Robust optimization of geothermal recovery based on a generalized thermal decline model and deep learning

Geothermal reservoir simulation often considers the coupled thermo-hydro-mechanical physics, so the computational cost is remarkably expensive, which brings challenges for rapid reservoir optimization for geothermal management. In this work, we developed a parsimonious thermal decline model with onl...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 286; p. 117033
Main Authors Yan, Bicheng, Gudala, Manojkumar, Sun, Shuyu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.06.2023
Subjects
Online AccessGet full text
ISSN0196-8904
DOI10.1016/j.enconman.2023.117033

Cover

Loading…
Abstract Geothermal reservoir simulation often considers the coupled thermo-hydro-mechanical physics, so the computational cost is remarkably expensive, which brings challenges for rapid reservoir optimization for geothermal management. In this work, we developed a parsimonious thermal decline model with only 3 parameters, namely HyperReLU model. It can accurately predict the produced fluid temperature behavior in geothermal recovery, which captures both the early thermal breakthrough and the later decline behavior. Further, a forward surrogate model based on deep neural network is developed to map the reservoir parameters to the HyperReLU model parameters and the ultimate total net energy. The forward model is integrated with a multi-objective optimizer (MOO) based on Non-dominated Sorting-based Genetic Algorithm II (NSGA-II), which considers reservoir uncertainties of rock properties and subjects to nonlinear engineering constraints for robust reservoir optimization. The HyperReLU model is validated through processes including enhanced geothermal recovery (EGS) and geothermal recovery from hot sedimentary aquifers (HSA) without fracturing. The mean relative error of the HyperReLU model is less than 1%. We also examined the deep neural network to predict 4 parameters including the total energy and 3 HyperReLU model parameters in EGS, with decent R2 scores 0.998, 0.998, 1.000 and 0.946, respectively. The MOO converges well to achieve the optimum total energy, and solutions with different (low, median, high) risk levels are consistent with the results based on reservoir simulation. The decision variables including injection temperature and rate, extraction well pressure and well distance are provided based on the MOO framework. The number of forward model evaluations during optimization is 20000, and the average CPU time of MOO based on the forward surrogate model is 28.32 s, while the optimization based simulation is estimated to be around 600 min. Therefore, the newly proposed workflow is highly scalable and ready for field or regional scale geothermal optimization. [Display omitted] •A general thermal decline model is developed to predict produced fluid temperature in geothermal.•A deep learning model integrated with the decline model can accurately geothermal recovery.•Robust optimization is performed to optimize geothermal recovery considering risk.
AbstractList Geothermal reservoir simulation often considers the coupled thermo-hydro-mechanical physics, so the computational cost is remarkably expensive, which brings challenges for rapid reservoir optimization for geothermal management. In this work, we developed a parsimonious thermal decline model with only 3 parameters, namely HyperReLU model. It can accurately predict the produced fluid temperature behavior in geothermal recovery, which captures both the early thermal breakthrough and the later decline behavior. Further, a forward surrogate model based on deep neural network is developed to map the reservoir parameters to the HyperReLU model parameters and the ultimate total net energy. The forward model is integrated with a multi-objective optimizer (MOO) based on Non-dominated Sorting-based Genetic Algorithm II (NSGA-II), which considers reservoir uncertainties of rock properties and subjects to nonlinear engineering constraints for robust reservoir optimization. The HyperReLU model is validated through processes including enhanced geothermal recovery (EGS) and geothermal recovery from hot sedimentary aquifers (HSA) without fracturing. The mean relative error of the HyperReLU model is less than 1%. We also examined the deep neural network to predict 4 parameters including the total energy and 3 HyperReLU model parameters in EGS, with decent R2 scores 0.998, 0.998, 1.000 and 0.946, respectively. The MOO converges well to achieve the optimum total energy, and solutions with different (low, median, high) risk levels are consistent with the results based on reservoir simulation. The decision variables including injection temperature and rate, extraction well pressure and well distance are provided based on the MOO framework. The number of forward model evaluations during optimization is 20000, and the average CPU time of MOO based on the forward surrogate model is 28.32 s, while the optimization based simulation is estimated to be around 600 min. Therefore, the newly proposed workflow is highly scalable and ready for field or regional scale geothermal optimization.
Geothermal reservoir simulation often considers the coupled thermo-hydro-mechanical physics, so the computational cost is remarkably expensive, which brings challenges for rapid reservoir optimization for geothermal management. In this work, we developed a parsimonious thermal decline model with only 3 parameters, namely HyperReLU model. It can accurately predict the produced fluid temperature behavior in geothermal recovery, which captures both the early thermal breakthrough and the later decline behavior. Further, a forward surrogate model based on deep neural network is developed to map the reservoir parameters to the HyperReLU model parameters and the ultimate total net energy. The forward model is integrated with a multi-objective optimizer (MOO) based on Non-dominated Sorting-based Genetic Algorithm II (NSGA-II), which considers reservoir uncertainties of rock properties and subjects to nonlinear engineering constraints for robust reservoir optimization. The HyperReLU model is validated through processes including enhanced geothermal recovery (EGS) and geothermal recovery from hot sedimentary aquifers (HSA) without fracturing. The mean relative error of the HyperReLU model is less than 1%. We also examined the deep neural network to predict 4 parameters including the total energy and 3 HyperReLU model parameters in EGS, with decent R2 scores 0.998, 0.998, 1.000 and 0.946, respectively. The MOO converges well to achieve the optimum total energy, and solutions with different (low, median, high) risk levels are consistent with the results based on reservoir simulation. The decision variables including injection temperature and rate, extraction well pressure and well distance are provided based on the MOO framework. The number of forward model evaluations during optimization is 20000, and the average CPU time of MOO based on the forward surrogate model is 28.32 s, while the optimization based simulation is estimated to be around 600 min. Therefore, the newly proposed workflow is highly scalable and ready for field or regional scale geothermal optimization. [Display omitted] •A general thermal decline model is developed to predict produced fluid temperature in geothermal.•A deep learning model integrated with the decline model can accurately geothermal recovery.•Robust optimization is performed to optimize geothermal recovery considering risk.
ArticleNumber 117033
Author Yan, Bicheng
Gudala, Manojkumar
Sun, Shuyu
Author_xml – sequence: 1
  givenname: Bicheng
  orcidid: 0000-0002-3356-7594
  surname: Yan
  fullname: Yan, Bicheng
  email: bicheng.yan@kaust.edu.sa
  organization: Energy Resources and Petroleum Engineering Program, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
– sequence: 2
  givenname: Manojkumar
  orcidid: 0000-0002-9277-1405
  surname: Gudala
  fullname: Gudala, Manojkumar
  email: manojkumar.gudala@kaust.edu.sa
  organization: Energy Resources and Petroleum Engineering Program, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
– sequence: 3
  givenname: Shuyu
  surname: Sun
  fullname: Sun, Shuyu
  email: shuyu.sun@kaust.edu.sa
  organization: Energy Resources and Petroleum Engineering Program, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
BookMark eNqFkDtLBDEUhVMo-PwLktJm1jzmCRbK4gsEQbQOmeSOZskkY5JdWH-90XEbG6sL537nFN8R2nPeAUJnlCwoofXFagFOeTdKt2CE8QWlDeF8Dx0S2tVF25HyAB3FuCKE8IrUh8g8-34dE_ZTMqP5lMl4h_2A38CndwijtDiA8hsIW9zLCBrnv8xvB0Fa85mDHadBWeMAj16DxdLpnMCELcjgjHs7QfuDtBFOf-8xer29eVneF49Pdw_L68dC8bJKhWJN3eouj-m-IU1faSVrRXQ7sF4NpSaSaNq2TMuWcT2QCqq20azrGlmWQzfwY3Q-707Bf6whJjGaqMBa6cCvo2AtLxnlnHcZrWdUBR9jgEFMwYwybAUl4tunWImdT_HtU8w-c_HyT1GZ9OMuBWns__WruQ7Zw8ZAEFGZTII2WXYS2pv_Jr4A_iicvQ
CitedBy_id crossref_primary_10_1016_j_fuel_2023_130490
crossref_primary_10_1021_acsomega_3c07215
crossref_primary_10_1016_j_applthermaleng_2025_125907
crossref_primary_10_1016_j_advwatres_2025_104897
crossref_primary_10_1016_j_ynexs_2024_100044
crossref_primary_10_1061_JENMDT_EMENG_8159
crossref_primary_10_1016_j_eswa_2023_122707
crossref_primary_10_1007_s10596_023_10258_7
crossref_primary_10_1016_j_apenergy_2024_123179
crossref_primary_10_1016_j_apenergy_2024_123349
crossref_primary_10_1016_j_geoen_2024_212663
crossref_primary_10_1103_PhysRevE_109_045307
crossref_primary_10_1016_j_energy_2024_133380
Cites_doi 10.1016/j.renene.2016.07.028
10.1002/ese3.386
10.1016/j.ijheatmasstransfer.2018.09.048
10.1016/j.geothermics.2021.102174
10.1016/j.enbuild.2019.07.045
10.1016/j.renene.2019.10.037
10.1115/1.4045832
10.1016/j.renene.2018.11.045
10.1007/s00603-022-02882-z
10.1016/j.geothermics.2016.08.006
10.1007/s00466-009-0445-9
10.1063/1.1721956
10.1016/j.energy.2022.123511
10.1016/j.geothermics.2021.102091
10.1016/j.energy.2017.04.091
10.1038/s41598-017-14273-4
10.1016/j.jcp.2019.109136
10.1007/BF03184614
10.1016/j.enganabound.2004.05.003
10.2118/4629-PA
10.1016/j.jcp.2022.111277
10.1016/j.jconhyd.2021.103950
10.1016/j.jhydrol.2004.06.021
10.1109/4235.996017
10.1016/j.renene.2020.02.058
10.1016/j.energy.2015.01.030
10.1016/j.cma.2019.06.037
10.1016/j.renene.2021.11.100
10.1007/s11004-016-9643-0
10.1186/s40517-019-0141-8
10.1111/gfl.12108
10.2118/945228-G
10.1016/j.energy.2015.04.020
10.1016/j.geothermics.2013.05.007
10.1016/j.jclepro.2021.128391
10.1016/j.geothermics.2019.101792
10.1016/j.energy.2019.01.022
10.1016/j.earscirev.2018.09.004
10.1016/j.apenergy.2019.04.036
10.1016/j.renene.2021.03.073
10.1016/j.jhydrol.2004.06.020
10.1038/s41592-019-0686-2
10.1016/j.jenvman.2017.07.001
10.1063/1.1712886
10.1016/j.petrol.2020.107215
10.1016/j.jhydrol.2022.127542
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.enconman.2023.117033
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_enconman_2023_117033
S0196890423003795
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
A6W
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
RIG
SAC
SEW
WUQ
7S9
AFXIZ
L.6
ID FETCH-LOGICAL-c345t-c2768d9decdb707b5dca6c0d8f2bcf4d0a0d1882da823df05e587d2997a44f9f3
IEDL.DBID .~1
ISSN 0196-8904
IngestDate Fri Jul 11 01:39:54 EDT 2025
Tue Jul 01 03:03:31 EDT 2025
Thu Apr 24 23:16:13 EDT 2025
Tue Dec 03 03:44:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep neural network
Multi-objective optimization
Thermal decline model
Enhanced geothermal systems
Thermal breakthrough
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-c2768d9decdb707b5dca6c0d8f2bcf4d0a0d1882da823df05e587d2997a44f9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3356-7594
0000-0002-9277-1405
PQID 2834213339
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2834213339
crossref_primary_10_1016_j_enconman_2023_117033
crossref_citationtrail_10_1016_j_enconman_2023_117033
elsevier_sciencedirect_doi_10_1016_j_enconman_2023_117033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-15
PublicationDateYYYYMMDD 2023-06-15
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy conversion and management
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jagtap, Kawaguchi, Karniadakis (b54) 2020; 404
Sanaee Reza, Oluyemi Gbenga F, Hossain Mamdud, Oyeneyin MB. Fracture-matrix flow partitioning and cross flow: numerical modeling of laboratory fractured core flood. In: Proceedings of the 2012 COMSOL conference, Milan, 10–12 October 2012. 2012.
Uyeda, Haenel, Mongelli, Stegena, Delisle (b1) 1988
Gudala, Govindarajan (b4) 2021; 96
Leite Bruno Scalia CF. pymoode: Differential Evolution in Python Solve single-and multi-objective optimization problems using Differential Evolution algorithms.
Rawal, Ghassemi (b23) 2014; 50
Gudala, Govindarajan (b64) 2020; 191
Touhidi-Baghini (b59) 1998
Biagi, Agarwal, Zhang (b12) 2015; 86
Juliusson, Bjornsson (b29) 2021; 94
Moore, Allis (b8) 2017
Zhang, Jiang, Zhang, Zhang, Feng (b25) 2021; 317
Zhou, Zhan, Wang (b37) 2022; 245
Pandey, Chaudhuri, Kelkar (b6) 2017; 65
Chen, Ma, Wang, Li, Wang, Sun (b16) 2020; 148
Ghassemi, Zhang (b70) 2004; 28
Hidayat (b32) 2016; 42
Mahmoodpour, Singh, Turan, Bär, Sass (b27) 2022; 247
Aliyev, Durlofsky (b40) 2017; 49
Fetkovich (b44) 1980; 32
Lauwerier (b69) 1955; 5
Demšar, Curk, Erjavec, Gorup, Hočevar, Milutinovič (b68) 2013; 14
Liu, Pu, Zhao, Liu (b9) 2019; 171
Paszke, Gross, Massa, Lerer, Bradbury, Chanan (b49) 2019; 32
Ilk, Currie, Symmons, Rushing, Blasingame (b46) 2010
Cao, Zhang, Liu, Zhao, Li (b35) 2022; 184
Freeman Tony T, Chalaturnyk Rick J, Bogdanov Igor I. Fully coupled thermo-hydro-mechanical modeling by COMSOL Multiphysics, with applications in reservoir geomechanical characterization. In: COMSOL conf. 2008, p. 9–11.
Martínez-Gomez, Peña-Lamas, Martín, Ponce-Ortega (b30) 2017; 203
Arps (b43) 1945; 160
Biot (b38) 1941; 12
Miller (b58) 2015; 15
Park, Datta-Gupta, King (b56) 2013
Hidayat, Permana (b7) 2017; 103
Jiayan, Xianzhi, Fuqiang, Guofeng, Yu, Gaosheng (b36) 2022; 217
Wang, Zhao, Liu, Xu (b13) 2022
Bujakowski, Tomaszewska, Miecznik (b14) 2016; 99
Ripperda, Bodvarsson (b31) 1987
Zhou, Zhang, Hu, Yu, Luo, Lei (b11) 2019; 200
Heaton (b48) 2018
Huenges, Holl, Legarth, Zimmermann, Saadat, Tischner (b10) 2004
Guo, Zhang, Wang, Zeng, Zhang, Zhang (b18) 2020; 153
Aliyu, Chen (b17) 2017; 129
Watanabe, Wang, McDermott, Taniguchi, Kolditz (b28) 2010; 45
Li, Feng, Zhang, Tang (b15) 2019; 247
Yan, Harp, Chen, Hoteit, Pawar (b52) 2022; 463
Norouzi, Dorrani, Shokri, Bég (b63) 2019; 129
Pandey, Vishal (b19) 2017; 7
Bowden, Dandy, Maier (b66) 2005; 301
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b57) 2011; 12
Zhao, Feng, Feng, Yang, Liang (b20) 2015; 82
Multiphysics (b42) 2018
Han, Cheng, Gao, Yan, Han, Zhang (b22) 2019; 7
Song, Song, Li, Shi, Wang, Ji (b26) 2021; 172
Šijačić Danijela, Fokker Peter A. Thermo-Hydro-Mechanical modeling of EGS using COMSOL Multiphysics. In: Fourtieth workshop on geothermal reservoir engineering. 2015, p. 52.
Samin, Faramarzi, Jefferson, Harireche (b21) 2019; 134
Biot (b39) 1955; 26
Duong (b45) 2010
Yan, Chen, Robert Harp, Jia, Pawar (b53) 2022; 607
Schulte, Arnold, Geiger, Demyanov, Sass (b24) 2020; 86
Klie (b47) 2015
Pandey, Vishal, Chaudhuri (b2) 2018; 185
Csáji (b51) 2001
Jiang, Wang, Zhang, Deng, Lei (b41) 2022; 55
Zais, Bodvarsson (b33) 2008
Deb, Pratap, Agarwal, Meyarivan (b34) 2002; 6
Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau (b50) 2020; 17
Bowden, Maier, Dandy (b67) 2005; 301
Wang, Li, Chen, Ma (b3) 2019; 356
Lepillier, Daniilidis, Doonechaly Gholizadeh, Bruna, Kummerow, Bruhn (b62) 2019; 7
Gudala, Govindarajan (b65) 2020; 142
Song (10.1016/j.enconman.2023.117033_b26) 2021; 172
Schulte (10.1016/j.enconman.2023.117033_b24) 2020; 86
Klie (10.1016/j.enconman.2023.117033_b47) 2015
Multiphysics (10.1016/j.enconman.2023.117033_b42) 2018
Duong (10.1016/j.enconman.2023.117033_b45) 2010
Aliyev (10.1016/j.enconman.2023.117033_b40) 2017; 49
Bujakowski (10.1016/j.enconman.2023.117033_b14) 2016; 99
10.1016/j.enconman.2023.117033_b55
Samin (10.1016/j.enconman.2023.117033_b21) 2019; 134
Virtanen (10.1016/j.enconman.2023.117033_b50) 2020; 17
Pandey (10.1016/j.enconman.2023.117033_b2) 2018; 185
Biot (10.1016/j.enconman.2023.117033_b38) 1941; 12
Gudala (10.1016/j.enconman.2023.117033_b64) 2020; 191
Arps (10.1016/j.enconman.2023.117033_b43) 1945; 160
Miller (10.1016/j.enconman.2023.117033_b58) 2015; 15
Heaton (10.1016/j.enconman.2023.117033_b48) 2018
Moore (10.1016/j.enconman.2023.117033_b8) 2017
Mahmoodpour (10.1016/j.enconman.2023.117033_b27) 2022; 247
Gudala (10.1016/j.enconman.2023.117033_b4) 2021; 96
Zhou (10.1016/j.enconman.2023.117033_b11) 2019; 200
10.1016/j.enconman.2023.117033_b60
10.1016/j.enconman.2023.117033_b61
Ghassemi (10.1016/j.enconman.2023.117033_b70) 2004; 28
Csáji (10.1016/j.enconman.2023.117033_b51) 2001
Han (10.1016/j.enconman.2023.117033_b22) 2019; 7
Hidayat (10.1016/j.enconman.2023.117033_b32) 2016; 42
Uyeda (10.1016/j.enconman.2023.117033_b1) 1988
Chen (10.1016/j.enconman.2023.117033_b16) 2020; 148
Ilk (10.1016/j.enconman.2023.117033_b46) 2010
Aliyu (10.1016/j.enconman.2023.117033_b17) 2017; 129
Zais (10.1016/j.enconman.2023.117033_b33) 2008
Zhao (10.1016/j.enconman.2023.117033_b20) 2015; 82
Yan (10.1016/j.enconman.2023.117033_b53) 2022; 607
Pandey (10.1016/j.enconman.2023.117033_b19) 2017; 7
10.1016/j.enconman.2023.117033_b5
Yan (10.1016/j.enconman.2023.117033_b52) 2022; 463
Liu (10.1016/j.enconman.2023.117033_b9) 2019; 171
Gudala (10.1016/j.enconman.2023.117033_b65) 2020; 142
Wang (10.1016/j.enconman.2023.117033_b13) 2022
Fetkovich (10.1016/j.enconman.2023.117033_b44) 1980; 32
Deb (10.1016/j.enconman.2023.117033_b34) 2002; 6
Lauwerier (10.1016/j.enconman.2023.117033_b69) 1955; 5
Ripperda (10.1016/j.enconman.2023.117033_b31) 1987
Cao (10.1016/j.enconman.2023.117033_b35) 2022; 184
Paszke (10.1016/j.enconman.2023.117033_b49) 2019; 32
Zhou (10.1016/j.enconman.2023.117033_b37) 2022; 245
Wang (10.1016/j.enconman.2023.117033_b3) 2019; 356
Pedregosa (10.1016/j.enconman.2023.117033_b57) 2011; 12
Demšar (10.1016/j.enconman.2023.117033_b68) 2013; 14
Lepillier (10.1016/j.enconman.2023.117033_b62) 2019; 7
Hidayat (10.1016/j.enconman.2023.117033_b7) 2017; 103
Watanabe (10.1016/j.enconman.2023.117033_b28) 2010; 45
Biagi (10.1016/j.enconman.2023.117033_b12) 2015; 86
Pandey (10.1016/j.enconman.2023.117033_b6) 2017; 65
Bowden (10.1016/j.enconman.2023.117033_b66) 2005; 301
Norouzi (10.1016/j.enconman.2023.117033_b63) 2019; 129
Zhang (10.1016/j.enconman.2023.117033_b25) 2021; 317
Martínez-Gomez (10.1016/j.enconman.2023.117033_b30) 2017; 203
Li (10.1016/j.enconman.2023.117033_b15) 2019; 247
Jiayan (10.1016/j.enconman.2023.117033_b36) 2022; 217
Park (10.1016/j.enconman.2023.117033_b56) 2013
Jiang (10.1016/j.enconman.2023.117033_b41) 2022; 55
Jagtap (10.1016/j.enconman.2023.117033_b54) 2020; 404
Bowden (10.1016/j.enconman.2023.117033_b67) 2005; 301
Biot (10.1016/j.enconman.2023.117033_b39) 1955; 26
Juliusson (10.1016/j.enconman.2023.117033_b29) 2021; 94
Rawal (10.1016/j.enconman.2023.117033_b23) 2014; 50
Huenges (10.1016/j.enconman.2023.117033_b10) 2004
Guo (10.1016/j.enconman.2023.117033_b18) 2020; 153
Touhidi-Baghini (10.1016/j.enconman.2023.117033_b59) 1998
References_xml – year: 2008
  ident: b33
  article-title: Analysis of production decline in geothermal reservoirs
– volume: 301
  start-page: 93
  year: 2005
  end-page: 107
  ident: b67
  article-title: Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river
  publication-title: J Hydrol
– volume: 32
  start-page: 1065
  year: 1980
  end-page: 1077
  ident: b44
  article-title: Decline curve analysis using type curves
  publication-title: J Pet Technol
– volume: 96
  year: 2021
  ident: b4
  article-title: Numerical investigations on a geothermal reservoir using fully coupled thermo-hydro-geomechanics with integrated RSM-machine learning and ARIMA models
  publication-title: Geothermics
– volume: 203
  start-page: 962
  year: 2017
  end-page: 972
  ident: b30
  article-title: A multi-objective optimization approach for the selection of working fluids of geothermal facilities: economic, environmental and social aspects
  publication-title: J Environ Manag
– volume: 134
  start-page: 379
  year: 2019
  end-page: 389
  ident: b21
  article-title: A hybrid optimisation approach to improve long-term performance of enhanced geothermal system (EGS) reservoirs
  publication-title: Renew Energy
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b57
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– volume: 45
  start-page: 263
  year: 2010
  end-page: 280
  ident: b28
  article-title: Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media
  publication-title: Comput Mech
– year: 2015
  ident: b47
  article-title: Physics-based and data-driven surrogates for production forecasting
  publication-title: SPE reservoir simulation conference. Day 2 Tue, February 24, 2015
– volume: 148
  start-page: 326
  year: 2020
  end-page: 337
  ident: b16
  article-title: Optimizing heat mining strategies in a fractured geothermal reservoir considering fracture deformation effects
  publication-title: Renew Energy
– year: 2017
  ident: b8
  article-title: Novel geothermal development of deep sedimentary systems in the United States
– volume: 7
  start-page: 1
  year: 2019
  end-page: 16
  ident: b62
  article-title: A fracture flow permeability and stress dependency simulation applied to multi-reservoirs, multi-production scenarios analysis
  publication-title: Geotherm Energy
– volume: 607
  year: 2022
  ident: b53
  article-title: A robust deep learning workflow to predict multiphase flow behavior during geological CO2 sequestration injection and Post-Injection periods
  publication-title: J Hydrol
– volume: 129
  start-page: 212
  year: 2019
  end-page: 223
  ident: b63
  article-title: Effects of viscous dissipation on miscible thermo-viscous fingering instability in porous media
  publication-title: Int J Heat Mass Transfer
– volume: 191
  year: 2020
  ident: b64
  article-title: Numerical modelling of coupled single-phase fluid flow and geomechanics in a fractured porous media
  publication-title: J Pet Sci Eng
– volume: 172
  start-page: 1233
  year: 2021
  end-page: 1249
  ident: b26
  article-title: An integrated multi-objective optimization method to improve the performance of multilateral-well geothermal system
  publication-title: Renew Energy
– year: 2013
  ident: b56
  article-title: Handling conflicting multiple objectives using Pareto-based evolutionary algorithm during history matching of reservoir performance
  publication-title: SPE reservoir simulation conference
– year: 1987
  ident: b31
  article-title: Decline curve analysis of production data from the geysers geothermal field
– volume: 15
  start-page: 338
  year: 2015
  end-page: 349
  ident: b58
  article-title: Modeling enhanced geothermal systems and the essential nature of large-scale changes in permeability at the onset of slip
  publication-title: Geofluids
– year: 2010
  ident: b45
  article-title: An unconventional rate decline approach for tight and fracture-dominated gas wells
  publication-title: SPE Canada unconventional resources conference
– volume: 94
  year: 2021
  ident: b29
  article-title: Optimizing production strategies for geothermal resources
  publication-title: Geothermics
– volume: 86
  start-page: 627
  year: 2015
  end-page: 637
  ident: b12
  article-title: Simulation and optimization of enhanced geothermal systems using
  publication-title: Energy
– year: 2004
  ident: b10
  article-title: The stimulation of a sedimentary geothermal reservoir in the North German Basin: Case study grob schonebeck
  publication-title: Proceedings, twenty-ninth workshop on geothermal reservoir engineering
– reference: Šijačić Danijela, Fokker Peter A. Thermo-Hydro-Mechanical modeling of EGS using COMSOL Multiphysics. In: Fourtieth workshop on geothermal reservoir engineering. 2015, p. 52.
– volume: 356
  start-page: 465
  year: 2019
  end-page: 489
  ident: b3
  article-title: A three-dimensional thermo-hydro-mechanical coupled model for enhanced geothermal systems (EGS) embedded with discrete fracture networks
  publication-title: Comput Methods Appl Mech Engrg
– volume: 99
  start-page: 420
  year: 2016
  end-page: 430
  ident: b14
  article-title: The Podhale geothermal reservoir simulation for long-term sustainable production
  publication-title: Renew Energy
– start-page: 317
  year: 1988
  end-page: 448
  ident: b1
  article-title: Implications
  publication-title: Handbook of terrestrial heat-flow density determination
– volume: 129
  start-page: 101
  year: 2017
  end-page: 113
  ident: b17
  article-title: Sensitivity analysis of deep geothermal reservoir: Effect of reservoir parameters on production temperature
  publication-title: Energy
– volume: 42
  year: 2016
  ident: b32
  article-title: Decline curve analysis for production forecast and optimization of liquid-dominated geothermal reservoir
  publication-title: IOP Conf Ser Earth Environ Sci
– volume: 245
  year: 2022
  ident: b37
  article-title: On the role of rock matrix to heat transfer in a fracture-rock matrix system
  publication-title: J Contam Hydrol
– volume: 301
  start-page: 75
  year: 2005
  end-page: 92
  ident: b66
  article-title: Input determination for neural network models in water resources applications. Part 1—background and methodology
  publication-title: J Hydrol
– volume: 247
  year: 2022
  ident: b27
  article-title: Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir
  publication-title: Energy
– volume: 7
  start-page: 1705
  year: 2019
  end-page: 1726
  ident: b22
  article-title: Investigation on heat extraction characteristics in randomly fractured geothermal reservoirs considering thermo-poroelastic effects
  publication-title: Energy Sci Eng
– volume: 171
  start-page: 631
  year: 2019
  end-page: 653
  ident: b9
  article-title: Coupled thermo-hydro-mechanical modeling on well pairs in heterogeneous porous geothermal reservoirs
  publication-title: Energy
– volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  ident: b50
  article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nature Methods
– reference: Sanaee Reza, Oluyemi Gbenga F, Hossain Mamdud, Oyeneyin MB. Fracture-matrix flow partitioning and cross flow: numerical modeling of laboratory fractured core flood. In: Proceedings of the 2012 COMSOL conference, Milan, 10–12 October 2012. 2012.
– volume: 184
  start-page: 374
  year: 2022
  end-page: 390
  ident: b35
  article-title: Influence of backfilling phase change material on thermal performance of precast high-strength concrete energy pile
  publication-title: Renew Energy
– volume: 28
  start-page: 1363
  year: 2004
  end-page: 1373
  ident: b70
  article-title: A transient fictitious stress boundary element method for porothermoelastic media
  publication-title: Eng Anal Bound Elem
– year: 2022
  ident: b13
  article-title: A robust optimization approach of well placement for doublet in heterogeneous geothermal reservoirs using random forest technique and genetic algorithm
  publication-title: Energy
– volume: 82
  start-page: 193
  year: 2015
  end-page: 205
  ident: b20
  article-title: THM (Thermo-hydro-mechanical) coupled mathematical model of fractured media and numerical simulation of a 3D enhanced geothermal system at 573 K and buried depth 6000–7000 M
  publication-title: Energy
– volume: 200
  start-page: 31
  year: 2019
  end-page: 46
  ident: b11
  article-title: Analysis of influencing factors of the production performance of an enhanced geothermal system (EGS) with numerical simulation and artificial neural network (ANN)
  publication-title: Energy Build
– year: 2018
  ident: b42
  article-title: Subsurface flow module user’s guide, Vol. 5
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b34
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
– year: 2010
  ident: b46
  article-title: Hybrid rate-decline models for the analysis of production performance in unconventional reservoirs
  publication-title: SPE annual technical conference and exhibition
– volume: 50
  start-page: 10
  year: 2014
  end-page: 23
  ident: b23
  article-title: A reactive thermo-poroelastic analysis of water injection into an enhanced geothermal reservoir
  publication-title: Geothermics
– volume: 404
  year: 2020
  ident: b54
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J Comput Phys
– volume: 463
  year: 2022
  ident: b52
  article-title: A gradient-based deep neural network model for simulating multiphase flow in porous media
  publication-title: J Comput Phys
– volume: 317
  year: 2021
  ident: b25
  article-title: Well placement optimization for large-scale geothermal energy exploitation considering nature hydro-thermal processes in the Gonghe Basin, China
  publication-title: J Clean Prod
– volume: 7
  start-page: 1
  year: 2017
  end-page: 14
  ident: b19
  article-title: Sensitivity analysis of coupled processes and parameters on the performance of enhanced geothermal systems
  publication-title: Sci Rep
– volume: 86
  year: 2020
  ident: b24
  article-title: Multi-objective optimization under uncertainty of geothermal reservoirs using experimental design-based proxy models
  publication-title: Geothermics
– year: 2018
  ident: b48
  article-title: Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning
– volume: 26
  start-page: 182
  year: 1955
  end-page: 185
  ident: b39
  article-title: Theory of elasticity and consolidation for a porous anisotropic solid
  publication-title: J Appl Phys
– volume: 32
  year: 2019
  ident: b49
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv Neural Inf Process Syst
– volume: 185
  start-page: 1157
  year: 2018
  end-page: 1169
  ident: b2
  article-title: Geothermal reservoir modeling in a coupled thermo-hydro-mechanical-chemical approach: A review
  publication-title: Earth-Sci Rev
– volume: 103
  year: 2017
  ident: b7
  article-title: Geothermal reservoir simulation of hot sedimentary aquifer system using FEFLOW®
  publication-title: IOP Conf Ser Earth Environ Sci
– volume: 14
  start-page: 2349
  year: 2013
  end-page: 2353
  ident: b68
  article-title: Orange: data mining toolbox in Python
  publication-title: J Mach Learn Res
– volume: 49
  start-page: 307
  year: 2017
  end-page: 339
  ident: b40
  article-title: Multilevel field development optimization under uncertainty using a sequence of upscaled models
  publication-title: Math Geosci
– reference: Leite Bruno Scalia CF. pymoode: Differential Evolution in Python Solve single-and multi-objective optimization problems using Differential Evolution algorithms.
– volume: 160
  start-page: 228
  year: 1945
  end-page: 247
  ident: b43
  article-title: Analysis of decline curves
  publication-title: Trans AIME
– volume: 55
  start-page: 5235
  year: 2022
  end-page: 5258
  ident: b41
  article-title: Fracture activation and induced seismicity during long-term heat production in fractured geothermal reservoirs
  publication-title: Rock Mech Rock Eng
– volume: 247
  start-page: 40
  year: 2019
  end-page: 59
  ident: b15
  article-title: Coupled thermo-hydro-mechanical analysis of stimulation and production for fractured geothermal reservoirs
  publication-title: Appl Energy
– year: 1998
  ident: b59
  article-title: Absolute permeability of McMurray formation oil sands at low confining stresses
– volume: 153
  start-page: 813
  year: 2020
  end-page: 831
  ident: b18
  article-title: Parameter sensitivity analysis and optimization strategy research of enhanced geothermal system: A case study in Guide Basin, Northwestern China
  publication-title: Renew Energy
– reference: Freeman Tony T, Chalaturnyk Rick J, Bogdanov Igor I. Fully coupled thermo-hydro-mechanical modeling by COMSOL Multiphysics, with applications in reservoir geomechanical characterization. In: COMSOL conf. 2008, p. 9–11.
– volume: 217
  year: 2022
  ident: b36
  article-title: Effects of variable thermophysical properties of water on the heat extraction of an enhanced geothermal system: A numerical case study
  publication-title: Appl Therm Eng
– volume: 142
  year: 2020
  ident: b65
  article-title: Numerical modeling of coupled fluid flow and geomechanical stresses in a petroleum reservoir
  publication-title: J Energy Resour Technol
– volume: 65
  start-page: 17
  year: 2017
  end-page: 31
  ident: b6
  article-title: A coupled thermo-hydro-mechanical modeling of fracture aperture alteration and reservoir deformation during heat extraction from a geothermal reservoir
  publication-title: Geothermics
– volume: 5
  start-page: 145
  year: 1955
  end-page: 150
  ident: b69
  article-title: The transport of heat in an oil layer caused by the injection of hot fluid
  publication-title: Appl Sci Res Sect A
– volume: 12
  start-page: 155
  year: 1941
  end-page: 164
  ident: b38
  article-title: General theory of three-dimensional consolidation
  publication-title: J Appl Phys
– start-page: 7
  year: 2001
  ident: b51
  article-title: Approximation with artificial neural networks
  publication-title: Faculty of sciences. Vol. 24. No. 48
– year: 2015
  ident: 10.1016/j.enconman.2023.117033_b47
  article-title: Physics-based and data-driven surrogates for production forecasting
– year: 2010
  ident: 10.1016/j.enconman.2023.117033_b46
  article-title: Hybrid rate-decline models for the analysis of production performance in unconventional reservoirs
– volume: 99
  start-page: 420
  year: 2016
  ident: 10.1016/j.enconman.2023.117033_b14
  article-title: The Podhale geothermal reservoir simulation for long-term sustainable production
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.07.028
– volume: 7
  start-page: 1705
  issue: 5
  year: 2019
  ident: 10.1016/j.enconman.2023.117033_b22
  article-title: Investigation on heat extraction characteristics in randomly fractured geothermal reservoirs considering thermo-poroelastic effects
  publication-title: Energy Sci Eng
  doi: 10.1002/ese3.386
– ident: 10.1016/j.enconman.2023.117033_b61
– volume: 129
  start-page: 212
  year: 2019
  ident: 10.1016/j.enconman.2023.117033_b63
  article-title: Effects of viscous dissipation on miscible thermo-viscous fingering instability in porous media
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2018.09.048
– volume: 103
  issue: 1
  year: 2017
  ident: 10.1016/j.enconman.2023.117033_b7
  article-title: Geothermal reservoir simulation of hot sedimentary aquifer system using FEFLOW®
  publication-title: IOP Conf Ser Earth Environ Sci
– start-page: 7
  year: 2001
  ident: 10.1016/j.enconman.2023.117033_b51
  article-title: Approximation with artificial neural networks
– volume: 96
  year: 2021
  ident: 10.1016/j.enconman.2023.117033_b4
  article-title: Numerical investigations on a geothermal reservoir using fully coupled thermo-hydro-geomechanics with integrated RSM-machine learning and ARIMA models
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2021.102174
– volume: 200
  start-page: 31
  year: 2019
  ident: 10.1016/j.enconman.2023.117033_b11
  article-title: Analysis of influencing factors of the production performance of an enhanced geothermal system (EGS) with numerical simulation and artificial neural network (ANN)
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2019.07.045
– volume: 148
  start-page: 326
  year: 2020
  ident: 10.1016/j.enconman.2023.117033_b16
  article-title: Optimizing heat mining strategies in a fractured geothermal reservoir considering fracture deformation effects
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.10.037
– volume: 142
  issue: 6
  year: 2020
  ident: 10.1016/j.enconman.2023.117033_b65
  article-title: Numerical modeling of coupled fluid flow and geomechanical stresses in a petroleum reservoir
  publication-title: J Energy Resour Technol
  doi: 10.1115/1.4045832
– volume: 134
  start-page: 379
  year: 2019
  ident: 10.1016/j.enconman.2023.117033_b21
  article-title: A hybrid optimisation approach to improve long-term performance of enhanced geothermal system (EGS) reservoirs
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.11.045
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.enconman.2023.117033_b57
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– ident: 10.1016/j.enconman.2023.117033_b55
– volume: 55
  start-page: 5235
  issue: 8
  year: 2022
  ident: 10.1016/j.enconman.2023.117033_b41
  article-title: Fracture activation and induced seismicity during long-term heat production in fractured geothermal reservoirs
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-022-02882-z
– volume: 65
  start-page: 17
  issn: 03756505
  year: 2017
  ident: 10.1016/j.enconman.2023.117033_b6
  article-title: A coupled thermo-hydro-mechanical modeling of fracture aperture alteration and reservoir deformation during heat extraction from a geothermal reservoir
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2016.08.006
– year: 2018
  ident: 10.1016/j.enconman.2023.117033_b42
– volume: 32
  year: 2019
  ident: 10.1016/j.enconman.2023.117033_b49
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv Neural Inf Process Syst
– ident: 10.1016/j.enconman.2023.117033_b5
– volume: 45
  start-page: 263
  issue: 4
  year: 2010
  ident: 10.1016/j.enconman.2023.117033_b28
  article-title: Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media
  publication-title: Comput Mech
  doi: 10.1007/s00466-009-0445-9
– volume: 26
  start-page: 182
  issn: 00218979
  issue: 2
  year: 1955
  ident: 10.1016/j.enconman.2023.117033_b39
  article-title: Theory of elasticity and consolidation for a porous anisotropic solid
  publication-title: J Appl Phys
  doi: 10.1063/1.1721956
– volume: 247
  year: 2022
  ident: 10.1016/j.enconman.2023.117033_b27
  article-title: Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123511
– volume: 42
  issue: 1
  year: 2016
  ident: 10.1016/j.enconman.2023.117033_b32
  article-title: Decline curve analysis for production forecast and optimization of liquid-dominated geothermal reservoir
  publication-title: IOP Conf Ser Earth Environ Sci
– volume: 94
  year: 2021
  ident: 10.1016/j.enconman.2023.117033_b29
  article-title: Optimizing production strategies for geothermal resources
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2021.102091
– ident: 10.1016/j.enconman.2023.117033_b60
– volume: 129
  start-page: 101
  year: 2017
  ident: 10.1016/j.enconman.2023.117033_b17
  article-title: Sensitivity analysis of deep geothermal reservoir: Effect of reservoir parameters on production temperature
  publication-title: Energy
  doi: 10.1016/j.energy.2017.04.091
– volume: 14
  start-page: 2349
  issue: 1
  year: 2013
  ident: 10.1016/j.enconman.2023.117033_b68
  article-title: Orange: data mining toolbox in Python
  publication-title: J Mach Learn Res
– start-page: 317
  year: 1988
  ident: 10.1016/j.enconman.2023.117033_b1
  article-title: Implications
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.enconman.2023.117033_b19
  article-title: Sensitivity analysis of coupled processes and parameters on the performance of enhanced geothermal systems
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-14273-4
– year: 2008
  ident: 10.1016/j.enconman.2023.117033_b33
– volume: 404
  year: 2020
  ident: 10.1016/j.enconman.2023.117033_b54
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2019.109136
– volume: 5
  start-page: 145
  year: 1955
  ident: 10.1016/j.enconman.2023.117033_b69
  article-title: The transport of heat in an oil layer caused by the injection of hot fluid
  publication-title: Appl Sci Res Sect A
  doi: 10.1007/BF03184614
– year: 1987
  ident: 10.1016/j.enconman.2023.117033_b31
– volume: 217
  year: 2022
  ident: 10.1016/j.enconman.2023.117033_b36
  article-title: Effects of variable thermophysical properties of water on the heat extraction of an enhanced geothermal system: A numerical case study
  publication-title: Appl Therm Eng
– volume: 28
  start-page: 1363
  issue: 11
  year: 2004
  ident: 10.1016/j.enconman.2023.117033_b70
  article-title: A transient fictitious stress boundary element method for porothermoelastic media
  publication-title: Eng Anal Bound Elem
  doi: 10.1016/j.enganabound.2004.05.003
– volume: 32
  start-page: 1065
  issn: 0149-2136
  issue: 06
  year: 1980
  ident: 10.1016/j.enconman.2023.117033_b44
  article-title: Decline curve analysis using type curves
  publication-title: J Pet Technol
  doi: 10.2118/4629-PA
– volume: 463
  issn: 0021-9991
  year: 2022
  ident: 10.1016/j.enconman.2023.117033_b52
  article-title: A gradient-based deep neural network model for simulating multiphase flow in porous media
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2022.111277
– volume: 245
  year: 2022
  ident: 10.1016/j.enconman.2023.117033_b37
  article-title: On the role of rock matrix to heat transfer in a fracture-rock matrix system
  publication-title: J Contam Hydrol
  doi: 10.1016/j.jconhyd.2021.103950
– volume: 301
  start-page: 75
  issue: 1–4
  year: 2005
  ident: 10.1016/j.enconman.2023.117033_b66
  article-title: Input determination for neural network models in water resources applications. Part 1—background and methodology
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2004.06.021
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.enconman.2023.117033_b34
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 153
  start-page: 813
  year: 2020
  ident: 10.1016/j.enconman.2023.117033_b18
  article-title: Parameter sensitivity analysis and optimization strategy research of enhanced geothermal system: A case study in Guide Basin, Northwestern China
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.02.058
– volume: 82
  start-page: 193
  year: 2015
  ident: 10.1016/j.enconman.2023.117033_b20
  article-title: THM (Thermo-hydro-mechanical) coupled mathematical model of fractured media and numerical simulation of a 3D enhanced geothermal system at 573 K and buried depth 6000–7000 M
  publication-title: Energy
  doi: 10.1016/j.energy.2015.01.030
– year: 2013
  ident: 10.1016/j.enconman.2023.117033_b56
  article-title: Handling conflicting multiple objectives using Pareto-based evolutionary algorithm during history matching of reservoir performance
– volume: 356
  start-page: 465
  year: 2019
  ident: 10.1016/j.enconman.2023.117033_b3
  article-title: A three-dimensional thermo-hydro-mechanical coupled model for enhanced geothermal systems (EGS) embedded with discrete fracture networks
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2019.06.037
– volume: 184
  start-page: 374
  year: 2022
  ident: 10.1016/j.enconman.2023.117033_b35
  article-title: Influence of backfilling phase change material on thermal performance of precast high-strength concrete energy pile
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.11.100
– volume: 49
  start-page: 307
  issue: 3
  year: 2017
  ident: 10.1016/j.enconman.2023.117033_b40
  article-title: Multilevel field development optimization under uncertainty using a sequence of upscaled models
  publication-title: Math Geosci
  doi: 10.1007/s11004-016-9643-0
– volume: 7
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.enconman.2023.117033_b62
  article-title: A fracture flow permeability and stress dependency simulation applied to multi-reservoirs, multi-production scenarios analysis
  publication-title: Geotherm Energy
  doi: 10.1186/s40517-019-0141-8
– volume: 15
  start-page: 338
  issue: 1–2
  year: 2015
  ident: 10.1016/j.enconman.2023.117033_b58
  article-title: Modeling enhanced geothermal systems and the essential nature of large-scale changes in permeability at the onset of slip
  publication-title: Geofluids
  doi: 10.1111/gfl.12108
– year: 2010
  ident: 10.1016/j.enconman.2023.117033_b45
  article-title: An unconventional rate decline approach for tight and fracture-dominated gas wells
– year: 2017
  ident: 10.1016/j.enconman.2023.117033_b8
– volume: 160
  start-page: 228
  issn: 0081-1696
  issue: 01
  year: 1945
  ident: 10.1016/j.enconman.2023.117033_b43
  article-title: Analysis of decline curves
  publication-title: Trans AIME
  doi: 10.2118/945228-G
– volume: 86
  start-page: 627
  year: 2015
  ident: 10.1016/j.enconman.2023.117033_b12
  article-title: Simulation and optimization of enhanced geothermal systems using CO2 as a working fluid
  publication-title: Energy
  doi: 10.1016/j.energy.2015.04.020
– volume: 50
  start-page: 10
  year: 2014
  ident: 10.1016/j.enconman.2023.117033_b23
  article-title: A reactive thermo-poroelastic analysis of water injection into an enhanced geothermal reservoir
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2013.05.007
– year: 2004
  ident: 10.1016/j.enconman.2023.117033_b10
  article-title: The stimulation of a sedimentary geothermal reservoir in the North German Basin: Case study grob schonebeck
– volume: 317
  year: 2021
  ident: 10.1016/j.enconman.2023.117033_b25
  article-title: Well placement optimization for large-scale geothermal energy exploitation considering nature hydro-thermal processes in the Gonghe Basin, China
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2021.128391
– volume: 86
  year: 2020
  ident: 10.1016/j.enconman.2023.117033_b24
  article-title: Multi-objective optimization under uncertainty of geothermal reservoirs using experimental design-based proxy models
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2019.101792
– year: 1998
  ident: 10.1016/j.enconman.2023.117033_b59
– volume: 171
  start-page: 631
  year: 2019
  ident: 10.1016/j.enconman.2023.117033_b9
  article-title: Coupled thermo-hydro-mechanical modeling on well pairs in heterogeneous porous geothermal reservoirs
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.022
– volume: 185
  start-page: 1157
  year: 2018
  ident: 10.1016/j.enconman.2023.117033_b2
  article-title: Geothermal reservoir modeling in a coupled thermo-hydro-mechanical-chemical approach: A review
  publication-title: Earth-Sci Rev
  doi: 10.1016/j.earscirev.2018.09.004
– year: 2022
  ident: 10.1016/j.enconman.2023.117033_b13
  article-title: A robust optimization approach of well placement for doublet in heterogeneous geothermal reservoirs using random forest technique and genetic algorithm
  publication-title: Energy
– volume: 247
  start-page: 40
  year: 2019
  ident: 10.1016/j.enconman.2023.117033_b15
  article-title: Coupled thermo-hydro-mechanical analysis of stimulation and production for fractured geothermal reservoirs
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.04.036
– volume: 172
  start-page: 1233
  year: 2021
  ident: 10.1016/j.enconman.2023.117033_b26
  article-title: An integrated multi-objective optimization method to improve the performance of multilateral-well geothermal system
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.03.073
– volume: 301
  start-page: 93
  issue: 1–4
  year: 2005
  ident: 10.1016/j.enconman.2023.117033_b67
  article-title: Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2004.06.020
– year: 2018
  ident: 10.1016/j.enconman.2023.117033_b48
– volume: 17
  start-page: 261
  issue: 3
  year: 2020
  ident: 10.1016/j.enconman.2023.117033_b50
  article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nature Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 203
  start-page: 962
  year: 2017
  ident: 10.1016/j.enconman.2023.117033_b30
  article-title: A multi-objective optimization approach for the selection of working fluids of geothermal facilities: economic, environmental and social aspects
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2017.07.001
– volume: 12
  start-page: 155
  issn: 00218979
  year: 1941
  ident: 10.1016/j.enconman.2023.117033_b38
  article-title: General theory of three-dimensional consolidation
  publication-title: J Appl Phys
  doi: 10.1063/1.1712886
– volume: 191
  year: 2020
  ident: 10.1016/j.enconman.2023.117033_b64
  article-title: Numerical modelling of coupled single-phase fluid flow and geomechanics in a fractured porous media
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2020.107215
– volume: 607
  issn: 0022-1694
  year: 2022
  ident: 10.1016/j.enconman.2023.117033_b53
  article-title: A robust deep learning workflow to predict multiphase flow behavior during geological CO2 sequestration injection and Post-Injection periods
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2022.127542
SSID ssj0003506
Score 2.5184872
Snippet Geothermal reservoir simulation often considers the coupled thermo-hydro-mechanical physics, so the computational cost is remarkably expensive, which brings...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117033
SubjectTerms administrative management
algorithms
decline
Deep neural network
energy conversion
Enhanced geothermal systems
Multi-objective optimization
risk
temperature
Thermal breakthrough
Thermal decline model
Title Robust optimization of geothermal recovery based on a generalized thermal decline model and deep learning
URI https://dx.doi.org/10.1016/j.enconman.2023.117033
https://www.proquest.com/docview/2834213339
Volume 286
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QXOCAeIrnFCSuZV2TrMkRIdAAsQMPiVuUJxpi7cS2Axz47dhdy0tCHLhUamJHlePajmJ_JuQwjdZm0YvERmkTLlUnka7rko6yqQnwdDkWCl_1u707fnEv7ufISVMLg2mVte2f2fTKWtcj7Vqa7dFg0L5BZBepMK8DQVQUFppznqOWH719pnkwUfXXROIEqb9UCT8eIVZkMTSIg5oxvL9MGfvNQf0w1ZX_OVshy3XgSI9n37ZK5kKxRpa-wAmuk8F1aafjCS3BDAzr-kpaRvoQqjKrIbDj-ReU94Wi9_IU5g1MV8jTg1cYaOh8wJLJQKtGOdQUHkbCiNY9Jh42yN3Z6e1JL6lbKSSOcTFJXAbHCq-A2ds8za3wznRd6mXMrIvcpyb1HQi2vZEZ8zEVQcjcg6vKDedRRbZJ5ouyCFuEMs8QMt4aCYxAY5SEBZxxwgcJ1nKbiEZ-2tU449ju4kk3CWWPupG7Rrnrmdy3SfuDbzRD2viTQzXbo7_pjAZ38CfvQbOfGn4ovCUxRSinYw3xFs_g5M7Uzj_W3yWL-IZJZR2xR-Ynz9OwD-HLxLYq_WyRhePzy17_HXWR898
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5BOJQeqpa2AvoyUq_bbNbrrH2MoqJQIIcWJG6WnygR2Y1KcoBfz8zGi2ilikMve7A91mpsfzOWZ74B-JpHa4voRWajtFkp1SCTbuiygbK5Cfh1FSUKn0-Hk8vyx5W42oJxlwtDYZUJ-zeY3qJ1auknbfaXs1n_FzG7SEVxHUSiosQ27BA7lejBzujkdDJ9BGQu2hKbND4jgSeJwvNvRBdZLwxRoRacnjBzzv9lo_5C69YEHb-GV8l3ZKPN772BrVDvwcsnjIJvYfazsevbFWsQCRYpxZI1kV2HNtNqgeJ0Bcb9e8fIgHmG_Qa7W_Lp2T02dON8oKzJwNpaOczUHlvCkqUyE9fv4PL4-8V4kqVqCpnjpVhlrsCbhVco7G2VV1Z4Z4Yu9zIW1sXS5yb3A_S3vZEF9zEXQcjKo7WqTFlGFfl76NVNHfaBcc-JNd4aiYI4xiiJEzjjhA8SAfMARKc_7RLVOFW8uNFdTNlcd3rXpHe90fsB9B_llhuyjWclVLc8-o9to9EiPCt71K2nxjNFDyWmDs36VqPLVRZ4eefq8D_m_wIvJhfnZ_rsZHr6AXaph2LMBuIj9Fa_1-ETejMr-znt1gfIpPaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+optimization+of+geothermal+recovery+based+on+a+generalized+thermal+decline+model+and+deep+learning&rft.jtitle=Energy+conversion+and+management&rft.au=Yan%2C+Bicheng&rft.au=Gudala%2C+Manojkumar&rft.au=Sun%2C+Shuyu&rft.date=2023-06-15&rft.issn=0196-8904&rft.volume=286&rft.spage=117033&rft_id=info:doi/10.1016%2Fj.enconman.2023.117033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2023_117033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon