis Exact sciences and technology Face Face - anatomy & histology face image representation Face recognition Histograms Humans Image Processing, Computer-Assisted Kernel kernel discriminant analysis kernel fusion Lighting local binary pattern local phase quantization Memory organisation. Data processing Pattern recognition. Digital image processing. Computational geometry Software Vectors |
Title | Multiscale Local Phase Quantization for Robust Component-Based Face Recognition Using Kernel Fusion of Multiple Descriptors |
URI | https://ieeexplore.ieee.org/document/6302142 https://www.ncbi.nlm.nih.gov/pubmed/23520257 https://www.proquest.com/docview/1319184036 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQssjPCojIXEh2yR2XseCWJXHolK1Um9RbE9UiSpBu8ml_fPMOE6giErcImUSO_HY8439zQzAG5OnMeYRhlHRIO9WFWGRlSqMdZYkOldN2XC88-pbdnyuPl-kF1vwbo6FQURHPsMFX7qzfNuZgbfKDjPpMoRtwzY5bmOs1nxioFJXBZkQDM1wciN8gsY4Kg_PTo5Wn5jFlXBsHqf_JdRBtj6_ZYtccRWmRtYb-jvNWNbibtzp7M9yF1ZTz0fayY_F0OuFuf4rqeP_ftpDeOCBqDgaNecRbGG7B7tTkQfh5_we3P8jY-E-3LiAXe46iq9sBsXJJdlB8X2gEfIhnYJwsDjt9LDpBb-va6np8D2JWbGsDYrTibREso6yIL7gusUrsRx47050jVh5nqMgv9ita9168xjOlx_PPhyHvn5DaKRK-9CUJs9rjFGiyZJaS4tIiC02hIkKI61tTKmtKTND95SyUY1pqTHVWV1kupHyCey01MdnTMCy7Klao3JUBHJ1Qi9BpVEmmDa5DCCcRrIyPrk519i4qpyTE5WVU4KKlaAiJQjg7Sz_c0zrcafkPo_WLOUHKoCDW4oy3yc4GOcyiQJ4PWlORTOWj2HqFrthU8W06rFfLbMAno4q9ftpr5nP_93qC7iXuHIcTLh8CTv9esBXBIp6feBmwy8NdQkW |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFpKw6MYCYkL2Sax8zoWxGpLN1WptlJvUexMhESVVLvJBf48M84DiqjELVImsROPPd_Y38wAvDNx6GPsoeslFfJuVeImUapcX0dBoGNVpRXHO2dn0eJSfbkKr7bgwxQLg4iWfIYzvrRn-WVjOt4qO4qkzRB2D-6T3Q-DPlprOjNQoa2DTBiG5jg5EkOKRt9Lj1bnx9kJ87gCjs7jBMCEO8jax7eskS2vwuTIYkP_p-oLW9yNPK0Fmu9ANva9J558n3Wtnpkff6V1_N-PewKPBygqjnvdeQpbWO_CzljmQQyzfhce_ZGzcA9-2pBd7jqKJRtCcf6NLKH42tEYDUGdgpCwuGh0t2kFv6-pqWn3I4mVYl4YFBcjbYlkLWlBnOK6xmsx73j3TjSVyAamoyDP2K5szXrzDC7nn1efFu5QwcE1UoWta1ITxwX6KNFEQaFliUiYzTeEihIjy7IyqS5NGhm6p1TpFRimGkMdFUmkKyn3YbumPh4wBatkX7U0KkZFMFcH9BJUGmWAYRVLB9xxJHMzpDfnKhvXuXVzvDS3SpCzEuSkBA68n-Rv-sQed0ru8WhNUsNAOXB4S1Gm-wQI_VgGngNvR83Jac7yQUxRY9Ntcp_WPfasZeTA816lfj89aOaLf7f6Bh4sVtkyX56cnb6Eh4EtzsH0y1ew3a47fE0QqdWHdmb8AgC0DGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+Local+Phase+Quantization+for+Robust+Component-Based+Face+Recognition+Using+Kernel+Fusion+of+Multiple+Descriptors&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=HO+CHAN%2C+Chi&rft.au=ATIF+TAHIR%2C+Muhammad&rft.au=KITTLER%2C+Josef&rft.au=PIETIK%C3%84INEN%2C+Matti&rft.date=2013-05-01&rft.pub=IEEE+Computer+Society&rft.issn=0162-8828&rft.volume=35&rft.issue=5&rft.spage=1164&rft.epage=1177&rft_id=info:doi/10.1109%2FTPAMI.2012.199&rft.externalDBID=n%2Fa&rft.externalDocID=27317320 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |