Accuracy Improvement of the Large-Signal Model of a High-Power GaN HEMT using Power-Dependent Constant and Tapered Thermal Resistance Methods

This study improved the accuracy of the large-signal model of a high-power gallium nitride (GaN) high electron mobility transistor (HEMT) by using power-dependent constant and tapered thermal resistance methods. The findings indicate that the channel temperature of a GaN HEMT is affected by the numb...

Full description

Saved in:
Bibliographic Details
Published inJournal of Electromagnetic Engineering and Science Vol. 25; no. 3; pp. 241 - 250
Main Authors Kwon, Ho-Sang, Kim, Dong-Wook
Format Journal Article
LanguageEnglish
Published The Korean Institute of Electromagnetic Engineering and Science 01.05.2025
한국전자파학회
Subjects
Online AccessGet full text
ISSN2671-7255
2671-7263
DOI10.26866/jees.2025.3.r.294

Cover

Loading…
Abstract This study improved the accuracy of the large-signal model of a high-power gallium nitride (GaN) high electron mobility transistor (HEMT) by using power-dependent constant and tapered thermal resistance methods. The findings indicate that the channel temperature of a GaN HEMT is affected by the number of gate fingers and the thickness of the package substrate as well as the structure of the transistor. Furthermore, the rise in the channel temperature in the transistor was considered by including thermal resistance in the large-signal model. To account for thermal effects, power-dependent constant thermal resistance and power-dependent tapered thermal resistance were included in the large-signal model of the high-power transistor, and their effectiveness was validated for a 140-W GaN HEMT with 80 gate fingers. The proposed power-dependent thermal resistance approaches predicted optimum load impedance and power performance better than the conventional power-independent constant thermal resistance approach. Furthermore, the simulated results for these approaches were in good agreement with the measured load pull results.
AbstractList This study improved the accuracy of the large-signal model of a high-power gallium nitride (GaN) high electron mobility transistor (HEMT) by using power-dependent constant and tapered thermal resistance methods. The findings indicate that the channel temperature of a GaN HEMT is affected by the number of gate fingers and the thickness of the package substrate as well as the structure of the transistor. Furthermore, the rise in the channel temperature in the transistor was considered by including thermal resistance in the large-signal model. To account for thermal effects, power-dependent constant thermal resistance and power-dependent tapered thermal resistance were included in the large-signal model of the high-power transistor, and their effectiveness was validated for a 140-W GaN HEMT with 80 gate fingers. The proposed power-dependent thermal resistance approaches predicted optimum load impedance and power performance better than the conventional power-independent constant thermal resistance approach. Furthermore, the simulated results for these approaches were in good agreement with the measured load pull results.
This study improved the accuracy of the large-signal model of a high-power gallium nitride (GaN) high electron mobility transistor (HEMT) by using power-dependent constant and tapered thermal resistance methods. The findings indicate that the channel temperature of a GaN HEMT is affected by the number of gate fingers and the thickness of the package substrate as well as the structure of the transistor. Furthermore, the rise in the channel temperature in the transistor was considered by including thermal resistance in the largesignal model. To account for thermal effects, power-dependent constant thermal resistance and power-dependent tapered thermal resistance were included in the large-signal model of the high-power transistor, and their effectiveness was validated for a 140-W GaN HEMT with 80 gate fingers. The proposed power-dependent thermal resistance approaches predicted optimum load impedance and power performance better than the conventional power-independent constant thermal resistance approach. Furthermore, the simulated results for these approaches were in good agreement with the measured load pull results. KCI Citation Count: 0
Author Kim, Dong-Wook
Kwon, Ho-Sang
Author_xml – sequence: 1
  givenname: Ho-Sang
  orcidid: 0000-0001-5133-296X
  surname: Kwon
  fullname: Kwon, Ho-Sang
– sequence: 2
  givenname: Dong-Wook
  orcidid: 0000-0003-1913-4714
  surname: Kim
  fullname: Kim, Dong-Wook
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003207994$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNo9kctu2zAQRYkiBZqm-YGuuC4glQ_xoaXhprEBuy1Sd01Q1FCWY5MGqbTIR_SfI8lBNnMHd2YOMLgf0VWIARD6TEnJpJby6wEgl4wwUfIylayu3qFrJhUtFJP86q0X4gO6zflACGG65lKwa_R_4dxTsu4Zr0_nFP_CCcKAo8fDHvDGpg6K330X7BFvYwvHaWLxqu_2xa_4DxK-tz_w6m67w0-5Dx2ezeIbnCG0E2gZQx7s2NjQ4p09Q4JR95BOI_EBcj9NHeAtDPvY5k_ovbfHDLeveoP-fL_bLVfF5uf9ernYFI5XYiiaxlJCpXRNJWmjqNDjM6SuPVfaVVZUtmKNV8JprVvCKVjuiPCa1Ip6wip-g75cuCF58-h6E20_axfNYzKLh93aUKKoZoyPy-vLchvtwZxTf7Lpeb6YjZg6Y9PQuyMYQTRvlYKGA6sapbXXSloihZZKj3VksQvLpZhzAv_Go8TMYZopTDOFabhJZgyTvwCMJ5N4
Cites_doi 10.5515/KJKIEES.2020.31.12.1059
10.1109/CSICS.2014.6978555
10.1109/APMC46564.2019.9038318
10.1109/EMICC.2007.4412641
10.1109/TMTT.2008.918153
10.1109/TMTT.2018.2854185
10.1109/TMTT.2016.2519342
10.1109/TED.2015.2396035
10.1109/TED.2009.2032614
10.5515/KJKIEES.2020.31.1.43
10.1109/22.24552
10.1109/MMM.2013.2240853
10.1109/CSICS.2010.5619692
10.1109/TED.2023.3305313
ContentType Journal Article
DBID AAYXX
CITATION
DOA
ACYCR
DOI 10.26866/jees.2025.3.r.294
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2671-7263
EndPage 250
ExternalDocumentID oai_kci_go_kr_ARTI_10718223
oai_doaj_org_article_5083d77eb3e24b788f876a0658678658
10_26866_jees_2025_3_r_294
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
DBRKI
GROUPED_DOAJ
GW5
OK1
TDB
ACYCR
ID FETCH-LOGICAL-c345t-bba10166cb461b7158365099f378c4a54a42bf75c888d031ea3c05f80971f0243
IEDL.DBID DOA
ISSN 2671-7255
IngestDate Sun Aug 03 03:10:34 EDT 2025
Wed Aug 27 01:31:06 EDT 2025
Thu Jul 03 08:34:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-bba10166cb461b7158365099f378c4a54a42bf75c888d031ea3c05f80971f0243
ORCID 0000-0001-5133-296X
0000-0003-1913-4714
OpenAccessLink https://doaj.org/article/5083d77eb3e24b788f876a0658678658
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10718223
doaj_primary_oai_doaj_org_article_5083d77eb3e24b788f876a0658678658
crossref_primary_10_26866_jees_2025_3_r_294
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Electromagnetic Engineering and Science
PublicationYear 2025
Publisher The Korean Institute of Electromagnetic Engineering and Science
한국전자파학회
Publisher_xml – name: The Korean Institute of Electromagnetic Engineering and Science
– name: 한국전자파학회
References ref13
ref15
ref14
ref11
ref10
ref2
Lee (ref12) 2020
ref1
ref17
ref16
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.5515/KJKIEES.2020.31.12.1059
– ident: ref7
  doi: 10.1109/CSICS.2014.6978555
– ident: ref8
  doi: 10.1109/APMC46564.2019.9038318
– ident: ref9
  doi: 10.1109/EMICC.2007.4412641
– ident: ref5
  doi: 10.1109/TMTT.2008.918153
– ident: ref15
  doi: 10.1109/TMTT.2018.2854185
– ident: ref14
  doi: 10.1109/TMTT.2016.2519342
– ident: ref13
  doi: 10.1109/TED.2015.2396035
– ident: ref17
  doi: 10.1109/TED.2009.2032614
– ident: ref2
  doi: 10.5515/KJKIEES.2020.31.1.43
– ident: ref4
  doi: 10.1109/22.24552
– ident: ref1
  doi: 10.1109/MMM.2013.2240853
– volume-title: Qualification of Wavice baseline GaN HEMT process with 0.4 um gate on 4” SiC wafers
  year: 2020
  ident: ref12
– ident: ref6
  doi: 10.1109/CSICS.2010.5619692
– ident: ref10
– ident: ref11
– ident: ref16
  doi: 10.1109/TED.2023.3305313
SSID ssj0002893652
Score 2.290475
Snippet This study improved the accuracy of the large-signal model of a high-power gallium nitride (GaN) high electron mobility transistor (HEMT) by using...
SourceID nrf
doaj
crossref
SourceType Open Website
Index Database
StartPage 241
SubjectTerms channel temperature
gallium nitride (gan)
high electron mobility transistor (hemt)
large-signal model
package substrate
silicon carbide (sic)
thermal resistance
전자/정보통신공학
Title Accuracy Improvement of the Large-Signal Model of a High-Power GaN HEMT using Power-Dependent Constant and Tapered Thermal Resistance Methods
URI https://doaj.org/article/5083d77eb3e24b788f876a0658678658
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003207994
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Electromagnetic Engineering and Science, 2025, 25(3), , pp.241-250
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15CSxqyfSFobkGbtfWyj3lvQzaUdgO5CT2XPPAGxznkR-Q_Z0balu2pl15ksC0kRiPNjDT6PkJ2RWgrx11gIggowMllrWorxgOeUmmrlMbLybNLNb0S59fyeo3qC3PCCjxwEdw-wpUHrSHmi7VwELAlmL8WDScss1Di6jtpJ2vB1G05PuMq0-3USldMg-NcbszUqlFq_zZGhOqu5ZiP-3Hdir-sUgbvB1vT9WnN1py-I5srJ5EelM69J29it0VeDrx_6q1_pmUjIO_r0WWi4MLRC0zoZr9uFlgP-c3u8YulmMbBfiATGj2zl3R6MptTTHVf0PySHa84cAd6VBzFgdou0Ll9QA5PCkoEC_c9_Rkf0c8EBaGzTDn9-IFcnZ7Mj6ZsRabAPBdyYM5ZDNSVd0JVTley4Qie1yauGy-sFFbULmnpISQOMNOj5X4iU4MYUwlhC7fJRrfs4g6hwcfGwYB67qNwARkoU-RKRamTszKNyN5vYZqHgplhINbIojcoeoOiN9z0BkQ_Ioco7z9_It51fgFaYFZaYP6lBSPyDUbL3PmbXB-fi6W56w1EBd-hcbDA4Ad9_B9NfSJvsfsl6fEz2Rj6p_gFHJPBfc06-ApoT9uZ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+Improvement+of+the+Large-Signal+Model+of+a+High-Power+GaN+HEMT+using+Power-Dependent+Constant+and+Tapered+Thermal+Resistance+Methods&rft.jtitle=Journal+of+Electromagnetic+Engineering+and+Science&rft.au=Ho-Sang+Kwon&rft.au=Dong-Wook+Kim&rft.date=2025-05-01&rft.pub=The+Korean+Institute+of+Electromagnetic+Engineering+and+Science&rft.issn=2671-7255&rft.eissn=2671-7263&rft.volume=25&rft.issue=3&rft.spage=241&rft.epage=250&rft_id=info:doi/10.26866%2Fjees.2025.3.r.294&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5083d77eb3e24b788f876a0658678658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2671-7255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2671-7255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2671-7255&client=summon