Damped second order flow applied to image denoising
Abstract In this paper, we introduce a new image denoising model: the damped flow (DF), which is a second order nonlinear evolution equation associated with a class of energy functionals of an image. The existence, uniqueness and regularization property of DF are proven. For the numerical implementa...
Saved in:
Published in | IMA journal of applied mathematics Vol. 84; no. 6; pp. 1082 - 1111 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
27.12.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0272-4960 1464-3634 1464-3634 |
DOI | 10.1093/imamat/hxz027 |
Cover
Loading…
Abstract | Abstract
In this paper, we introduce a new image denoising model: the damped flow (DF), which is a second order nonlinear evolution equation associated with a class of energy functionals of an image. The existence, uniqueness and regularization property of DF are proven. For the numerical implementation, based on the Störmer–Verlet method, a discrete DF, SV-DDF, is developed. The convergence of SV-DDF is studied as well. Several numerical experiments, as well as a comparison with other methods, are provided to demonstrate the efficiency of SV-DDF. |
---|---|
AbstractList | In this paper, we introduce a new image denoising model: the damped flow (DF), which is a second order nonlinear evolution equation associated with a class of energy functionals of an image. The existence, uniqueness and regularization property of DF are proven. For the numerical implementation, based on the Störmer–Verlet method, a discrete DF, SV-DDF, is developed. The convergence of SV-DDF is studied as well. Several numerical experiments, as well as a comparison with other methods, are provided to demonstrate the efficiency of SV-DDF. Abstract In this paper, we introduce a new image denoising model: the damped flow (DF), which is a second order nonlinear evolution equation associated with a class of energy functionals of an image. The existence, uniqueness and regularization property of DF are proven. For the numerical implementation, based on the Störmer–Verlet method, a discrete DF, SV-DDF, is developed. The convergence of SV-DDF is studied as well. Several numerical experiments, as well as a comparison with other methods, are provided to demonstrate the efficiency of SV-DDF. In this paper, we introduce a new image denoising model: the damped flow (DF), which is a second order nonlinear evolution equation associated with a class of energy functionals of an image. The existence, uniqueness and regularization property of DF are proven. For the numerical implementation, based on the Stormer-Verlet method, a discrete DF, SV-DDF, is developed. The convergence of SV-DDF is studied as well. Several numerical experiments, as well as a comparison with other methods, are provided to demonstrate the efficiency of SV-DDF. |
Author | Baravdish, G Svensson, O Gulliksson, M Zhang, Y |
Author_xml | – sequence: 1 givenname: G surname: Baravdish fullname: Baravdish, G organization: Department of Science and Technology, Linköping University, 58183 Linköping, Sweden – sequence: 2 givenname: O surname: Svensson fullname: Svensson, O organization: Department of Science and Technology, Linköping University, 58183 Linköping, Sweden – sequence: 3 givenname: M surname: Gulliksson fullname: Gulliksson, M organization: School of Science and Technology, Örebro University, 70182 Örebro, Sweden – sequence: 4 givenname: Y surname: Zhang fullname: Zhang, Y email: ye.zhang@smbu.edu.cn organization: Shenzhen MSU-BIT University, 518172 Shenzhen, China, and School of Mathematics and Statistics, Beijing Institude of Technology, 100081 Beijing, China |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-163478$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-79218$$DView record from Swedish Publication Index |
BookMark | eNqFkL1PwzAQxS1UJNrCyJ6RgVB_JU7GqqWAVIkFWC3HORejNI7sRAX-ehKFjwl1OJ1097v3Tm-GJrWrAaFLgm8IztnC7tVetYvX909MxQmaEp7ymKWMT9C0n9CY5yk-Q7MQ3jDGJBF4itha7RsoowDa1WXkfAk-MpU7RKppKttvWhf1wjuISqidDbbenaNTo6oAF999jp43t0-r-3j7ePewWm5jzXjSxkVZcJIJok1iEsYKTkmh8oziMlUAueBZxlMgiRIGaGYM0Zoyk3JFmAFIMjZH16NuOEDTFbLx_SP-Qzpl5dq-LKXzu746KXJKBjw-jle2k6SPRAw8G3ntXQgejNS2Va11deuVrSTBcohVjrHKMdY_l9-rH5__-KuRd11zBP0CFyuN4w |
CitedBy_id | crossref_primary_10_1088_1361_6404_aba70b crossref_primary_10_1515_jiip_2020_0135 crossref_primary_10_1109_TIP_2022_3149230 crossref_primary_10_3934_math_2024287 crossref_primary_10_1137_20M1366277 crossref_primary_10_1016_j_camwa_2020_08_010 crossref_primary_10_1088_1742_6596_2644_1_012011 crossref_primary_10_3934_ipi_2021054 crossref_primary_10_46300_9106_2021_15_31 crossref_primary_10_3934_math_20231299 |
Cites_doi | 10.1109/TIP.2003.819861 10.1080/01621459.1995.10476626 10.1109/34.56205 10.1007/BF00375127 10.1137/S1064827595295337 10.1016/0167-2789(92)90242-F 10.1137/050624522 10.1007/s10851-016-0672-6 10.4310/CMS.2011.v9.n3.a7 10.1109/78.80784 10.1007/s00028-007-0297-8 10.1088/0266-5611/10/6/014 10.1016/j.imavis.2008.09.003 10.1103/PhysRevE.93.033301 10.1016/j.nonrwa.2008.11.004 10.1137/S0363012998335802 10.1142/4782 10.1080/00036811.2018.1517412 10.1007/BF00282203 10.1142/3302 10.1090/S0273-0979-2012-01379-4 10.1088/1361-6420/aaba85 10.1007/s10444-008-9082-7 10.1016/j.cpc.2015.08.028 10.1137/090769521 10.1007/978-3-0348-0513-1 10.1515/fca-2019-0039 10.1137/0729052 10.1007/978-1-4612-0895-2 10.1142/S0219199700000025 10.1115/1.4005563 10.1109/TIP.2011.2118221 10.1007/s11263-008-0145-5 10.1080/01630563.2014.970643 10.1137/0729012 10.4103/2228-7477.128441 10.1016/S0021-7824(01)01253-3 10.1088/0266-5611/21/2/003 10.1007/s00245-010-9105-x |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2019 |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2019 |
DBID | AAYXX CITATION ADTPV AOWAS DG8 D91 |
DOI | 10.1093/imamat/hxz027 |
DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Linköpings universitet SWEPUB Örebro universitet |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1464-3634 |
EndPage | 1111 |
ExternalDocumentID | oai_DiVA_org_oru_79218 oai_DiVA_org_liu_163478 10_1093_imamat_hxz027 10.1093/imamat/hxz027 |
GroupedDBID | -E4 -~X .2P .I3 0R~ 18M 1TH 29I 4.4 482 48X 5GY 5VS 5WA 70D AAIJN AAJKP AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP ABDBF ABDTM ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACUFI ACUTJ ACYTK ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFXEN AGINJ AGKEF AGQXC AGSYK AHXPO AIAGR AIJHB AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ATGXG AXUDD AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CDBKE CS3 CZ4 DAKXR DILTD DU5 D~K EBS EE~ ESX F9B FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ I-F IOX J21 JAVBF KAQDR KBUDW KOP KSI KSN M-Z M43 M49 N9A NGC NMDNZ NOMLY NU- O9- OCL ODMLO OJQWA OJZSN OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RUSNO RW1 RXO TJP TN5 TUS UPT WH7 X7H YAYTL YKOAZ YXANX ZKX ~91 AAYXX ABAZT ABDFA ABEJV ABGNP ABPQP ABVGC ABVLG ACUHS ACUXJ ADNBA ADYJX AFYAG AGORE AHGBF AJBYB AJNCP ALXQX AMVHM ANAKG CITATION JXSIZ OXVGQ 6TJ 8WZ A6W AAJQQ AAWDT ABDPE ABEFU ABIME ABNGD ABPIB ABSMQ ABZEO ACFRR ACPQN ACUKT ACVCV ACZBC ADTPV AEHUL AEKPW AFFNX AFSHK AGKRT AGMDO AGQPQ AI. AJDVS ANFBD AOWAS APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN CAG COF CXTWN DFGAJ DG8 EJD ELUNK FEDTE HVGLF MBTAY NVLIB O0~ O~Y PB- QBD RNI RZF RZO T9H TCN UQL VH1 XOL ZCG ZY4 D91 |
ID | FETCH-LOGICAL-c345t-bdb41871cf5f533b421ba9820d6aee9748846e15a7fe28ff1cc23f64a13fee583 |
ISSN | 0272-4960 1464-3634 |
IngestDate | Thu Aug 21 06:31:23 EDT 2025 Thu Aug 21 06:50:40 EDT 2025 Thu Apr 24 23:01:00 EDT 2025 Tue Jul 01 01:59:18 EDT 2025 Wed Sep 11 04:50:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | parabolic inverse problems regularization damped Hamiltonian system symplectic method Störmer–Verlet image denoising nonlinear flow Laplace Stormer-Verlet p-parabolic p-Laplace |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c345t-bdb41871cf5f533b421ba9820d6aee9748846e15a7fe28ff1cc23f64a13fee583 |
PageCount | 30 |
ParticipantIDs | swepub_primary_oai_DiVA_org_oru_79218 swepub_primary_oai_DiVA_org_liu_163478 crossref_citationtrail_10_1093_imamat_hxz027 crossref_primary_10_1093_imamat_hxz027 oup_primary_10_1093_imamat_hxz027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-27 |
PublicationDateYYYYMMDD | 2019-12-27 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-27 day: 27 |
PublicationDecade | 2010 |
PublicationTitle | IMA journal of applied mathematics |
PublicationYear | 2019 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Evans (2020011606380518000_ref19) 2010 Eng (2020011606380518000_ref18) 2015; 10 Haraux (2020011606380518000_ref25) 2007; 7 Donoho (2020011606380518000_ref15) 1995; 90 Scherzer (2020011606380518000_ref42) 2009 Sandin (2020011606380518000_ref41) 2016; 93 Edvardsson (2020011606380518000_ref16) 2012; 79 Hairer (2020011606380518000_ref23) 2006 Gonzalez (2020011606380518000_ref20) 2007 Haraux (2020011606380518000_ref26) 1988; 100 Tadmor (2020011606380518000_ref44) 2012; 49 Attouch (2020011606380518000_ref7) 2000; 2 DiBenedetto (2020011606380518000_ref14) 1993 Ratner (2020011606380518000_ref37) 2013 Alvarez (2020011606380518000_ref3) 2002; 81 Cao (2020011606380518000_ref11) 2010; 11 Perona (2020011606380518000_ref34) 1990; 12 Bollt (2020011606380518000_ref9) 2009; 31 Tautenhahn (2020011606380518000_ref45) 1994; 10 Wang (2020011606380518000_ref46) 2004; 13 Weickert (2020011606380518000_ref47) 1998 Catté (2020011606380518000_ref12) 1992; 29 Adams (2020011606380518000_ref1) 2003 Alvarez (2020011606380518000_ref2) 2000; 38 Setzer (2020011606380518000_ref43) 2011; 9 Juhola (2020011606380518000_ref28) 1991; 39 Zhang (2020011606380518000_ref49) 2018; 34 Grasmair (2020011606380518000_ref22) 2010; 62 Roubíček (2020011606380518000_ref39) 2013 Alvarez (2020011606380518000_ref4) 1992; 29 Bredies (2020011606380518000_ref10) 2010; 3 Zhang (2020011606380518000_ref50) 2018 Preusser (2020011606380518000_ref35) 2008; 80 Khanian (2020011606380518000_ref29) 2014; 4 Aström (2020011606380518000_ref6) 2017; 57 Wu (2020011606380518000_ref48) 2001 Hochbruck (2020011606380518000_ref27) 1998; 19 Lim (2020011606380518000_ref33) 1990 Alvarez (2020011606380518000_ref5) 1993; 123 Lieberman (2020011606380518000_ref32) 1996 Rudin (2020011606380518000_ref40) 1992; 60 Baravdish (2020011606380518000_ref8) 2015; 36 Chen (2020011606380518000_ref13) 2006; 66 Ladyzhenskaja (2020011606380518000_ref31) 1988 Zhang (2020011606380518000_ref51) 2019; 22 Kuijper (2020011606380518000_ref30) 2009; 27 Gong (2020011606380518000_ref21) 2018 Edvardsson (2020011606380518000_ref17) 2015; 197 Ratner (2020011606380518000_ref36) 2011; 20 Rieder (2020011606380518000_ref38) 2005; 21 |
References_xml | – volume-title: Digital Image Processing year: 2007 ident: 2020011606380518000_ref20 – volume: 13 start-page: 600 year: 2004 ident: 2020011606380518000_ref46 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 90 start-page: 1200 year: 1995 ident: 2020011606380518000_ref15 article-title: Adapting to unknown smoothness via wavelet shrinkage publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1995.10476626 – volume: 12 start-page: 629 year: 1990 ident: 2020011606380518000_ref34 article-title: Scale-space and edge detection using anisotropic diffusion publication-title: IEEE T. Pattern Anal. Mach. Intell. doi: 10.1109/34.56205 – volume: 123 start-page: 199 year: 1993 ident: 2020011606380518000_ref5 article-title: Axioms and fundamental equations of image processing publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00375127 – volume: 19 start-page: 1152 year: 1998 ident: 2020011606380518000_ref27 article-title: Exponential integrators for large systems of differential equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827595295337 – volume: 60 start-page: 259 year: 1992 ident: 2020011606380518000_ref40 article-title: Nonlinear total variation based noise removal algorithms publication-title: Physica D doi: 10.1016/0167-2789(92)90242-F – volume: 66 start-page: 1383 year: 2006 ident: 2020011606380518000_ref13 article-title: Variable exponent, linear growth functionals in image restoration publication-title: SIAM J. Appl. Math. doi: 10.1137/050624522 – volume-title: Partial Differential Equations year: 2010 ident: 2020011606380518000_ref19 – volume-title: Linear and Quasi-Linear Equations of Parabolic Type year: 1988 ident: 2020011606380518000_ref31 – volume: 57 start-page: 293 year: 2017 ident: 2020011606380518000_ref6 article-title: Mapping-based image diffusion publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-016-0672-6 – volume: 9 start-page: 797 year: 2011 ident: 2020011606380518000_ref43 article-title: Infimal convolution regularizations with discrete ${l}\_1$-type functionals publication-title: Commun. Math. Sci doi: 10.4310/CMS.2011.v9.n3.a7 – volume: 39 start-page: 204 year: 1991 ident: 2020011606380518000_ref28 article-title: Comparison of algorithms for standard median filtering publication-title: IEEE Trans. Signal Process doi: 10.1109/78.80784 – volume-title: Anisotropic Diffusion in Image Processing year: 1998 ident: 2020011606380518000_ref47 – volume: 7 start-page: 449 year: 2007 ident: 2020011606380518000_ref25 article-title: On the convergence of global and bounded solutions of some evolution equations publication-title: J. Evol. Equ. doi: 10.1007/s00028-007-0297-8 – volume: 10 start-page: 1405 year: 1994 ident: 2020011606380518000_ref45 article-title: On the asymptotical regularization of nonlinear ill-posed problems publication-title: Inverse Probl. doi: 10.1088/0266-5611/10/6/014 – volume: 27 start-page: 1023 year: 2009 ident: 2020011606380518000_ref30 article-title: Geometrical PDEs based on second-order derivatives of gauge coordinates in image processing publication-title: Image Vision Comput. doi: 10.1016/j.imavis.2008.09.003 – volume: 93 start-page: 033301 year: 2016 ident: 2020011606380518000_ref41 article-title: Numerical solution of the stationary multicomponent nonlinear schrodinger equation with a constraint on the angular momentum publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.93.033301 – volume: 11 start-page: 253 year: 2010 ident: 2020011606380518000_ref11 article-title: A class of nonlinear parabolic-hyperbolic equations applied to image restoration publication-title: Nonlinear Anal-Real. doi: 10.1016/j.nonrwa.2008.11.004 – volume: 38 start-page: 1102 year: 2000 ident: 2020011606380518000_ref2 article-title: On the minimizing property of a second-order dissipative system in hilbert spaces publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012998335802 – volume-title: Nonlinear Diffusion Equations year: 2001 ident: 2020011606380518000_ref48 doi: 10.1142/4782 – year: 2018 ident: 2020011606380518000_ref50 article-title: On the second order asymptotical regularization of linear ill-posed inverse problems publication-title: Appl. Anal doi: 10.1080/00036811.2018.1517412 – volume: 100 start-page: 191 year: 1988 ident: 2020011606380518000_ref26 article-title: Decay estimates for some semilinear damped hyperbolic problems publication-title: Arch. Ration. Mech. An. doi: 10.1007/BF00282203 – volume-title: Second Order Parabolic Differential Equations year: 1996 ident: 2020011606380518000_ref32 doi: 10.1142/3302 – volume: 49 start-page: 507 year: 2012 ident: 2020011606380518000_ref44 article-title: A review of numerical methods for nonlinear partial differential equations publication-title: B. Am. Math. Soc. doi: 10.1090/S0273-0979-2012-01379-4 – volume: 34 start-page: 065001 year: 2018 ident: 2020011606380518000_ref49 article-title: A dynamical regularization algorithm for solving inverse source problems of elliptic partial differential equations publication-title: Inverse Probl. doi: 10.1088/1361-6420/aaba85 – volume: 10 start-page: 242 year: 2015 ident: 2020011606380518000_ref18 article-title: Noise adaptive soft-switching median filter publication-title: IEEE Trans. Image Process. – volume: 31 start-page: 61 year: 2009 ident: 2020011606380518000_ref9 article-title: Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion publication-title: Adv. Comput. Math. doi: 10.1007/s10444-008-9082-7 – start-page: 1252 year: 2013 ident: 2020011606380518000_ref37 article-title: Stable denoising-enhancement of images by telegraph-diffusion operators image processing publication-title: ICIP 2013 Proc. IEEE – volume: 197 start-page: 169 year: 2015 ident: 2020011606380518000_ref17 article-title: Solving equations through particle dynamics publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2015.08.028 – volume-title: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations year: 2006 ident: 2020011606380518000_ref23 – volume: 3 start-page: 492 year: 2010 ident: 2020011606380518000_ref10 article-title: Total generalized variation publication-title: SIAM J. Imaging Sci. doi: 10.1137/090769521 – volume-title: Nonlinear Partial Differential Equations With Applications year: 2013 ident: 2020011606380518000_ref39 doi: 10.1007/978-3-0348-0513-1 – volume: 22 start-page: 699 year: 2019 ident: 2020011606380518000_ref51 article-title: On fractional asymptotical regularization of linear ill-posed problems in Hilbert spaces publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2019-0039 – volume-title: Sobolev Spaces year: 2003 ident: 2020011606380518000_ref1 – volume: 29 start-page: 845 year: 1992 ident: 2020011606380518000_ref4 article-title: Image selective smoothing and edge detection by nonlinear diffusion (ii) publication-title: SIAM J. Numer. Anal. doi: 10.1137/0729052 – volume-title: Degenerate Parabolic Equations year: 1993 ident: 2020011606380518000_ref14 doi: 10.1007/978-1-4612-0895-2 – volume: 2 start-page: 1 year: 2000 ident: 2020011606380518000_ref7 article-title: The heavy ball with friction method. I. The continuous dynamical system publication-title: Comm. Contemp. Math. doi: 10.1142/S0219199700000025 – volume: 79 start-page: 021012 year: 2012 ident: 2020011606380518000_ref16 article-title: The dynamical functional particle method: an approach for boundary value problems publication-title: J. Appl. Mech. doi: 10.1115/1.4005563 – volume: 20 start-page: 2099 year: 2011 ident: 2020011606380518000_ref36 article-title: Denoising-enhancing images on elastic manifolds publication-title: IEEE Trans. Image Proc. doi: 10.1109/TIP.2011.2118221 – volume-title: Variational Methods in Imaging year: 2009 ident: 2020011606380518000_ref42 – volume: 80 start-page: 375 year: 2008 ident: 2020011606380518000_ref35 article-title: Building blocks for computer vision with stochastic partial differential equations publication-title: Int. J. Comput. Vision doi: 10.1007/s11263-008-0145-5 – volume-title: Two-Dimensional Signal and Image Processing year: 1990 ident: 2020011606380518000_ref33 – volume: 36 start-page: 147 year: 2015 ident: 2020011606380518000_ref8 article-title: On backward p(x)-parabolic equations for image enhancement publication-title: Numer. Func. Anal. Opt. doi: 10.1080/01630563.2014.970643 – year: 2018 ident: 2020011606380518000_ref21 – volume: 29 start-page: 182 year: 1992 ident: 2020011606380518000_ref12 article-title: Image selective smoothing and edge detection by nonlinear diffusion publication-title: SIAM J. Numer. Anal. doi: 10.1137/0729012 – volume: 4 start-page: 72 year: 2014 ident: 2020011606380518000_ref29 article-title: An optimal partial differential equations-based stopping criterion for medical image denoising publication-title: J Med Signals Sens. doi: 10.4103/2228-7477.128441 – volume: 81 start-page: 747 year: 2002 ident: 2020011606380518000_ref3 article-title: A second-order gradient-like dissipative dynamical system with hessian-driven damping application to optimization and mechanics publication-title: J. Math. Pures Appl. doi: 10.1016/S0021-7824(01)01253-3 – volume: 21 start-page: 453 year: 2005 ident: 2020011606380518000_ref38 article-title: Runge–Kutta integrators yield optimal regularization schemes publication-title: Inverse Probl. doi: 10.1088/0266-5611/21/2/003 – volume: 62 start-page: 323 year: 2010 ident: 2020011606380518000_ref22 article-title: Anisotropic total variation filtering publication-title: Appl. Math. Opt. doi: 10.1007/s00245-010-9105-x |
SSID | ssj0001570 |
Score | 2.2694464 |
Snippet | Abstract
In this paper, we introduce a new image denoising model: the damped flow (DF), which is a second order nonlinear evolution equation associated with a... In this paper, we introduce a new image denoising model: the damped flow (DF), which is a second order nonlinear evolution equation associated with a class of... |
SourceID | swepub crossref oup |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 1082 |
SubjectTerms | damped Hamiltonian system image denoising inverse problems Nonlinear flow p-Laplace p-parabolic regularization Störmer–Verlet symplectic method |
Title | Damped second order flow applied to image denoising |
URI | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-163478 https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-79218 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BeoED4ikCBS0S9BKcdl-2c0ybVgUpcGlROVnr9a5qkcYocSjqr2fsWdupQqFwsSxn7I3nW81-M96ZIeRtKLRhcRwGwkRhIMGFCDR3oypuZRQs35bXxXSmn8LjU_nxTJ11jf_q7JIyHZqr3-aV_A-qcA1wrbJk_wHZ9qFwAc4BXzgCwnC8FcYTDaQ3GywrpzYb1FU0B25WXA6055ZALPOLalcOWJciXzbLlCejH6bj9coRzU0XbSXXLoSuF_pHli_PuzB6G5oBa7n0aVufZ4VrN_RUX5m-Nb9MhxsR6q_D9YgDq9slYAK_N0w84oEcYR-Axopiozc_W9ZNItvD7kIbthrrWIEW4I3g5Pzn1Z4fZbMA9iT_Mk7g5ZJZvkqAQsoovku2OLgGvEe2xvuT_aN2_WUqwsia_5eYXyYDAbf5Kqsw9C4OvIvDXmMlmOl4rXJszTZOHpIH3k2gY8T8Eblj54_J_WmHzBMiEH2K6NMafVqhTz2QtCxojT5t0X9KTo8OTw6OA98CIzBCqjJIs1Qy8GmNUw6IeSo5S_UIWFsWamvBF4yBP1qmdOQsj51jxnDhQqmZcNaqWDwjvXkxt88JlaEWVemfTKpMGpmmceXMCyOAUVqpbJ-8b1SQGF8fvmpTMktwn4JIUGMJaqxPdlrx71gY5SbBN6DPv8nsoLZbsRtA75N3fxIsFqskGgFrfXHbB74k97opvk165WJlXwHNLNPXfl79Akd8gek |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Damped+second+order+flow+applied+to+image+denoising&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=Baravdish%2C+George&rft.au=Svensson%2C+Olof&rft.au=Gulliksson%2C+M.&rft.au=Zhang%2C+Y.&rft.date=2019-12-27&rft.issn=0272-4960&rft.volume=84&rft.issue=6&rft.spage=1082&rft_id=info:doi/10.1093%2Fimamat%2Fhxz027&rft.externalDocID=oai_DiVA_org_liu_163478 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon |