Deep learning in bioinformatics
Abstract In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, a...
Saved in:
Published in | Briefings in bioinformatics Vol. 18; no. 5; pp. 851 - 869 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.09.2017
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies. |
---|---|
AbstractList | Abstract
In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies. In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies. |
Author | Yoon, Sungroh Min, Seonwoo Lee, Byunghan |
Author_xml | – sequence: 1 givenname: Seonwoo surname: Min fullname: Min, Seonwoo organization: Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea – sequence: 2 givenname: Byunghan surname: Lee fullname: Lee, Byunghan organization: Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea – sequence: 3 givenname: Sungroh surname: Yoon fullname: Yoon, Sungroh email: sryoon@snu.ac.kr organization: Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27473064$$D View this record in MEDLINE/PubMed |
BookMark | eNp90EtLxDAQB_AgK-5DL34AXRBBhLpJ8-xR1icseNFzSLKpZGmTmrSI394uXT0s4ikD-c0w85-CkQ_eAnCK4A2CBV5opxdaf0ImDsAEEc4zAikZbWvGM0oYHoNpShsIc8gFOgLjnBOOISMTcH5nbTOvrIre-fe583PtgvNliLVqnUnH4LBUVbInu3cG3h7uX5dP2erl8Xl5u8oMJrTNDMxxbjgjxCpOBS0x6z-QppwXpcAM55gRa_KyXHOFBCksJVZQzS2nDDGGZ-BqmNvE8NHZ1MraJWOrSnkbuiSRyBknEIuipxd7dBO66PvtZI4hhQUnhPbqbKc6Xdu1bKKrVfySP6f34HoAJoaUoi1_CYJym6vsc5VDrj2Ge9i4tg8o-DYqV_3dcjm0hK75b_Q3Bz6Egg |
CitedBy_id | crossref_primary_10_1007_s11517_025_03303_3 crossref_primary_10_1109_TCDS_2024_3431224 crossref_primary_10_1099_mgen_0_000459 crossref_primary_10_1109_TKDE_2022_3179554 crossref_primary_10_1109_TNSRE_2019_2913400 crossref_primary_10_1021_acs_jcim_1c00628 crossref_primary_10_1093_bib_bbx126 crossref_primary_10_1155_2018_8572058 crossref_primary_10_1109_ACCESS_2019_2946461 crossref_primary_10_1007_s11042_023_17529_6 crossref_primary_10_3389_fphy_2020_00031 crossref_primary_10_3389_fgene_2019_00726 crossref_primary_10_1021_acs_jcim_7b00690 crossref_primary_10_3389_fonc_2022_916379 crossref_primary_10_1021_acs_jcim_8b00414 crossref_primary_10_1021_acs_molpharmaceut_7b01137 crossref_primary_10_1093_bib_bbx123 crossref_primary_10_1109_TCBB_2022_3199758 crossref_primary_10_1021_acs_jcim_0c00409 crossref_primary_10_1109_ACCESS_2023_3237394 crossref_primary_10_1021_acs_jcim_9b00626 crossref_primary_10_3389_fbinf_2023_1159381 crossref_primary_10_3389_fmicb_2020_592430 crossref_primary_10_1109_TITS_2017_2706963 crossref_primary_10_1109_ACCESS_2019_2939947 crossref_primary_10_1109_ACCESS_2021_3095248 crossref_primary_10_2991_jaims_d_210512_001 crossref_primary_10_1111_obr_12667 crossref_primary_10_1155_2022_9862733 crossref_primary_10_1016_j_trc_2018_12_004 crossref_primary_10_1007_s40588_025_00240_5 crossref_primary_10_1038_s41598_019_46059_1 crossref_primary_10_1021_acs_chemrestox_9b00227 crossref_primary_10_1021_acs_jpcb_2c03243 crossref_primary_10_1007_s11042_023_14358_5 crossref_primary_10_3389_fgene_2021_690049 crossref_primary_10_3389_fgene_2020_539227 crossref_primary_10_1155_2021_8897105 crossref_primary_10_1109_TITS_2019_2943055 crossref_primary_10_1007_s00521_024_09660_8 crossref_primary_10_1109_TIM_2021_3116309 crossref_primary_10_1021_acs_analchem_3c03796 crossref_primary_10_3389_frai_2024_1355287 crossref_primary_10_3934_mbe_2022114 crossref_primary_10_3389_fendo_2022_945020 crossref_primary_10_3389_fpls_2020_00025 crossref_primary_10_1038_s41598_018_32180_0 crossref_primary_10_1080_15476286_2024_2329451 crossref_primary_10_1109_ACCESS_2018_2807881 crossref_primary_10_1155_2022_8090871 crossref_primary_10_1007_s12539_021_00435_6 crossref_primary_10_1109_ACCESS_2019_2941796 crossref_primary_10_3389_fgene_2019_01346 crossref_primary_10_4254_wjh_v13_i12_1977 crossref_primary_10_1093_bib_bbae651 crossref_primary_10_3389_fendo_2022_959546 crossref_primary_10_1007_s11095_016_2029_7 crossref_primary_10_1016_j_bbadis_2017_12_004 crossref_primary_10_1016_j_csbj_2021_03_022 crossref_primary_10_1093_bioinformatics_bty296 crossref_primary_10_1109_TNNLS_2018_2790388 crossref_primary_10_1088_2632_2153_ad6be8 crossref_primary_10_3389_fgene_2023_1132018 crossref_primary_10_3389_fgene_2020_00869 crossref_primary_10_1186_s12859_022_04856_y crossref_primary_10_1021_acs_jproteome_2c00488 crossref_primary_10_1038_s41598_024_72842_w crossref_primary_10_3389_fonc_2022_847706 crossref_primary_10_1109_TNSRE_2023_3297654 crossref_primary_10_1016_j_eswa_2022_116616 crossref_primary_10_1508_cytologia_83_301 crossref_primary_10_1109_ACCESS_2021_3092631 crossref_primary_10_1186_s12967_017_1285_6 crossref_primary_10_1186_s12859_019_3286_3 crossref_primary_10_3389_fimmu_2017_01617 crossref_primary_10_1109_JIOT_2024_3485765 crossref_primary_10_1177_11779322211030364 crossref_primary_10_3390_biom12121740 crossref_primary_10_1109_ACCESS_2024_3412419 crossref_primary_10_1360_SSV_2023_0297 crossref_primary_10_1007_s42108_021_00114_8 crossref_primary_10_1093_bib_bbab454 crossref_primary_10_1038_s41598_024_59487_5 crossref_primary_10_3345_cep_2021_01438 crossref_primary_10_1109_TNSRE_2019_2915621 crossref_primary_10_3389_fcvm_2022_824574 crossref_primary_10_3389_fgene_2022_1032779 crossref_primary_10_1109_ACCESS_2020_2974712 crossref_primary_10_1109_TCBB_2022_3201295 crossref_primary_10_3390_md17030145 crossref_primary_10_1186_s12864_020_06821_6 crossref_primary_10_5009_gnl19334 crossref_primary_10_1109_ACCESS_2022_3182543 crossref_primary_10_3389_fonc_2023_1189370 crossref_primary_10_1007_s11030_021_10288_2 crossref_primary_10_1007_s42452_019_0611_4 crossref_primary_10_1115_1_4065457 crossref_primary_10_3389_fgene_2020_00090 crossref_primary_10_1109_TCBB_2024_3427381 crossref_primary_10_1109_TKDE_2024_3361474 crossref_primary_10_1007_s00521_021_06674_4 crossref_primary_10_1007_s00894_023_05772_5 crossref_primary_10_3389_fphys_2019_01044 crossref_primary_10_1109_ACCESS_2018_2837654 crossref_primary_10_54525_bbmd_1454569 crossref_primary_10_1038_s41598_024_64602_7 crossref_primary_10_1021_acs_chemrev_0c00752 crossref_primary_10_1186_s13007_024_01250_y crossref_primary_10_3389_fcvm_2019_00195 crossref_primary_10_1155_2020_7526825 crossref_primary_10_1016_j_cosrev_2020_100276 crossref_primary_10_1038_s41374_022_00801_y crossref_primary_10_1177_19476035211053824 crossref_primary_10_4018_IJSSMET_2018040102 crossref_primary_10_1080_10590501_2018_1537563 crossref_primary_10_1109_ACCESS_2019_2942112 crossref_primary_10_1007_s10930_019_09838_3 crossref_primary_10_1021_acssynbio_9b00099 crossref_primary_10_35712_aig_v2_i2_42 crossref_primary_10_1021_acs_jcim_0c00599 crossref_primary_10_1093_bib_bbaf039 crossref_primary_10_1007_s10577_021_09656_3 crossref_primary_10_1515_sagmb_2021_0087 crossref_primary_10_1089_cmb_2023_0076 crossref_primary_10_1007_s43657_022_00048_z crossref_primary_10_1021_acsestwater_3c00152 crossref_primary_10_3389_fbioe_2023_1191803 crossref_primary_10_1080_00221686_2024_2377132 crossref_primary_10_1002_prot_26322 crossref_primary_10_1186_s12859_024_05784_9 crossref_primary_10_7554_eLife_70576 crossref_primary_10_53501_rteufemud_1377390 crossref_primary_10_1109_ACCESS_2019_2939281 crossref_primary_10_1109_TCBB_2021_3115876 crossref_primary_10_1007_s00425_018_2976_9 crossref_primary_10_1109_TNNLS_2019_2914471 crossref_primary_10_1088_2632_2153_acafd5 crossref_primary_10_1038_s41598_020_63424_7 crossref_primary_10_1186_s13036_023_00329_9 crossref_primary_10_1098_rsif_2017_0387 crossref_primary_10_1109_ACCESS_2021_3110269 crossref_primary_10_1007_s12652_021_03312_8 crossref_primary_10_1155_2019_9724589 crossref_primary_10_1021_acs_molpharmaceut_7b00578 crossref_primary_10_1109_ACCESS_2020_3039624 crossref_primary_10_1186_s12864_023_09933_x crossref_primary_10_20535_2523_4455_2018_23_3_125236 crossref_primary_10_1063_5_0131067 crossref_primary_10_3389_fsysb_2022_877717 crossref_primary_10_1109_TNNLS_2018_2850703 crossref_primary_10_3389_fmolb_2022_879461 crossref_primary_10_1360_SSC_2023_0044 crossref_primary_10_3390_app11136216 crossref_primary_10_3389_fgene_2022_1017340 crossref_primary_10_1021_acsomega_2c00424 crossref_primary_10_1007_s00034_022_02265_3 crossref_primary_10_1371_journal_pone_0198216 crossref_primary_10_1016_j_rineng_2024_103440 crossref_primary_10_1021_acs_jproteome_7b00595 crossref_primary_10_1155_2021_6662779 crossref_primary_10_31857_S0026898423010093 crossref_primary_10_1007_s11030_021_10225_3 crossref_primary_10_1109_ACCESS_2024_3419766 crossref_primary_10_3389_fbioe_2023_1215773 crossref_primary_10_3748_wjg_v27_i41_7041 crossref_primary_10_1109_TCST_2020_3045845 crossref_primary_10_11834_jig_230020 crossref_primary_10_1109_JBHI_2022_3204776 crossref_primary_10_3389_fphy_2020_621966 crossref_primary_10_1109_JBHI_2022_3169542 crossref_primary_10_1109_TCBB_2021_3131136 crossref_primary_10_3389_fgene_2021_781698 crossref_primary_10_1109_TCBB_2018_2864149 crossref_primary_10_1103_PhysRevResearch_4_023058 crossref_primary_10_1186_s12859_018_2500_z crossref_primary_10_1109_ACCESS_2023_3331762 crossref_primary_10_1021_acs_iecr_0c01070 crossref_primary_10_3389_fimmu_2021_720746 crossref_primary_10_1109_JSEN_2020_3035846 crossref_primary_10_1371_journal_pcbi_1007792 crossref_primary_10_1109_TCBB_2023_3252276 crossref_primary_10_1109_ACCESS_2021_3081915 crossref_primary_10_7717_peerj_7362 crossref_primary_10_2174_1574893618666230320103421 crossref_primary_10_1007_s11030_023_10718_3 crossref_primary_10_1038_s41598_018_34833_6 crossref_primary_10_1109_ACCESS_2019_2912519 crossref_primary_10_3904_kjim_2020_020 crossref_primary_10_31590_ejosat_1045510 crossref_primary_10_1016_j_ijmedinf_2018_09_003 crossref_primary_10_1088_1741_2552_ab405f crossref_primary_10_1186_s13040_017_0148_2 crossref_primary_10_2196_13139 crossref_primary_10_3389_fmicb_2023_1331233 crossref_primary_10_1109_ACCESS_2019_2946053 crossref_primary_10_3389_fcimb_2022_882995 crossref_primary_10_3389_fpls_2022_910878 crossref_primary_10_1109_ACCESS_2021_3062291 crossref_primary_10_1109_TNSRE_2018_2884641 crossref_primary_10_1109_TCBB_2020_3005972 crossref_primary_10_35817_publicuho_v6i3_240 crossref_primary_10_1109_TCBB_2024_3442536 crossref_primary_10_1007_s13246_021_01083_2 crossref_primary_10_1007_s42979_023_02159_4 crossref_primary_10_1088_2632_2153_ad849c crossref_primary_10_1109_TCBB_2022_3141697 crossref_primary_10_1109_TGRS_2023_3251659 crossref_primary_10_1186_s12877_018_0915_z crossref_primary_10_3390_app9152975 crossref_primary_10_3389_fgene_2020_540751 crossref_primary_10_3389_fnmol_2021_695873 crossref_primary_10_1186_s12859_017_1972_6 crossref_primary_10_1259_bjr_20170545 crossref_primary_10_1038_s41598_017_08892_0 crossref_primary_10_1360_TB_2022_1152 crossref_primary_10_3390_e23101357 crossref_primary_10_1186_s13040_019_0200_5 crossref_primary_10_1021_acssynbio_3c00154 crossref_primary_10_1063_5_0166890 crossref_primary_10_1152_physiolgenomics_00011_2024 crossref_primary_10_7717_peerj_cs_270 crossref_primary_10_1016_j_heliyon_2023_e16812 crossref_primary_10_1109_ACCESS_2020_3035347 crossref_primary_10_3389_fmed_2025_1493771 crossref_primary_10_3934_mbe_2023428 crossref_primary_10_35712_aig_v1_i1_5 crossref_primary_10_1038_s41598_019_52552_4 crossref_primary_10_1007_s00701_021_04928_7 crossref_primary_10_4018_IJGHPC_2018070101 crossref_primary_10_1021_acs_jcim_3c01017 crossref_primary_10_3354_ame01901 crossref_primary_10_3389_fpls_2020_613325 crossref_primary_10_20517_evcna_2024_51 crossref_primary_10_3389_fenrg_2022_863153 crossref_primary_10_3389_fcell_2023_1034604 crossref_primary_10_1371_journal_pcbi_1009345 crossref_primary_10_1007_s41870_022_00949_2 crossref_primary_10_32604_cmes_2021_017679 crossref_primary_10_1016_j_cmpb_2018_04_005 crossref_primary_10_1080_15592294_2017_1329068 crossref_primary_10_1021_acs_chemrestox_2c00375 crossref_primary_10_3389_fpls_2024_1421503 crossref_primary_10_1007_s00521_020_04830_w crossref_primary_10_1159_000513700 crossref_primary_10_1186_s12864_022_08829_6 crossref_primary_10_1089_omi_2022_0155 crossref_primary_10_3389_frai_2023_1289669 crossref_primary_10_1109_ACCESS_2020_2992084 crossref_primary_10_4018_IJSEUS_2019010105 crossref_primary_10_1109_JBHI_2017_2650199 crossref_primary_10_1038_s41598_017_05728_9 crossref_primary_10_1007_s42979_020_00210_2 crossref_primary_10_3835_plantgenome2017_11_0104 crossref_primary_10_1021_acsomega_0c03866 crossref_primary_10_3389_fphar_2020_606668 crossref_primary_10_1109_ACCESS_2018_2883562 crossref_primary_10_1021_acs_analchem_0c04414 crossref_primary_10_1063_5_0025462 crossref_primary_10_3389_fgene_2019_00214 crossref_primary_10_1155_2024_9954821 crossref_primary_10_3389_fnsys_2024_1269190 crossref_primary_10_1109_JSEN_2021_3085743 crossref_primary_10_1029_2018WR022643 crossref_primary_10_4258_hir_2023_29_1_23 crossref_primary_10_1007_s10989_019_09887_3 crossref_primary_10_1109_ACCESS_2019_2916586 crossref_primary_10_12688_f1000research_134244_1 crossref_primary_10_4236_health_2025_173012 crossref_primary_10_12688_f1000research_134244_2 crossref_primary_10_4258_hir_2023_29_1_16 crossref_primary_10_1088_1758_5090_ac94a1 crossref_primary_10_1360_SSV_2023_0304 crossref_primary_10_1007_s40194_021_01229_6 crossref_primary_10_1109_TCBB_2019_2952338 crossref_primary_10_4018_IJAMC_2018100102 |
Cites_doi | 10.1073/pnas.0408677102 10.1007/978-3-319-09330-7_25 10.1007/10985687_6 10.1007/BF00342633 10.1088/1741-2560/8/3/036015 10.1613/jair.953 10.1007/978-3-642-40763-5_72 10.1145/2640087.2644155 10.1109/72.279181 10.1002/rob.20276 10.1088/0031-9155/42/11/001 10.1109/CVPR.2015.7298594 10.1109/CSE.2014.36 10.1007/978-3-319-10590-1_53 10.1016/j.neunet.2014.09.003 10.1145/1007730.1007737 10.1109/TSMCB.2008.2007853 10.1016/j.ins.2013.07.007 10.1162/neco.1989.1.2.270 10.1016/j.clinph.2009.09.002 10.1109/72.554195 10.1109/TMM.2015.2477044 10.1021/acs.molpharmaceut.5b00982 10.1007/978-3-642-40763-5_51 10.1093/bib/bbk007 10.1056/NEJM199303113281008 10.1007/978-3-319-14148-0_1 10.1093/bib/6.1.57 10.1109/CVPR.2015.7298633 10.1109/MSP.2012.2205597 10.3109/10409238.2015.1135868 10.1016/S0925-2312(99)00126-5 10.1109/TCBB.2014.2343960 10.1109/TMI.2015.2458702 10.1145/2647868.2654889 10.1093/bioinformatics/btw074 10.1109/TNSRE.2002.806829 10.1109/TKDE.2008.239 10.2147/OTT.S80733 10.1109/ICASSP.2013.6639347 10.1016/S1570-9639(03)00112-2 10.1038/srep21471 10.1109/ICPR.2008.4761638 10.1109/ICCV.2015.512 10.1109/NER.2015.7146583 10.1002/jcc.23718 10.1109/TMI.2016.2553401 10.1109/78.650093 10.1109/TPAMI.2010.125 10.1162/neco.1997.9.8.1735 10.1109/ICARCV.2014.7064414 10.1109/ICRA.2015.7139550 10.1109/RBME.2009.2034865 10.1016/S0169-7439(97)00061-0 10.1007/b136169 10.1162/NECO_a_00047 10.1162/neco.2006.18.7.1527 10.1093/bioinformatics/btu277 10.1145/1553374.1553486 10.1109/IJCNN.1989.118638 10.1201/9781420058079 10.2991/978-94-91216-62-6_6 10.7763/IJMLC.2011.V1.40 10.1016/S0065-3233(08)60520-3 10.1145/1390156.1390294 10.1109/TKDE.2009.191 10.1109/TPAMI.2012.231 10.1126/science.1127647 10.1002/mrm.10611 10.1109/ICME.2014.6890301 10.1038/nbt.3313 10.1093/nar/gkv1025 10.3389/fnins.2014.00229 10.3115/v1/P15-1107 10.1093/bioinformatics/15.11.937 10.1101/041616 10.1162/153244304773936054 10.1007/978-3-319-16628-5_25 10.1093/bioinformatics/btw255 10.1093/bioinformatics/bts475 10.1007/978-3-319-24553-9_68 10.1109/TMI.2015.2457891 10.1109/TBME.2007.893452 10.1037/0003-066X.30.3.315 10.3115/v1/D14-1179 10.1109/TCBB.2010.96 10.1186/s12859-014-0430-y 10.1038/nmeth.3547 10.1038/nature08909 10.1073/pnas.87.24.9868 10.1007/978-3-642-40763-5_31 10.1093/bioinformatics/15.7.654 10.1136/amiajnl-2012-001509 10.1007/978-3-642-40763-5_50 10.1038/nature16961 10.1155/2014/627892 10.1118/1.598537 10.1371/journal.pone.0141287 10.1093/bioinformatics/btv643 10.1162/089976600300015015 10.1109/CVPR.2016.11 10.1098/rstb.1986.0056 10.1038/nature14539 10.1038/nrn3241 10.18653/v1/D15-1166 10.1038/srep11476 10.1038/nrg3920 10.25080/Majora-92bf1922-003 10.1145/1143844.1143874 10.1093/bioinformatics/btm247 10.1006/jmbi.1999.3091 10.1109/JPROC.2015.2494198 10.1123/jab.13.2.135 10.1113/jphysiol.1968.sp008455 10.1007/978-3-642-25566-3_40 10.1007/978-3-319-10404-1_65 10.1109/BIBE.2014.26 10.1038/nature12346 10.1007/978-3-642-35289-8_26 10.1371/journal.pone.0137036 10.1109/IJCNN.2014.6889891 10.1117/12.2083124 10.1007/978-3-642-21735-7_7 10.1109/BIBM.2013.6732507 10.1101/028399 10.1609/aimag.v31i3.2303 10.1109/TIP.2005.852470 |
ContentType | Journal Article |
Copyright | The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2016 The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
Copyright_xml | – notice: The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2016 – notice: The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbw068 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
EndPage | 869 |
ExternalDocumentID | 27473064 10_1093_bib_bbw068 10.1093/bib/bbw068 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: National Research Foundation sequence: 0 funderid: 10.13039/100011512 – fundername: Korea Health Industry Development Institute sequence: 0 funderid: 10.13039/501100003710 – fundername: Ministry of Science, ICT and Future Planning sequence: 0 grantid: 2014M3C9A3063541; 2015M3A9A7029735 funderid: 10.13039/501100003621 – fundername: NRF sequence: 0 funderid: 10.13039/100007431 – fundername: KHIDI sequence: 0 funderid: 10.13039/501100003710 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABGNP ABPQP ABXZS ACUHS ACUXJ AHQJS ALXQX AMNDL ANAKG CITATION JXSIZ CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c345t-c0232c7644ea7585f36c341b5779f83632364ec2ffd7a1849e54e85b7e7561663 |
IEDL.DBID | TOX |
ISSN | 1467-5463 |
IngestDate | Fri Jul 11 10:27:48 EDT 2025 Mon Jun 30 09:00:17 EDT 2025 Mon Jul 21 05:59:47 EDT 2025 Thu Jul 03 08:38:04 EDT 2025 Thu Apr 24 22:50:31 EDT 2025 Fri Dec 06 10:16:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | deep learning omics bioinformatics biomedical signal processing biomedical imaging machine learning neural network |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-c0232c7644ea7585f36c341b5779f83632364ec2ffd7a1849e54e85b7e7561663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
PMID | 27473064 |
PQID | 2305097445 |
PQPubID | 26846 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1826740389 proquest_journals_2305097445 pubmed_primary_27473064 crossref_primary_10_1093_bib_bbw068 crossref_citationtrail_10_1093_bib_bbw068 oup_primary_10_1093_bib_bbw068 |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2017 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – sequence: 0 name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | 2016072918104224000_bbw068v1.190 2016072918104224000_bbw068v1.191 2016072918104224000_bbw068v1.196 2016072918104224000_bbw068v1.197 2016072918104224000_bbw068v1.198 2016072918104224000_bbw068v1.192 2016072918104224000_bbw068v1.193 2016072918104224000_bbw068v1.194 2016072918104224000_bbw068v1.195 2016072918104224000_bbw068v1.19 2016072918104224000_bbw068v1.17 2016072918104224000_bbw068v1.18 2016072918104224000_bbw068v1.189 2016072918104224000_bbw068v1.11 2016072918104224000_bbw068v1.12 2016072918104224000_bbw068v1.10 2016072918104224000_bbw068v1.15 2016072918104224000_bbw068v1.16 2016072918104224000_bbw068v1.13 2016072918104224000_bbw068v1.14 2016072918104224000_bbw068v1.1 2016072918104224000_bbw068v1.29 2016072918104224000_bbw068v1.22 2016072918104224000_bbw068v1.23 2016072918104224000_bbw068v1.20 2016072918104224000_bbw068v1.21 2016072918104224000_bbw068v1.26 2016072918104224000_bbw068v1.27 2016072918104224000_bbw068v1.24 2016072918104224000_bbw068v1.25 2016072918104224000_bbw068v1.8 2016072918104224000_bbw068v1.9 2016072918104224000_bbw068v1.6 2016072918104224000_bbw068v1.7 2016072918104224000_bbw068v1.4 2016072918104224000_bbw068v1.5 2016072918104224000_bbw068v1.3 Bergstra (2016072918104224000_bbw068v1.199) 2012; 13 Cao (2016072918104224000_bbw068v1.201) 2014; 13(Suppl 3) Srivastava (2016072918104224000_bbw068v1.51) 2014; 15 2016072918104224000_bbw068v1.152 2016072918104224000_bbw068v1.153 2016072918104224000_bbw068v1.154 2016072918104224000_bbw068v1.150 2016072918104224000_bbw068v1.151 2016072918104224000_bbw068v1.149 2016072918104224000_bbw068v1.145 2016072918104224000_bbw068v1.146 2016072918104224000_bbw068v1.147 2016072918104224000_bbw068v1.148 2016072918104224000_bbw068v1.163 2016072918104224000_bbw068v1.164 2016072918104224000_bbw068v1.165 2016072918104224000_bbw068v1.166 Plis (2016072918104224000_bbw068v1.122) 2014; 8 2016072918104224000_bbw068v1.160 2016072918104224000_bbw068v1.161 2016072918104224000_bbw068v1.162 2016072918104224000_bbw068v1.156 2016072918104224000_bbw068v1.157 2016072918104224000_bbw068v1.158 2016072918104224000_bbw068v1.159 Ferrucci (2016072918104224000_bbw068v1.2) 2010; 31 2016072918104224000_bbw068v1.174 2016072918104224000_bbw068v1.176 2016072918104224000_bbw068v1.177 2016072918104224000_bbw068v1.170 Längkvist (2016072918104224000_bbw068v1.175) 2012; 2012 2016072918104224000_bbw068v1.171 2016072918104224000_bbw068v1.172 2016072918104224000_bbw068v1.173 2016072918104224000_bbw068v1.167 2016072918104224000_bbw068v1.168 2016072918104224000_bbw068v1.169 2016072918104224000_bbw068v1.180 2016072918104224000_bbw068v1.185 2016072918104224000_bbw068v1.186 2016072918104224000_bbw068v1.187 2016072918104224000_bbw068v1.188 2016072918104224000_bbw068v1.181 2016072918104224000_bbw068v1.182 2016072918104224000_bbw068v1.183 2016072918104224000_bbw068v1.184 Hinton (2016072918104224000_bbw068v1.45) 2010; 9 2016072918104224000_bbw068v1.178 2016072918104224000_bbw068v1.179 2016072918104224000_bbw068v1.91 2016072918104224000_bbw068v1.92 2016072918104224000_bbw068v1.90 2016072918104224000_bbw068v1.95 2016072918104224000_bbw068v1.96 2016072918104224000_bbw068v1.93 2016072918104224000_bbw068v1.94 2016072918104224000_bbw068v1.110 2016072918104224000_bbw068v1.111 2016072918104224000_bbw068v1.105 2016072918104224000_bbw068v1.106 2016072918104224000_bbw068v1.107 2016072918104224000_bbw068v1.108 2016072918104224000_bbw068v1.101 2016072918104224000_bbw068v1.222 2016072918104224000_bbw068v1.102 2016072918104224000_bbw068v1.223 2016072918104224000_bbw068v1.103 2016072918104224000_bbw068v1.224 2016072918104224000_bbw068v1.104 2016072918104224000_bbw068v1.225 2016072918104224000_bbw068v1.99 2016072918104224000_bbw068v1.97 2016072918104224000_bbw068v1.98 2016072918104224000_bbw068v1.109 Moody (2016072918104224000_bbw068v1.50) 1995; 4 Vincent (2016072918104224000_bbw068v1.28) 2010; 11 2016072918104224000_bbw068v1.120 2016072918104224000_bbw068v1.121 Cenic (2016072918104224000_bbw068v1.71) 1999; 20 2016072918104224000_bbw068v1.116 2016072918104224000_bbw068v1.117 2016072918104224000_bbw068v1.118 2016072918104224000_bbw068v1.119 2016072918104224000_bbw068v1.112 2016072918104224000_bbw068v1.113 2016072918104224000_bbw068v1.114 2016072918104224000_bbw068v1.115 Erhan (2016072918104224000_bbw068v1.68) 2010; 11 2016072918104224000_bbw068v1.70 2016072918104224000_bbw068v1.73 2016072918104224000_bbw068v1.74 2016072918104224000_bbw068v1.72 2016072918104224000_bbw068v1.130 2016072918104224000_bbw068v1.131 2016072918104224000_bbw068v1.132 2016072918104224000_bbw068v1.127 2016072918104224000_bbw068v1.128 2016072918104224000_bbw068v1.129 2016072918104224000_bbw068v1.123 2016072918104224000_bbw068v1.124 2016072918104224000_bbw068v1.125 2016072918104224000_bbw068v1.126 2016072918104224000_bbw068v1.77 2016072918104224000_bbw068v1.78 2016072918104224000_bbw068v1.75 2016072918104224000_bbw068v1.76 2016072918104224000_bbw068v1.79 2016072918104224000_bbw068v1.80 2016072918104224000_bbw068v1.81 2016072918104224000_bbw068v1.84 2016072918104224000_bbw068v1.85 2016072918104224000_bbw068v1.82 2016072918104224000_bbw068v1.83 2016072918104224000_bbw068v1.141 2016072918104224000_bbw068v1.143 2016072918104224000_bbw068v1.144 De Luca (2016072918104224000_bbw068v1.155) 1997; 13 Li (2016072918104224000_bbw068v1.133) 2015; 35 2016072918104224000_bbw068v1.140 2016072918104224000_bbw068v1.138 2016072918104224000_bbw068v1.139 2016072918104224000_bbw068v1.134 2016072918104224000_bbw068v1.135 2016072918104224000_bbw068v1.136 2016072918104224000_bbw068v1.137 2016072918104224000_bbw068v1.88 2016072918104224000_bbw068v1.89 Xu (2016072918104224000_bbw068v1.142) 2015; 35 2016072918104224000_bbw068v1.86 2016072918104224000_bbw068v1.87 2016072918104224000_bbw068v1.52 Hinton (2016072918104224000_bbw068v1.44) 1986; 1 2016072918104224000_bbw068v1.55 2016072918104224000_bbw068v1.56 2016072918104224000_bbw068v1.53 2016072918104224000_bbw068v1.54 2016072918104224000_bbw068v1.59 2016072918104224000_bbw068v1.57 2016072918104224000_bbw068v1.58 Minsky (2016072918104224000_bbw068v1.42) 1969; 19 2016072918104224000_bbw068v1.62 2016072918104224000_bbw068v1.63 2016072918104224000_bbw068v1.60 2016072918104224000_bbw068v1.61 Duchi (2016072918104224000_bbw068v1.48) 2011; 12 2016072918104224000_bbw068v1.66 2016072918104224000_bbw068v1.67 2016072918104224000_bbw068v1.64 2016072918104224000_bbw068v1.65 2016072918104224000_bbw068v1.69 2016072918104224000_bbw068v1.30 2016072918104224000_bbw068v1.210 2016072918104224000_bbw068v1.204 2016072918104224000_bbw068v1.205 2016072918104224000_bbw068v1.39 2016072918104224000_bbw068v1.206 2016072918104224000_bbw068v1.207 2016072918104224000_bbw068v1.200 2016072918104224000_bbw068v1.202 2016072918104224000_bbw068v1.203 2016072918104224000_bbw068v1.33 2016072918104224000_bbw068v1.34 2016072918104224000_bbw068v1.31 2016072918104224000_bbw068v1.32 2016072918104224000_bbw068v1.37 2016072918104224000_bbw068v1.208 2016072918104224000_bbw068v1.38 2016072918104224000_bbw068v1.209 2016072918104224000_bbw068v1.35 2016072918104224000_bbw068v1.36 2016072918104224000_bbw068v1.40 2016072918104224000_bbw068v1.41 2016072918104224000_bbw068v1.220 2016072918104224000_bbw068v1.100 2016072918104224000_bbw068v1.221 2016072918104224000_bbw068v1.215 2016072918104224000_bbw068v1.216 2016072918104224000_bbw068v1.217 2016072918104224000_bbw068v1.218 2016072918104224000_bbw068v1.211 2016072918104224000_bbw068v1.212 2016072918104224000_bbw068v1.213 2016072918104224000_bbw068v1.214 2016072918104224000_bbw068v1.43 2016072918104224000_bbw068v1.219 2016072918104224000_bbw068v1.49 2016072918104224000_bbw068v1.46 2016072918104224000_bbw068v1.47 |
References_xml | – ident: 2016072918104224000_bbw068v1.81 doi: 10.1073/pnas.0408677102 – ident: 2016072918104224000_bbw068v1.159 doi: 10.1007/978-3-319-09330-7_25 – ident: 2016072918104224000_bbw068v1.206 doi: 10.1007/10985687_6 – ident: 2016072918104224000_bbw068v1.43 doi: 10.1007/BF00342633 – ident: 2016072918104224000_bbw068v1.118 – ident: 2016072918104224000_bbw068v1.172 doi: 10.1088/1741-2560/8/3/036015 – ident: 2016072918104224000_bbw068v1.185 doi: 10.1613/jair.953 – ident: 2016072918104224000_bbw068v1.124 doi: 10.1007/978-3-642-40763-5_72 – ident: 2016072918104224000_bbw068v1.194 – ident: 2016072918104224000_bbw068v1.207 doi: 10.1145/2640087.2644155 – ident: 2016072918104224000_bbw068v1.35 doi: 10.1109/72.279181 – ident: 2016072918104224000_bbw068v1.52 – volume: 13(Suppl 3) start-page: 125. year: 2014 ident: 2016072918104224000_bbw068v1.201 article-title: Medical image retrieval: a multimodal approach publication-title: Cancer Inform – ident: 2016072918104224000_bbw068v1.40 doi: 10.1002/rob.20276 – ident: 2016072918104224000_bbw068v1.119 doi: 10.1088/0031-9155/42/11/001 – ident: 2016072918104224000_bbw068v1.75 – ident: 2016072918104224000_bbw068v1.10 doi: 10.1109/CVPR.2015.7298594 – ident: 2016072918104224000_bbw068v1.107 – ident: 2016072918104224000_bbw068v1.171 doi: 10.1109/CSE.2014.36 – ident: 2016072918104224000_bbw068v1.190 doi: 10.1007/978-3-319-10590-1_53 – ident: 2016072918104224000_bbw068v1.21 doi: 10.1016/j.neunet.2014.09.003 – ident: 2016072918104224000_bbw068v1.165 – ident: 2016072918104224000_bbw068v1.186 doi: 10.1145/1007730.1007737 – ident: 2016072918104224000_bbw068v1.184 doi: 10.1109/TSMCB.2008.2007853 – ident: 2016072918104224000_bbw068v1.209 – ident: 2016072918104224000_bbw068v1.222 – ident: 2016072918104224000_bbw068v1.183 doi: 10.1016/j.ins.2013.07.007 – ident: 2016072918104224000_bbw068v1.113 – ident: 2016072918104224000_bbw068v1.34 doi: 10.1162/neco.1989.1.2.270 – ident: 2016072918104224000_bbw068v1.176 doi: 10.1016/j.clinph.2009.09.002 – ident: 2016072918104224000_bbw068v1.32 doi: 10.1109/72.554195 – ident: 2016072918104224000_bbw068v1.154 – ident: 2016072918104224000_bbw068v1.76 doi: 10.1109/TMM.2015.2477044 – volume: 11 start-page: 625 year: 2010 ident: 2016072918104224000_bbw068v1.68 article-title: Why does unsupervised pre-training help deep learning? publication-title: J Mach Learn Res – ident: 2016072918104224000_bbw068v1.211 – ident: 2016072918104224000_bbw068v1.63 – ident: 2016072918104224000_bbw068v1.141 – ident: 2016072918104224000_bbw068v1.106 – ident: 2016072918104224000_bbw068v1.82 – ident: 2016072918104224000_bbw068v1.23 doi: 10.1021/acs.molpharmaceut.5b00982 – ident: 2016072918104224000_bbw068v1.128 doi: 10.1007/978-3-642-40763-5_51 – ident: 2016072918104224000_bbw068v1.6 doi: 10.1093/bib/bbk007 – ident: 2016072918104224000_bbw068v1.116 doi: 10.1056/NEJM199303113281008 – ident: 2016072918104224000_bbw068v1.126 doi: 10.1007/978-3-319-14148-0_1 – ident: 2016072918104224000_bbw068v1.73 doi: 10.1093/bib/6.1.57 – ident: 2016072918104224000_bbw068v1.101 – ident: 2016072918104224000_bbw068v1.146 – ident: 2016072918104224000_bbw068v1.203 – ident: 2016072918104224000_bbw068v1.12 doi: 10.1109/CVPR.2015.7298633 – ident: 2016072918104224000_bbw068v1.99 – ident: 2016072918104224000_bbw068v1.13 doi: 10.1109/MSP.2012.2205597 – volume: 9 start-page: 926. issue: 1 year: 2010 ident: 2016072918104224000_bbw068v1.45 article-title: A practical guide to training restricted Boltzmann machines publication-title: Momentum – ident: 2016072918104224000_bbw068v1.148 doi: 10.3109/10409238.2015.1135868 – ident: 2016072918104224000_bbw068v1.57 – ident: 2016072918104224000_bbw068v1.74 – ident: 2016072918104224000_bbw068v1.177 doi: 10.1016/S0925-2312(99)00126-5 – ident: 2016072918104224000_bbw068v1.86 doi: 10.1109/TCBB.2014.2343960 – volume: 35 start-page: 119 issue: 1 year: 2015 ident: 2016072918104224000_bbw068v1.142 article-title: Stacked Sparse Autoencoder (SSAE) for nuclei detection on breast cancer histopathology images publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2458702 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 2016072918104224000_bbw068v1.51 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: 2016072918104224000_bbw068v1.59 doi: 10.1145/2647868.2654889 – ident: 2016072918104224000_bbw068v1.96 doi: 10.1093/bioinformatics/btw074 – ident: 2016072918104224000_bbw068v1.157 doi: 10.1109/TNSRE.2002.806829 – ident: 2016072918104224000_bbw068v1.181 doi: 10.1109/TKDE.2008.239 – ident: 2016072918104224000_bbw068v1.189 – ident: 2016072918104224000_bbw068v1.200 – ident: 2016072918104224000_bbw068v1.123 doi: 10.2147/OTT.S80733 – ident: 2016072918104224000_bbw068v1.14 doi: 10.1109/ICASSP.2013.6639347 – ident: 2016072918104224000_bbw068v1.16 – ident: 2016072918104224000_bbw068v1.56 – volume: 13 start-page: 281 issue: 1 year: 2012 ident: 2016072918104224000_bbw068v1.199 article-title: Random search for hyper-parameter optimization publication-title: J Mach Learn Res – ident: 2016072918104224000_bbw068v1.94 – ident: 2016072918104224000_bbw068v1.39 – volume: 19 start-page: 2 issue: 88 year: 1969 ident: 2016072918104224000_bbw068v1.42 article-title: Perceptron: an introduction to computational geometry publication-title: MIT Press, Cambridge, Expanded Edition – ident: 2016072918104224000_bbw068v1.80 doi: 10.1016/S1570-9639(03)00112-2 – ident: 2016072918104224000_bbw068v1.143 doi: 10.1038/srep21471 – ident: 2016072918104224000_bbw068v1.62 – ident: 2016072918104224000_bbw068v1.166 doi: 10.1109/ICPR.2008.4761638 – ident: 2016072918104224000_bbw068v1.205 – ident: 2016072918104224000_bbw068v1.215 doi: 10.1109/ICCV.2015.512 – ident: 2016072918104224000_bbw068v1.162 doi: 10.1109/NER.2015.7146583 – ident: 2016072918104224000_bbw068v1.84 doi: 10.1002/jcc.23718 – ident: 2016072918104224000_bbw068v1.24 doi: 10.1109/TMI.2016.2553401 – ident: 2016072918104224000_bbw068v1.11 – ident: 2016072918104224000_bbw068v1.70 doi: 10.1109/78.650093 – ident: 2016072918104224000_bbw068v1.167 doi: 10.1109/TPAMI.2010.125 – ident: 2016072918104224000_bbw068v1.36 doi: 10.1162/neco.1997.9.8.1735 – ident: 2016072918104224000_bbw068v1.67 – ident: 2016072918104224000_bbw068v1.145 – ident: 2016072918104224000_bbw068v1.173 – ident: 2016072918104224000_bbw068v1.127 doi: 10.1109/ICARCV.2014.7064414 – ident: 2016072918104224000_bbw068v1.139 – ident: 2016072918104224000_bbw068v1.225 doi: 10.1109/ICRA.2015.7139550 – ident: 2016072918104224000_bbw068v1.150 – ident: 2016072918104224000_bbw068v1.221 – ident: 2016072918104224000_bbw068v1.121 doi: 10.1109/RBME.2009.2034865 – volume: 12 start-page: 2121 year: 2011 ident: 2016072918104224000_bbw068v1.48 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J Mach Learn Res – ident: 2016072918104224000_bbw068v1.26 doi: 10.1016/S0169-7439(97)00061-0 – ident: 2016072918104224000_bbw068v1.33 – ident: 2016072918104224000_bbw068v1.120 doi: 10.1007/b136169 – ident: 2016072918104224000_bbw068v1.149 doi: 10.1162/NECO_a_00047 – ident: 2016072918104224000_bbw068v1.29 doi: 10.1162/neco.2006.18.7.1527 – ident: 2016072918104224000_bbw068v1.93 doi: 10.1093/bioinformatics/btu277 – ident: 2016072918104224000_bbw068v1.210 – volume: 20 start-page: 63 issue: 1 year: 1999 ident: 2016072918104224000_bbw068v1.71 article-title: Dynamic CT measurement of cerebral blood flow: a validation study publication-title: Am J Neuroradiol – ident: 2016072918104224000_bbw068v1.89 – ident: 2016072918104224000_bbw068v1.105 – volume: 4 start-page: 950 year: 1995 ident: 2016072918104224000_bbw068v1.50 article-title: A simple weight decay can improve generalization publication-title: Adv Neural Inf Process Syst – ident: 2016072918104224000_bbw068v1.204 doi: 10.1145/1553374.1553486 – ident: 2016072918104224000_bbw068v1.3 – ident: 2016072918104224000_bbw068v1.111 – ident: 2016072918104224000_bbw068v1.46 doi: 10.1109/IJCNN.1989.118638 – ident: 2016072918104224000_bbw068v1.115 doi: 10.1201/9781420058079 – ident: 2016072918104224000_bbw068v1.224 doi: 10.2991/978-94-91216-62-6_6 – ident: 2016072918104224000_bbw068v1.158 doi: 10.7763/IJMLC.2011.V1.40 – ident: 2016072918104224000_bbw068v1.213 – ident: 2016072918104224000_bbw068v1.49 – ident: 2016072918104224000_bbw068v1.83 doi: 10.1016/S0065-3233(08)60520-3 – ident: 2016072918104224000_bbw068v1.27 doi: 10.1145/1390156.1390294 – ident: 2016072918104224000_bbw068v1.188 doi: 10.1109/TKDE.2009.191 – ident: 2016072918104224000_bbw068v1.9 doi: 10.1109/TPAMI.2012.231 – ident: 2016072918104224000_bbw068v1.30 doi: 10.1126/science.1127647 – ident: 2016072918104224000_bbw068v1.72 doi: 10.1002/mrm.10611 – ident: 2016072918104224000_bbw068v1.110 – ident: 2016072918104224000_bbw068v1.168 doi: 10.1109/ICME.2014.6890301 – ident: 2016072918104224000_bbw068v1.90 – ident: 2016072918104224000_bbw068v1.114 doi: 10.1038/nbt.3313 – ident: 2016072918104224000_bbw068v1.95 doi: 10.1093/nar/gkv1025 – ident: 2016072918104224000_bbw068v1.100 doi: 10.1038/nbt.3313 – volume: 8 start-page: 229 year: 2014 ident: 2016072918104224000_bbw068v1.122 article-title: Deep learning for neuroimaging: a validation study publication-title: Front Neurosci doi: 10.3389/fnins.2014.00229 – ident: 2016072918104224000_bbw068v1.17 doi: 10.3115/v1/P15-1107 – ident: 2016072918104224000_bbw068v1.66 – ident: 2016072918104224000_bbw068v1.88 doi: 10.1093/bioinformatics/15.11.937 – ident: 2016072918104224000_bbw068v1.97 doi: 10.1101/041616 – ident: 2016072918104224000_bbw068v1.144 – ident: 2016072918104224000_bbw068v1.92 doi: 10.1162/153244304773936054 – ident: 2016072918104224000_bbw068v1.174 doi: 10.1007/978-3-319-16628-5_25 – ident: 2016072918104224000_bbw068v1.1 – ident: 2016072918104224000_bbw068v1.38 – ident: 2016072918104224000_bbw068v1.55 – ident: 2016072918104224000_bbw068v1.102 doi: 10.1093/bioinformatics/btw255 – ident: 2016072918104224000_bbw068v1.91 doi: 10.1093/bioinformatics/bts475 – ident: 2016072918104224000_bbw068v1.140 doi: 10.1007/978-3-319-24553-9_68 – ident: 2016072918104224000_bbw068v1.219 – volume: 35 start-page: 109 issue: 1 year: 2015 ident: 2016072918104224000_bbw068v1.133 article-title: A cross-modality learning approach for vessel segmentation in retinal images publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2457891 – ident: 2016072918104224000_bbw068v1.196 – ident: 2016072918104224000_bbw068v1.54 – ident: 2016072918104224000_bbw068v1.77 – ident: 2016072918104224000_bbw068v1.178 doi: 10.1109/TBME.2007.893452 – ident: 2016072918104224000_bbw068v1.156 doi: 10.1037/0003-066X.30.3.315 – ident: 2016072918104224000_bbw068v1.19 doi: 10.3115/v1/D14-1179 – ident: 2016072918104224000_bbw068v1.60 – ident: 2016072918104224000_bbw068v1.179 doi: 10.1109/TCBB.2010.96 – ident: 2016072918104224000_bbw068v1.130 doi: 10.1186/s12859-014-0430-y – ident: 2016072918104224000_bbw068v1.214 – ident: 2016072918104224000_bbw068v1.104 doi: 10.1038/nmeth.3547 – ident: 2016072918104224000_bbw068v1.112 doi: 10.1038/nature08909 – ident: 2016072918104224000_bbw068v1.191 – ident: 2016072918104224000_bbw068v1.117 doi: 10.1073/pnas.87.24.9868 – ident: 2016072918104224000_bbw068v1.15 – ident: 2016072918104224000_bbw068v1.220 – ident: 2016072918104224000_bbw068v1.7 – ident: 2016072918104224000_bbw068v1.138 doi: 10.1007/978-3-642-40763-5_31 – ident: 2016072918104224000_bbw068v1.79 doi: 10.1093/bioinformatics/15.7.654 – ident: 2016072918104224000_bbw068v1.180 doi: 10.1136/amiajnl-2012-001509 – ident: 2016072918104224000_bbw068v1.198 – ident: 2016072918104224000_bbw068v1.131 doi: 10.1007/978-3-642-40763-5_50 – ident: 2016072918104224000_bbw068v1.217 – ident: 2016072918104224000_bbw068v1.65 – ident: 2016072918104224000_bbw068v1.4 doi: 10.1038/nature16961 – ident: 2016072918104224000_bbw068v1.163 doi: 10.1155/2014/627892 – ident: 2016072918104224000_bbw068v1.151 doi: 10.1118/1.598537 – ident: 2016072918104224000_bbw068v1.223 – ident: 2016072918104224000_bbw068v1.137 – ident: 2016072918104224000_bbw068v1.152 – volume: 11 start-page: 3371 year: 2010 ident: 2016072918104224000_bbw068v1.28 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – ident: 2016072918104224000_bbw068v1.108 doi: 10.1371/journal.pone.0141287 – ident: 2016072918104224000_bbw068v1.208 – ident: 2016072918104224000_bbw068v1.98 doi: 10.1093/bioinformatics/btv643 – ident: 2016072918104224000_bbw068v1.37 doi: 10.1162/089976600300015015 – ident: 2016072918104224000_bbw068v1.212 – ident: 2016072918104224000_bbw068v1.216 doi: 10.1109/CVPR.2016.11 – ident: 2016072918104224000_bbw068v1.135 doi: 10.1098/rstb.1986.0056 – ident: 2016072918104224000_bbw068v1.8 doi: 10.1038/nature14539 – ident: 2016072918104224000_bbw068v1.153 doi: 10.1038/nrn3241 – ident: 2016072918104224000_bbw068v1.169 – ident: 2016072918104224000_bbw068v1.193 – ident: 2016072918104224000_bbw068v1.18 doi: 10.18653/v1/D15-1166 – volume: 1 start-page: 282 year: 1986 ident: 2016072918104224000_bbw068v1.44 article-title: Learning and releaming in Boltzmann machines publication-title: Parallel Distrib Process: Explor Microstruct Cogn – ident: 2016072918104224000_bbw068v1.85 doi: 10.1038/srep11476 – ident: 2016072918104224000_bbw068v1.5 – ident: 2016072918104224000_bbw068v1.20 doi: 10.1038/nrg3920 – ident: 2016072918104224000_bbw068v1.61 doi: 10.25080/Majora-92bf1922-003 – ident: 2016072918104224000_bbw068v1.182 doi: 10.1145/1143844.1143874 – ident: 2016072918104224000_bbw068v1.164 – ident: 2016072918104224000_bbw068v1.125 – ident: 2016072918104224000_bbw068v1.109 doi: 10.1093/bioinformatics/btm247 – ident: 2016072918104224000_bbw068v1.78 doi: 10.1006/jmbi.1999.3091 – ident: 2016072918104224000_bbw068v1.22 doi: 10.1109/JPROC.2015.2494198 – volume: 2012 start-page: 5 year: 2012 ident: 2016072918104224000_bbw068v1.175 article-title: Sleep stage classification using unsupervised feature learning publication-title: Adv Artif Neural Syst – ident: 2016072918104224000_bbw068v1.202 – ident: 2016072918104224000_bbw068v1.25 – volume: 13 start-page: 135 year: 1997 ident: 2016072918104224000_bbw068v1.155 article-title: The use of surface electromyography in biomechanics publication-title: J Appl Biomech doi: 10.1123/jab.13.2.135 – ident: 2016072918104224000_bbw068v1.192 – ident: 2016072918104224000_bbw068v1.69 doi: 10.1113/jphysiol.1968.sp008455 – ident: 2016072918104224000_bbw068v1.187 – ident: 2016072918104224000_bbw068v1.31 – ident: 2016072918104224000_bbw068v1.197 doi: 10.1007/978-3-642-25566-3_40 – ident: 2016072918104224000_bbw068v1.58 – ident: 2016072918104224000_bbw068v1.147 doi: 10.1007/978-3-319-10404-1_65 – ident: 2016072918104224000_bbw068v1.161 doi: 10.1109/BIBE.2014.26 – ident: 2016072918104224000_bbw068v1.136 doi: 10.1038/nature12346 – ident: 2016072918104224000_bbw068v1.195 doi: 10.1007/978-3-642-35289-8_26 – ident: 2016072918104224000_bbw068v1.129 doi: 10.1371/journal.pone.0137036 – ident: 2016072918104224000_bbw068v1.64 – ident: 2016072918104224000_bbw068v1.218 – ident: 2016072918104224000_bbw068v1.47 – ident: 2016072918104224000_bbw068v1.170 – ident: 2016072918104224000_bbw068v1.87 doi: 10.1109/IJCNN.2014.6889891 – ident: 2016072918104224000_bbw068v1.132 doi: 10.1117/12.2083124 – ident: 2016072918104224000_bbw068v1.41 doi: 10.1007/978-3-642-21735-7_7 – ident: 2016072918104224000_bbw068v1.160 doi: 10.1109/BIBM.2013.6732507 – ident: 2016072918104224000_bbw068v1.53 – ident: 2016072918104224000_bbw068v1.103 doi: 10.1101/028399 – volume: 31 start-page: 59 issue: 3 year: 2010 ident: 2016072918104224000_bbw068v1.2 article-title: Building Watson: an overview of the DeepQA project publication-title: AI Magazine doi: 10.1609/aimag.v31i3.2303 – ident: 2016072918104224000_bbw068v1.134 doi: 10.1109/TIP.2005.852470 |
SSID | ssj0020781 |
Score | 2.669109 |
SecondaryResourceType | review_article |
Snippet | Abstract
In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics.... In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 851 |
SubjectTerms | Artificial neural networks Big Data Bioinformatics Biomedical data Computational Biology Data management Deep learning Humans Machine Learning Medical imaging Neural networks Neural Networks (Computer) Recurrent neural networks Signal processing |
Title | Deep learning in bioinformatics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27473064 https://www.proquest.com/docview/2305097445 https://www.proquest.com/docview/1826740389 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NSwMxEB1EELyI367WuqIXD0u7-dh0j6KWIqiXFnpbNtmJFGRbbIv4753pbgvFoudMCJkkzHtM5g3AbeHStspjG_lYY0T4tohS4WPmPIYrOwtRcEb35TXpDdTzUA_rTzTTDSn8VLbsyLas_WonXNJL0ZcV8vtvwxWtYrmaqobIRCzuvhQhXZu6FnbWStl-IcpFZOnuw14NCcP76gwPYAvLQ9ipmkR-H8HVI-IkrLs7vIejMrSjca13yhrLxzDoPvUfelHd1iByUulZ5ChMCmcIiGDOaN3LhAZiq41JfUcmkjXd0QnvC5MTAUtRK-xoa9AQ2CGEcALb5bjEMwitNbYgCOVNgkpLbz0aLJwQXijrZBrA3XLXmas1v7n1xEdW5Z5lRh7KKg8FcLOynVRKFxutmuS8Pw0aS79m9XOYZsRzCJgYpXQA16thusicnchLHM-nGRMdo1jvL4DT6jxWyzB1Zqp0_t_qF7ArOO4uPoE1YHv2OcdLQg0z21xcmh-4hrw_ |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+in+bioinformatics&rft.jtitle=Briefings+in+bioinformatics&rft.au=Min%2C+Seonwoo&rft.au=Lee%2C+Byunghan&rft.au=Yoon%2C+Sungroh&rft.date=2017-09-01&rft.issn=1467-5463&rft.eissn=1477-4054&rft.spage=bbw068&rft_id=info:doi/10.1093%2Fbib%2Fbbw068&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbw068 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |