Robust optimization of geothermal recovery based on a generalized thermal decline model and deep learning
Geothermal reservoir simulation often considers the coupled thermo-hydro-mechanical physics, so the computational cost is remarkably expensive, which brings challenges for rapid reservoir optimization for geothermal management. In this work, we developed a parsimonious thermal decline model with onl...
Saved in:
Published in | Energy conversion and management Vol. 286; p. 117033 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0196-8904 |
DOI | 10.1016/j.enconman.2023.117033 |
Cover
Loading…
Abstract | Geothermal reservoir simulation often considers the coupled thermo-hydro-mechanical physics, so the computational cost is remarkably expensive, which brings challenges for rapid reservoir optimization for geothermal management. In this work, we developed a parsimonious thermal decline model with only 3 parameters, namely HyperReLU model. It can accurately predict the produced fluid temperature behavior in geothermal recovery, which captures both the early thermal breakthrough and the later decline behavior. Further, a forward surrogate model based on deep neural network is developed to map the reservoir parameters to the HyperReLU model parameters and the ultimate total net energy. The forward model is integrated with a multi-objective optimizer (MOO) based on Non-dominated Sorting-based Genetic Algorithm II (NSGA-II), which considers reservoir uncertainties of rock properties and subjects to nonlinear engineering constraints for robust reservoir optimization. The HyperReLU model is validated through processes including enhanced geothermal recovery (EGS) and geothermal recovery from hot sedimentary aquifers (HSA) without fracturing. The mean relative error of the HyperReLU model is less than 1%. We also examined the deep neural network to predict 4 parameters including the total energy and 3 HyperReLU model parameters in EGS, with decent R2 scores 0.998, 0.998, 1.000 and 0.946, respectively. The MOO converges well to achieve the optimum total energy, and solutions with different (low, median, high) risk levels are consistent with the results based on reservoir simulation. The decision variables including injection temperature and rate, extraction well pressure and well distance are provided based on the MOO framework. The number of forward model evaluations during optimization is 20000, and the average CPU time of MOO based on the forward surrogate model is 28.32 s, while the optimization based simulation is estimated to be around 600 min. Therefore, the newly proposed workflow is highly scalable and ready for field or regional scale geothermal optimization.
[Display omitted]
•A general thermal decline model is developed to predict produced fluid temperature in geothermal.•A deep learning model integrated with the decline model can accurately geothermal recovery.•Robust optimization is performed to optimize geothermal recovery considering risk. |
---|---|
AbstractList | Geothermal reservoir simulation often considers the coupled thermo-hydro-mechanical physics, so the computational cost is remarkably expensive, which brings challenges for rapid reservoir optimization for geothermal management. In this work, we developed a parsimonious thermal decline model with only 3 parameters, namely HyperReLU model. It can accurately predict the produced fluid temperature behavior in geothermal recovery, which captures both the early thermal breakthrough and the later decline behavior. Further, a forward surrogate model based on deep neural network is developed to map the reservoir parameters to the HyperReLU model parameters and the ultimate total net energy. The forward model is integrated with a multi-objective optimizer (MOO) based on Non-dominated Sorting-based Genetic Algorithm II (NSGA-II), which considers reservoir uncertainties of rock properties and subjects to nonlinear engineering constraints for robust reservoir optimization. The HyperReLU model is validated through processes including enhanced geothermal recovery (EGS) and geothermal recovery from hot sedimentary aquifers (HSA) without fracturing. The mean relative error of the HyperReLU model is less than 1%. We also examined the deep neural network to predict 4 parameters including the total energy and 3 HyperReLU model parameters in EGS, with decent R2 scores 0.998, 0.998, 1.000 and 0.946, respectively. The MOO converges well to achieve the optimum total energy, and solutions with different (low, median, high) risk levels are consistent with the results based on reservoir simulation. The decision variables including injection temperature and rate, extraction well pressure and well distance are provided based on the MOO framework. The number of forward model evaluations during optimization is 20000, and the average CPU time of MOO based on the forward surrogate model is 28.32 s, while the optimization based simulation is estimated to be around 600 min. Therefore, the newly proposed workflow is highly scalable and ready for field or regional scale geothermal optimization. Geothermal reservoir simulation often considers the coupled thermo-hydro-mechanical physics, so the computational cost is remarkably expensive, which brings challenges for rapid reservoir optimization for geothermal management. In this work, we developed a parsimonious thermal decline model with only 3 parameters, namely HyperReLU model. It can accurately predict the produced fluid temperature behavior in geothermal recovery, which captures both the early thermal breakthrough and the later decline behavior. Further, a forward surrogate model based on deep neural network is developed to map the reservoir parameters to the HyperReLU model parameters and the ultimate total net energy. The forward model is integrated with a multi-objective optimizer (MOO) based on Non-dominated Sorting-based Genetic Algorithm II (NSGA-II), which considers reservoir uncertainties of rock properties and subjects to nonlinear engineering constraints for robust reservoir optimization. The HyperReLU model is validated through processes including enhanced geothermal recovery (EGS) and geothermal recovery from hot sedimentary aquifers (HSA) without fracturing. The mean relative error of the HyperReLU model is less than 1%. We also examined the deep neural network to predict 4 parameters including the total energy and 3 HyperReLU model parameters in EGS, with decent R2 scores 0.998, 0.998, 1.000 and 0.946, respectively. The MOO converges well to achieve the optimum total energy, and solutions with different (low, median, high) risk levels are consistent with the results based on reservoir simulation. The decision variables including injection temperature and rate, extraction well pressure and well distance are provided based on the MOO framework. The number of forward model evaluations during optimization is 20000, and the average CPU time of MOO based on the forward surrogate model is 28.32 s, while the optimization based simulation is estimated to be around 600 min. Therefore, the newly proposed workflow is highly scalable and ready for field or regional scale geothermal optimization. [Display omitted] •A general thermal decline model is developed to predict produced fluid temperature in geothermal.•A deep learning model integrated with the decline model can accurately geothermal recovery.•Robust optimization is performed to optimize geothermal recovery considering risk. |
ArticleNumber | 117033 |
Author | Yan, Bicheng Gudala, Manojkumar Sun, Shuyu |
Author_xml | – sequence: 1 givenname: Bicheng orcidid: 0000-0002-3356-7594 surname: Yan fullname: Yan, Bicheng email: bicheng.yan@kaust.edu.sa organization: Energy Resources and Petroleum Engineering Program, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia – sequence: 2 givenname: Manojkumar orcidid: 0000-0002-9277-1405 surname: Gudala fullname: Gudala, Manojkumar email: manojkumar.gudala@kaust.edu.sa organization: Energy Resources and Petroleum Engineering Program, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia – sequence: 3 givenname: Shuyu surname: Sun fullname: Sun, Shuyu email: shuyu.sun@kaust.edu.sa organization: Energy Resources and Petroleum Engineering Program, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia |
BookMark | eNqFkDtLBDEUhVMo-PwLktJm1jzmCRbK4gsEQbQOmeSOZskkY5JdWH-90XEbG6sL537nFN8R2nPeAUJnlCwoofXFagFOeTdKt2CE8QWlDeF8Dx0S2tVF25HyAB3FuCKE8IrUh8g8-34dE_ZTMqP5lMl4h_2A38CndwijtDiA8hsIW9zLCBrnv8xvB0Fa85mDHadBWeMAj16DxdLpnMCELcjgjHs7QfuDtBFOf-8xer29eVneF49Pdw_L68dC8bJKhWJN3eouj-m-IU1faSVrRXQ7sF4NpSaSaNq2TMuWcT2QCqq20azrGlmWQzfwY3Q-707Bf6whJjGaqMBa6cCvo2AtLxnlnHcZrWdUBR9jgEFMwYwybAUl4tunWImdT_HtU8w-c_HyT1GZ9OMuBWns__WruQ7Zw8ZAEFGZTII2WXYS2pv_Jr4A_iicvQ |
CitedBy_id | crossref_primary_10_1016_j_fuel_2023_130490 crossref_primary_10_1021_acsomega_3c07215 crossref_primary_10_1016_j_applthermaleng_2025_125907 crossref_primary_10_1016_j_advwatres_2025_104897 crossref_primary_10_1016_j_ynexs_2024_100044 crossref_primary_10_1061_JENMDT_EMENG_8159 crossref_primary_10_1016_j_eswa_2023_122707 crossref_primary_10_1007_s10596_023_10258_7 crossref_primary_10_1016_j_apenergy_2024_123179 crossref_primary_10_1016_j_apenergy_2024_123349 crossref_primary_10_1016_j_geoen_2024_212663 crossref_primary_10_1103_PhysRevE_109_045307 crossref_primary_10_1016_j_energy_2024_133380 |
Cites_doi | 10.1016/j.renene.2016.07.028 10.1002/ese3.386 10.1016/j.ijheatmasstransfer.2018.09.048 10.1016/j.geothermics.2021.102174 10.1016/j.enbuild.2019.07.045 10.1016/j.renene.2019.10.037 10.1115/1.4045832 10.1016/j.renene.2018.11.045 10.1007/s00603-022-02882-z 10.1016/j.geothermics.2016.08.006 10.1007/s00466-009-0445-9 10.1063/1.1721956 10.1016/j.energy.2022.123511 10.1016/j.geothermics.2021.102091 10.1016/j.energy.2017.04.091 10.1038/s41598-017-14273-4 10.1016/j.jcp.2019.109136 10.1007/BF03184614 10.1016/j.enganabound.2004.05.003 10.2118/4629-PA 10.1016/j.jcp.2022.111277 10.1016/j.jconhyd.2021.103950 10.1016/j.jhydrol.2004.06.021 10.1109/4235.996017 10.1016/j.renene.2020.02.058 10.1016/j.energy.2015.01.030 10.1016/j.cma.2019.06.037 10.1016/j.renene.2021.11.100 10.1007/s11004-016-9643-0 10.1186/s40517-019-0141-8 10.1111/gfl.12108 10.2118/945228-G 10.1016/j.energy.2015.04.020 10.1016/j.geothermics.2013.05.007 10.1016/j.jclepro.2021.128391 10.1016/j.geothermics.2019.101792 10.1016/j.energy.2019.01.022 10.1016/j.earscirev.2018.09.004 10.1016/j.apenergy.2019.04.036 10.1016/j.renene.2021.03.073 10.1016/j.jhydrol.2004.06.020 10.1038/s41592-019-0686-2 10.1016/j.jenvman.2017.07.001 10.1063/1.1712886 10.1016/j.petrol.2020.107215 10.1016/j.jhydrol.2022.127542 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.enconman.2023.117033 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_enconman_2023_117033 S0196890423003795 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAQXK AATTM AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- RIG SAC SEW WUQ 7S9 AFXIZ L.6 |
ID | FETCH-LOGICAL-c345t-c2768d9decdb707b5dca6c0d8f2bcf4d0a0d1882da823df05e587d2997a44f9f3 |
IEDL.DBID | .~1 |
ISSN | 0196-8904 |
IngestDate | Fri Jul 11 01:39:54 EDT 2025 Tue Jul 01 03:03:31 EDT 2025 Thu Apr 24 23:16:13 EDT 2025 Tue Dec 03 03:44:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep neural network Multi-objective optimization Thermal decline model Enhanced geothermal systems Thermal breakthrough |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-c2768d9decdb707b5dca6c0d8f2bcf4d0a0d1882da823df05e587d2997a44f9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3356-7594 0000-0002-9277-1405 |
PQID | 2834213339 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2834213339 crossref_primary_10_1016_j_enconman_2023_117033 crossref_citationtrail_10_1016_j_enconman_2023_117033 elsevier_sciencedirect_doi_10_1016_j_enconman_2023_117033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-15 |
PublicationDateYYYYMMDD | 2023-06-15 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Energy conversion and management |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jagtap, Kawaguchi, Karniadakis (b54) 2020; 404 Sanaee Reza, Oluyemi Gbenga F, Hossain Mamdud, Oyeneyin MB. Fracture-matrix flow partitioning and cross flow: numerical modeling of laboratory fractured core flood. In: Proceedings of the 2012 COMSOL conference, Milan, 10–12 October 2012. 2012. Uyeda, Haenel, Mongelli, Stegena, Delisle (b1) 1988 Gudala, Govindarajan (b4) 2021; 96 Leite Bruno Scalia CF. pymoode: Differential Evolution in Python Solve single-and multi-objective optimization problems using Differential Evolution algorithms. Rawal, Ghassemi (b23) 2014; 50 Gudala, Govindarajan (b64) 2020; 191 Touhidi-Baghini (b59) 1998 Biagi, Agarwal, Zhang (b12) 2015; 86 Juliusson, Bjornsson (b29) 2021; 94 Moore, Allis (b8) 2017 Zhang, Jiang, Zhang, Zhang, Feng (b25) 2021; 317 Zhou, Zhan, Wang (b37) 2022; 245 Pandey, Chaudhuri, Kelkar (b6) 2017; 65 Chen, Ma, Wang, Li, Wang, Sun (b16) 2020; 148 Ghassemi, Zhang (b70) 2004; 28 Hidayat (b32) 2016; 42 Mahmoodpour, Singh, Turan, Bär, Sass (b27) 2022; 247 Aliyev, Durlofsky (b40) 2017; 49 Fetkovich (b44) 1980; 32 Lauwerier (b69) 1955; 5 Demšar, Curk, Erjavec, Gorup, Hočevar, Milutinovič (b68) 2013; 14 Liu, Pu, Zhao, Liu (b9) 2019; 171 Paszke, Gross, Massa, Lerer, Bradbury, Chanan (b49) 2019; 32 Ilk, Currie, Symmons, Rushing, Blasingame (b46) 2010 Cao, Zhang, Liu, Zhao, Li (b35) 2022; 184 Freeman Tony T, Chalaturnyk Rick J, Bogdanov Igor I. Fully coupled thermo-hydro-mechanical modeling by COMSOL Multiphysics, with applications in reservoir geomechanical characterization. In: COMSOL conf. 2008, p. 9–11. Martínez-Gomez, Peña-Lamas, Martín, Ponce-Ortega (b30) 2017; 203 Arps (b43) 1945; 160 Biot (b38) 1941; 12 Miller (b58) 2015; 15 Park, Datta-Gupta, King (b56) 2013 Hidayat, Permana (b7) 2017; 103 Jiayan, Xianzhi, Fuqiang, Guofeng, Yu, Gaosheng (b36) 2022; 217 Wang, Zhao, Liu, Xu (b13) 2022 Bujakowski, Tomaszewska, Miecznik (b14) 2016; 99 Ripperda, Bodvarsson (b31) 1987 Zhou, Zhang, Hu, Yu, Luo, Lei (b11) 2019; 200 Heaton (b48) 2018 Huenges, Holl, Legarth, Zimmermann, Saadat, Tischner (b10) 2004 Guo, Zhang, Wang, Zeng, Zhang, Zhang (b18) 2020; 153 Aliyu, Chen (b17) 2017; 129 Watanabe, Wang, McDermott, Taniguchi, Kolditz (b28) 2010; 45 Li, Feng, Zhang, Tang (b15) 2019; 247 Yan, Harp, Chen, Hoteit, Pawar (b52) 2022; 463 Norouzi, Dorrani, Shokri, Bég (b63) 2019; 129 Pandey, Vishal (b19) 2017; 7 Bowden, Dandy, Maier (b66) 2005; 301 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b57) 2011; 12 Zhao, Feng, Feng, Yang, Liang (b20) 2015; 82 Multiphysics (b42) 2018 Han, Cheng, Gao, Yan, Han, Zhang (b22) 2019; 7 Song, Song, Li, Shi, Wang, Ji (b26) 2021; 172 Šijačić Danijela, Fokker Peter A. Thermo-Hydro-Mechanical modeling of EGS using COMSOL Multiphysics. In: Fourtieth workshop on geothermal reservoir engineering. 2015, p. 52. Samin, Faramarzi, Jefferson, Harireche (b21) 2019; 134 Biot (b39) 1955; 26 Duong (b45) 2010 Yan, Chen, Robert Harp, Jia, Pawar (b53) 2022; 607 Schulte, Arnold, Geiger, Demyanov, Sass (b24) 2020; 86 Klie (b47) 2015 Pandey, Vishal, Chaudhuri (b2) 2018; 185 Csáji (b51) 2001 Jiang, Wang, Zhang, Deng, Lei (b41) 2022; 55 Zais, Bodvarsson (b33) 2008 Deb, Pratap, Agarwal, Meyarivan (b34) 2002; 6 Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau (b50) 2020; 17 Bowden, Maier, Dandy (b67) 2005; 301 Wang, Li, Chen, Ma (b3) 2019; 356 Lepillier, Daniilidis, Doonechaly Gholizadeh, Bruna, Kummerow, Bruhn (b62) 2019; 7 Gudala, Govindarajan (b65) 2020; 142 Song (10.1016/j.enconman.2023.117033_b26) 2021; 172 Schulte (10.1016/j.enconman.2023.117033_b24) 2020; 86 Klie (10.1016/j.enconman.2023.117033_b47) 2015 Multiphysics (10.1016/j.enconman.2023.117033_b42) 2018 Duong (10.1016/j.enconman.2023.117033_b45) 2010 Aliyev (10.1016/j.enconman.2023.117033_b40) 2017; 49 Bujakowski (10.1016/j.enconman.2023.117033_b14) 2016; 99 10.1016/j.enconman.2023.117033_b55 Samin (10.1016/j.enconman.2023.117033_b21) 2019; 134 Virtanen (10.1016/j.enconman.2023.117033_b50) 2020; 17 Pandey (10.1016/j.enconman.2023.117033_b2) 2018; 185 Biot (10.1016/j.enconman.2023.117033_b38) 1941; 12 Gudala (10.1016/j.enconman.2023.117033_b64) 2020; 191 Arps (10.1016/j.enconman.2023.117033_b43) 1945; 160 Miller (10.1016/j.enconman.2023.117033_b58) 2015; 15 Heaton (10.1016/j.enconman.2023.117033_b48) 2018 Moore (10.1016/j.enconman.2023.117033_b8) 2017 Mahmoodpour (10.1016/j.enconman.2023.117033_b27) 2022; 247 Gudala (10.1016/j.enconman.2023.117033_b4) 2021; 96 Zhou (10.1016/j.enconman.2023.117033_b11) 2019; 200 10.1016/j.enconman.2023.117033_b60 10.1016/j.enconman.2023.117033_b61 Ghassemi (10.1016/j.enconman.2023.117033_b70) 2004; 28 Csáji (10.1016/j.enconman.2023.117033_b51) 2001 Han (10.1016/j.enconman.2023.117033_b22) 2019; 7 Hidayat (10.1016/j.enconman.2023.117033_b32) 2016; 42 Uyeda (10.1016/j.enconman.2023.117033_b1) 1988 Chen (10.1016/j.enconman.2023.117033_b16) 2020; 148 Ilk (10.1016/j.enconman.2023.117033_b46) 2010 Aliyu (10.1016/j.enconman.2023.117033_b17) 2017; 129 Zais (10.1016/j.enconman.2023.117033_b33) 2008 Zhao (10.1016/j.enconman.2023.117033_b20) 2015; 82 Yan (10.1016/j.enconman.2023.117033_b53) 2022; 607 Pandey (10.1016/j.enconman.2023.117033_b19) 2017; 7 10.1016/j.enconman.2023.117033_b5 Yan (10.1016/j.enconman.2023.117033_b52) 2022; 463 Liu (10.1016/j.enconman.2023.117033_b9) 2019; 171 Gudala (10.1016/j.enconman.2023.117033_b65) 2020; 142 Wang (10.1016/j.enconman.2023.117033_b13) 2022 Fetkovich (10.1016/j.enconman.2023.117033_b44) 1980; 32 Deb (10.1016/j.enconman.2023.117033_b34) 2002; 6 Lauwerier (10.1016/j.enconman.2023.117033_b69) 1955; 5 Ripperda (10.1016/j.enconman.2023.117033_b31) 1987 Cao (10.1016/j.enconman.2023.117033_b35) 2022; 184 Paszke (10.1016/j.enconman.2023.117033_b49) 2019; 32 Zhou (10.1016/j.enconman.2023.117033_b37) 2022; 245 Wang (10.1016/j.enconman.2023.117033_b3) 2019; 356 Pedregosa (10.1016/j.enconman.2023.117033_b57) 2011; 12 Demšar (10.1016/j.enconman.2023.117033_b68) 2013; 14 Lepillier (10.1016/j.enconman.2023.117033_b62) 2019; 7 Hidayat (10.1016/j.enconman.2023.117033_b7) 2017; 103 Watanabe (10.1016/j.enconman.2023.117033_b28) 2010; 45 Biagi (10.1016/j.enconman.2023.117033_b12) 2015; 86 Pandey (10.1016/j.enconman.2023.117033_b6) 2017; 65 Bowden (10.1016/j.enconman.2023.117033_b66) 2005; 301 Norouzi (10.1016/j.enconman.2023.117033_b63) 2019; 129 Zhang (10.1016/j.enconman.2023.117033_b25) 2021; 317 Martínez-Gomez (10.1016/j.enconman.2023.117033_b30) 2017; 203 Li (10.1016/j.enconman.2023.117033_b15) 2019; 247 Jiayan (10.1016/j.enconman.2023.117033_b36) 2022; 217 Park (10.1016/j.enconman.2023.117033_b56) 2013 Jiang (10.1016/j.enconman.2023.117033_b41) 2022; 55 Jagtap (10.1016/j.enconman.2023.117033_b54) 2020; 404 Bowden (10.1016/j.enconman.2023.117033_b67) 2005; 301 Biot (10.1016/j.enconman.2023.117033_b39) 1955; 26 Juliusson (10.1016/j.enconman.2023.117033_b29) 2021; 94 Rawal (10.1016/j.enconman.2023.117033_b23) 2014; 50 Huenges (10.1016/j.enconman.2023.117033_b10) 2004 Guo (10.1016/j.enconman.2023.117033_b18) 2020; 153 Touhidi-Baghini (10.1016/j.enconman.2023.117033_b59) 1998 |
References_xml | – year: 2008 ident: b33 article-title: Analysis of production decline in geothermal reservoirs – volume: 301 start-page: 93 year: 2005 end-page: 107 ident: b67 article-title: Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river publication-title: J Hydrol – volume: 32 start-page: 1065 year: 1980 end-page: 1077 ident: b44 article-title: Decline curve analysis using type curves publication-title: J Pet Technol – volume: 96 year: 2021 ident: b4 article-title: Numerical investigations on a geothermal reservoir using fully coupled thermo-hydro-geomechanics with integrated RSM-machine learning and ARIMA models publication-title: Geothermics – volume: 203 start-page: 962 year: 2017 end-page: 972 ident: b30 article-title: A multi-objective optimization approach for the selection of working fluids of geothermal facilities: economic, environmental and social aspects publication-title: J Environ Manag – volume: 134 start-page: 379 year: 2019 end-page: 389 ident: b21 article-title: A hybrid optimisation approach to improve long-term performance of enhanced geothermal system (EGS) reservoirs publication-title: Renew Energy – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b57 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res – volume: 45 start-page: 263 year: 2010 end-page: 280 ident: b28 article-title: Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media publication-title: Comput Mech – year: 2015 ident: b47 article-title: Physics-based and data-driven surrogates for production forecasting publication-title: SPE reservoir simulation conference. Day 2 Tue, February 24, 2015 – volume: 148 start-page: 326 year: 2020 end-page: 337 ident: b16 article-title: Optimizing heat mining strategies in a fractured geothermal reservoir considering fracture deformation effects publication-title: Renew Energy – year: 2017 ident: b8 article-title: Novel geothermal development of deep sedimentary systems in the United States – volume: 7 start-page: 1 year: 2019 end-page: 16 ident: b62 article-title: A fracture flow permeability and stress dependency simulation applied to multi-reservoirs, multi-production scenarios analysis publication-title: Geotherm Energy – volume: 607 year: 2022 ident: b53 article-title: A robust deep learning workflow to predict multiphase flow behavior during geological CO2 sequestration injection and Post-Injection periods publication-title: J Hydrol – volume: 129 start-page: 212 year: 2019 end-page: 223 ident: b63 article-title: Effects of viscous dissipation on miscible thermo-viscous fingering instability in porous media publication-title: Int J Heat Mass Transfer – volume: 191 year: 2020 ident: b64 article-title: Numerical modelling of coupled single-phase fluid flow and geomechanics in a fractured porous media publication-title: J Pet Sci Eng – volume: 172 start-page: 1233 year: 2021 end-page: 1249 ident: b26 article-title: An integrated multi-objective optimization method to improve the performance of multilateral-well geothermal system publication-title: Renew Energy – year: 2013 ident: b56 article-title: Handling conflicting multiple objectives using Pareto-based evolutionary algorithm during history matching of reservoir performance publication-title: SPE reservoir simulation conference – year: 1987 ident: b31 article-title: Decline curve analysis of production data from the geysers geothermal field – volume: 15 start-page: 338 year: 2015 end-page: 349 ident: b58 article-title: Modeling enhanced geothermal systems and the essential nature of large-scale changes in permeability at the onset of slip publication-title: Geofluids – year: 2010 ident: b45 article-title: An unconventional rate decline approach for tight and fracture-dominated gas wells publication-title: SPE Canada unconventional resources conference – volume: 94 year: 2021 ident: b29 article-title: Optimizing production strategies for geothermal resources publication-title: Geothermics – volume: 86 start-page: 627 year: 2015 end-page: 637 ident: b12 article-title: Simulation and optimization of enhanced geothermal systems using publication-title: Energy – year: 2004 ident: b10 article-title: The stimulation of a sedimentary geothermal reservoir in the North German Basin: Case study grob schonebeck publication-title: Proceedings, twenty-ninth workshop on geothermal reservoir engineering – reference: Šijačić Danijela, Fokker Peter A. Thermo-Hydro-Mechanical modeling of EGS using COMSOL Multiphysics. In: Fourtieth workshop on geothermal reservoir engineering. 2015, p. 52. – volume: 356 start-page: 465 year: 2019 end-page: 489 ident: b3 article-title: A three-dimensional thermo-hydro-mechanical coupled model for enhanced geothermal systems (EGS) embedded with discrete fracture networks publication-title: Comput Methods Appl Mech Engrg – volume: 99 start-page: 420 year: 2016 end-page: 430 ident: b14 article-title: The Podhale geothermal reservoir simulation for long-term sustainable production publication-title: Renew Energy – start-page: 317 year: 1988 end-page: 448 ident: b1 article-title: Implications publication-title: Handbook of terrestrial heat-flow density determination – volume: 129 start-page: 101 year: 2017 end-page: 113 ident: b17 article-title: Sensitivity analysis of deep geothermal reservoir: Effect of reservoir parameters on production temperature publication-title: Energy – volume: 42 year: 2016 ident: b32 article-title: Decline curve analysis for production forecast and optimization of liquid-dominated geothermal reservoir publication-title: IOP Conf Ser Earth Environ Sci – volume: 245 year: 2022 ident: b37 article-title: On the role of rock matrix to heat transfer in a fracture-rock matrix system publication-title: J Contam Hydrol – volume: 301 start-page: 75 year: 2005 end-page: 92 ident: b66 article-title: Input determination for neural network models in water resources applications. Part 1—background and methodology publication-title: J Hydrol – volume: 247 year: 2022 ident: b27 article-title: Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir publication-title: Energy – volume: 7 start-page: 1705 year: 2019 end-page: 1726 ident: b22 article-title: Investigation on heat extraction characteristics in randomly fractured geothermal reservoirs considering thermo-poroelastic effects publication-title: Energy Sci Eng – volume: 171 start-page: 631 year: 2019 end-page: 653 ident: b9 article-title: Coupled thermo-hydro-mechanical modeling on well pairs in heterogeneous porous geothermal reservoirs publication-title: Energy – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: b50 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nature Methods – reference: Sanaee Reza, Oluyemi Gbenga F, Hossain Mamdud, Oyeneyin MB. Fracture-matrix flow partitioning and cross flow: numerical modeling of laboratory fractured core flood. In: Proceedings of the 2012 COMSOL conference, Milan, 10–12 October 2012. 2012. – volume: 184 start-page: 374 year: 2022 end-page: 390 ident: b35 article-title: Influence of backfilling phase change material on thermal performance of precast high-strength concrete energy pile publication-title: Renew Energy – volume: 28 start-page: 1363 year: 2004 end-page: 1373 ident: b70 article-title: A transient fictitious stress boundary element method for porothermoelastic media publication-title: Eng Anal Bound Elem – year: 2022 ident: b13 article-title: A robust optimization approach of well placement for doublet in heterogeneous geothermal reservoirs using random forest technique and genetic algorithm publication-title: Energy – volume: 82 start-page: 193 year: 2015 end-page: 205 ident: b20 article-title: THM (Thermo-hydro-mechanical) coupled mathematical model of fractured media and numerical simulation of a 3D enhanced geothermal system at 573 K and buried depth 6000–7000 M publication-title: Energy – volume: 200 start-page: 31 year: 2019 end-page: 46 ident: b11 article-title: Analysis of influencing factors of the production performance of an enhanced geothermal system (EGS) with numerical simulation and artificial neural network (ANN) publication-title: Energy Build – year: 2018 ident: b42 article-title: Subsurface flow module user’s guide, Vol. 5 – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b34 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput – year: 2010 ident: b46 article-title: Hybrid rate-decline models for the analysis of production performance in unconventional reservoirs publication-title: SPE annual technical conference and exhibition – volume: 50 start-page: 10 year: 2014 end-page: 23 ident: b23 article-title: A reactive thermo-poroelastic analysis of water injection into an enhanced geothermal reservoir publication-title: Geothermics – volume: 404 year: 2020 ident: b54 article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks publication-title: J Comput Phys – volume: 463 year: 2022 ident: b52 article-title: A gradient-based deep neural network model for simulating multiphase flow in porous media publication-title: J Comput Phys – volume: 317 year: 2021 ident: b25 article-title: Well placement optimization for large-scale geothermal energy exploitation considering nature hydro-thermal processes in the Gonghe Basin, China publication-title: J Clean Prod – volume: 7 start-page: 1 year: 2017 end-page: 14 ident: b19 article-title: Sensitivity analysis of coupled processes and parameters on the performance of enhanced geothermal systems publication-title: Sci Rep – volume: 86 year: 2020 ident: b24 article-title: Multi-objective optimization under uncertainty of geothermal reservoirs using experimental design-based proxy models publication-title: Geothermics – year: 2018 ident: b48 article-title: Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning – volume: 26 start-page: 182 year: 1955 end-page: 185 ident: b39 article-title: Theory of elasticity and consolidation for a porous anisotropic solid publication-title: J Appl Phys – volume: 32 year: 2019 ident: b49 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Adv Neural Inf Process Syst – volume: 185 start-page: 1157 year: 2018 end-page: 1169 ident: b2 article-title: Geothermal reservoir modeling in a coupled thermo-hydro-mechanical-chemical approach: A review publication-title: Earth-Sci Rev – volume: 103 year: 2017 ident: b7 article-title: Geothermal reservoir simulation of hot sedimentary aquifer system using FEFLOW® publication-title: IOP Conf Ser Earth Environ Sci – volume: 14 start-page: 2349 year: 2013 end-page: 2353 ident: b68 article-title: Orange: data mining toolbox in Python publication-title: J Mach Learn Res – volume: 49 start-page: 307 year: 2017 end-page: 339 ident: b40 article-title: Multilevel field development optimization under uncertainty using a sequence of upscaled models publication-title: Math Geosci – reference: Leite Bruno Scalia CF. pymoode: Differential Evolution in Python Solve single-and multi-objective optimization problems using Differential Evolution algorithms. – volume: 160 start-page: 228 year: 1945 end-page: 247 ident: b43 article-title: Analysis of decline curves publication-title: Trans AIME – volume: 55 start-page: 5235 year: 2022 end-page: 5258 ident: b41 article-title: Fracture activation and induced seismicity during long-term heat production in fractured geothermal reservoirs publication-title: Rock Mech Rock Eng – volume: 247 start-page: 40 year: 2019 end-page: 59 ident: b15 article-title: Coupled thermo-hydro-mechanical analysis of stimulation and production for fractured geothermal reservoirs publication-title: Appl Energy – year: 1998 ident: b59 article-title: Absolute permeability of McMurray formation oil sands at low confining stresses – volume: 153 start-page: 813 year: 2020 end-page: 831 ident: b18 article-title: Parameter sensitivity analysis and optimization strategy research of enhanced geothermal system: A case study in Guide Basin, Northwestern China publication-title: Renew Energy – reference: Freeman Tony T, Chalaturnyk Rick J, Bogdanov Igor I. Fully coupled thermo-hydro-mechanical modeling by COMSOL Multiphysics, with applications in reservoir geomechanical characterization. In: COMSOL conf. 2008, p. 9–11. – volume: 217 year: 2022 ident: b36 article-title: Effects of variable thermophysical properties of water on the heat extraction of an enhanced geothermal system: A numerical case study publication-title: Appl Therm Eng – volume: 142 year: 2020 ident: b65 article-title: Numerical modeling of coupled fluid flow and geomechanical stresses in a petroleum reservoir publication-title: J Energy Resour Technol – volume: 65 start-page: 17 year: 2017 end-page: 31 ident: b6 article-title: A coupled thermo-hydro-mechanical modeling of fracture aperture alteration and reservoir deformation during heat extraction from a geothermal reservoir publication-title: Geothermics – volume: 5 start-page: 145 year: 1955 end-page: 150 ident: b69 article-title: The transport of heat in an oil layer caused by the injection of hot fluid publication-title: Appl Sci Res Sect A – volume: 12 start-page: 155 year: 1941 end-page: 164 ident: b38 article-title: General theory of three-dimensional consolidation publication-title: J Appl Phys – start-page: 7 year: 2001 ident: b51 article-title: Approximation with artificial neural networks publication-title: Faculty of sciences. Vol. 24. No. 48 – year: 2015 ident: 10.1016/j.enconman.2023.117033_b47 article-title: Physics-based and data-driven surrogates for production forecasting – year: 2010 ident: 10.1016/j.enconman.2023.117033_b46 article-title: Hybrid rate-decline models for the analysis of production performance in unconventional reservoirs – volume: 99 start-page: 420 year: 2016 ident: 10.1016/j.enconman.2023.117033_b14 article-title: The Podhale geothermal reservoir simulation for long-term sustainable production publication-title: Renew Energy doi: 10.1016/j.renene.2016.07.028 – volume: 7 start-page: 1705 issue: 5 year: 2019 ident: 10.1016/j.enconman.2023.117033_b22 article-title: Investigation on heat extraction characteristics in randomly fractured geothermal reservoirs considering thermo-poroelastic effects publication-title: Energy Sci Eng doi: 10.1002/ese3.386 – ident: 10.1016/j.enconman.2023.117033_b61 – volume: 129 start-page: 212 year: 2019 ident: 10.1016/j.enconman.2023.117033_b63 article-title: Effects of viscous dissipation on miscible thermo-viscous fingering instability in porous media publication-title: Int J Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2018.09.048 – volume: 103 issue: 1 year: 2017 ident: 10.1016/j.enconman.2023.117033_b7 article-title: Geothermal reservoir simulation of hot sedimentary aquifer system using FEFLOW® publication-title: IOP Conf Ser Earth Environ Sci – start-page: 7 year: 2001 ident: 10.1016/j.enconman.2023.117033_b51 article-title: Approximation with artificial neural networks – volume: 96 year: 2021 ident: 10.1016/j.enconman.2023.117033_b4 article-title: Numerical investigations on a geothermal reservoir using fully coupled thermo-hydro-geomechanics with integrated RSM-machine learning and ARIMA models publication-title: Geothermics doi: 10.1016/j.geothermics.2021.102174 – volume: 200 start-page: 31 year: 2019 ident: 10.1016/j.enconman.2023.117033_b11 article-title: Analysis of influencing factors of the production performance of an enhanced geothermal system (EGS) with numerical simulation and artificial neural network (ANN) publication-title: Energy Build doi: 10.1016/j.enbuild.2019.07.045 – volume: 148 start-page: 326 year: 2020 ident: 10.1016/j.enconman.2023.117033_b16 article-title: Optimizing heat mining strategies in a fractured geothermal reservoir considering fracture deformation effects publication-title: Renew Energy doi: 10.1016/j.renene.2019.10.037 – volume: 142 issue: 6 year: 2020 ident: 10.1016/j.enconman.2023.117033_b65 article-title: Numerical modeling of coupled fluid flow and geomechanical stresses in a petroleum reservoir publication-title: J Energy Resour Technol doi: 10.1115/1.4045832 – volume: 134 start-page: 379 year: 2019 ident: 10.1016/j.enconman.2023.117033_b21 article-title: A hybrid optimisation approach to improve long-term performance of enhanced geothermal system (EGS) reservoirs publication-title: Renew Energy doi: 10.1016/j.renene.2018.11.045 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.enconman.2023.117033_b57 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res – ident: 10.1016/j.enconman.2023.117033_b55 – volume: 55 start-page: 5235 issue: 8 year: 2022 ident: 10.1016/j.enconman.2023.117033_b41 article-title: Fracture activation and induced seismicity during long-term heat production in fractured geothermal reservoirs publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-022-02882-z – volume: 65 start-page: 17 issn: 03756505 year: 2017 ident: 10.1016/j.enconman.2023.117033_b6 article-title: A coupled thermo-hydro-mechanical modeling of fracture aperture alteration and reservoir deformation during heat extraction from a geothermal reservoir publication-title: Geothermics doi: 10.1016/j.geothermics.2016.08.006 – year: 2018 ident: 10.1016/j.enconman.2023.117033_b42 – volume: 32 year: 2019 ident: 10.1016/j.enconman.2023.117033_b49 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Adv Neural Inf Process Syst – ident: 10.1016/j.enconman.2023.117033_b5 – volume: 45 start-page: 263 issue: 4 year: 2010 ident: 10.1016/j.enconman.2023.117033_b28 article-title: Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media publication-title: Comput Mech doi: 10.1007/s00466-009-0445-9 – volume: 26 start-page: 182 issn: 00218979 issue: 2 year: 1955 ident: 10.1016/j.enconman.2023.117033_b39 article-title: Theory of elasticity and consolidation for a porous anisotropic solid publication-title: J Appl Phys doi: 10.1063/1.1721956 – volume: 247 year: 2022 ident: 10.1016/j.enconman.2023.117033_b27 article-title: Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir publication-title: Energy doi: 10.1016/j.energy.2022.123511 – volume: 42 issue: 1 year: 2016 ident: 10.1016/j.enconman.2023.117033_b32 article-title: Decline curve analysis for production forecast and optimization of liquid-dominated geothermal reservoir publication-title: IOP Conf Ser Earth Environ Sci – volume: 94 year: 2021 ident: 10.1016/j.enconman.2023.117033_b29 article-title: Optimizing production strategies for geothermal resources publication-title: Geothermics doi: 10.1016/j.geothermics.2021.102091 – ident: 10.1016/j.enconman.2023.117033_b60 – volume: 129 start-page: 101 year: 2017 ident: 10.1016/j.enconman.2023.117033_b17 article-title: Sensitivity analysis of deep geothermal reservoir: Effect of reservoir parameters on production temperature publication-title: Energy doi: 10.1016/j.energy.2017.04.091 – volume: 14 start-page: 2349 issue: 1 year: 2013 ident: 10.1016/j.enconman.2023.117033_b68 article-title: Orange: data mining toolbox in Python publication-title: J Mach Learn Res – start-page: 317 year: 1988 ident: 10.1016/j.enconman.2023.117033_b1 article-title: Implications – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.enconman.2023.117033_b19 article-title: Sensitivity analysis of coupled processes and parameters on the performance of enhanced geothermal systems publication-title: Sci Rep doi: 10.1038/s41598-017-14273-4 – year: 2008 ident: 10.1016/j.enconman.2023.117033_b33 – volume: 404 year: 2020 ident: 10.1016/j.enconman.2023.117033_b54 article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks publication-title: J Comput Phys doi: 10.1016/j.jcp.2019.109136 – volume: 5 start-page: 145 year: 1955 ident: 10.1016/j.enconman.2023.117033_b69 article-title: The transport of heat in an oil layer caused by the injection of hot fluid publication-title: Appl Sci Res Sect A doi: 10.1007/BF03184614 – year: 1987 ident: 10.1016/j.enconman.2023.117033_b31 – volume: 217 year: 2022 ident: 10.1016/j.enconman.2023.117033_b36 article-title: Effects of variable thermophysical properties of water on the heat extraction of an enhanced geothermal system: A numerical case study publication-title: Appl Therm Eng – volume: 28 start-page: 1363 issue: 11 year: 2004 ident: 10.1016/j.enconman.2023.117033_b70 article-title: A transient fictitious stress boundary element method for porothermoelastic media publication-title: Eng Anal Bound Elem doi: 10.1016/j.enganabound.2004.05.003 – volume: 32 start-page: 1065 issn: 0149-2136 issue: 06 year: 1980 ident: 10.1016/j.enconman.2023.117033_b44 article-title: Decline curve analysis using type curves publication-title: J Pet Technol doi: 10.2118/4629-PA – volume: 463 issn: 0021-9991 year: 2022 ident: 10.1016/j.enconman.2023.117033_b52 article-title: A gradient-based deep neural network model for simulating multiphase flow in porous media publication-title: J Comput Phys doi: 10.1016/j.jcp.2022.111277 – volume: 245 year: 2022 ident: 10.1016/j.enconman.2023.117033_b37 article-title: On the role of rock matrix to heat transfer in a fracture-rock matrix system publication-title: J Contam Hydrol doi: 10.1016/j.jconhyd.2021.103950 – volume: 301 start-page: 75 issue: 1–4 year: 2005 ident: 10.1016/j.enconman.2023.117033_b66 article-title: Input determination for neural network models in water resources applications. Part 1—background and methodology publication-title: J Hydrol doi: 10.1016/j.jhydrol.2004.06.021 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.enconman.2023.117033_b34 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 153 start-page: 813 year: 2020 ident: 10.1016/j.enconman.2023.117033_b18 article-title: Parameter sensitivity analysis and optimization strategy research of enhanced geothermal system: A case study in Guide Basin, Northwestern China publication-title: Renew Energy doi: 10.1016/j.renene.2020.02.058 – volume: 82 start-page: 193 year: 2015 ident: 10.1016/j.enconman.2023.117033_b20 article-title: THM (Thermo-hydro-mechanical) coupled mathematical model of fractured media and numerical simulation of a 3D enhanced geothermal system at 573 K and buried depth 6000–7000 M publication-title: Energy doi: 10.1016/j.energy.2015.01.030 – year: 2013 ident: 10.1016/j.enconman.2023.117033_b56 article-title: Handling conflicting multiple objectives using Pareto-based evolutionary algorithm during history matching of reservoir performance – volume: 356 start-page: 465 year: 2019 ident: 10.1016/j.enconman.2023.117033_b3 article-title: A three-dimensional thermo-hydro-mechanical coupled model for enhanced geothermal systems (EGS) embedded with discrete fracture networks publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2019.06.037 – volume: 184 start-page: 374 year: 2022 ident: 10.1016/j.enconman.2023.117033_b35 article-title: Influence of backfilling phase change material on thermal performance of precast high-strength concrete energy pile publication-title: Renew Energy doi: 10.1016/j.renene.2021.11.100 – volume: 49 start-page: 307 issue: 3 year: 2017 ident: 10.1016/j.enconman.2023.117033_b40 article-title: Multilevel field development optimization under uncertainty using a sequence of upscaled models publication-title: Math Geosci doi: 10.1007/s11004-016-9643-0 – volume: 7 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.enconman.2023.117033_b62 article-title: A fracture flow permeability and stress dependency simulation applied to multi-reservoirs, multi-production scenarios analysis publication-title: Geotherm Energy doi: 10.1186/s40517-019-0141-8 – volume: 15 start-page: 338 issue: 1–2 year: 2015 ident: 10.1016/j.enconman.2023.117033_b58 article-title: Modeling enhanced geothermal systems and the essential nature of large-scale changes in permeability at the onset of slip publication-title: Geofluids doi: 10.1111/gfl.12108 – year: 2010 ident: 10.1016/j.enconman.2023.117033_b45 article-title: An unconventional rate decline approach for tight and fracture-dominated gas wells – year: 2017 ident: 10.1016/j.enconman.2023.117033_b8 – volume: 160 start-page: 228 issn: 0081-1696 issue: 01 year: 1945 ident: 10.1016/j.enconman.2023.117033_b43 article-title: Analysis of decline curves publication-title: Trans AIME doi: 10.2118/945228-G – volume: 86 start-page: 627 year: 2015 ident: 10.1016/j.enconman.2023.117033_b12 article-title: Simulation and optimization of enhanced geothermal systems using CO2 as a working fluid publication-title: Energy doi: 10.1016/j.energy.2015.04.020 – volume: 50 start-page: 10 year: 2014 ident: 10.1016/j.enconman.2023.117033_b23 article-title: A reactive thermo-poroelastic analysis of water injection into an enhanced geothermal reservoir publication-title: Geothermics doi: 10.1016/j.geothermics.2013.05.007 – year: 2004 ident: 10.1016/j.enconman.2023.117033_b10 article-title: The stimulation of a sedimentary geothermal reservoir in the North German Basin: Case study grob schonebeck – volume: 317 year: 2021 ident: 10.1016/j.enconman.2023.117033_b25 article-title: Well placement optimization for large-scale geothermal energy exploitation considering nature hydro-thermal processes in the Gonghe Basin, China publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.128391 – volume: 86 year: 2020 ident: 10.1016/j.enconman.2023.117033_b24 article-title: Multi-objective optimization under uncertainty of geothermal reservoirs using experimental design-based proxy models publication-title: Geothermics doi: 10.1016/j.geothermics.2019.101792 – year: 1998 ident: 10.1016/j.enconman.2023.117033_b59 – volume: 171 start-page: 631 year: 2019 ident: 10.1016/j.enconman.2023.117033_b9 article-title: Coupled thermo-hydro-mechanical modeling on well pairs in heterogeneous porous geothermal reservoirs publication-title: Energy doi: 10.1016/j.energy.2019.01.022 – volume: 185 start-page: 1157 year: 2018 ident: 10.1016/j.enconman.2023.117033_b2 article-title: Geothermal reservoir modeling in a coupled thermo-hydro-mechanical-chemical approach: A review publication-title: Earth-Sci Rev doi: 10.1016/j.earscirev.2018.09.004 – year: 2022 ident: 10.1016/j.enconman.2023.117033_b13 article-title: A robust optimization approach of well placement for doublet in heterogeneous geothermal reservoirs using random forest technique and genetic algorithm publication-title: Energy – volume: 247 start-page: 40 year: 2019 ident: 10.1016/j.enconman.2023.117033_b15 article-title: Coupled thermo-hydro-mechanical analysis of stimulation and production for fractured geothermal reservoirs publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.04.036 – volume: 172 start-page: 1233 year: 2021 ident: 10.1016/j.enconman.2023.117033_b26 article-title: An integrated multi-objective optimization method to improve the performance of multilateral-well geothermal system publication-title: Renew Energy doi: 10.1016/j.renene.2021.03.073 – volume: 301 start-page: 93 issue: 1–4 year: 2005 ident: 10.1016/j.enconman.2023.117033_b67 article-title: Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river publication-title: J Hydrol doi: 10.1016/j.jhydrol.2004.06.020 – year: 2018 ident: 10.1016/j.enconman.2023.117033_b48 – volume: 17 start-page: 261 issue: 3 year: 2020 ident: 10.1016/j.enconman.2023.117033_b50 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nature Methods doi: 10.1038/s41592-019-0686-2 – volume: 203 start-page: 962 year: 2017 ident: 10.1016/j.enconman.2023.117033_b30 article-title: A multi-objective optimization approach for the selection of working fluids of geothermal facilities: economic, environmental and social aspects publication-title: J Environ Manag doi: 10.1016/j.jenvman.2017.07.001 – volume: 12 start-page: 155 issn: 00218979 year: 1941 ident: 10.1016/j.enconman.2023.117033_b38 article-title: General theory of three-dimensional consolidation publication-title: J Appl Phys doi: 10.1063/1.1712886 – volume: 191 year: 2020 ident: 10.1016/j.enconman.2023.117033_b64 article-title: Numerical modelling of coupled single-phase fluid flow and geomechanics in a fractured porous media publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2020.107215 – volume: 607 issn: 0022-1694 year: 2022 ident: 10.1016/j.enconman.2023.117033_b53 article-title: A robust deep learning workflow to predict multiphase flow behavior during geological CO2 sequestration injection and Post-Injection periods publication-title: J Hydrol doi: 10.1016/j.jhydrol.2022.127542 |
SSID | ssj0003506 |
Score | 2.5184872 |
Snippet | Geothermal reservoir simulation often considers the coupled thermo-hydro-mechanical physics, so the computational cost is remarkably expensive, which brings... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 117033 |
SubjectTerms | administrative management algorithms decline Deep neural network energy conversion Enhanced geothermal systems Multi-objective optimization risk temperature Thermal breakthrough Thermal decline model |
Title | Robust optimization of geothermal recovery based on a generalized thermal decline model and deep learning |
URI | https://dx.doi.org/10.1016/j.enconman.2023.117033 https://www.proquest.com/docview/2834213339 |
Volume | 286 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QXOCAeIrnFCSuZV2TrMkRIdAAsQMPiVuUJxpi7cS2Axz47dhdy0tCHLhUamJHlePajmJ_JuQwjdZm0YvERmkTLlUnka7rko6yqQnwdDkWCl_1u707fnEv7ufISVMLg2mVte2f2fTKWtcj7Vqa7dFg0L5BZBepMK8DQVQUFppznqOWH719pnkwUfXXROIEqb9UCT8eIVZkMTSIg5oxvL9MGfvNQf0w1ZX_OVshy3XgSI9n37ZK5kKxRpa-wAmuk8F1aafjCS3BDAzr-kpaRvoQqjKrIbDj-ReU94Wi9_IU5g1MV8jTg1cYaOh8wJLJQKtGOdQUHkbCiNY9Jh42yN3Z6e1JL6lbKSSOcTFJXAbHCq-A2ds8za3wznRd6mXMrIvcpyb1HQi2vZEZ8zEVQcjcg6vKDedRRbZJ5ouyCFuEMs8QMt4aCYxAY5SEBZxxwgcJ1nKbiEZ-2tU449ju4kk3CWWPupG7Rrnrmdy3SfuDbzRD2viTQzXbo7_pjAZ38CfvQbOfGn4ovCUxRSinYw3xFs_g5M7Uzj_W3yWL-IZJZR2xR-Ynz9OwD-HLxLYq_WyRhePzy17_HXWR898 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5BOJQeqpa2AvoyUq_bbNbrrH2MoqJQIIcWJG6WnygR2Y1KcoBfz8zGi2ilikMve7A91mpsfzOWZ74B-JpHa4voRWajtFkp1SCTbuiygbK5Cfh1FSUKn0-Hk8vyx5W42oJxlwtDYZUJ-zeY3qJ1auknbfaXs1n_FzG7SEVxHUSiosQ27BA7lejBzujkdDJ9BGQu2hKbND4jgSeJwvNvRBdZLwxRoRacnjBzzv9lo_5C69YEHb-GV8l3ZKPN772BrVDvwcsnjIJvYfazsevbFWsQCRYpxZI1kV2HNtNqgeJ0Bcb9e8fIgHmG_Qa7W_Lp2T02dON8oKzJwNpaOczUHlvCkqUyE9fv4PL4-8V4kqVqCpnjpVhlrsCbhVco7G2VV1Z4Z4Yu9zIW1sXS5yb3A_S3vZEF9zEXQcjKo7WqTFlGFfl76NVNHfaBcc-JNd4aiYI4xiiJEzjjhA8SAfMARKc_7RLVOFW8uNFdTNlcd3rXpHe90fsB9B_llhuyjWclVLc8-o9to9EiPCt71K2nxjNFDyWmDs36VqPLVRZ4eefq8D_m_wIvJhfnZ_rsZHr6AXaph2LMBuIj9Fa_1-ETejMr-znt1gfIpPaQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+optimization+of+geothermal+recovery+based+on+a+generalized+thermal+decline+model+and+deep+learning&rft.jtitle=Energy+conversion+and+management&rft.au=Yan%2C+Bicheng&rft.au=Gudala%2C+Manojkumar&rft.au=Sun%2C+Shuyu&rft.date=2023-06-15&rft.issn=0196-8904&rft.volume=286&rft.spage=117033&rft_id=info:doi/10.1016%2Fj.enconman.2023.117033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2023_117033 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |