Tortuosity for streamlines in porous media

An analysis of tortuosity for streamlines in porous media is presented by coupling the circle and square models. It is assulued that some particles in porous media do not overlap and that fluid in porous media is incompressible. The relationship between tortuosity and porosity is attained with diffe...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 21; no. 4; pp. 364 - 369
Main Author 寇建龙 唐学明 张海燕 陆杭军 吴锋民 许友生 董永胜
Format Journal Article
LanguageEnglish
Published 01.04.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An analysis of tortuosity for streamlines in porous media is presented by coupling the circle and square models. It is assulued that some particles in porous media do not overlap and that fluid in porous media is incompressible. The relationship between tortuosity and porosity is attained with different configurations by using a statistical method. In addition, the tortuosity fractal dimension is expressed as a function of porosity. Those correlations do not include any empirical constant. The percolation threshold and tortuosity fractal dimension threshold of porous media are also presented as: φc = 0.32, DT,: = 1.07. The predicted correlations of the tortuosity and the porosity agree well with the existing experimental and simulated results.
AbstractList An analysis of tortuosity for streamlines in porous media is presented by coupling the circle and square models. It is assumed that some particles in porous media do not overlap and that fluid in porous media is incompressible. The relationship between tortuosity and porosity is attained with different configurations by using a statistical method. In addition, the tortuosity fractal dimension is expressed as a function of porosity. Those correlations do not include any empirical constant. The percolation threshold and tortuosity fractal dimension threshold of porous media are also presented as: [phi] sub(c) = 0.32, DTc = 1.07. The predicted correlations of the tortuosity and the porosity agree well with the existing experimental and simulated results.
An analysis of tortuosity for streamlines in porous media is presented by coupling the circle and square models. It is assulued that some particles in porous media do not overlap and that fluid in porous media is incompressible. The relationship between tortuosity and porosity is attained with different configurations by using a statistical method. In addition, the tortuosity fractal dimension is expressed as a function of porosity. Those correlations do not include any empirical constant. The percolation threshold and tortuosity fractal dimension threshold of porous media are also presented as: φc = 0.32, DT,: = 1.07. The predicted correlations of the tortuosity and the porosity agree well with the existing experimental and simulated results.
Author 寇建龙 唐学明 张海燕 陆杭军 吴锋民 许友生 董永胜
AuthorAffiliation College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua 321004, China Department of Physics, Jining Teachers College, Jining 012000, Inner Mongolia Autonomous Region, China
Author_xml – sequence: 1
  fullname: 寇建龙 唐学明 张海燕 陆杭军 吴锋民 许友生 董永胜
BookMark eNqNkMtqwzAQRUVJoUnaTyi4u1JwPaOHpSxL6AsC3aRrochy6mJLieQs8ve1Sci6q5nFuZfLmZGJD94Rco_wjKBUgaXkOYIoC4oFL4BzCXhFphSEyplifEKmF-aGzFL6BSgRKJuSp3WI_SGkpj9mdYhZ6qMzXdt4l7LGZ7sQwyFlnasac0uua9Mmd3e-c_L99rpefuSrr_fP5csqt4yLPt9UzFrgUDvYKIBKIrhK8koIVrFhmrXCoGWVUZwxJkHW9fBbw0tRQs0XbE4eT727GPYHl3rdNcm6tjXeDWM0SsGEwIX8D8qoQlSUDag4oTaGlKKr9S42nYlHjaBHjXpUpEdFmqLm-qRxyD2ccz_Bb_eN316CHKmkY_kfHeBw6g
CitedBy_id crossref_primary_10_1088_1674_1056_23_9_096401
crossref_primary_10_54097_fcis_v2i2_3734
crossref_primary_10_1093_imammb_dqy012
crossref_primary_10_1016_j_chaos_2015_07_019
crossref_primary_10_1142_S0129183112500908
crossref_primary_10_1007_s11242_020_01502_0
crossref_primary_10_3390_en13030510
crossref_primary_10_1142_S0218348X14400040
crossref_primary_10_2118_209810_PA
crossref_primary_10_1007_s11242_021_01592_4
crossref_primary_10_1088_1674_1056_23_4_044701
crossref_primary_10_1142_S0129183112500544
crossref_primary_10_1007_s12648_022_02387_z
crossref_primary_10_1142_S0218348X20500802
crossref_primary_10_1016_j_micromeso_2020_110097
crossref_primary_10_1088_1674_1056_22_1_014402
crossref_primary_10_1142_S0129183113500630
Cites_doi 10.1103/PhysRevE.78.026306
10.1007/978-1-4899-2124-6
10.1016/j.ces.2010.06.013
10.1016/j.physleta.2009.10.015
10.1088/1674-1056/19/1/013601
10.1016/0009-2509(83)85026-X
10.7498/aps.59.7991
10.1029/WR024i004p00566
10.1016/0009-2509(89)80031-4
10.1103/PhysRevLett.54.1325
10.1088/1674-1056/19/4/040510
10.1063/1.3204479
10.1088/1674-1056/19/12/128901
10.1103/PhysRevE.54.406
10.1002/aic.690491206
10.1088/0256-307X/22/6/046
10.1103/PhysRevE.72.056301
10.7498/aps.60.024703
10.1103/PhysRevE.56.3319
10.2136/sssaj2001.653613x
10.1088/1674-1056/19/5/059201
10.1002/cjce.5450840305
10.1021/ef901413p
10.1007/s10035-007-0061-3
10.1016/S0017-9310(02)00014-5
10.1007/s11242-006-9048-5
10.1088/0256-307X/21/1/036
10.1088/0256-307X/21/8/044
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7TG
KL.
7U5
8FD
H8D
L7M
DOI 10.1088/1674-1056/21/4/044701
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Tortuosity for streamlines in porous media
EISSN 2058-3834
1741-4199
EndPage 369
ExternalDocumentID 10_1088_1674_1056_21_4_044701
41272182
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAXDM
AAYXX
AERVB
AOAED
CAJEA
CITATION
Q--
U1G
U5K
7TG
KL.
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c345t-bd3cc040fe0b800d710ed74d553d3447cc5a1c3da84333707ffda8ca46560f493
ISSN 1674-1056
IngestDate Fri Oct 25 22:11:24 EDT 2024
Fri Oct 25 01:40:32 EDT 2024
Thu Sep 26 16:16:39 EDT 2024
Wed Feb 14 10:46:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-bd3cc040fe0b800d710ed74d553d3447cc5a1c3da84333707ffda8ca46560f493
Notes tortuosity, tortuosity fractal dimension, porous media
An analysis of tortuosity for streamlines in porous media is presented by coupling the circle and square models. It is assulued that some particles in porous media do not overlap and that fluid in porous media is incompressible. The relationship between tortuosity and porosity is attained with different configurations by using a statistical method. In addition, the tortuosity fractal dimension is expressed as a function of porosity. Those correlations do not include any empirical constant. The percolation threshold and tortuosity fractal dimension threshold of porous media are also presented as: φc = 0.32, DT,: = 1.07. The predicted correlations of the tortuosity and the porosity agree well with the existing experimental and simulated results.
11-5639/O4
Kou Jian-Long, Tang Xue-Ming, Zhang Hai-Yan, Lu Hang-Jun, Wu Feng-Min, Xu You-Sheng,and Dong Yong-Sheng a) College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, dinhua 321004, China b) Department of Ph.ysics, dining Teachers College, dining 012000, Inner Mongolia Autonomous Region, China
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1732811823
PQPubID 23462
PageCount 6
ParticipantIDs proquest_miscellaneous_1753551979
proquest_miscellaneous_1732811823
crossref_primary_10_1088_1674_1056_21_4_044701
chongqing_primary_41272182
PublicationCentury 2000
PublicationDate 2012-04-01
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2012
References 23
24
Wyllie M R J (1) 1955; 47
Bai K Z (26) 2010; 19
27
Mandlbrot B B (28) 1982
29
Yu B M (4) 2004; 21
Yuan M J (11) 2006; 84
Yuan M J (8) 2005; 22
30
10
Xie T (19) 2010; 19
Yuan M J (22) 2011; 60
33
12
34
Dullien F A L (3) 1979
13
Liu Y M (18) 2011; 59
14
15
Dong X J (16) 2010; 19
Bear J (2) 1972
Cheng P (31) 1991
Feder J (35) 1988
Ma J (25) 2010; 19
Yu B M (32) 2004; 21
5
6
7
9
Kou J L (17) 2009; 18
20
21
References_xml – ident: 14
  doi: 10.1103/PhysRevE.78.026306
– year: 1988
  ident: 35
  publication-title: Fractals
  doi: 10.1007/978-1-4899-2124-6
  contributor:
    fullname: Feder J
– ident: 20
  doi: 10.1016/j.ces.2010.06.013
– ident: 24
  doi: 10.1016/j.physleta.2009.10.015
– volume: 19
  start-page: 013601
  issn: 1674-1056
  year: 2010
  ident: 16
  publication-title: Chin. Phys
  doi: 10.1088/1674-1056/19/1/013601
  contributor:
    fullname: Dong X J
– year: 1982
  ident: 28
  publication-title: The Fractal Geometry of Nature
  contributor:
    fullname: Mandlbrot B B
– ident: 30
  doi: 10.1016/0009-2509(83)85026-X
– volume: 59
  start-page: 7991
  issn: 0372-736X
  year: 2011
  ident: 18
  publication-title: Acta Phys. Sin
  doi: 10.7498/aps.59.7991
  contributor:
    fullname: Liu Y M
– ident: 12
  doi: 10.1029/WR024i004p00566
– ident: 7
  doi: 10.1016/0009-2509(89)80031-4
– volume: 18
  start-page: 1533
  issn: 1674-1056
  year: 2009
  ident: 17
  publication-title: Chin. Phys
  contributor:
    fullname: Kou J L
– ident: 33
  doi: 10.1103/PhysRevLett.54.1325
– volume: 19
  start-page: 040510
  issn: 1674-1056
  year: 2010
  ident: 26
  publication-title: Chin. Phys
  doi: 10.1088/1674-1056/19/4/040510
  contributor:
    fullname: Bai K Z
– ident: 23
  doi: 10.1063/1.3204479
– volume: 19
  start-page: 128901
  issn: 1674-1056
  year: 2010
  ident: 25
  publication-title: Chin. Phys
  doi: 10.1088/1674-1056/19/12/128901
  contributor:
    fullname: Ma J
– ident: 5
  doi: 10.1103/PhysRevE.54.406
– ident: 9
  doi: 10.1002/aic.690491206
– volume: 22
  start-page: 1464
  issn: 0256-307X
  year: 2005
  ident: 8
  publication-title: Chin. Phys. Lett
  doi: 10.1088/0256-307X/22/6/046
  contributor:
    fullname: Yuan M J
– ident: 15
  doi: 10.1103/PhysRevE.72.056301
– volume: 60
  start-page: 024703
  issn: 0372-736X
  year: 2011
  ident: 22
  publication-title: Acta Phys. Sin
  doi: 10.7498/aps.60.024703
  contributor:
    fullname: Yuan M J
– volume: 47
  start-page: 1379
  year: 1955
  ident: 1
  publication-title: Engi. Des. Process Dev
  contributor:
    fullname: Wyllie M R J
– ident: 6
  doi: 10.1103/PhysRevE.56.3319
– year: 1979
  ident: 3
  publication-title: Porous Media, Fluid Transport and Pore Structure
  contributor:
    fullname: Dullien F A L
– ident: 27
  doi: 10.1029/WR024i004p00566
– start-page: 625
  year: 1991
  ident: 31
  publication-title: Computer Applications in Production Engineering
  contributor:
    fullname: Cheng P
– ident: 10
  doi: 10.2136/sssaj2001.653613x
– volume: 19
  start-page: 059201
  issn: 1674-1056
  year: 2010
  ident: 19
  publication-title: Chin. Phys
  doi: 10.1088/1674-1056/19/5/059201
  contributor:
    fullname: Xie T
– year: 1972
  ident: 2
  publication-title: Kynamics of Fluids in Porous Media
  contributor:
    fullname: Bear J
– volume: 84
  start-page: 301
  issn: 0008-4034
  year: 2006
  ident: 11
  publication-title: Can. J. Chem. Eng
  doi: 10.1002/cjce.5450840305
  contributor:
    fullname: Yuan M J
– ident: 21
  doi: 10.1021/ef901413p
– ident: 13
  doi: 10.1007/s10035-007-0061-3
– ident: 34
  doi: 10.1016/S0017-9310(02)00014-5
– ident: 29
  doi: 10.1007/s11242-006-9048-5
– volume: 21
  start-page: 117
  issn: 0256-307X
  year: 2004
  ident: 32
  publication-title: Chin. Phys. Lett
  doi: 10.1088/0256-307X/21/1/036
  contributor:
    fullname: Yu B M
– volume: 21
  start-page: 1569
  issn: 0256-307X
  year: 2004
  ident: 4
  publication-title: Chin. Phys. Lett
  doi: 10.1088/0256-307X/21/8/044
  contributor:
    fullname: Yu B M
SSID ssj0061023
ssib054405859
ssib000804704
Score 2.0404158
Snippet An analysis of tortuosity for streamlines in porous media is presented by coupling the circle and square models. It is assulued that some particles in porous...
An analysis of tortuosity for streamlines in porous media is presented by coupling the circle and square models. It is assumed that some particles in porous...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Publisher
StartPage 364
SubjectTerms Computational fluid dynamics
Correlation
Fluid flow
Fractal analysis
Fractals
Media
Porosity
Thresholds
Tortuosity
不可压缩
分形维数
多孔介质
孔隙率
模型分析
渗流阈值
经验常数
统计方法
Title Tortuosity for streamlines in porous media
URI http://lib.cqvip.com/qk/85823A/201204/41272182.html
https://search.proquest.com/docview/1732811823
https://search.proquest.com/docview/1753551979
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCIlLxVNsoShInJDcjeNJnBwRKloKhR5aaTlZju3AHkj62Fz665mJk2wWUEW5RJGTTGTPp88z9syYsTfWG5V6cNxIbziUueR5IgueWeGgKovKO0pOPv6SLc7gaJkuhyPu--ySdXlgr_-aV_I_WsU21Ctlyd5Cs6NQbMB71C9eUcN4_Tcdo-3cNl1UBUULUt6H-Ul2YwgOby4pvrXLDZnaoHRktr_y_aLG1ebc5U9N2ykVEcM_N_2U1nn1gRCWrefHq037uNi8MCv-bRLc04bG-js_auvpugIFaIzhKIEKMwVI0qHs98CViZhgAibEB6DCx39QMtIYrQ4M0igDhTgaaNto_Gq7EPZvE9QYNthtmOe5JmGahOlEaNBBzF12L0GyIZb7-PVkmI0zKk1BTvfw_yGLCx3_sW2eiDnMgxiqsfEDh_gCh3PbVtmeqjv74_Qh2-0dh-hdQMEjdsfXj9n9k6DDJ-ztBgsRYiGaYCFa1VHAQtRh4Sk7-3B4-n7B-3MwuJWQrnnppLVItpWPS7TvHRqF3ilwaSodFWy0NjXCSmdykFKqWFUV3ltDpfDiCgr5jO3UTe2fs8hUwiSFzUqDfc8kurt5gh5jXKo4rRyoGdsbe6_PQ70TDSJRVOh_xg6G4Rif3aiSGXs9DJpG1qKtKFN77K4WVCOKfFt50zspGsOiUMXebX_8gj3YQPol21lftn4fjcd1-apDxy-IyGS0
link.rule.ids 315,783,787,27936,27937
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tortuosity+for+streamlines+in+porous+media&rft.jtitle=Chinese+physics+B&rft.au=Kou%2C+Jian-Long&rft.au=Tang%2C+Xue-Ming&rft.au=Zhang%2C+Hai-Yan&rft.au=Lu%2C+Hang-Jun&rft.date=2012-04-01&rft.issn=1674-1056&rft.volume=21&rft.issue=4&rft.spage=44701&rft_id=info:doi/10.1088%2F1674-1056%2F21%2F4%2F044701&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_21_4_044701
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg