Deep learning in bioinformatics

Abstract In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, a...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 18; no. 5; pp. 851 - 869
Main Authors Min, Seonwoo, Lee, Byunghan, Yoon, Sungroh
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.09.2017
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies.
AbstractList Abstract In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies.
In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies.
Author Yoon, Sungroh
Min, Seonwoo
Lee, Byunghan
Author_xml – sequence: 1
  givenname: Seonwoo
  surname: Min
  fullname: Min, Seonwoo
  organization: Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
– sequence: 2
  givenname: Byunghan
  surname: Lee
  fullname: Lee, Byunghan
  organization: Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
– sequence: 3
  givenname: Sungroh
  surname: Yoon
  fullname: Yoon, Sungroh
  email: sryoon@snu.ac.kr
  organization: Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27473064$$D View this record in MEDLINE/PubMed
BookMark eNp90EtLxDAQB_AgK-5DL34AXRBBhLpJ8-xR1icseNFzSLKpZGmTmrSI394uXT0s4ikD-c0w85-CkQ_eAnCK4A2CBV5opxdaf0ImDsAEEc4zAikZbWvGM0oYHoNpShsIc8gFOgLjnBOOISMTcH5nbTOvrIre-fe583PtgvNliLVqnUnH4LBUVbInu3cG3h7uX5dP2erl8Xl5u8oMJrTNDMxxbjgjxCpOBS0x6z-QppwXpcAM55gRa_KyXHOFBCksJVZQzS2nDDGGZ-BqmNvE8NHZ1MraJWOrSnkbuiSRyBknEIuipxd7dBO66PvtZI4hhQUnhPbqbKc6Xdu1bKKrVfySP6f34HoAJoaUoi1_CYJym6vsc5VDrj2Ge9i4tg8o-DYqV_3dcjm0hK75b_Q3Bz6Egg
CitedBy_id crossref_primary_10_1007_s11517_025_03303_3
crossref_primary_10_1109_TCDS_2024_3431224
crossref_primary_10_1099_mgen_0_000459
crossref_primary_10_1109_TKDE_2022_3179554
crossref_primary_10_1109_TNSRE_2019_2913400
crossref_primary_10_1021_acs_jcim_1c00628
crossref_primary_10_1093_bib_bbx126
crossref_primary_10_1155_2018_8572058
crossref_primary_10_1109_ACCESS_2019_2946461
crossref_primary_10_1007_s11042_023_17529_6
crossref_primary_10_3389_fphy_2020_00031
crossref_primary_10_3389_fgene_2019_00726
crossref_primary_10_1021_acs_jcim_7b00690
crossref_primary_10_3389_fonc_2022_916379
crossref_primary_10_1021_acs_jcim_8b00414
crossref_primary_10_1021_acs_molpharmaceut_7b01137
crossref_primary_10_1093_bib_bbx123
crossref_primary_10_1109_TCBB_2022_3199758
crossref_primary_10_1021_acs_jcim_0c00409
crossref_primary_10_1109_ACCESS_2023_3237394
crossref_primary_10_1021_acs_jcim_9b00626
crossref_primary_10_3389_fbinf_2023_1159381
crossref_primary_10_3389_fmicb_2020_592430
crossref_primary_10_1109_TITS_2017_2706963
crossref_primary_10_1109_ACCESS_2019_2939947
crossref_primary_10_1109_ACCESS_2021_3095248
crossref_primary_10_2991_jaims_d_210512_001
crossref_primary_10_1111_obr_12667
crossref_primary_10_1155_2022_9862733
crossref_primary_10_1016_j_trc_2018_12_004
crossref_primary_10_1007_s40588_025_00240_5
crossref_primary_10_1038_s41598_019_46059_1
crossref_primary_10_1021_acs_chemrestox_9b00227
crossref_primary_10_1021_acs_jpcb_2c03243
crossref_primary_10_1007_s11042_023_14358_5
crossref_primary_10_3389_fgene_2021_690049
crossref_primary_10_3389_fgene_2020_539227
crossref_primary_10_1155_2021_8897105
crossref_primary_10_1109_TITS_2019_2943055
crossref_primary_10_1007_s00521_024_09660_8
crossref_primary_10_1109_TIM_2021_3116309
crossref_primary_10_1021_acs_analchem_3c03796
crossref_primary_10_3389_frai_2024_1355287
crossref_primary_10_3934_mbe_2022114
crossref_primary_10_3389_fendo_2022_945020
crossref_primary_10_3389_fpls_2020_00025
crossref_primary_10_1038_s41598_018_32180_0
crossref_primary_10_1080_15476286_2024_2329451
crossref_primary_10_1109_ACCESS_2018_2807881
crossref_primary_10_1155_2022_8090871
crossref_primary_10_1007_s12539_021_00435_6
crossref_primary_10_1109_ACCESS_2019_2941796
crossref_primary_10_3389_fgene_2019_01346
crossref_primary_10_4254_wjh_v13_i12_1977
crossref_primary_10_1093_bib_bbae651
crossref_primary_10_3389_fendo_2022_959546
crossref_primary_10_1007_s11095_016_2029_7
crossref_primary_10_1016_j_bbadis_2017_12_004
crossref_primary_10_1016_j_csbj_2021_03_022
crossref_primary_10_1093_bioinformatics_bty296
crossref_primary_10_1109_TNNLS_2018_2790388
crossref_primary_10_1088_2632_2153_ad6be8
crossref_primary_10_3389_fgene_2023_1132018
crossref_primary_10_3389_fgene_2020_00869
crossref_primary_10_1186_s12859_022_04856_y
crossref_primary_10_1021_acs_jproteome_2c00488
crossref_primary_10_1038_s41598_024_72842_w
crossref_primary_10_3389_fonc_2022_847706
crossref_primary_10_1109_TNSRE_2023_3297654
crossref_primary_10_1016_j_eswa_2022_116616
crossref_primary_10_1508_cytologia_83_301
crossref_primary_10_1109_ACCESS_2021_3092631
crossref_primary_10_1186_s12967_017_1285_6
crossref_primary_10_1186_s12859_019_3286_3
crossref_primary_10_3389_fimmu_2017_01617
crossref_primary_10_1109_JIOT_2024_3485765
crossref_primary_10_1177_11779322211030364
crossref_primary_10_3390_biom12121740
crossref_primary_10_1109_ACCESS_2024_3412419
crossref_primary_10_1360_SSV_2023_0297
crossref_primary_10_1007_s42108_021_00114_8
crossref_primary_10_1093_bib_bbab454
crossref_primary_10_1038_s41598_024_59487_5
crossref_primary_10_3345_cep_2021_01438
crossref_primary_10_1109_TNSRE_2019_2915621
crossref_primary_10_3389_fcvm_2022_824574
crossref_primary_10_3389_fgene_2022_1032779
crossref_primary_10_1109_ACCESS_2020_2974712
crossref_primary_10_1109_TCBB_2022_3201295
crossref_primary_10_3390_md17030145
crossref_primary_10_1186_s12864_020_06821_6
crossref_primary_10_5009_gnl19334
crossref_primary_10_1109_ACCESS_2022_3182543
crossref_primary_10_3389_fonc_2023_1189370
crossref_primary_10_1007_s11030_021_10288_2
crossref_primary_10_1007_s42452_019_0611_4
crossref_primary_10_1115_1_4065457
crossref_primary_10_3389_fgene_2020_00090
crossref_primary_10_1109_TCBB_2024_3427381
crossref_primary_10_1109_TKDE_2024_3361474
crossref_primary_10_1007_s00521_021_06674_4
crossref_primary_10_1007_s00894_023_05772_5
crossref_primary_10_3389_fphys_2019_01044
crossref_primary_10_1109_ACCESS_2018_2837654
crossref_primary_10_54525_bbmd_1454569
crossref_primary_10_1038_s41598_024_64602_7
crossref_primary_10_1021_acs_chemrev_0c00752
crossref_primary_10_1186_s13007_024_01250_y
crossref_primary_10_3389_fcvm_2019_00195
crossref_primary_10_1155_2020_7526825
crossref_primary_10_1016_j_cosrev_2020_100276
crossref_primary_10_1038_s41374_022_00801_y
crossref_primary_10_1177_19476035211053824
crossref_primary_10_4018_IJSSMET_2018040102
crossref_primary_10_1080_10590501_2018_1537563
crossref_primary_10_1109_ACCESS_2019_2942112
crossref_primary_10_1007_s10930_019_09838_3
crossref_primary_10_1021_acssynbio_9b00099
crossref_primary_10_35712_aig_v2_i2_42
crossref_primary_10_1021_acs_jcim_0c00599
crossref_primary_10_1093_bib_bbaf039
crossref_primary_10_1007_s10577_021_09656_3
crossref_primary_10_1515_sagmb_2021_0087
crossref_primary_10_1089_cmb_2023_0076
crossref_primary_10_1007_s43657_022_00048_z
crossref_primary_10_1021_acsestwater_3c00152
crossref_primary_10_3389_fbioe_2023_1191803
crossref_primary_10_1080_00221686_2024_2377132
crossref_primary_10_1002_prot_26322
crossref_primary_10_1186_s12859_024_05784_9
crossref_primary_10_7554_eLife_70576
crossref_primary_10_53501_rteufemud_1377390
crossref_primary_10_1109_ACCESS_2019_2939281
crossref_primary_10_1109_TCBB_2021_3115876
crossref_primary_10_1007_s00425_018_2976_9
crossref_primary_10_1109_TNNLS_2019_2914471
crossref_primary_10_1088_2632_2153_acafd5
crossref_primary_10_1038_s41598_020_63424_7
crossref_primary_10_1186_s13036_023_00329_9
crossref_primary_10_1098_rsif_2017_0387
crossref_primary_10_1109_ACCESS_2021_3110269
crossref_primary_10_1007_s12652_021_03312_8
crossref_primary_10_1155_2019_9724589
crossref_primary_10_1021_acs_molpharmaceut_7b00578
crossref_primary_10_1109_ACCESS_2020_3039624
crossref_primary_10_1186_s12864_023_09933_x
crossref_primary_10_20535_2523_4455_2018_23_3_125236
crossref_primary_10_1063_5_0131067
crossref_primary_10_3389_fsysb_2022_877717
crossref_primary_10_1109_TNNLS_2018_2850703
crossref_primary_10_3389_fmolb_2022_879461
crossref_primary_10_1360_SSC_2023_0044
crossref_primary_10_3390_app11136216
crossref_primary_10_3389_fgene_2022_1017340
crossref_primary_10_1021_acsomega_2c00424
crossref_primary_10_1007_s00034_022_02265_3
crossref_primary_10_1371_journal_pone_0198216
crossref_primary_10_1016_j_rineng_2024_103440
crossref_primary_10_1021_acs_jproteome_7b00595
crossref_primary_10_1155_2021_6662779
crossref_primary_10_31857_S0026898423010093
crossref_primary_10_1007_s11030_021_10225_3
crossref_primary_10_1109_ACCESS_2024_3419766
crossref_primary_10_3389_fbioe_2023_1215773
crossref_primary_10_3748_wjg_v27_i41_7041
crossref_primary_10_1109_TCST_2020_3045845
crossref_primary_10_11834_jig_230020
crossref_primary_10_1109_JBHI_2022_3204776
crossref_primary_10_3389_fphy_2020_621966
crossref_primary_10_1109_JBHI_2022_3169542
crossref_primary_10_1109_TCBB_2021_3131136
crossref_primary_10_3389_fgene_2021_781698
crossref_primary_10_1109_TCBB_2018_2864149
crossref_primary_10_1103_PhysRevResearch_4_023058
crossref_primary_10_1186_s12859_018_2500_z
crossref_primary_10_1109_ACCESS_2023_3331762
crossref_primary_10_1021_acs_iecr_0c01070
crossref_primary_10_3389_fimmu_2021_720746
crossref_primary_10_1109_JSEN_2020_3035846
crossref_primary_10_1371_journal_pcbi_1007792
crossref_primary_10_1109_TCBB_2023_3252276
crossref_primary_10_1109_ACCESS_2021_3081915
crossref_primary_10_7717_peerj_7362
crossref_primary_10_2174_1574893618666230320103421
crossref_primary_10_1007_s11030_023_10718_3
crossref_primary_10_1038_s41598_018_34833_6
crossref_primary_10_1109_ACCESS_2019_2912519
crossref_primary_10_3904_kjim_2020_020
crossref_primary_10_31590_ejosat_1045510
crossref_primary_10_1016_j_ijmedinf_2018_09_003
crossref_primary_10_1088_1741_2552_ab405f
crossref_primary_10_1186_s13040_017_0148_2
crossref_primary_10_2196_13139
crossref_primary_10_3389_fmicb_2023_1331233
crossref_primary_10_1109_ACCESS_2019_2946053
crossref_primary_10_3389_fcimb_2022_882995
crossref_primary_10_3389_fpls_2022_910878
crossref_primary_10_1109_ACCESS_2021_3062291
crossref_primary_10_1109_TNSRE_2018_2884641
crossref_primary_10_1109_TCBB_2020_3005972
crossref_primary_10_35817_publicuho_v6i3_240
crossref_primary_10_1109_TCBB_2024_3442536
crossref_primary_10_1007_s13246_021_01083_2
crossref_primary_10_1007_s42979_023_02159_4
crossref_primary_10_1088_2632_2153_ad849c
crossref_primary_10_1109_TCBB_2022_3141697
crossref_primary_10_1109_TGRS_2023_3251659
crossref_primary_10_1186_s12877_018_0915_z
crossref_primary_10_3390_app9152975
crossref_primary_10_3389_fgene_2020_540751
crossref_primary_10_3389_fnmol_2021_695873
crossref_primary_10_1186_s12859_017_1972_6
crossref_primary_10_1259_bjr_20170545
crossref_primary_10_1038_s41598_017_08892_0
crossref_primary_10_1360_TB_2022_1152
crossref_primary_10_3390_e23101357
crossref_primary_10_1186_s13040_019_0200_5
crossref_primary_10_1021_acssynbio_3c00154
crossref_primary_10_1063_5_0166890
crossref_primary_10_1152_physiolgenomics_00011_2024
crossref_primary_10_7717_peerj_cs_270
crossref_primary_10_1016_j_heliyon_2023_e16812
crossref_primary_10_1109_ACCESS_2020_3035347
crossref_primary_10_3389_fmed_2025_1493771
crossref_primary_10_3934_mbe_2023428
crossref_primary_10_35712_aig_v1_i1_5
crossref_primary_10_1038_s41598_019_52552_4
crossref_primary_10_1007_s00701_021_04928_7
crossref_primary_10_4018_IJGHPC_2018070101
crossref_primary_10_1021_acs_jcim_3c01017
crossref_primary_10_3354_ame01901
crossref_primary_10_3389_fpls_2020_613325
crossref_primary_10_20517_evcna_2024_51
crossref_primary_10_3389_fenrg_2022_863153
crossref_primary_10_3389_fcell_2023_1034604
crossref_primary_10_1371_journal_pcbi_1009345
crossref_primary_10_1007_s41870_022_00949_2
crossref_primary_10_32604_cmes_2021_017679
crossref_primary_10_1016_j_cmpb_2018_04_005
crossref_primary_10_1080_15592294_2017_1329068
crossref_primary_10_1021_acs_chemrestox_2c00375
crossref_primary_10_3389_fpls_2024_1421503
crossref_primary_10_1007_s00521_020_04830_w
crossref_primary_10_1159_000513700
crossref_primary_10_1186_s12864_022_08829_6
crossref_primary_10_1089_omi_2022_0155
crossref_primary_10_3389_frai_2023_1289669
crossref_primary_10_1109_ACCESS_2020_2992084
crossref_primary_10_4018_IJSEUS_2019010105
crossref_primary_10_1109_JBHI_2017_2650199
crossref_primary_10_1038_s41598_017_05728_9
crossref_primary_10_1007_s42979_020_00210_2
crossref_primary_10_3835_plantgenome2017_11_0104
crossref_primary_10_1021_acsomega_0c03866
crossref_primary_10_3389_fphar_2020_606668
crossref_primary_10_1109_ACCESS_2018_2883562
crossref_primary_10_1021_acs_analchem_0c04414
crossref_primary_10_1063_5_0025462
crossref_primary_10_3389_fgene_2019_00214
crossref_primary_10_1155_2024_9954821
crossref_primary_10_3389_fnsys_2024_1269190
crossref_primary_10_1109_JSEN_2021_3085743
crossref_primary_10_1029_2018WR022643
crossref_primary_10_4258_hir_2023_29_1_23
crossref_primary_10_1007_s10989_019_09887_3
crossref_primary_10_1109_ACCESS_2019_2916586
crossref_primary_10_12688_f1000research_134244_1
crossref_primary_10_4236_health_2025_173012
crossref_primary_10_12688_f1000research_134244_2
crossref_primary_10_4258_hir_2023_29_1_16
crossref_primary_10_1088_1758_5090_ac94a1
crossref_primary_10_1360_SSV_2023_0304
crossref_primary_10_1007_s40194_021_01229_6
crossref_primary_10_1109_TCBB_2019_2952338
crossref_primary_10_4018_IJAMC_2018100102
Cites_doi 10.1073/pnas.0408677102
10.1007/978-3-319-09330-7_25
10.1007/10985687_6
10.1007/BF00342633
10.1088/1741-2560/8/3/036015
10.1613/jair.953
10.1007/978-3-642-40763-5_72
10.1145/2640087.2644155
10.1109/72.279181
10.1002/rob.20276
10.1088/0031-9155/42/11/001
10.1109/CVPR.2015.7298594
10.1109/CSE.2014.36
10.1007/978-3-319-10590-1_53
10.1016/j.neunet.2014.09.003
10.1145/1007730.1007737
10.1109/TSMCB.2008.2007853
10.1016/j.ins.2013.07.007
10.1162/neco.1989.1.2.270
10.1016/j.clinph.2009.09.002
10.1109/72.554195
10.1109/TMM.2015.2477044
10.1021/acs.molpharmaceut.5b00982
10.1007/978-3-642-40763-5_51
10.1093/bib/bbk007
10.1056/NEJM199303113281008
10.1007/978-3-319-14148-0_1
10.1093/bib/6.1.57
10.1109/CVPR.2015.7298633
10.1109/MSP.2012.2205597
10.3109/10409238.2015.1135868
10.1016/S0925-2312(99)00126-5
10.1109/TCBB.2014.2343960
10.1109/TMI.2015.2458702
10.1145/2647868.2654889
10.1093/bioinformatics/btw074
10.1109/TNSRE.2002.806829
10.1109/TKDE.2008.239
10.2147/OTT.S80733
10.1109/ICASSP.2013.6639347
10.1016/S1570-9639(03)00112-2
10.1038/srep21471
10.1109/ICPR.2008.4761638
10.1109/ICCV.2015.512
10.1109/NER.2015.7146583
10.1002/jcc.23718
10.1109/TMI.2016.2553401
10.1109/78.650093
10.1109/TPAMI.2010.125
10.1162/neco.1997.9.8.1735
10.1109/ICARCV.2014.7064414
10.1109/ICRA.2015.7139550
10.1109/RBME.2009.2034865
10.1016/S0169-7439(97)00061-0
10.1007/b136169
10.1162/NECO_a_00047
10.1162/neco.2006.18.7.1527
10.1093/bioinformatics/btu277
10.1145/1553374.1553486
10.1109/IJCNN.1989.118638
10.1201/9781420058079
10.2991/978-94-91216-62-6_6
10.7763/IJMLC.2011.V1.40
10.1016/S0065-3233(08)60520-3
10.1145/1390156.1390294
10.1109/TKDE.2009.191
10.1109/TPAMI.2012.231
10.1126/science.1127647
10.1002/mrm.10611
10.1109/ICME.2014.6890301
10.1038/nbt.3313
10.1093/nar/gkv1025
10.3389/fnins.2014.00229
10.3115/v1/P15-1107
10.1093/bioinformatics/15.11.937
10.1101/041616
10.1162/153244304773936054
10.1007/978-3-319-16628-5_25
10.1093/bioinformatics/btw255
10.1093/bioinformatics/bts475
10.1007/978-3-319-24553-9_68
10.1109/TMI.2015.2457891
10.1109/TBME.2007.893452
10.1037/0003-066X.30.3.315
10.3115/v1/D14-1179
10.1109/TCBB.2010.96
10.1186/s12859-014-0430-y
10.1038/nmeth.3547
10.1038/nature08909
10.1073/pnas.87.24.9868
10.1007/978-3-642-40763-5_31
10.1093/bioinformatics/15.7.654
10.1136/amiajnl-2012-001509
10.1007/978-3-642-40763-5_50
10.1038/nature16961
10.1155/2014/627892
10.1118/1.598537
10.1371/journal.pone.0141287
10.1093/bioinformatics/btv643
10.1162/089976600300015015
10.1109/CVPR.2016.11
10.1098/rstb.1986.0056
10.1038/nature14539
10.1038/nrn3241
10.18653/v1/D15-1166
10.1038/srep11476
10.1038/nrg3920
10.25080/Majora-92bf1922-003
10.1145/1143844.1143874
10.1093/bioinformatics/btm247
10.1006/jmbi.1999.3091
10.1109/JPROC.2015.2494198
10.1123/jab.13.2.135
10.1113/jphysiol.1968.sp008455
10.1007/978-3-642-25566-3_40
10.1007/978-3-319-10404-1_65
10.1109/BIBE.2014.26
10.1038/nature12346
10.1007/978-3-642-35289-8_26
10.1371/journal.pone.0137036
10.1109/IJCNN.2014.6889891
10.1117/12.2083124
10.1007/978-3-642-21735-7_7
10.1109/BIBM.2013.6732507
10.1101/028399
10.1609/aimag.v31i3.2303
10.1109/TIP.2005.852470
ContentType Journal Article
Copyright The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2016
The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2016
– notice: The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbw068
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Genetics Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
EndPage 869
ExternalDocumentID 27473064
10_1093_bib_bbw068
10.1093/bib/bbw068
Genre Journal Article
Review
GrantInformation_xml – fundername: National Research Foundation
  sequence: 0
  funderid: 10.13039/100011512
– fundername: Korea Health Industry Development Institute
  sequence: 0
  funderid: 10.13039/501100003710
– fundername: Ministry of Science, ICT and Future Planning
  sequence: 0
  grantid: 2014M3C9A3063541; 2015M3A9A7029735
  funderid: 10.13039/501100003621
– fundername: NRF
  sequence: 0
  funderid: 10.13039/100007431
– fundername: KHIDI
  sequence: 0
  funderid: 10.13039/501100003710
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c345t-c0232c7644ea7585f36c341b5779f83632364ec2ffd7a1849e54e85b7e7561663
IEDL.DBID TOX
ISSN 1467-5463
IngestDate Fri Jul 11 10:27:48 EDT 2025
Mon Jun 30 09:00:17 EDT 2025
Mon Jul 21 05:59:47 EDT 2025
Thu Jul 03 08:38:04 EDT 2025
Thu Apr 24 22:50:31 EDT 2025
Fri Dec 06 10:16:18 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords deep learning
omics
bioinformatics
biomedical signal processing
biomedical imaging
machine learning
neural network
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)
The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-c0232c7644ea7585f36c341b5779f83632364ec2ffd7a1849e54e85b7e7561663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
PMID 27473064
PQID 2305097445
PQPubID 26846
PageCount 19
ParticipantIDs proquest_miscellaneous_1826740389
proquest_journals_2305097445
pubmed_primary_27473064
crossref_primary_10_1093_bib_bbw068
crossref_citationtrail_10_1093_bib_bbw068
oup_primary_10_1093_bib_bbw068
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2017
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – sequence: 0
  name: Oxford University Press
– name: Oxford Publishing Limited (England)
References 2016072918104224000_bbw068v1.190
2016072918104224000_bbw068v1.191
2016072918104224000_bbw068v1.196
2016072918104224000_bbw068v1.197
2016072918104224000_bbw068v1.198
2016072918104224000_bbw068v1.192
2016072918104224000_bbw068v1.193
2016072918104224000_bbw068v1.194
2016072918104224000_bbw068v1.195
2016072918104224000_bbw068v1.19
2016072918104224000_bbw068v1.17
2016072918104224000_bbw068v1.18
2016072918104224000_bbw068v1.189
2016072918104224000_bbw068v1.11
2016072918104224000_bbw068v1.12
2016072918104224000_bbw068v1.10
2016072918104224000_bbw068v1.15
2016072918104224000_bbw068v1.16
2016072918104224000_bbw068v1.13
2016072918104224000_bbw068v1.14
2016072918104224000_bbw068v1.1
2016072918104224000_bbw068v1.29
2016072918104224000_bbw068v1.22
2016072918104224000_bbw068v1.23
2016072918104224000_bbw068v1.20
2016072918104224000_bbw068v1.21
2016072918104224000_bbw068v1.26
2016072918104224000_bbw068v1.27
2016072918104224000_bbw068v1.24
2016072918104224000_bbw068v1.25
2016072918104224000_bbw068v1.8
2016072918104224000_bbw068v1.9
2016072918104224000_bbw068v1.6
2016072918104224000_bbw068v1.7
2016072918104224000_bbw068v1.4
2016072918104224000_bbw068v1.5
2016072918104224000_bbw068v1.3
Bergstra (2016072918104224000_bbw068v1.199) 2012; 13
Cao (2016072918104224000_bbw068v1.201) 2014; 13(Suppl 3)
Srivastava (2016072918104224000_bbw068v1.51) 2014; 15
2016072918104224000_bbw068v1.152
2016072918104224000_bbw068v1.153
2016072918104224000_bbw068v1.154
2016072918104224000_bbw068v1.150
2016072918104224000_bbw068v1.151
2016072918104224000_bbw068v1.149
2016072918104224000_bbw068v1.145
2016072918104224000_bbw068v1.146
2016072918104224000_bbw068v1.147
2016072918104224000_bbw068v1.148
2016072918104224000_bbw068v1.163
2016072918104224000_bbw068v1.164
2016072918104224000_bbw068v1.165
2016072918104224000_bbw068v1.166
Plis (2016072918104224000_bbw068v1.122) 2014; 8
2016072918104224000_bbw068v1.160
2016072918104224000_bbw068v1.161
2016072918104224000_bbw068v1.162
2016072918104224000_bbw068v1.156
2016072918104224000_bbw068v1.157
2016072918104224000_bbw068v1.158
2016072918104224000_bbw068v1.159
Ferrucci (2016072918104224000_bbw068v1.2) 2010; 31
2016072918104224000_bbw068v1.174
2016072918104224000_bbw068v1.176
2016072918104224000_bbw068v1.177
2016072918104224000_bbw068v1.170
Längkvist (2016072918104224000_bbw068v1.175) 2012; 2012
2016072918104224000_bbw068v1.171
2016072918104224000_bbw068v1.172
2016072918104224000_bbw068v1.173
2016072918104224000_bbw068v1.167
2016072918104224000_bbw068v1.168
2016072918104224000_bbw068v1.169
2016072918104224000_bbw068v1.180
2016072918104224000_bbw068v1.185
2016072918104224000_bbw068v1.186
2016072918104224000_bbw068v1.187
2016072918104224000_bbw068v1.188
2016072918104224000_bbw068v1.181
2016072918104224000_bbw068v1.182
2016072918104224000_bbw068v1.183
2016072918104224000_bbw068v1.184
Hinton (2016072918104224000_bbw068v1.45) 2010; 9
2016072918104224000_bbw068v1.178
2016072918104224000_bbw068v1.179
2016072918104224000_bbw068v1.91
2016072918104224000_bbw068v1.92
2016072918104224000_bbw068v1.90
2016072918104224000_bbw068v1.95
2016072918104224000_bbw068v1.96
2016072918104224000_bbw068v1.93
2016072918104224000_bbw068v1.94
2016072918104224000_bbw068v1.110
2016072918104224000_bbw068v1.111
2016072918104224000_bbw068v1.105
2016072918104224000_bbw068v1.106
2016072918104224000_bbw068v1.107
2016072918104224000_bbw068v1.108
2016072918104224000_bbw068v1.101
2016072918104224000_bbw068v1.222
2016072918104224000_bbw068v1.102
2016072918104224000_bbw068v1.223
2016072918104224000_bbw068v1.103
2016072918104224000_bbw068v1.224
2016072918104224000_bbw068v1.104
2016072918104224000_bbw068v1.225
2016072918104224000_bbw068v1.99
2016072918104224000_bbw068v1.97
2016072918104224000_bbw068v1.98
2016072918104224000_bbw068v1.109
Moody (2016072918104224000_bbw068v1.50) 1995; 4
Vincent (2016072918104224000_bbw068v1.28) 2010; 11
2016072918104224000_bbw068v1.120
2016072918104224000_bbw068v1.121
Cenic (2016072918104224000_bbw068v1.71) 1999; 20
2016072918104224000_bbw068v1.116
2016072918104224000_bbw068v1.117
2016072918104224000_bbw068v1.118
2016072918104224000_bbw068v1.119
2016072918104224000_bbw068v1.112
2016072918104224000_bbw068v1.113
2016072918104224000_bbw068v1.114
2016072918104224000_bbw068v1.115
Erhan (2016072918104224000_bbw068v1.68) 2010; 11
2016072918104224000_bbw068v1.70
2016072918104224000_bbw068v1.73
2016072918104224000_bbw068v1.74
2016072918104224000_bbw068v1.72
2016072918104224000_bbw068v1.130
2016072918104224000_bbw068v1.131
2016072918104224000_bbw068v1.132
2016072918104224000_bbw068v1.127
2016072918104224000_bbw068v1.128
2016072918104224000_bbw068v1.129
2016072918104224000_bbw068v1.123
2016072918104224000_bbw068v1.124
2016072918104224000_bbw068v1.125
2016072918104224000_bbw068v1.126
2016072918104224000_bbw068v1.77
2016072918104224000_bbw068v1.78
2016072918104224000_bbw068v1.75
2016072918104224000_bbw068v1.76
2016072918104224000_bbw068v1.79
2016072918104224000_bbw068v1.80
2016072918104224000_bbw068v1.81
2016072918104224000_bbw068v1.84
2016072918104224000_bbw068v1.85
2016072918104224000_bbw068v1.82
2016072918104224000_bbw068v1.83
2016072918104224000_bbw068v1.141
2016072918104224000_bbw068v1.143
2016072918104224000_bbw068v1.144
De Luca (2016072918104224000_bbw068v1.155) 1997; 13
Li (2016072918104224000_bbw068v1.133) 2015; 35
2016072918104224000_bbw068v1.140
2016072918104224000_bbw068v1.138
2016072918104224000_bbw068v1.139
2016072918104224000_bbw068v1.134
2016072918104224000_bbw068v1.135
2016072918104224000_bbw068v1.136
2016072918104224000_bbw068v1.137
2016072918104224000_bbw068v1.88
2016072918104224000_bbw068v1.89
Xu (2016072918104224000_bbw068v1.142) 2015; 35
2016072918104224000_bbw068v1.86
2016072918104224000_bbw068v1.87
2016072918104224000_bbw068v1.52
Hinton (2016072918104224000_bbw068v1.44) 1986; 1
2016072918104224000_bbw068v1.55
2016072918104224000_bbw068v1.56
2016072918104224000_bbw068v1.53
2016072918104224000_bbw068v1.54
2016072918104224000_bbw068v1.59
2016072918104224000_bbw068v1.57
2016072918104224000_bbw068v1.58
Minsky (2016072918104224000_bbw068v1.42) 1969; 19
2016072918104224000_bbw068v1.62
2016072918104224000_bbw068v1.63
2016072918104224000_bbw068v1.60
2016072918104224000_bbw068v1.61
Duchi (2016072918104224000_bbw068v1.48) 2011; 12
2016072918104224000_bbw068v1.66
2016072918104224000_bbw068v1.67
2016072918104224000_bbw068v1.64
2016072918104224000_bbw068v1.65
2016072918104224000_bbw068v1.69
2016072918104224000_bbw068v1.30
2016072918104224000_bbw068v1.210
2016072918104224000_bbw068v1.204
2016072918104224000_bbw068v1.205
2016072918104224000_bbw068v1.39
2016072918104224000_bbw068v1.206
2016072918104224000_bbw068v1.207
2016072918104224000_bbw068v1.200
2016072918104224000_bbw068v1.202
2016072918104224000_bbw068v1.203
2016072918104224000_bbw068v1.33
2016072918104224000_bbw068v1.34
2016072918104224000_bbw068v1.31
2016072918104224000_bbw068v1.32
2016072918104224000_bbw068v1.37
2016072918104224000_bbw068v1.208
2016072918104224000_bbw068v1.38
2016072918104224000_bbw068v1.209
2016072918104224000_bbw068v1.35
2016072918104224000_bbw068v1.36
2016072918104224000_bbw068v1.40
2016072918104224000_bbw068v1.41
2016072918104224000_bbw068v1.220
2016072918104224000_bbw068v1.100
2016072918104224000_bbw068v1.221
2016072918104224000_bbw068v1.215
2016072918104224000_bbw068v1.216
2016072918104224000_bbw068v1.217
2016072918104224000_bbw068v1.218
2016072918104224000_bbw068v1.211
2016072918104224000_bbw068v1.212
2016072918104224000_bbw068v1.213
2016072918104224000_bbw068v1.214
2016072918104224000_bbw068v1.43
2016072918104224000_bbw068v1.219
2016072918104224000_bbw068v1.49
2016072918104224000_bbw068v1.46
2016072918104224000_bbw068v1.47
References_xml – ident: 2016072918104224000_bbw068v1.81
  doi: 10.1073/pnas.0408677102
– ident: 2016072918104224000_bbw068v1.159
  doi: 10.1007/978-3-319-09330-7_25
– ident: 2016072918104224000_bbw068v1.206
  doi: 10.1007/10985687_6
– ident: 2016072918104224000_bbw068v1.43
  doi: 10.1007/BF00342633
– ident: 2016072918104224000_bbw068v1.118
– ident: 2016072918104224000_bbw068v1.172
  doi: 10.1088/1741-2560/8/3/036015
– ident: 2016072918104224000_bbw068v1.185
  doi: 10.1613/jair.953
– ident: 2016072918104224000_bbw068v1.124
  doi: 10.1007/978-3-642-40763-5_72
– ident: 2016072918104224000_bbw068v1.194
– ident: 2016072918104224000_bbw068v1.207
  doi: 10.1145/2640087.2644155
– ident: 2016072918104224000_bbw068v1.35
  doi: 10.1109/72.279181
– ident: 2016072918104224000_bbw068v1.52
– volume: 13(Suppl 3)
  start-page: 125.
  year: 2014
  ident: 2016072918104224000_bbw068v1.201
  article-title: Medical image retrieval: a multimodal approach
  publication-title: Cancer Inform
– ident: 2016072918104224000_bbw068v1.40
  doi: 10.1002/rob.20276
– ident: 2016072918104224000_bbw068v1.119
  doi: 10.1088/0031-9155/42/11/001
– ident: 2016072918104224000_bbw068v1.75
– ident: 2016072918104224000_bbw068v1.10
  doi: 10.1109/CVPR.2015.7298594
– ident: 2016072918104224000_bbw068v1.107
– ident: 2016072918104224000_bbw068v1.171
  doi: 10.1109/CSE.2014.36
– ident: 2016072918104224000_bbw068v1.190
  doi: 10.1007/978-3-319-10590-1_53
– ident: 2016072918104224000_bbw068v1.21
  doi: 10.1016/j.neunet.2014.09.003
– ident: 2016072918104224000_bbw068v1.165
– ident: 2016072918104224000_bbw068v1.186
  doi: 10.1145/1007730.1007737
– ident: 2016072918104224000_bbw068v1.184
  doi: 10.1109/TSMCB.2008.2007853
– ident: 2016072918104224000_bbw068v1.209
– ident: 2016072918104224000_bbw068v1.222
– ident: 2016072918104224000_bbw068v1.183
  doi: 10.1016/j.ins.2013.07.007
– ident: 2016072918104224000_bbw068v1.113
– ident: 2016072918104224000_bbw068v1.34
  doi: 10.1162/neco.1989.1.2.270
– ident: 2016072918104224000_bbw068v1.176
  doi: 10.1016/j.clinph.2009.09.002
– ident: 2016072918104224000_bbw068v1.32
  doi: 10.1109/72.554195
– ident: 2016072918104224000_bbw068v1.154
– ident: 2016072918104224000_bbw068v1.76
  doi: 10.1109/TMM.2015.2477044
– volume: 11
  start-page: 625
  year: 2010
  ident: 2016072918104224000_bbw068v1.68
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: J Mach Learn Res
– ident: 2016072918104224000_bbw068v1.211
– ident: 2016072918104224000_bbw068v1.63
– ident: 2016072918104224000_bbw068v1.141
– ident: 2016072918104224000_bbw068v1.106
– ident: 2016072918104224000_bbw068v1.82
– ident: 2016072918104224000_bbw068v1.23
  doi: 10.1021/acs.molpharmaceut.5b00982
– ident: 2016072918104224000_bbw068v1.128
  doi: 10.1007/978-3-642-40763-5_51
– ident: 2016072918104224000_bbw068v1.6
  doi: 10.1093/bib/bbk007
– ident: 2016072918104224000_bbw068v1.116
  doi: 10.1056/NEJM199303113281008
– ident: 2016072918104224000_bbw068v1.126
  doi: 10.1007/978-3-319-14148-0_1
– ident: 2016072918104224000_bbw068v1.73
  doi: 10.1093/bib/6.1.57
– ident: 2016072918104224000_bbw068v1.101
– ident: 2016072918104224000_bbw068v1.146
– ident: 2016072918104224000_bbw068v1.203
– ident: 2016072918104224000_bbw068v1.12
  doi: 10.1109/CVPR.2015.7298633
– ident: 2016072918104224000_bbw068v1.99
– ident: 2016072918104224000_bbw068v1.13
  doi: 10.1109/MSP.2012.2205597
– volume: 9
  start-page: 926.
  issue: 1
  year: 2010
  ident: 2016072918104224000_bbw068v1.45
  article-title: A practical guide to training restricted Boltzmann machines
  publication-title: Momentum
– ident: 2016072918104224000_bbw068v1.148
  doi: 10.3109/10409238.2015.1135868
– ident: 2016072918104224000_bbw068v1.57
– ident: 2016072918104224000_bbw068v1.74
– ident: 2016072918104224000_bbw068v1.177
  doi: 10.1016/S0925-2312(99)00126-5
– ident: 2016072918104224000_bbw068v1.86
  doi: 10.1109/TCBB.2014.2343960
– volume: 35
  start-page: 119
  issue: 1
  year: 2015
  ident: 2016072918104224000_bbw068v1.142
  article-title: Stacked Sparse Autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2458702
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 2016072918104224000_bbw068v1.51
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: 2016072918104224000_bbw068v1.59
  doi: 10.1145/2647868.2654889
– ident: 2016072918104224000_bbw068v1.96
  doi: 10.1093/bioinformatics/btw074
– ident: 2016072918104224000_bbw068v1.157
  doi: 10.1109/TNSRE.2002.806829
– ident: 2016072918104224000_bbw068v1.181
  doi: 10.1109/TKDE.2008.239
– ident: 2016072918104224000_bbw068v1.189
– ident: 2016072918104224000_bbw068v1.200
– ident: 2016072918104224000_bbw068v1.123
  doi: 10.2147/OTT.S80733
– ident: 2016072918104224000_bbw068v1.14
  doi: 10.1109/ICASSP.2013.6639347
– ident: 2016072918104224000_bbw068v1.16
– ident: 2016072918104224000_bbw068v1.56
– volume: 13
  start-page: 281
  issue: 1
  year: 2012
  ident: 2016072918104224000_bbw068v1.199
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
– ident: 2016072918104224000_bbw068v1.94
– ident: 2016072918104224000_bbw068v1.39
– volume: 19
  start-page: 2
  issue: 88
  year: 1969
  ident: 2016072918104224000_bbw068v1.42
  article-title: Perceptron: an introduction to computational geometry
  publication-title: MIT Press, Cambridge, Expanded Edition
– ident: 2016072918104224000_bbw068v1.80
  doi: 10.1016/S1570-9639(03)00112-2
– ident: 2016072918104224000_bbw068v1.143
  doi: 10.1038/srep21471
– ident: 2016072918104224000_bbw068v1.62
– ident: 2016072918104224000_bbw068v1.166
  doi: 10.1109/ICPR.2008.4761638
– ident: 2016072918104224000_bbw068v1.205
– ident: 2016072918104224000_bbw068v1.215
  doi: 10.1109/ICCV.2015.512
– ident: 2016072918104224000_bbw068v1.162
  doi: 10.1109/NER.2015.7146583
– ident: 2016072918104224000_bbw068v1.84
  doi: 10.1002/jcc.23718
– ident: 2016072918104224000_bbw068v1.24
  doi: 10.1109/TMI.2016.2553401
– ident: 2016072918104224000_bbw068v1.11
– ident: 2016072918104224000_bbw068v1.70
  doi: 10.1109/78.650093
– ident: 2016072918104224000_bbw068v1.167
  doi: 10.1109/TPAMI.2010.125
– ident: 2016072918104224000_bbw068v1.36
  doi: 10.1162/neco.1997.9.8.1735
– ident: 2016072918104224000_bbw068v1.67
– ident: 2016072918104224000_bbw068v1.145
– ident: 2016072918104224000_bbw068v1.173
– ident: 2016072918104224000_bbw068v1.127
  doi: 10.1109/ICARCV.2014.7064414
– ident: 2016072918104224000_bbw068v1.139
– ident: 2016072918104224000_bbw068v1.225
  doi: 10.1109/ICRA.2015.7139550
– ident: 2016072918104224000_bbw068v1.150
– ident: 2016072918104224000_bbw068v1.221
– ident: 2016072918104224000_bbw068v1.121
  doi: 10.1109/RBME.2009.2034865
– volume: 12
  start-page: 2121
  year: 2011
  ident: 2016072918104224000_bbw068v1.48
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J Mach Learn Res
– ident: 2016072918104224000_bbw068v1.26
  doi: 10.1016/S0169-7439(97)00061-0
– ident: 2016072918104224000_bbw068v1.33
– ident: 2016072918104224000_bbw068v1.120
  doi: 10.1007/b136169
– ident: 2016072918104224000_bbw068v1.149
  doi: 10.1162/NECO_a_00047
– ident: 2016072918104224000_bbw068v1.29
  doi: 10.1162/neco.2006.18.7.1527
– ident: 2016072918104224000_bbw068v1.93
  doi: 10.1093/bioinformatics/btu277
– ident: 2016072918104224000_bbw068v1.210
– volume: 20
  start-page: 63
  issue: 1
  year: 1999
  ident: 2016072918104224000_bbw068v1.71
  article-title: Dynamic CT measurement of cerebral blood flow: a validation study
  publication-title: Am J Neuroradiol
– ident: 2016072918104224000_bbw068v1.89
– ident: 2016072918104224000_bbw068v1.105
– volume: 4
  start-page: 950
  year: 1995
  ident: 2016072918104224000_bbw068v1.50
  article-title: A simple weight decay can improve generalization
  publication-title: Adv Neural Inf Process Syst
– ident: 2016072918104224000_bbw068v1.204
  doi: 10.1145/1553374.1553486
– ident: 2016072918104224000_bbw068v1.3
– ident: 2016072918104224000_bbw068v1.111
– ident: 2016072918104224000_bbw068v1.46
  doi: 10.1109/IJCNN.1989.118638
– ident: 2016072918104224000_bbw068v1.115
  doi: 10.1201/9781420058079
– ident: 2016072918104224000_bbw068v1.224
  doi: 10.2991/978-94-91216-62-6_6
– ident: 2016072918104224000_bbw068v1.158
  doi: 10.7763/IJMLC.2011.V1.40
– ident: 2016072918104224000_bbw068v1.213
– ident: 2016072918104224000_bbw068v1.49
– ident: 2016072918104224000_bbw068v1.83
  doi: 10.1016/S0065-3233(08)60520-3
– ident: 2016072918104224000_bbw068v1.27
  doi: 10.1145/1390156.1390294
– ident: 2016072918104224000_bbw068v1.188
  doi: 10.1109/TKDE.2009.191
– ident: 2016072918104224000_bbw068v1.9
  doi: 10.1109/TPAMI.2012.231
– ident: 2016072918104224000_bbw068v1.30
  doi: 10.1126/science.1127647
– ident: 2016072918104224000_bbw068v1.72
  doi: 10.1002/mrm.10611
– ident: 2016072918104224000_bbw068v1.110
– ident: 2016072918104224000_bbw068v1.168
  doi: 10.1109/ICME.2014.6890301
– ident: 2016072918104224000_bbw068v1.90
– ident: 2016072918104224000_bbw068v1.114
  doi: 10.1038/nbt.3313
– ident: 2016072918104224000_bbw068v1.95
  doi: 10.1093/nar/gkv1025
– ident: 2016072918104224000_bbw068v1.100
  doi: 10.1038/nbt.3313
– volume: 8
  start-page: 229
  year: 2014
  ident: 2016072918104224000_bbw068v1.122
  article-title: Deep learning for neuroimaging: a validation study
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2014.00229
– ident: 2016072918104224000_bbw068v1.17
  doi: 10.3115/v1/P15-1107
– ident: 2016072918104224000_bbw068v1.66
– ident: 2016072918104224000_bbw068v1.88
  doi: 10.1093/bioinformatics/15.11.937
– ident: 2016072918104224000_bbw068v1.97
  doi: 10.1101/041616
– ident: 2016072918104224000_bbw068v1.144
– ident: 2016072918104224000_bbw068v1.92
  doi: 10.1162/153244304773936054
– ident: 2016072918104224000_bbw068v1.174
  doi: 10.1007/978-3-319-16628-5_25
– ident: 2016072918104224000_bbw068v1.1
– ident: 2016072918104224000_bbw068v1.38
– ident: 2016072918104224000_bbw068v1.55
– ident: 2016072918104224000_bbw068v1.102
  doi: 10.1093/bioinformatics/btw255
– ident: 2016072918104224000_bbw068v1.91
  doi: 10.1093/bioinformatics/bts475
– ident: 2016072918104224000_bbw068v1.140
  doi: 10.1007/978-3-319-24553-9_68
– ident: 2016072918104224000_bbw068v1.219
– volume: 35
  start-page: 109
  issue: 1
  year: 2015
  ident: 2016072918104224000_bbw068v1.133
  article-title: A cross-modality learning approach for vessel segmentation in retinal images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2457891
– ident: 2016072918104224000_bbw068v1.196
– ident: 2016072918104224000_bbw068v1.54
– ident: 2016072918104224000_bbw068v1.77
– ident: 2016072918104224000_bbw068v1.178
  doi: 10.1109/TBME.2007.893452
– ident: 2016072918104224000_bbw068v1.156
  doi: 10.1037/0003-066X.30.3.315
– ident: 2016072918104224000_bbw068v1.19
  doi: 10.3115/v1/D14-1179
– ident: 2016072918104224000_bbw068v1.60
– ident: 2016072918104224000_bbw068v1.179
  doi: 10.1109/TCBB.2010.96
– ident: 2016072918104224000_bbw068v1.130
  doi: 10.1186/s12859-014-0430-y
– ident: 2016072918104224000_bbw068v1.214
– ident: 2016072918104224000_bbw068v1.104
  doi: 10.1038/nmeth.3547
– ident: 2016072918104224000_bbw068v1.112
  doi: 10.1038/nature08909
– ident: 2016072918104224000_bbw068v1.191
– ident: 2016072918104224000_bbw068v1.117
  doi: 10.1073/pnas.87.24.9868
– ident: 2016072918104224000_bbw068v1.15
– ident: 2016072918104224000_bbw068v1.220
– ident: 2016072918104224000_bbw068v1.7
– ident: 2016072918104224000_bbw068v1.138
  doi: 10.1007/978-3-642-40763-5_31
– ident: 2016072918104224000_bbw068v1.79
  doi: 10.1093/bioinformatics/15.7.654
– ident: 2016072918104224000_bbw068v1.180
  doi: 10.1136/amiajnl-2012-001509
– ident: 2016072918104224000_bbw068v1.198
– ident: 2016072918104224000_bbw068v1.131
  doi: 10.1007/978-3-642-40763-5_50
– ident: 2016072918104224000_bbw068v1.217
– ident: 2016072918104224000_bbw068v1.65
– ident: 2016072918104224000_bbw068v1.4
  doi: 10.1038/nature16961
– ident: 2016072918104224000_bbw068v1.163
  doi: 10.1155/2014/627892
– ident: 2016072918104224000_bbw068v1.151
  doi: 10.1118/1.598537
– ident: 2016072918104224000_bbw068v1.223
– ident: 2016072918104224000_bbw068v1.137
– ident: 2016072918104224000_bbw068v1.152
– volume: 11
  start-page: 3371
  year: 2010
  ident: 2016072918104224000_bbw068v1.28
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: 2016072918104224000_bbw068v1.108
  doi: 10.1371/journal.pone.0141287
– ident: 2016072918104224000_bbw068v1.208
– ident: 2016072918104224000_bbw068v1.98
  doi: 10.1093/bioinformatics/btv643
– ident: 2016072918104224000_bbw068v1.37
  doi: 10.1162/089976600300015015
– ident: 2016072918104224000_bbw068v1.212
– ident: 2016072918104224000_bbw068v1.216
  doi: 10.1109/CVPR.2016.11
– ident: 2016072918104224000_bbw068v1.135
  doi: 10.1098/rstb.1986.0056
– ident: 2016072918104224000_bbw068v1.8
  doi: 10.1038/nature14539
– ident: 2016072918104224000_bbw068v1.153
  doi: 10.1038/nrn3241
– ident: 2016072918104224000_bbw068v1.169
– ident: 2016072918104224000_bbw068v1.193
– ident: 2016072918104224000_bbw068v1.18
  doi: 10.18653/v1/D15-1166
– volume: 1
  start-page: 282
  year: 1986
  ident: 2016072918104224000_bbw068v1.44
  article-title: Learning and releaming in Boltzmann machines
  publication-title: Parallel Distrib Process: Explor Microstruct Cogn
– ident: 2016072918104224000_bbw068v1.85
  doi: 10.1038/srep11476
– ident: 2016072918104224000_bbw068v1.5
– ident: 2016072918104224000_bbw068v1.20
  doi: 10.1038/nrg3920
– ident: 2016072918104224000_bbw068v1.61
  doi: 10.25080/Majora-92bf1922-003
– ident: 2016072918104224000_bbw068v1.182
  doi: 10.1145/1143844.1143874
– ident: 2016072918104224000_bbw068v1.164
– ident: 2016072918104224000_bbw068v1.125
– ident: 2016072918104224000_bbw068v1.109
  doi: 10.1093/bioinformatics/btm247
– ident: 2016072918104224000_bbw068v1.78
  doi: 10.1006/jmbi.1999.3091
– ident: 2016072918104224000_bbw068v1.22
  doi: 10.1109/JPROC.2015.2494198
– volume: 2012
  start-page: 5
  year: 2012
  ident: 2016072918104224000_bbw068v1.175
  article-title: Sleep stage classification using unsupervised feature learning
  publication-title: Adv Artif Neural Syst
– ident: 2016072918104224000_bbw068v1.202
– ident: 2016072918104224000_bbw068v1.25
– volume: 13
  start-page: 135
  year: 1997
  ident: 2016072918104224000_bbw068v1.155
  article-title: The use of surface electromyography in biomechanics
  publication-title: J Appl Biomech
  doi: 10.1123/jab.13.2.135
– ident: 2016072918104224000_bbw068v1.192
– ident: 2016072918104224000_bbw068v1.69
  doi: 10.1113/jphysiol.1968.sp008455
– ident: 2016072918104224000_bbw068v1.187
– ident: 2016072918104224000_bbw068v1.31
– ident: 2016072918104224000_bbw068v1.197
  doi: 10.1007/978-3-642-25566-3_40
– ident: 2016072918104224000_bbw068v1.58
– ident: 2016072918104224000_bbw068v1.147
  doi: 10.1007/978-3-319-10404-1_65
– ident: 2016072918104224000_bbw068v1.161
  doi: 10.1109/BIBE.2014.26
– ident: 2016072918104224000_bbw068v1.136
  doi: 10.1038/nature12346
– ident: 2016072918104224000_bbw068v1.195
  doi: 10.1007/978-3-642-35289-8_26
– ident: 2016072918104224000_bbw068v1.129
  doi: 10.1371/journal.pone.0137036
– ident: 2016072918104224000_bbw068v1.64
– ident: 2016072918104224000_bbw068v1.218
– ident: 2016072918104224000_bbw068v1.47
– ident: 2016072918104224000_bbw068v1.170
– ident: 2016072918104224000_bbw068v1.87
  doi: 10.1109/IJCNN.2014.6889891
– ident: 2016072918104224000_bbw068v1.132
  doi: 10.1117/12.2083124
– ident: 2016072918104224000_bbw068v1.41
  doi: 10.1007/978-3-642-21735-7_7
– ident: 2016072918104224000_bbw068v1.160
  doi: 10.1109/BIBM.2013.6732507
– ident: 2016072918104224000_bbw068v1.53
– ident: 2016072918104224000_bbw068v1.103
  doi: 10.1101/028399
– volume: 31
  start-page: 59
  issue: 3
  year: 2010
  ident: 2016072918104224000_bbw068v1.2
  article-title: Building Watson: an overview of the DeepQA project
  publication-title: AI Magazine
  doi: 10.1609/aimag.v31i3.2303
– ident: 2016072918104224000_bbw068v1.134
  doi: 10.1109/TIP.2005.852470
SSID ssj0020781
Score 2.669109
SecondaryResourceType review_article
Snippet Abstract In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics....
In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 851
SubjectTerms Artificial neural networks
Big Data
Bioinformatics
Biomedical data
Computational Biology
Data management
Deep learning
Humans
Machine Learning
Medical imaging
Neural networks
Neural Networks (Computer)
Recurrent neural networks
Signal processing
Title Deep learning in bioinformatics
URI https://www.ncbi.nlm.nih.gov/pubmed/27473064
https://www.proquest.com/docview/2305097445
https://www.proquest.com/docview/1826740389
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NSwMxEB1EELyI367WuqIXD0u7-dh0j6KWIqiXFnpbNtmJFGRbbIv4753pbgvFoudMCJkkzHtM5g3AbeHStspjG_lYY0T4tohS4WPmPIYrOwtRcEb35TXpDdTzUA_rTzTTDSn8VLbsyLas_WonXNJL0ZcV8vtvwxWtYrmaqobIRCzuvhQhXZu6FnbWStl-IcpFZOnuw14NCcP76gwPYAvLQ9ipmkR-H8HVI-IkrLs7vIejMrSjca13yhrLxzDoPvUfelHd1iByUulZ5ChMCmcIiGDOaN3LhAZiq41JfUcmkjXd0QnvC5MTAUtRK-xoa9AQ2CGEcALb5bjEMwitNbYgCOVNgkpLbz0aLJwQXijrZBrA3XLXmas1v7n1xEdW5Z5lRh7KKg8FcLOynVRKFxutmuS8Pw0aS79m9XOYZsRzCJgYpXQA16thusicnchLHM-nGRMdo1jvL4DT6jxWyzB1Zqp0_t_qF7ArOO4uPoE1YHv2OcdLQg0z21xcmh-4hrw_
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+in+bioinformatics&rft.jtitle=Briefings+in+bioinformatics&rft.au=Min%2C+Seonwoo&rft.au=Lee%2C+Byunghan&rft.au=Yoon%2C+Sungroh&rft.date=2017-09-01&rft.issn=1467-5463&rft.eissn=1477-4054&rft.spage=bbw068&rft_id=info:doi/10.1093%2Fbib%2Fbbw068&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbw068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon