Tortuosity for streamlines in porous media
An analysis of tortuosity for streamlines in porous media is presented by coupling the circle and square models. It is assulued that some particles in porous media do not overlap and that fluid in porous media is incompressible. The relationship between tortuosity and porosity is attained with diffe...
Saved in:
Published in | Chinese physics B Vol. 21; no. 4; pp. 364 - 369 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.04.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An analysis of tortuosity for streamlines in porous media is presented by coupling the circle and square models. It is assulued that some particles in porous media do not overlap and that fluid in porous media is incompressible. The relationship between tortuosity and porosity is attained with different configurations by using a statistical method. In addition, the tortuosity fractal dimension is expressed as a function of porosity. Those correlations do not include any empirical constant. The percolation threshold and tortuosity fractal dimension threshold of porous media are also presented as: φc = 0.32, DT,: = 1.07. The predicted correlations of the tortuosity and the porosity agree well with the existing experimental and simulated results. |
---|---|
Bibliography: | tortuosity, tortuosity fractal dimension, porous media An analysis of tortuosity for streamlines in porous media is presented by coupling the circle and square models. It is assulued that some particles in porous media do not overlap and that fluid in porous media is incompressible. The relationship between tortuosity and porosity is attained with different configurations by using a statistical method. In addition, the tortuosity fractal dimension is expressed as a function of porosity. Those correlations do not include any empirical constant. The percolation threshold and tortuosity fractal dimension threshold of porous media are also presented as: φc = 0.32, DT,: = 1.07. The predicted correlations of the tortuosity and the porosity agree well with the existing experimental and simulated results. 11-5639/O4 Kou Jian-Long, Tang Xue-Ming, Zhang Hai-Yan, Lu Hang-Jun, Wu Feng-Min, Xu You-Sheng,and Dong Yong-Sheng a) College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, dinhua 321004, China b) Department of Ph.ysics, dining Teachers College, dining 012000, Inner Mongolia Autonomous Region, China ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/21/4/044701 |