Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China

•New method for evaluating rooftop PV potential in land-use type.•Decline the difficulty of obtaining urban land-use data.•Capability of analyzing several cities with less time cost.•Three types of land use have the highest rooftop solar utilization potential. To strengthen the synergy between urban...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 283; p. 116329
Main Authors Zhang, Chen, Li, Zhixin, Jiang, Haihua, Luo, Yongqiang, Xu, Shen
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2021
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2020.116329

Cover

Loading…
Abstract •New method for evaluating rooftop PV potential in land-use type.•Decline the difficulty of obtaining urban land-use data.•Capability of analyzing several cities with less time cost.•Three types of land use have the highest rooftop solar utilization potential. To strengthen the synergy between urban photovoltaic development and urban planning, which can help to promote photovoltaic and renewable energy development in cities, a workflow based on a deep-learning method by using neural networks and urban satellite images is constructed, which is applied to study the relationship between urban rooftop photovoltaic potential and urban land use. A Chinese city, Wuhan, has been considered the subject and divided into 5184 units, which is a 1201.2 km2 area in central urban space. The result shows that, three types of urban land use type have the highest rooftop photovoltaic potential, which are Continuous Urban area, Discontinuous Dense Urban area and Industrial, commercial, public and education unit. The annual photovoltaic potential of these three land use types have reached 1818.41 GWh/year, 1957.32 GWh/year and 2022.71 GWh/year, and the average photovoltaic power generation per unit area of these three types have reached 11.23 GWh/km2·year, 9.99 GWh/km2·year and 13.07 GWh/km2·year. In addition, these three land use types contributed 71.4% of the city’s total rooftop photovoltaic potential. When considering the coordination of roof photovoltaic development and urban planning, these three types of land use should be given priority. The method and findings can provide urban planning authorities with tools and data to reference when developing urban master plan and PV development plans.
AbstractList To strengthen the synergy between urban photovoltaic development and urban planning, which can help to promote photovoltaic and renewable energy development in cities, a workflow based on a deep-learning method by using neural networks and urban satellite images is constructed, which is applied to study the relationship between urban rooftop photovoltaic potential and urban land use. A Chinese city, Wuhan, has been considered the subject and divided into 5184 units, which is a 1201.2 km² area in central urban space. The result shows that, three types of urban land use type have the highest rooftop photovoltaic potential, which are Continuous Urban area, Discontinuous Dense Urban area and Industrial, commercial, public and education unit. The annual photovoltaic potential of these three land use types have reached 1818.41 GWh/year, 1957.32 GWh/year and 2022.71 GWh/year, and the average photovoltaic power generation per unit area of these three types have reached 11.23 GWh/km²·year, 9.99 GWh/km2·year and 13.07 GWh/km²·year. In addition, these three land use types contributed 71.4% of the city’s total rooftop photovoltaic potential. When considering the coordination of roof photovoltaic development and urban planning, these three types of land use should be given priority. The method and findings can provide urban planning authorities with tools and data to reference when developing urban master plan and PV development plans.
•New method for evaluating rooftop PV potential in land-use type.•Decline the difficulty of obtaining urban land-use data.•Capability of analyzing several cities with less time cost.•Three types of land use have the highest rooftop solar utilization potential. To strengthen the synergy between urban photovoltaic development and urban planning, which can help to promote photovoltaic and renewable energy development in cities, a workflow based on a deep-learning method by using neural networks and urban satellite images is constructed, which is applied to study the relationship between urban rooftop photovoltaic potential and urban land use. A Chinese city, Wuhan, has been considered the subject and divided into 5184 units, which is a 1201.2 km2 area in central urban space. The result shows that, three types of urban land use type have the highest rooftop photovoltaic potential, which are Continuous Urban area, Discontinuous Dense Urban area and Industrial, commercial, public and education unit. The annual photovoltaic potential of these three land use types have reached 1818.41 GWh/year, 1957.32 GWh/year and 2022.71 GWh/year, and the average photovoltaic power generation per unit area of these three types have reached 11.23 GWh/km2·year, 9.99 GWh/km2·year and 13.07 GWh/km2·year. In addition, these three land use types contributed 71.4% of the city’s total rooftop photovoltaic potential. When considering the coordination of roof photovoltaic development and urban planning, these three types of land use should be given priority. The method and findings can provide urban planning authorities with tools and data to reference when developing urban master plan and PV development plans.
ArticleNumber 116329
Author Xu, Shen
Zhang, Chen
Jiang, Haihua
Li, Zhixin
Luo, Yongqiang
Author_xml – sequence: 1
  givenname: Chen
  surname: Zhang
  fullname: Zhang, Chen
  email: m201873401@hust.edu.cn
  organization: School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Zhixin
  surname: Li
  fullname: Li, Zhixin
  email: m201873400@hust.edu.cn
  organization: School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan, China
– sequence: 3
  givenname: Haihua
  surname: Jiang
  fullname: Jiang, Haihua
  email: m201873399@hust.edu.cn
  organization: School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan, China
– sequence: 4
  givenname: Yongqiang
  surname: Luo
  fullname: Luo, Yongqiang
  email: luoroger@yeah.net
  organization: School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
– sequence: 5
  givenname: Shen
  surname: Xu
  fullname: Xu, Shen
  email: xushen@hust.edu.cn
  organization: School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan, China
BookMark eNqFkM1rGzEQxUVwIM7HvxB0zKHraLQf3g091DhpWjDkktKjmNXOxjJraStpDf7vs4vbSy-GgQcz7z2G3zWbWWeJsXsQCxBQPO4W2JMl_3FcSCHHJRSprC7YHMqlTCqAcsbmIhVFIguorth1CDshhAQp5mz3TNTzjtBbYz_4nuLWNbx1ntMBuwHjtO23LrqD6yIazXsXyUaDHXctH3yNlndom2QI9MRXXGMgHuLQHKf772GL9gtfb43FW3bZYhfo7q_esF_fX97XP5LN2-vP9WqT6DTLY1K3eSohxwxlpWE5TQ4irzMxCrXLElpsq6Kuigp0TU0q0xxKgCprdK1Flt6wh1Nv792fgUJUexM0deOX5IagZL7MUlmIUozW4mTV3oXgqVW9N3v0RwVCTXDVTv2Dqya46gR3DH79L6hNHGE5Gz2a7nz82ylOI4eDIa-CNmQ1NcaTjqpx5lzFJ3R_nJM
CitedBy_id crossref_primary_10_1016_j_heliyon_2023_e16871
crossref_primary_10_1016_j_apenergy_2021_117985
crossref_primary_10_1016_j_rser_2023_114146
crossref_primary_10_1016_j_rser_2024_115112
crossref_primary_10_1016_j_rser_2023_113272
crossref_primary_10_1007_s00607_024_01266_1
crossref_primary_10_1016_j_dcan_2025_03_006
crossref_primary_10_1016_j_scs_2025_106133
crossref_primary_10_3390_su151410798
crossref_primary_10_2139_ssrn_4014218
crossref_primary_10_1038_s41597_024_02994_x
crossref_primary_10_1109_COMST_2024_3365076
crossref_primary_10_1016_j_enpol_2025_114545
crossref_primary_10_1088_1742_6596_2936_1_012033
crossref_primary_10_1016_j_apenergy_2021_117616
crossref_primary_10_3390_land13010097
crossref_primary_10_1016_j_esd_2022_11_006
crossref_primary_10_1016_j_enbuild_2024_114976
crossref_primary_10_1016_j_solener_2023_112282
crossref_primary_10_1016_j_neucom_2023_01_006
crossref_primary_10_1007_s10661_024_12719_7
crossref_primary_10_1007_s42524_023_0271_3
crossref_primary_10_1016_j_renene_2023_119868
crossref_primary_10_1080_15567036_2023_2234321
crossref_primary_10_1016_j_apenergy_2021_117273
crossref_primary_10_1016_j_energ_2024_100006
Cites_doi 10.1016/j.solener.2015.03.016
10.1016/j.solener.2008.03.007
10.1016/j.enpol.2013.03.002
10.1016/j.apenergy.2020.115786
10.1016/j.renene.2016.07.003
10.1016/j.rser.2017.10.019
10.1016/j.egyr.2020.09.010
10.1016/j.compenvurbsys.2010.01.001
10.1016/j.rser.2019.109309
10.1145/3065386
10.1016/j.rser.2019.03.041
10.1016/j.apenergy.2018.09.176
10.1016/j.jobe.2020.101528
10.1016/j.solener.2011.02.022
10.1016/j.neucom.2017.01.018
10.1016/j.uclim.2020.100624
10.1016/j.apenergy.2012.08.042
10.1016/j.biosystemseng.2016.08.024
10.1016/j.procs.2020.04.180
10.1016/j.renene.2014.06.028
10.1016/j.enbuild.2013.03.033
10.1016/j.solener.2016.05.061
10.1016/j.isprsjprs.2020.05.022
10.1016/j.rse.2015.12.055
10.1016/j.apenergy.2018.02.008
10.1088/1748-9326/8/1/014042
10.1145/3097983.3098070
10.1016/j.rser.2010.01.001
10.1016/j.renene.2016.02.053
10.1016/j.egypro.2017.09.605
10.1016/j.renene.2017.03.085
10.1016/j.renene.2018.06.087
10.1016/j.enpol.2011.09.054
10.1016/j.rser.2017.05.208
10.1016/j.rse.2019.04.014
10.1016/j.energy.2020.117038
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2020.116329
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Education
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2020_116329
S030626192031713X
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SEW
SSH
WUQ
ZY4
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c345t-bf53215a4a29c17c17c5105b40510ef781faf96b9691cbed3235181194dcbc043
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Wed Jul 30 10:55:43 EDT 2025
Thu Apr 24 23:14:49 EDT 2025
Tue Jul 01 02:53:57 EDT 2025
Fri Feb 23 02:39:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Rooftop solar potential
Urban land use
Neural networks
Photovoltaic potential
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-bf53215a4a29c17c17c5105b40510ef781faf96b9691cbed3235181194dcbc043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2574326080
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2574326080
crossref_primary_10_1016_j_apenergy_2020_116329
crossref_citationtrail_10_1016_j_apenergy_2020_116329
elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_116329
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Simon, Uma (b0250) 2020; 171
Lin, Lu, Li (b0050) 2017
Google. Project Sunroof. Google Proj Sunroof; 2016.
Development P. Solar Urban Planning Berlin 2004.
Sarralde, Quinn, Wiesmann, Steemers (b0070) 2015
Zhang, Xu, Shabunko, Tay, Sun, Lau (b0065) 2019
Poon, Kämpf, Tay, Wong, Reindl (b0120) 2020
Zhou, Ming, Lv, Zhou, Bao, Hong (b0150) 2020
Mohajeri, Upadhyay, Gudmundsson, Assouline, Kämpf, Scartezzini (b0060) 2016
Krizhevsky, Sutskever, Hinton (b0095) 2017
Wegertseder, Lund, Mikkola, García (b0220) 2016
Wiginton, Nguyen, Pearce (b0205) 2010; 34
Yeo, Yoon, Yee (b0015) 2013
Meirich (b0135) 2008
León-Vargas, García-Jaramillo, Krejci (b0045) 2019
Srivastava, Vargas-Muñoz, Tuia (b0245) 2019
Brito, Freitas, Guimarães, Catita, Redweik (b0130) 2017
Karteris, Slini, Papadopoulos (b0115) 2013
European Environment Agency. Copernicus Land Monitoring Service - Urban Atlas; 2017.
Singh, Banerjee (b0085) 2015
Wuhan Municipal Statistics Beaural (b0240) 2018
Shaukat, Ali, Mehmood, Khan, Jawad, Farid (b0265) 2018
.
Phap, Thu Huong, Hanh, Van Duy, Van Binh (b0255) 2020
Cheng, Zhang, Li, Mao, Xu, Ju (b0125) 2020
Wang, Sun, Wei, Luo, Yang, Xu (b0005) 2018
Yue, Huang (b0080) 2011
Pan, Guan, Chen, Yu, Nunes Gonçalves, Marcato Junior (b0110) 2020
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc.; 2015.
Albert, Kaur, Gonzalez (b0160) 2017
Fisher, Flood, Danaher (b0105) 2016
2011.
Lukač, Žlaus, Seme, Žalik, Štumberger (b0030) 2013
Google. Overview|Maps Static API | Google Maps Platform 2020.
Zhang, Sargent, Pan, Li, Gardiner, Hare (b0100) 2019
Bódis, Kougias, Jäger-Waldau, Taylor, Szabó (b0230) 2019
Yang, Campana, Stridh, Yan (b0090) 2020; 279
International Energy Agency IEA. Potential for building integrated photovoltaics. IEA-PVPS Task; 2002.
Izquierdo, Rodrigues, Fueyo (b0195) 2008; 82
Ordóñez, Jadraque, Alegre, Martínez (b0200) 2010
Stoll, Smith, Deinert (b0215) 2013
Buffat, Grassi, Raubal (b0035) 2018
Maruf MH, Haq MA ul, Dey SK, Al Mansur A, Shihavuddin ASM. Adaptation for sustainable implementation of Smart Grid in developing countries like Bangladesh. Energy Reports 2020.
Huang, Roland-Holst, Wang, Cai (b0010) 2020
Mehdipour Ghazi, Yanikoglu, Aptoula (b0155) 2017
Dyrmann, Karstoft, Midtiby (b0170) 2016
Bergamasco, Asinari (b0210) 2011; 85
Sun Y wei, Hof A, Wang R, Liu J, Lin Y jie, Yang D wei. GIS-based approach for potential analysis of solar PV generation at the regional scale: a case study of Fujian Province. Energy Policy 2013.
Wong, Zhu, Liu, Lu, Peng, Tang (b0235) 2016
Majeed Butt, Zulqarnain, Majeed (b0260) 2020
ESMAP, SOLARGIS, WB, IFC. Global Solar Atlas. Glob Sol Atlas; 2019.
Wuhan Natural Resources and Planning Bureau. Wuhan Urban Master Plan (2010-2020). Wuhan, Hubei Province, China: Wuhan Natural Resources and Planning Bureau
Ali, Shafiullah, Urmee (b0225) 2018
Lee, Hong, Jeong, Kim (b0055) 2018
Huang, Mendis, Xu (b0180) 2019
Lobaccaro, Croce, Lindkvist, Munari Probst, Scognamiglio, Dahlberg (b0075) 2019
Bergamasco (10.1016/j.apenergy.2020.116329_b0210) 2011; 85
Phap (10.1016/j.apenergy.2020.116329_b0255) 2020
Srivastava (10.1016/j.apenergy.2020.116329_b0245) 2019
Huang (10.1016/j.apenergy.2020.116329_b0010) 2020
10.1016/j.apenergy.2020.116329_b0165
Wong (10.1016/j.apenergy.2020.116329_b0235) 2016
Shaukat (10.1016/j.apenergy.2020.116329_b0265) 2018
Lin (10.1016/j.apenergy.2020.116329_b0050) 2017
Dyrmann (10.1016/j.apenergy.2020.116329_b0170) 2016
Wegertseder (10.1016/j.apenergy.2020.116329_b0220) 2016
Zhang (10.1016/j.apenergy.2020.116329_b0100) 2019
Zhang (10.1016/j.apenergy.2020.116329_b0065) 2019
Buffat (10.1016/j.apenergy.2020.116329_b0035) 2018
Wuhan Municipal Statistics Beaural (10.1016/j.apenergy.2020.116329_b0240) 2018
Sarralde (10.1016/j.apenergy.2020.116329_b0070) 2015
10.1016/j.apenergy.2020.116329_b0040
Fisher (10.1016/j.apenergy.2020.116329_b0105) 2016
Singh (10.1016/j.apenergy.2020.116329_b0085) 2015
Wiginton (10.1016/j.apenergy.2020.116329_b0205) 2010; 34
Huang (10.1016/j.apenergy.2020.116329_b0180) 2019
Zhou (10.1016/j.apenergy.2020.116329_b0150) 2020
Simon (10.1016/j.apenergy.2020.116329_b0250) 2020; 171
Cheng (10.1016/j.apenergy.2020.116329_b0125) 2020
Pan (10.1016/j.apenergy.2020.116329_b0110) 2020
10.1016/j.apenergy.2020.116329_b0190
10.1016/j.apenergy.2020.116329_b0270
Brito (10.1016/j.apenergy.2020.116329_b0130) 2017
Yeo (10.1016/j.apenergy.2020.116329_b0015) 2013
10.1016/j.apenergy.2020.116329_b0020
10.1016/j.apenergy.2020.116329_b0185
Majeed Butt (10.1016/j.apenergy.2020.116329_b0260) 2020
Lee (10.1016/j.apenergy.2020.116329_b0055) 2018
Izquierdo (10.1016/j.apenergy.2020.116329_b0195) 2008; 82
10.1016/j.apenergy.2020.116329_b0145
10.1016/j.apenergy.2020.116329_b0025
Albert (10.1016/j.apenergy.2020.116329_b0160) 2017
Bódis (10.1016/j.apenergy.2020.116329_b0230) 2019
Lobaccaro (10.1016/j.apenergy.2020.116329_b0075) 2019
León-Vargas (10.1016/j.apenergy.2020.116329_b0045) 2019
Wang (10.1016/j.apenergy.2020.116329_b0005) 2018
Poon (10.1016/j.apenergy.2020.116329_b0120) 2020
Mehdipour Ghazi (10.1016/j.apenergy.2020.116329_b0155) 2017
Stoll (10.1016/j.apenergy.2020.116329_b0215) 2013
Ali (10.1016/j.apenergy.2020.116329_b0225) 2018
Meirich (10.1016/j.apenergy.2020.116329_b0135) 2008
Yang (10.1016/j.apenergy.2020.116329_b0090) 2020; 279
Lukač (10.1016/j.apenergy.2020.116329_b0030) 2013
Krizhevsky (10.1016/j.apenergy.2020.116329_b0095) 2017
10.1016/j.apenergy.2020.116329_b0140
10.1016/j.apenergy.2020.116329_b0175
Yue (10.1016/j.apenergy.2020.116329_b0080) 2011
Ordóñez (10.1016/j.apenergy.2020.116329_b0200) 2010
Karteris (10.1016/j.apenergy.2020.116329_b0115) 2013
Mohajeri (10.1016/j.apenergy.2020.116329_b0060) 2016
References_xml – year: 2016
  ident: b0170
  article-title: Plant species classification using deep convolutional neural network
  publication-title: Biosyst Eng
– year: 2016
  ident: b0235
  article-title: Estimation of Hong Kong’s solar energy potential using GIS and remote sensing technologies
  publication-title: Renew Energy
– year: 2015
  ident: b0085
  article-title: Estimation of rooftop solar photovoltaic potential of a city
  publication-title: Sol Energy
– reference: Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc.; 2015.
– year: 2013
  ident: b0215
  article-title: Potential for rooftop photovoltaics in Tokyo to replace nuclear capacity
  publication-title: Environ Res Lett
– year: 2020
  ident: b0150
  article-title: SO–CNN based urban functional zone fine division with VHR remote sensing image
  publication-title: Remote Sens Environ
– year: 2018
  ident: b0005
  article-title: Comparison and quantification analysis method of urban energy consumption features from perspective of urban energy interconnection
  publication-title: Energy Procedia
– year: 2020
  ident: b0010
  article-title: China’s income gap and inequality under clean energy transformation: a CGE model assessment
  publication-title: J Clean Prod
– year: 2015
  ident: b0070
  article-title: Solar energy and urban morphology: Scenarios for increasing the renewable energy potential of neighbourhoods in London
  publication-title: Renew Energy
– year: 2010
  ident: b0200
  article-title: Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain)
  publication-title: Renew Sustain Energy Rev
– year: 2020
  ident: b0260
  article-title: Recent advancement in smart grid technology: future prospects in the electrical power network
  publication-title: Ain Shams Eng J
– volume: 82
  start-page: 929
  year: 2008
  end-page: 939
  ident: b0195
  article-title: A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations
  publication-title: Sol Energy
– year: 2017
  ident: b0050
  article-title: On spatial distribution and determinants of urban photovoltaic utilization in China
  publication-title: Energy Procedia
– year: 2016
  ident: b0220
  article-title: Combining solar resource mapping and energy system integration methods for realistic valuation of urban solar energy potential
  publication-title: Sol Energy
– reference: International Energy Agency IEA. Potential for building integrated photovoltaics. IEA-PVPS Task; 2002.
– year: 2017
  ident: b0160
  article-title: Using convolutional networks and satellite imagery to identify patterns in urban environments at a large scale
  publication-title: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.
– reference: Google. Overview|Maps Static API | Google Maps Platform 2020.
– reference: Wuhan Natural Resources and Planning Bureau. Wuhan Urban Master Plan (2010-2020). Wuhan, Hubei Province, China: Wuhan Natural Resources and Planning Bureau <
– year: 2020
  ident: b0255
  article-title: Assessment of rooftop solar power technical potential in Hanoi city, Vietnam
  publication-title: J Build Eng
– volume: 85
  start-page: 1041
  year: 2011
  end-page: 1055
  ident: b0210
  article-title: Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: application to Piedmont Region (Italy)
  publication-title: Sol Energy
– year: 2017
  ident: b0130
  article-title: The importance of facades for the solar PV potential of a Mediterranean city using LiDAR data
  publication-title: Renew Energy
– year: 2020
  ident: b0110
  article-title: Land-cover classification of multispectral LiDAR data using CNN with optimized hyper-parameters
  publication-title: ISPRS J Photogramm Remote Sens
– year: 2013
  ident: b0015
  article-title: Development of an environment and energy Geographical Information System (E-GIS) construction model to support environmentally friendly urban planning
  publication-title: Appl Energy
– year: 2008
  ident: b0135
  article-title: Mapping Guide for a European Urban Atlas
  publication-title: GSE L Consort
– volume: 34
  start-page: 345
  year: 2010
  end-page: 357
  ident: b0205
  article-title: Quantifying rooftop solar photovoltaic potential for regional renewable energy policy
  publication-title: Comput Environ Urban Syst
– year: 2016
  ident: b0060
  article-title: Effects of urban compactness on solar energy potential
  publication-title: Renew Energy
– year: 2017
  ident: b0095
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun ACM
– volume: 279
  start-page: 115786
  year: 2020
  ident: b0090
  article-title: Potential analysis of roof-mounted solar photovoltaics in Sweden
  publication-title: Appl Energy
– reference: ESMAP, SOLARGIS, WB, IFC. Global Solar Atlas. Glob Sol Atlas; 2019.
– year: 2018
  ident: b0035
  article-title: A scalable method for estimating rooftop solar irradiation potential over large regions
  publication-title: Appl Energy
– volume: 171
  start-page: 1680
  year: 2020
  end-page: 1687
  ident: b0250
  article-title: Deep learning based feature extraction for texture classification
  publication-title: Procedia Comput Sci
– reference: Maruf MH, Haq MA ul, Dey SK, Al Mansur A, Shihavuddin ASM. Adaptation for sustainable implementation of Smart Grid in developing countries like Bangladesh. Energy Reports 2020.
– year: 2019
  ident: b0075
  article-title: A cross-country perspective on solar energy in urban planning: lessons learned from international case studies
  publication-title: Renew Sustain Energy Rev
– year: 2020
  ident: b0125
  article-title: Solar energy potential of urban buildings in 10 cities of China
  publication-title: Energy
– year: 2018
  ident: b0240
  article-title: Wuhan Statistical Yearbook
– year: 2013
  ident: b0030
  article-title: Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data
  publication-title: Appl Energy
– year: 2019
  ident: b0230
  article-title: A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union
  publication-title: Renew Sustain Energy Rev
– year: 2019
  ident: b0180
  article-title: Urban solar utilization potential mapping via deep learning technology: a case study of Wuhan
  publication-title: China. Appl Energy
– year: 2019
  ident: b0245
  article-title: Understanding urban landuse from the above and ground perspectives: a deep learning, multimodal solution
  publication-title: Remote Sens Environ
– reference: Sun Y wei, Hof A, Wang R, Liu J, Lin Y jie, Yang D wei. GIS-based approach for potential analysis of solar PV generation at the regional scale: a case study of Fujian Province. Energy Policy 2013.
– reference: Google. Project Sunroof. Google Proj Sunroof; 2016.
– reference: European Environment Agency. Copernicus Land Monitoring Service - Urban Atlas; 2017.
– year: 2011
  ident: b0080
  article-title: An evaluation of domestic solar energy potential in Taiwan incorporating land use analysis
  publication-title: Energy Policy
– year: 2018
  ident: b0265
  article-title: A survey on consumers empowerment, communication technologies, and renewable generation penetration within Smart Grid
  publication-title: Renew Sustain Energy Rev
– year: 2019
  ident: b0100
  article-title: Joint Deep Learning for land cover and land use classification
  publication-title: Remote Sens Environ
– reference: .
– year: 2016
  ident: b0105
  article-title: Comparing Landsat water index methods for automated water classification in eastern Australia
  publication-title: Remote Sens Environ
– reference: Development P. Solar Urban Planning Berlin 2004.
– year: 2020
  ident: b0120
  article-title: Parametric study of URBAN morphology on building solar energy potential in Singapore context
  publication-title: Urban Clim
– year: 2017
  ident: b0155
  article-title: Plant identification using deep neural networks via optimization of transfer learning parameters
  publication-title: Neurocomputing
– year: 2019
  ident: b0045
  article-title: Pre-feasibility of wind and solar systems for residential self-sufficiency in four urban locations of Colombia: implication of new incentives included in Law 1715
  publication-title: Renew Energy
– year: 2018
  ident: b0225
  article-title: A preliminary feasibility of roof-mounted solar PV systems in the Maldives
  publication-title: Renew Sustain Energy Rev
– reference: >; 2011.
– year: 2019
  ident: b0065
  article-title: Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city
  publication-title: Appl Energy
– year: 2018
  ident: b0055
  article-title: A bottom-up approach for estimating the economic potential of the rooftop solar photovoltaic system considering the spatial and temporal diversity
  publication-title: Appl Energy
– year: 2013
  ident: b0115
  article-title: Urban solar energy potential in Greece: a statistical calculation model of suitable built roof areas for photovoltaics
  publication-title: Energy Build
– year: 2015
  ident: 10.1016/j.apenergy.2020.116329_b0085
  article-title: Estimation of rooftop solar photovoltaic potential of a city
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2015.03.016
– ident: 10.1016/j.apenergy.2020.116329_b0145
– ident: 10.1016/j.apenergy.2020.116329_b0165
– volume: 82
  start-page: 929
  year: 2008
  ident: 10.1016/j.apenergy.2020.116329_b0195
  article-title: A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2008.03.007
– ident: 10.1016/j.apenergy.2020.116329_b0040
  doi: 10.1016/j.enpol.2013.03.002
– ident: 10.1016/j.apenergy.2020.116329_b0175
– year: 2008
  ident: 10.1016/j.apenergy.2020.116329_b0135
  article-title: Mapping Guide for a European Urban Atlas
  publication-title: GSE L Consort
– volume: 279
  start-page: 115786
  year: 2020
  ident: 10.1016/j.apenergy.2020.116329_b0090
  article-title: Potential analysis of roof-mounted solar photovoltaics in Sweden
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115786
– year: 2016
  ident: 10.1016/j.apenergy.2020.116329_b0235
  article-title: Estimation of Hong Kong’s solar energy potential using GIS and remote sensing technologies
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.07.003
– year: 2018
  ident: 10.1016/j.apenergy.2020.116329_b0225
  article-title: A preliminary feasibility of roof-mounted solar PV systems in the Maldives
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.10.019
– year: 2020
  ident: 10.1016/j.apenergy.2020.116329_b0260
  article-title: Recent advancement in smart grid technology: future prospects in the electrical power network
  publication-title: Ain Shams Eng J
– ident: 10.1016/j.apenergy.2020.116329_b0270
  doi: 10.1016/j.egyr.2020.09.010
– volume: 34
  start-page: 345
  year: 2010
  ident: 10.1016/j.apenergy.2020.116329_b0205
  article-title: Quantifying rooftop solar photovoltaic potential for regional renewable energy policy
  publication-title: Comput Environ Urban Syst
  doi: 10.1016/j.compenvurbsys.2010.01.001
– ident: 10.1016/j.apenergy.2020.116329_b0140
– year: 2019
  ident: 10.1016/j.apenergy.2020.116329_b0230
  article-title: A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.109309
– year: 2020
  ident: 10.1016/j.apenergy.2020.116329_b0010
  article-title: China’s income gap and inequality under clean energy transformation: a CGE model assessment
  publication-title: J Clean Prod
– year: 2017
  ident: 10.1016/j.apenergy.2020.116329_b0095
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun ACM
  doi: 10.1145/3065386
– ident: 10.1016/j.apenergy.2020.116329_b0185
– year: 2019
  ident: 10.1016/j.apenergy.2020.116329_b0075
  article-title: A cross-country perspective on solar energy in urban planning: lessons learned from international case studies
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.03.041
– ident: 10.1016/j.apenergy.2020.116329_b0020
– year: 2018
  ident: 10.1016/j.apenergy.2020.116329_b0055
  article-title: A bottom-up approach for estimating the economic potential of the rooftop solar photovoltaic system considering the spatial and temporal diversity
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.09.176
– year: 2020
  ident: 10.1016/j.apenergy.2020.116329_b0255
  article-title: Assessment of rooftop solar power technical potential in Hanoi city, Vietnam
  publication-title: J Build Eng
  doi: 10.1016/j.jobe.2020.101528
– volume: 85
  start-page: 1041
  year: 2011
  ident: 10.1016/j.apenergy.2020.116329_b0210
  article-title: Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: application to Piedmont Region (Italy)
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2011.02.022
– year: 2013
  ident: 10.1016/j.apenergy.2020.116329_b0015
  article-title: Development of an environment and energy Geographical Information System (E-GIS) construction model to support environmentally friendly urban planning
  publication-title: Appl Energy
– year: 2017
  ident: 10.1016/j.apenergy.2020.116329_b0155
  article-title: Plant identification using deep neural networks via optimization of transfer learning parameters
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.018
– year: 2020
  ident: 10.1016/j.apenergy.2020.116329_b0120
  article-title: Parametric study of URBAN morphology on building solar energy potential in Singapore context
  publication-title: Urban Clim
  doi: 10.1016/j.uclim.2020.100624
– year: 2013
  ident: 10.1016/j.apenergy.2020.116329_b0030
  article-title: Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.08.042
– year: 2019
  ident: 10.1016/j.apenergy.2020.116329_b0065
  article-title: Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city
  publication-title: Appl Energy
– year: 2016
  ident: 10.1016/j.apenergy.2020.116329_b0170
  article-title: Plant species classification using deep convolutional neural network
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2016.08.024
– year: 2020
  ident: 10.1016/j.apenergy.2020.116329_b0150
  article-title: SO–CNN based urban functional zone fine division with VHR remote sensing image
  publication-title: Remote Sens Environ
– volume: 171
  start-page: 1680
  year: 2020
  ident: 10.1016/j.apenergy.2020.116329_b0250
  article-title: Deep learning based feature extraction for texture classification
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.04.180
– year: 2015
  ident: 10.1016/j.apenergy.2020.116329_b0070
  article-title: Solar energy and urban morphology: Scenarios for increasing the renewable energy potential of neighbourhoods in London
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.06.028
– year: 2013
  ident: 10.1016/j.apenergy.2020.116329_b0115
  article-title: Urban solar energy potential in Greece: a statistical calculation model of suitable built roof areas for photovoltaics
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2013.03.033
– year: 2016
  ident: 10.1016/j.apenergy.2020.116329_b0220
  article-title: Combining solar resource mapping and energy system integration methods for realistic valuation of urban solar energy potential
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2016.05.061
– year: 2020
  ident: 10.1016/j.apenergy.2020.116329_b0110
  article-title: Land-cover classification of multispectral LiDAR data using CNN with optimized hyper-parameters
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2020.05.022
– year: 2018
  ident: 10.1016/j.apenergy.2020.116329_b0240
– year: 2016
  ident: 10.1016/j.apenergy.2020.116329_b0105
  article-title: Comparing Landsat water index methods for automated water classification in eastern Australia
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2015.12.055
– ident: 10.1016/j.apenergy.2020.116329_b0025
– year: 2018
  ident: 10.1016/j.apenergy.2020.116329_b0005
  article-title: Comparison and quantification analysis method of urban energy consumption features from perspective of urban energy interconnection
  publication-title: Energy Procedia
– year: 2018
  ident: 10.1016/j.apenergy.2020.116329_b0035
  article-title: A scalable method for estimating rooftop solar irradiation potential over large regions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.02.008
– year: 2013
  ident: 10.1016/j.apenergy.2020.116329_b0215
  article-title: Potential for rooftop photovoltaics in Tokyo to replace nuclear capacity
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/8/1/014042
– year: 2019
  ident: 10.1016/j.apenergy.2020.116329_b0100
  article-title: Joint Deep Learning for land cover and land use classification
  publication-title: Remote Sens Environ
– year: 2017
  ident: 10.1016/j.apenergy.2020.116329_b0160
  article-title: Using convolutional networks and satellite imagery to identify patterns in urban environments at a large scale
  publication-title: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.
  doi: 10.1145/3097983.3098070
– year: 2010
  ident: 10.1016/j.apenergy.2020.116329_b0200
  article-title: Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain)
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2010.01.001
– year: 2016
  ident: 10.1016/j.apenergy.2020.116329_b0060
  article-title: Effects of urban compactness on solar energy potential
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.02.053
– year: 2017
  ident: 10.1016/j.apenergy.2020.116329_b0050
  article-title: On spatial distribution and determinants of urban photovoltaic utilization in China
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.09.605
– year: 2017
  ident: 10.1016/j.apenergy.2020.116329_b0130
  article-title: The importance of facades for the solar PV potential of a Mediterranean city using LiDAR data
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.03.085
– ident: 10.1016/j.apenergy.2020.116329_b0190
– year: 2019
  ident: 10.1016/j.apenergy.2020.116329_b0045
  article-title: Pre-feasibility of wind and solar systems for residential self-sufficiency in four urban locations of Colombia: implication of new incentives included in Law 1715
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.06.087
– year: 2011
  ident: 10.1016/j.apenergy.2020.116329_b0080
  article-title: An evaluation of domestic solar energy potential in Taiwan incorporating land use analysis
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2011.09.054
– year: 2018
  ident: 10.1016/j.apenergy.2020.116329_b0265
  article-title: A survey on consumers empowerment, communication technologies, and renewable generation penetration within Smart Grid
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.05.208
– year: 2019
  ident: 10.1016/j.apenergy.2020.116329_b0245
  article-title: Understanding urban landuse from the above and ground perspectives: a deep learning, multimodal solution
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2019.04.014
– year: 2019
  ident: 10.1016/j.apenergy.2020.116329_b0180
  article-title: Urban solar utilization potential mapping via deep learning technology: a case study of Wuhan
  publication-title: China. Appl Energy
– year: 2020
  ident: 10.1016/j.apenergy.2020.116329_b0125
  article-title: Solar energy potential of urban buildings in 10 cities of China
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117038
SSID ssj0002120
Score 2.49104
Snippet •New method for evaluating rooftop PV potential in land-use type.•Decline the difficulty of obtaining urban land-use data.•Capability of analyzing several...
To strengthen the synergy between urban photovoltaic development and urban planning, which can help to promote photovoltaic and renewable energy development in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116329
SubjectTerms case studies
China
Deep learning
education
energy
land use
Neural networks
Photovoltaic potential
power generation
Rooftop solar potential
satellites
solar energy
urban areas
Urban land use
Title Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China
URI https://dx.doi.org/10.1016/j.apenergy.2020.116329
https://www.proquest.com/docview/2574326080
Volume 283
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-wwEA-iF99B_OT5SQSP1t1t09Z4W_xgVfTynri3kKRT3UXa4rZX_3Zn0tQvBA9CT-kklExm5hf6mxnGDmIQNjHWBHFmkkAYtDkd9rMgtRgMQR6LuE_JyTe3yehOXI3j8Rw77XJhiFbpfX_r05239iM9v5u9ajLp_SO06_A_nku8ao0pg12kROs7enmneYS-NCMKByT9IUt4eqQrcBl2eE8MyXskkYOa3waoL67axZ-LZbbkgSMftt-2wuagWGV_PpQTXGUb5-9ZayjqzXa2xqZnABX3DSIeeNs1miNc5V2xbxytHsu6RGdV64nlVVkTjQhXKXPePBtdcKJABs0MTviQW4x93FWmpff3zaMuDrlrxb3O7i7O_5-OAt9kIbCRiOvA5HGEYV8LHUo7SOkhzGUEWSvk6fEg17lMjEzkwBrIojCKERUMpMissX0RbbD5oizgL-NWIBaRkQSqqQ5GGoyEWoYAaRaloNNNFnc7q6yvQE6NMJ5URzWbqk4jijSiWo1sst7bvKqtwfHjDNkpTn06TQoDxY9z9ztNKzQ1-n-iCyibmULvJhDtIsbe-sX622wxJF6MY37vsPn6uYFdBDa12XMnd48tDC-vR7evmOb5Fw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3R5dD2UBVaBKUtRuqRdHcTJ8G9rSho-dpLQd2bZTsT2BVKIjb5_8wkDoWqEodKOTkeK_J4Zp6VmTcA32KULrHOBnFmk0BasjkTjrIgdRQMUR3KeMTFyZezZHotz-bxfA2O-loYTqv0vr_z6a239iNDv5vDarEY_mK02-J_Opd01Zq_gnVmp5IDWJ-cnk9njw459OyMND9ggSeFwsvvpsK2yI6uiiE7kCRq0eY_Y9Rf3roNQSfv4Z3HjmLSfd4GrGGxCW-fMApuwtbxn8I1muotd_UBlj8RK-F7RNyIrnG0IMQqer5vGq1uy7okf1WbhRNVWXMmEa1S5qK5t6YQnAUZNCv8ISbCUfgTLTktv__d3JriQLTduD_C9cnx1dE08H0WAhfJuA5sHkcU-Y00oXLjlB-GXVaywWKeHo5zk6vEqkSNncUsCqOYgMFYycxZN5LRFgyKssBtEE4SHFGRQqZVR6ssBUOjQsQ0i1I06Q7E_c5q50nIuRfGne6zzZa614hmjehOIzswfJSrOhqOFyVUrzj97EBpihUvyu73mtZkbfwLxRRYNitNDk4S4CWY_ek_1t-D19Orywt9cTo734U3IafJtIngn2FQ3zf4hXBObb_6c_wAHlP7yA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+method+for+evaluating+photovoltaic+potential+of+urban+land-use%3A+A+case+study+of+Wuhan%2C+China&rft.jtitle=Applied+energy&rft.au=Zhang%2C+Chen&rft.au=Li%2C+Zhixin&rft.au=Jiang%2C+Haihua&rft.au=Luo%2C+Yongqiang&rft.date=2021-02-01&rft.issn=0306-2619&rft.volume=283+p.116329-&rft_id=info:doi/10.1016%2Fj.apenergy.2020.116329&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon