District cooling system control for providing regulation services based on safe reinforcement learning with barrier functions

Thermostatically controlled loads (TCLs) in buildings are ideal resources to provide regulation services for power systems. As large-scale and centralized TCLs with high efficiency and large regulation capacity, district cooling systems (DCSs) have attracted great research attention for minimizing e...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 347; p. 121396
Main Authors Yu, Peipei, Zhang, Hongcai, Song, Yonghua
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thermostatically controlled loads (TCLs) in buildings are ideal resources to provide regulation services for power systems. As large-scale and centralized TCLs with high efficiency and large regulation capacity, district cooling systems (DCSs) have attracted great research attention for minimizing energy costs, but little on providing regulation services. However, controlling a DCS to provide high-quality regulation services is challenging due to its complex thermal dynamic model and uncertainties from regulation signals and cooling demands. To fill this research gap, we propose a novel safe deep reinforcement learning (DRL) control method for a DCS to provide regulation services. The objective is to adjust the DCS’s power consumption to follow real-time regulation signals subject to buildings’ temperature comfort constraints. The proposed method is model-free and adaptive to uncertainties from regulation signals and cooling demands. Furthermore, the barrier function is combined with traditional DRL to construct a safe DRL controller, which can not only avoid unsafe explorations during training (this may result in catastrophic control results) but also improve training efficiency. We conducted case studies based on a realistic DCS to evaluate the performance of the proposed control method compared to traditional methods, and the results demonstrate the increased effectiveness and superiority of the proposed control method. [Display omitted] •District cooling systems (DCSs) are controlled by a model-free reinforcement learning to provide regulation services.•A Gaussian process is adopted to learn the unknown system model to formulate safe sets.•A control barrier function is proposed to guarantee the constraint safety.•A neural-network-based method is proposed to improve computation efficiency.
AbstractList Thermostatically controlled loads (TCLs) in buildings are ideal resources to provide regulation services for power systems. As large-scale and centralized TCLs with high efficiency and large regulation capacity, district cooling systems (DCSs) have attracted great research attention for minimizing energy costs, but little on providing regulation services. However, controlling a DCS to provide high-quality regulation services is challenging due to its complex thermal dynamic model and uncertainties from regulation signals and cooling demands. To fill this research gap, we propose a novel safe deep reinforcement learning (DRL) control method for a DCS to provide regulation services. The objective is to adjust the DCS’s power consumption to follow real-time regulation signals subject to buildings’ temperature comfort constraints. The proposed method is model-free and adaptive to uncertainties from regulation signals and cooling demands. Furthermore, the barrier function is combined with traditional DRL to construct a safe DRL controller, which can not only avoid unsafe explorations during training (this may result in catastrophic control results) but also improve training efficiency. We conducted case studies based on a realistic DCS to evaluate the performance of the proposed control method compared to traditional methods, and the results demonstrate the increased effectiveness and superiority of the proposed control method. [Display omitted] •District cooling systems (DCSs) are controlled by a model-free reinforcement learning to provide regulation services.•A Gaussian process is adopted to learn the unknown system model to formulate safe sets.•A control barrier function is proposed to guarantee the constraint safety.•A neural-network-based method is proposed to improve computation efficiency.
Thermostatically controlled loads (TCLs) in buildings are ideal resources to provide regulation services for power systems. As large-scale and centralized TCLs with high efficiency and large regulation capacity, district cooling systems (DCSs) have attracted great research attention for minimizing energy costs, but little on providing regulation services. However, controlling a DCS to provide high-quality regulation services is challenging due to its complex thermal dynamic model and uncertainties from regulation signals and cooling demands. To fill this research gap, we propose a novel safe deep reinforcement learning (DRL) control method for a DCS to provide regulation services. The objective is to adjust the DCS’s power consumption to follow real-time regulation signals subject to buildings’ temperature comfort constraints. The proposed method is model-free and adaptive to uncertainties from regulation signals and cooling demands. Furthermore, the barrier function is combined with traditional DRL to construct a safe DRL controller, which can not only avoid unsafe explorations during training (this may result in catastrophic control results) but also improve training efficiency. We conducted case studies based on a realistic DCS to evaluate the performance of the proposed control method compared to traditional methods, and the results demonstrate the increased effectiveness and superiority of the proposed control method.
ArticleNumber 121396
Author Zhang, Hongcai
Song, Yonghua
Yu, Peipei
Author_xml – sequence: 1
  givenname: Peipei
  orcidid: 0000-0002-8381-8937
  surname: Yu
  fullname: Yu, Peipei
– sequence: 2
  givenname: Hongcai
  orcidid: 0000-0002-8294-6419
  surname: Zhang
  fullname: Zhang, Hongcai
  email: hczhang@um.edu.mo
– sequence: 3
  givenname: Yonghua
  surname: Song
  fullname: Song, Yonghua
BookMark eNqFkM1uWyEQRlmkUpO0rxCx7MbucLkQI3XRKv2VInXTrBGGwcG6BnfArrzou4dbt5tushrN8J1P4lyxi1wyMnYjYClA6LfbpdtjRtqclgMMcikGIY2-YJcgQS8GLcxLdlXrFgAGMcAl-_0x1UbJN-5LmVLe8HqqDXd9zY3KxGMhvqdyTGF-JNwcJtdSybwiHZPHyteuYuDzxUXsiZQ743GHufEJHeUZ_JXaY08SJSQeD9nPHfUVexHdVPH133nNHj5_-nH3dXH__cu3uw_3Cy9H1RZrHGVQSmmIPuowKr2-hRCMWykXw9iX1TB6c2uMNBBQRdBGBTTrQYDSSslr9ubc23_y84C12V2qHqfJZSyHaiWMMI5CrGSP6nPUU6mVMNo9pZ2jkxVgZ8d2a_85trNje3bcwXf_gT61P6oauTQ9j78_49g9HLslW33C7DEkQt9sKOm5iifSI6RX
CitedBy_id crossref_primary_10_1016_j_ijepes_2025_110509
crossref_primary_10_1016_j_apenergy_2024_124415
crossref_primary_10_1016_j_engappai_2023_107672
crossref_primary_10_1016_j_apenergy_2024_123507
crossref_primary_10_1109_TPWRS_2024_3379513
Cites_doi 10.1016/j.apenergy.2019.01.093
10.1016/j.rser.2017.01.061
10.1007/BF02238059
10.1016/j.energy.2017.04.045
10.1016/j.apenergy.2021.117994
10.1016/j.apenergy.2019.01.134
10.1016/j.apenergy.2018.12.042
10.1016/j.apenergy.2016.01.035
10.1016/j.enbuild.2021.111165
10.1090/conm/097/1021035
10.15607/RSS.2017.XIII.073
10.1016/j.energy.2018.11.149
10.1016/j.apenergy.2017.05.004
10.1016/j.rser.2013.10.022
10.1016/j.apenergy.2018.02.010
10.1609/aaai.v33i01.33013387
10.1016/j.apenergy.2019.114477
10.5541/ijot.5000175955
10.1016/j.apenergy.2022.119520
10.1016/j.apenergy.2022.118654
10.1016/j.rser.2017.06.109
10.1109/TAC.2016.2638961
10.1016/j.solener.2019.03.034
10.1016/j.energy.2021.119958
10.1016/j.apenergy.2014.11.014
10.1016/j.apenergy.2021.118403
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2023.121396
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID 10_1016_j_apenergy_2023_121396
S0306261923007602
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAQXK
AATTM
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABTAH
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SEW
SSH
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c345t-be43d55560fcf6d456b70dd9a85afd4b70824c9799390de5f0695de9b21056553
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Thu Jul 10 17:50:52 EDT 2025
Tue Jul 01 04:01:15 EDT 2025
Thu Apr 24 22:56:20 EDT 2025
Tue Dec 03 03:44:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords District cooling system
Safe deep reinforcement learning
Frequency regulation service
Control barrier function
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-be43d55560fcf6d456b70dd9a85afd4b70824c9799390de5f0695de9b21056553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8294-6419
0000-0002-8381-8937
PQID 3040441183
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3040441183
crossref_primary_10_1016_j_apenergy_2023_121396
crossref_citationtrail_10_1016_j_apenergy_2023_121396
elsevier_sciencedirect_doi_10_1016_j_apenergy_2023_121396
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ames, Xu, Grizzle, Tabuada (b34) 2016; 62
Hinkelman, Wang, Zuo, Gautier, Wetter, Fan, Long (b14) 2022; 311
Li, Rezgui, Zhu (b5) 2017; 72
Coccia, Mugnini, Polonara, Arteconi (b20) 2021; 222
Hao, Wei, Xu, Yang, Meng, Song, Min (b8) 2020; 261
Wagener, Boots, Cheng (b27) 2021
(b38) 2021
Agrawal A, Sreenath K. Discrete Control Barrier Functions for Safety-Critical Control of Discrete Systems with Application to Bipedal Robot Navigation. In: Robotics: science and systems, Vol. 13. Cambridge, MA, USA; 2017.
Gang, Wang, Gao, Xiao (b2) 2015; 140
Ruan, Liu, Qiu, Liang, Zhao, He, Wen (b10) 2022; 322
Cheng R, Orosz G, Murray RM, Burdick JW. End-to-end safe reinforcement learning through barrier functions for safety-critical continuous control tasks. In: Proceedings of the AAAI conference on artificial intelligence, Vol. 33. 2019, p. 3387–95.
Werner (b4) 2017; 137
(b11) 2018; 82
(b16) 2020; 13
Dorotić, Pukšec, Duić (b19) 2019; 169
New district hengqin: district cooling and heating system technical guidelines. 4th ed.. Zhuhai, China; 2016.
Siano (b3) 2014; 30
Cai, Pipattanasomporn, Rahman (b1) 2019; 236
Yan, Chen, Zhang, Wong (b7) 2021; 247
Yu, Zhang, Song, Hui, Chen (b21) 2023
Koditschek (b32) 1989; 97
Chiam, Easwaran, Mouquet, Gupta (b22) 2019
Xie, Hui, Ding, Lin (b37) 2018; 216
Verda, Guelpa, Sciacovelli, Acquaviva, Patti (b15) 2016; 19
Zhang, Zhang, Qiu (b23) 2020; 6
Fanger (b36) 1986; 6
Neri, Guelpa, Verda (b9) 2022; 306
Sameti, Haghighat (b17) 2019; 183
Gu, Wang, Lu, Luo, Wu (b18) 2017; 199
Cox, Kim, Cho, Mago (b6) 2019; 238
Huang, Zuo, Sohn (b12) 2016; 168
Chiam, Easwaran, Mouquet, Fazlollahi, Millás (b28) 2019; 239
(b24) 2020; 189
(b29) 2021
Chiam, Easwaran, Mouquet, Fazlollahi, Millás (b13) 2019; 239
Wilson, Knowles, Ghahramani (b30) 2011
Qiu, Dong, Zhang, Wang, Strbac (b26) 2022; 309
Taylor, Singletary, Yue, Ames (b25) 2020; 120
Werner (10.1016/j.apenergy.2023.121396_b4) 2017; 137
Cai (10.1016/j.apenergy.2023.121396_b1) 2019; 236
Ruan (10.1016/j.apenergy.2023.121396_b10) 2022; 322
Neri (10.1016/j.apenergy.2023.121396_b9) 2022; 306
10.1016/j.apenergy.2023.121396_b33
10.1016/j.apenergy.2023.121396_b31
(10.1016/j.apenergy.2023.121396_b38) 2021
Chiam (10.1016/j.apenergy.2023.121396_b13) 2019; 239
10.1016/j.apenergy.2023.121396_b35
Zhang (10.1016/j.apenergy.2023.121396_b23) 2020; 6
Hinkelman (10.1016/j.apenergy.2023.121396_b14) 2022; 311
Gu (10.1016/j.apenergy.2023.121396_b18) 2017; 199
Chiam (10.1016/j.apenergy.2023.121396_b28) 2019; 239
Coccia (10.1016/j.apenergy.2023.121396_b20) 2021; 222
Taylor (10.1016/j.apenergy.2023.121396_b25) 2020; 120
Huang (10.1016/j.apenergy.2023.121396_b12) 2016; 168
(10.1016/j.apenergy.2023.121396_b16) 2020; 13
Siano (10.1016/j.apenergy.2023.121396_b3) 2014; 30
Gang (10.1016/j.apenergy.2023.121396_b2) 2015; 140
Qiu (10.1016/j.apenergy.2023.121396_b26) 2022; 309
(10.1016/j.apenergy.2023.121396_b11) 2018; 82
Wagener (10.1016/j.apenergy.2023.121396_b27) 2021
Fanger (10.1016/j.apenergy.2023.121396_b36) 1986; 6
(10.1016/j.apenergy.2023.121396_b29) 2021
Wilson (10.1016/j.apenergy.2023.121396_b30) 2011
Li (10.1016/j.apenergy.2023.121396_b5) 2017; 72
(10.1016/j.apenergy.2023.121396_b24) 2020; 189
Ames (10.1016/j.apenergy.2023.121396_b34) 2016; 62
Koditschek (10.1016/j.apenergy.2023.121396_b32) 1989; 97
Verda (10.1016/j.apenergy.2023.121396_b15) 2016; 19
Cox (10.1016/j.apenergy.2023.121396_b6) 2019; 238
Chiam (10.1016/j.apenergy.2023.121396_b22) 2019
Hao (10.1016/j.apenergy.2023.121396_b8) 2020; 261
Dorotić (10.1016/j.apenergy.2023.121396_b19) 2019; 169
Sameti (10.1016/j.apenergy.2023.121396_b17) 2019; 183
Yu (10.1016/j.apenergy.2023.121396_b21) 2023
Yan (10.1016/j.apenergy.2023.121396_b7) 2021; 247
Xie (10.1016/j.apenergy.2023.121396_b37) 2018; 216
References_xml – reference: Cheng R, Orosz G, Murray RM, Burdick JW. End-to-end safe reinforcement learning through barrier functions for safety-critical continuous control tasks. In: Proceedings of the AAAI conference on artificial intelligence, Vol. 33. 2019, p. 3387–95.
– volume: 137
  start-page: 617
  year: 2017
  end-page: 631
  ident: b4
  article-title: International review of district heating and cooling
  publication-title: Energy
– volume: 238
  start-page: 466
  year: 2019
  end-page: 480
  ident: b6
  article-title: Real time optimal control of district cooling system with thermal energy storage using neural networks
  publication-title: Appl Energy
– volume: 97
  start-page: 131
  year: 1989
  ident: b32
  article-title: The application of total energy as a Lyapunov function for mechanical control systems
  publication-title: Contemp Math
– year: 2019
  ident: b22
  article-title: Holistic, real-time optimization of the operations of district cooling systems via deep reinforcement learning and mixed integer
  publication-title: Int Conf Appl Energy
– volume: 311
  year: 2022
  ident: b14
  article-title: Modelica-based modeling and simulation of district cooling systems: A case study
  publication-title: Appl Energy
– volume: 189
  year: 2020
  ident: b24
  article-title: Learning to control in power systems: Design and analysis guidelines for concrete safety problems
  publication-title: Electr Power Syst Res
– volume: 183
  start-page: 260
  year: 2019
  end-page: 275
  ident: b17
  article-title: Hybrid solar and heat-driven district cooling system: Optimal integration and control strategy
  publication-title: Sol Energy
– year: 2021
  ident: b29
  article-title: PJMINT.L.L.C., “PJM manual 11: energy & ancillary services market operations”
– volume: 13
  year: 2020
  ident: b16
  article-title: Fifth-generation district heating and cooling substations: Demand response with artificial neural network-based model predictive control
  publication-title: Energies
– reference: New district hengqin: district cooling and heating system technical guidelines. 4th ed.. Zhuhai, China; 2016.
– volume: 6
  start-page: 275
  year: 1986
  end-page: 278
  ident: b36
  article-title: Thermal environment—Human requirements
  publication-title: Environmentalist
– volume: 216
  start-page: 338
  year: 2018
  end-page: 347
  ident: b37
  article-title: Operating reserve capacity evaluation of aggregated heterogeneous TCLs with price signals
  publication-title: Appl Energy
– start-page: 10630
  year: 2021
  end-page: 10640
  ident: b27
  article-title: Safe reinforcement learning using advantage-based intervention
  publication-title: Int. conf. on machine learning
– volume: 236
  start-page: 1078
  year: 2019
  end-page: 1088
  ident: b1
  article-title: Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques
  publication-title: Appl Energy
– volume: 261
  year: 2020
  ident: b8
  article-title: Study of operation strategies for integrating ice-storage district cooling systems into power dispatch for large-scale hydropower utilization
  publication-title: Appl Energy
– volume: 306
  year: 2022
  ident: b9
  article-title: Design and connection optimization of a district cooling network: Mixed integer programming and heuristic approach
  publication-title: Appl Energy
– volume: 222
  year: 2021
  ident: b20
  article-title: Artificial-neural-network-based model predictive control to exploit energy flexibility in multi-energy systems comprising district cooling
  publication-title: Energy
– volume: 82
  start-page: 1863
  year: 2018
  end-page: 1873
  ident: b11
  article-title: Models for fast modelling of district heating and cooling networks
  publication-title: Renew Sustain Energy Rev
– year: 2021
  ident: b38
  article-title: Past weather in Zhuhai, Guangdong, China - june 2020 to june 2021
– volume: 199
  start-page: 234
  year: 2017
  end-page: 246
  ident: b18
  article-title: Optimal operation for integrated energy system considering thermal inertia of district heating network and buildings
  publication-title: Appl Energy
– volume: 62
  start-page: 3861
  year: 2016
  end-page: 3876
  ident: b34
  article-title: Control barrier function based quadratic programs for safety critical systems
  publication-title: IEEE Trans Automat Control
– volume: 140
  start-page: 33
  year: 2015
  end-page: 43
  ident: b2
  article-title: Performance assessment of district cooling systems for a new development district at planning stage
  publication-title: Appl Energy
– volume: 309
  year: 2022
  ident: b26
  article-title: Safe reinforcement learning for real-time automatic control in a smart energy-hub
  publication-title: Appl Energy
– volume: 168
  start-page: 204
  year: 2016
  end-page: 215
  ident: b12
  article-title: Amelioration of the cooling load based chiller sequencing control
  publication-title: Appl Energy
– volume: 72
  start-page: 281
  year: 2017
  end-page: 294
  ident: b5
  article-title: District heating and cooling optimization and enhancement – towards integration of renewables, storage and smart grid
  publication-title: Renew Sustain Energy Rev
– year: 2023
  ident: b21
  article-title: District cooling system control for providing operating reserve based on safe deep reinforcement learning
  publication-title: IEEE Trans Power Syst
– year: 2011
  ident: b30
  article-title: Gaussian process regression networks
– volume: 169
  start-page: 319
  year: 2019
  end-page: 328
  ident: b19
  article-title: Multi-objective optimization of district heating and cooling systems for a one-year time horizon
  publication-title: Energy
– volume: 6
  start-page: 213
  year: 2020
  end-page: 225
  ident: b23
  article-title: Deep reinforcement learning for power system applications: An overview
  publication-title: CSEE J Power Energy Syst
– volume: 30
  start-page: 461
  year: 2014
  end-page: 478
  ident: b3
  article-title: Demand response and smart grids - A survey
  publication-title: Renew Sustain Energy Rev
– volume: 247
  year: 2021
  ident: b7
  article-title: Strategical district cooling system operation with accurate spatiotemporal consumption modeling
  publication-title: Energy Build
– volume: 120
  start-page: 1
  year: 2020
  end-page: 10
  ident: b25
  article-title: Learning for safety-critical control with control barrier functions
  publication-title: J Mach Learn Res
– volume: 239
  start-page: 23
  year: 2019
  end-page: 40
  ident: b28
  article-title: A hierarchical framework for holistic optimization of the operations of district cooling systems
  publication-title: Appl Energy
– volume: 322
  year: 2022
  ident: b10
  article-title: Time-varying price elasticity of demand estimation for demand-side smart dynamic pricing
  publication-title: Appl Energy
– volume: 19
  start-page: 168
  year: 2016
  end-page: 176
  ident: b15
  article-title: Thermal peak load shaving through users request variations in district heating systems
  publication-title: Int J Appl Thermodyn
– reference: Agrawal A, Sreenath K. Discrete Control Barrier Functions for Safety-Critical Control of Discrete Systems with Application to Bipedal Robot Navigation. In: Robotics: science and systems, Vol. 13. Cambridge, MA, USA; 2017.
– volume: 239
  start-page: 23
  year: 2019
  end-page: 40
  ident: b13
  article-title: A hierarchical framework for holistic optimization of the operations of district cooling systems
  publication-title: Appl Energy
– volume: 6
  start-page: 213
  issue: 1
  year: 2020
  ident: 10.1016/j.apenergy.2023.121396_b23
  article-title: Deep reinforcement learning for power system applications: An overview
  publication-title: CSEE J Power Energy Syst
– volume: 238
  start-page: 466
  year: 2019
  ident: 10.1016/j.apenergy.2023.121396_b6
  article-title: Real time optimal control of district cooling system with thermal energy storage using neural networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.01.093
– volume: 72
  start-page: 281
  year: 2017
  ident: 10.1016/j.apenergy.2023.121396_b5
  article-title: District heating and cooling optimization and enhancement – towards integration of renewables, storage and smart grid
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.01.061
– volume: 6
  start-page: 275
  issue: 4
  year: 1986
  ident: 10.1016/j.apenergy.2023.121396_b36
  article-title: Thermal environment—Human requirements
  publication-title: Environmentalist
  doi: 10.1007/BF02238059
– year: 2011
  ident: 10.1016/j.apenergy.2023.121396_b30
– volume: 137
  start-page: 617
  year: 2017
  ident: 10.1016/j.apenergy.2023.121396_b4
  article-title: International review of district heating and cooling
  publication-title: Energy
  doi: 10.1016/j.energy.2017.04.045
– volume: 306
  year: 2022
  ident: 10.1016/j.apenergy.2023.121396_b9
  article-title: Design and connection optimization of a district cooling network: Mixed integer programming and heuristic approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117994
– year: 2021
  ident: 10.1016/j.apenergy.2023.121396_b29
– year: 2019
  ident: 10.1016/j.apenergy.2023.121396_b22
  article-title: Holistic, real-time optimization of the operations of district cooling systems via deep reinforcement learning and mixed integer
  publication-title: Int Conf Appl Energy
  doi: 10.1016/j.apenergy.2019.01.134
– volume: 236
  start-page: 1078
  year: 2019
  ident: 10.1016/j.apenergy.2023.121396_b1
  article-title: Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.12.042
– start-page: 10630
  year: 2021
  ident: 10.1016/j.apenergy.2023.121396_b27
  article-title: Safe reinforcement learning using advantage-based intervention
– volume: 168
  start-page: 204
  year: 2016
  ident: 10.1016/j.apenergy.2023.121396_b12
  article-title: Amelioration of the cooling load based chiller sequencing control
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.01.035
– year: 2023
  ident: 10.1016/j.apenergy.2023.121396_b21
  article-title: District cooling system control for providing operating reserve based on safe deep reinforcement learning
  publication-title: IEEE Trans Power Syst
– volume: 247
  year: 2021
  ident: 10.1016/j.apenergy.2023.121396_b7
  article-title: Strategical district cooling system operation with accurate spatiotemporal consumption modeling
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2021.111165
– volume: 97
  start-page: 131
  year: 1989
  ident: 10.1016/j.apenergy.2023.121396_b32
  article-title: The application of total energy as a Lyapunov function for mechanical control systems
  publication-title: Contemp Math
  doi: 10.1090/conm/097/1021035
– ident: 10.1016/j.apenergy.2023.121396_b33
  doi: 10.15607/RSS.2017.XIII.073
– volume: 239
  start-page: 23
  year: 2019
  ident: 10.1016/j.apenergy.2023.121396_b13
  article-title: A hierarchical framework for holistic optimization of the operations of district cooling systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.01.134
– volume: 13
  year: 2020
  ident: 10.1016/j.apenergy.2023.121396_b16
  article-title: Fifth-generation district heating and cooling substations: Demand response with artificial neural network-based model predictive control
  publication-title: Energies
– volume: 169
  start-page: 319
  year: 2019
  ident: 10.1016/j.apenergy.2023.121396_b19
  article-title: Multi-objective optimization of district heating and cooling systems for a one-year time horizon
  publication-title: Energy
  doi: 10.1016/j.energy.2018.11.149
– volume: 120
  start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2023.121396_b25
  article-title: Learning for safety-critical control with control barrier functions
  publication-title: J Mach Learn Res
– volume: 199
  start-page: 234
  year: 2017
  ident: 10.1016/j.apenergy.2023.121396_b18
  article-title: Optimal operation for integrated energy system considering thermal inertia of district heating network and buildings
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.05.004
– volume: 189
  year: 2020
  ident: 10.1016/j.apenergy.2023.121396_b24
  article-title: Learning to control in power systems: Design and analysis guidelines for concrete safety problems
  publication-title: Electr Power Syst Res
– volume: 30
  start-page: 461
  year: 2014
  ident: 10.1016/j.apenergy.2023.121396_b3
  article-title: Demand response and smart grids - A survey
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.10.022
– volume: 216
  start-page: 338
  year: 2018
  ident: 10.1016/j.apenergy.2023.121396_b37
  article-title: Operating reserve capacity evaluation of aggregated heterogeneous TCLs with price signals
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.02.010
– ident: 10.1016/j.apenergy.2023.121396_b31
  doi: 10.1609/aaai.v33i01.33013387
– volume: 261
  year: 2020
  ident: 10.1016/j.apenergy.2023.121396_b8
  article-title: Study of operation strategies for integrating ice-storage district cooling systems into power dispatch for large-scale hydropower utilization
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114477
– ident: 10.1016/j.apenergy.2023.121396_b35
– year: 2021
  ident: 10.1016/j.apenergy.2023.121396_b38
– volume: 239
  start-page: 23
  year: 2019
  ident: 10.1016/j.apenergy.2023.121396_b28
  article-title: A hierarchical framework for holistic optimization of the operations of district cooling systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.01.134
– volume: 19
  start-page: 168
  year: 2016
  ident: 10.1016/j.apenergy.2023.121396_b15
  article-title: Thermal peak load shaving through users request variations in district heating systems
  publication-title: Int J Appl Thermodyn
  doi: 10.5541/ijot.5000175955
– volume: 322
  year: 2022
  ident: 10.1016/j.apenergy.2023.121396_b10
  article-title: Time-varying price elasticity of demand estimation for demand-side smart dynamic pricing
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.119520
– volume: 311
  year: 2022
  ident: 10.1016/j.apenergy.2023.121396_b14
  article-title: Modelica-based modeling and simulation of district cooling systems: A case study
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.118654
– volume: 82
  start-page: 1863
  year: 2018
  ident: 10.1016/j.apenergy.2023.121396_b11
  article-title: Models for fast modelling of district heating and cooling networks
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.06.109
– volume: 62
  start-page: 3861
  issue: 8
  year: 2016
  ident: 10.1016/j.apenergy.2023.121396_b34
  article-title: Control barrier function based quadratic programs for safety critical systems
  publication-title: IEEE Trans Automat Control
  doi: 10.1109/TAC.2016.2638961
– volume: 183
  start-page: 260
  year: 2019
  ident: 10.1016/j.apenergy.2023.121396_b17
  article-title: Hybrid solar and heat-driven district cooling system: Optimal integration and control strategy
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.03.034
– volume: 222
  year: 2021
  ident: 10.1016/j.apenergy.2023.121396_b20
  article-title: Artificial-neural-network-based model predictive control to exploit energy flexibility in multi-energy systems comprising district cooling
  publication-title: Energy
  doi: 10.1016/j.energy.2021.119958
– volume: 140
  start-page: 33
  year: 2015
  ident: 10.1016/j.apenergy.2023.121396_b2
  article-title: Performance assessment of district cooling systems for a new development district at planning stage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.11.014
– volume: 309
  year: 2022
  ident: 10.1016/j.apenergy.2023.121396_b26
  article-title: Safe reinforcement learning for real-time automatic control in a smart energy-hub
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.118403
SSID ssj0002120
Score 2.4681659
Snippet Thermostatically controlled loads (TCLs) in buildings are ideal resources to provide regulation services for power systems. As large-scale and centralized TCLs...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121396
SubjectTerms Control barrier function
control methods
District cooling system
dynamic models
energy
energy use and consumption
Frequency regulation service
Safe deep reinforcement learning
temperature
Title District cooling system control for providing regulation services based on safe reinforcement learning with barrier functions
URI https://dx.doi.org/10.1016/j.apenergy.2023.121396
https://www.proquest.com/docview/3040441183
Volume 347
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iFz2IT3wTweu2azPZNkfRSlX0ooK3kM1DKtKWPo76253ZZK2K4MHjZifLkklmviQz3zB2EqSDYHB3AqXyGRTgM2V8mRU5CAiQi06gjeLtXdF7hOsn-bTAzutcGAqrTLY_2vTKWqeWZhrN5qjfb94T2o34v7peIjsM0KZZ3nifh3m0EjUjCmck_SVL-KVhRr7KsGtQEXEiWhBE3v-7g_phqiv_c7nGVhNw5Gfx39bZgh9ssJUvdIIbbLs7z1pD0bRsJ5vs7YLocft2yu2QivQ880jgzFOgOkfkymNOHr0cx_r0qDE-SaaEk7dznFpM8ChREa7a6myRp8oTz5wOdVFyTFXwOHnMalJvscfL7sN5L0t1FzIrQE6z0oNwUiIWCjYUDiFW2c6dU6YjTXCAD50WWLoPFCp3Xoa8UNJ5VeL2EfGhFNtscTAc-B3Ggc5ZpZG2bU_BBNURFgxCnlYbcYVT5S6T9WBrm0jJqTbGq66jz150rSRNStJRSbus-dlvFGk5_uyhal3qbxNMo-_4s-9xrXyNq4-uVMzAD2cTLdAGIqBEu7j3j-_vs2V6ijGCB2xxOp75Q8Q60_KomsxHbOns6qZ39wFrcAI_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2hcgAOiFXsGIlraKjttD4iFpWtF0DiZjleUBFqq7Yc-XdmYodNSBw4xrGjyGO_eV7mDcBhkE4Eg6sTUSqfiUL4TBlfZkUuuAgi551AC8XbXtF9EFeP8nEGTutYGLpWmbA_YnqF1qmkmXqzOer3m3fEdiP_r46XEIdnSZ1KNmD25PK62_sA5FZSZ8T6GTX4Eij8fGRGvgqyO6I84qS1wEm__3cf9QOtKxd0sQSLiTuyk_h7yzDjByuw8EVRcAXWzz8D17BqmrmTVXg7I4Xcvp0yO6Q8PU8sajizdFedIXllMSyPXo5jino0GpskNGHk8ByjEhM81qg0V221vchS8oknRvu6WHNMifAYOc1qXK_Bw8X5_Wk3S6kXMsuFnGalF9xJiXQo2FA4ZFllO3dOmY40wQl86LSEpSNBrnLnZcgLJZ1XJa4gkSJKvg6NwXDgN4AJ2mqVRtq2PRYmqA63wiDrabWRWjhVboKsO1vbpEtO6TFedH0B7VnXRtJkJB2NtAnNj3ajqMzxZwtV21J_G2Ma3cefbQ9q42ucgHSqYgZ--DrRHGEQOSVC49Y_vr8Pc9372xt9c9m73oZ5ehOvDO5AYzp-9btIfablXhra7zU2BPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=District+cooling+system+control+for+providing+regulation+services+based+on+safe+reinforcement+learning+with+barrier+functions&rft.jtitle=Applied+energy&rft.au=Yu%2C+Peipei&rft.au=Zhang%2C+Hongcai&rft.au=Song%2C+Yonghua&rft.date=2023-10-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.volume=347&rft_id=info:doi/10.1016%2Fj.apenergy.2023.121396&rft.externalDocID=S0306261923007602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon