Design optimization on solidification performance of a rotating latent heat thermal energy storage system subject to fluctuating heat source
The combination of latent heat storage (LHS) technology with the Organic Rankine Cycle represents a widely recognized solar thermoelectric conversion means. However, this technology is hindered by the instability of solar energy and the poor thermal conductivity of thermal storage materials. This st...
Saved in:
Published in | Applied energy Vol. 362; p. 122997 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The combination of latent heat storage (LHS) technology with the Organic Rankine Cycle represents a widely recognized solar thermoelectric conversion means. However, this technology is hindered by the instability of solar energy and the poor thermal conductivity of thermal storage materials. This study addresses the challenges posed by solar energy fluctuations by implementing a sinusoidal heat source condition during the heat release process of LHS system. Furthermore, a comprehensive approach is taken to enhance heat transfer, incorporating both active methods such as rotational conditions, and passive methods using metal nanoparticles and high-performance fins. The Taguchi method is employed to optimize rotation speed, heat source amplitude, and half-period of the latent heat storage unit, and the resulting heat release performance is compared between different structures and the optimized structures. The findings from optimal design analysis reveal that rotation speed has the most significant influence on mean heat discharging rate and solidification time, followed by the heat source amplitude and half-cycle period. There is a notable interaction between heat source amplitude and half-cycle period. Compared to the initial structure, the optimal structure identified through the optimal design shortens the solidification time by 11.18%, increases the mean heat discharging rate by 13.04% and raises the average temperature response by 18.82%. Furthermore, the addition of Al2O3 nanoparticles further enhances heat discharging properties. Specifically, the presence of 2.5% and 5% Al2O3 nanoparticles shortens unit solidification time by 9.52% and 18.83% and increases the mean heat release rate by 7.69% and 17.26%. It is noted that the incorporation of rotating-fit nanoparticles partly compensates for the limitations of increased viscosity and particle settlement associated with metal nanoparticles, although it does not fully address the challenges related to reduced heat storage/release.
•This study lays a foundation for the comprehensive application of LHTES and ORC.•Sinusoidal wave heat source is applied to a triple-tube LHTES under rotation conditions.•The parameters of sinusoidal heat source are optimized by Taguchi method.•The solidification performance of the optimized structure is enhanced by 13.04%. |
---|---|
AbstractList | The combination of latent heat storage (LHS) technology with the Organic Rankine Cycle represents a widely recognized solar thermoelectric conversion means. However, this technology is hindered by the instability of solar energy and the poor thermal conductivity of thermal storage materials. This study addresses the challenges posed by solar energy fluctuations by implementing a sinusoidal heat source condition during the heat release process of LHS system. Furthermore, a comprehensive approach is taken to enhance heat transfer, incorporating both active methods such as rotational conditions, and passive methods using metal nanoparticles and high-performance fins. The Taguchi method is employed to optimize rotation speed, heat source amplitude, and half-period of the latent heat storage unit, and the resulting heat release performance is compared between different structures and the optimized structures. The findings from optimal design analysis reveal that rotation speed has the most significant influence on mean heat discharging rate and solidification time, followed by the heat source amplitude and half-cycle period. There is a notable interaction between heat source amplitude and half-cycle period. Compared to the initial structure, the optimal structure identified through the optimal design shortens the solidification time by 11.18%, increases the mean heat discharging rate by 13.04% and raises the average temperature response by 18.82%. Furthermore, the addition of Al2O3 nanoparticles further enhances heat discharging properties. Specifically, the presence of 2.5% and 5% Al2O3 nanoparticles shortens unit solidification time by 9.52% and 18.83% and increases the mean heat release rate by 7.69% and 17.26%. It is noted that the incorporation of rotating-fit nanoparticles partly compensates for the limitations of increased viscosity and particle settlement associated with metal nanoparticles, although it does not fully address the challenges related to reduced heat storage/release.
•This study lays a foundation for the comprehensive application of LHTES and ORC.•Sinusoidal wave heat source is applied to a triple-tube LHTES under rotation conditions.•The parameters of sinusoidal heat source are optimized by Taguchi method.•The solidification performance of the optimized structure is enhanced by 13.04%. The combination of latent heat storage (LHS) technology with the Organic Rankine Cycle represents a widely recognized solar thermoelectric conversion means. However, this technology is hindered by the instability of solar energy and the poor thermal conductivity of thermal storage materials. This study addresses the challenges posed by solar energy fluctuations by implementing a sinusoidal heat source condition during the heat release process of LHS system. Furthermore, a comprehensive approach is taken to enhance heat transfer, incorporating both active methods such as rotational conditions, and passive methods using metal nanoparticles and high-performance fins. The Taguchi method is employed to optimize rotation speed, heat source amplitude, and half-period of the latent heat storage unit, and the resulting heat release performance is compared between different structures and the optimized structures. The findings from optimal design analysis reveal that rotation speed has the most significant influence on mean heat discharging rate and solidification time, followed by the heat source amplitude and half-cycle period. There is a notable interaction between heat source amplitude and half-cycle period. Compared to the initial structure, the optimal structure identified through the optimal design shortens the solidification time by 11.18%, increases the mean heat discharging rate by 13.04% and raises the average temperature response by 18.82%. Furthermore, the addition of Al₂O₃ nanoparticles further enhances heat discharging properties. Specifically, the presence of 2.5% and 5% Al₂O₃ nanoparticles shortens unit solidification time by 9.52% and 18.83% and increases the mean heat release rate by 7.69% and 17.26%. It is noted that the incorporation of rotating-fit nanoparticles partly compensates for the limitations of increased viscosity and particle settlement associated with metal nanoparticles, although it does not fully address the challenges related to reduced heat storage/release. |
ArticleNumber | 122997 |
Author | Li, Fangfei Li, Yuanji He, Ya-Ling Du, Rui Guo, Junfei Yang, Xiaohu Huang, Xinyu |
Author_xml | – sequence: 1 givenname: Xinyu surname: Huang fullname: Huang, Xinyu organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 2 givenname: Fangfei surname: Li fullname: Li, Fangfei organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 3 givenname: Junfei surname: Guo fullname: Guo, Junfei organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 4 givenname: Yuanji surname: Li fullname: Li, Yuanji organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 5 givenname: Rui surname: Du fullname: Du, Rui organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 6 givenname: Xiaohu surname: Yang fullname: Yang, Xiaohu email: xiaohuyang@xjtu.edu.cn organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 7 givenname: Ya-Ling surname: He fullname: He, Ya-Ling organization: Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China |
BookMark | eNqFkMtKxDAUhoMoOF5eQbJ00zGXaTsFF4p3ENzoOhzTkzFDm9QkFcZn8KGNVjdu3CTkz_8dDt8e2XbeISFHnM0549XJeg4DOgyrzVwwsZhzIZqm3iIzvqxF0XC-3CYzJllViIo3u2QvxjVjTHDBZuTjEqNdOeqHZHv7Dsn6_HA0-s621lg9JQMG40MPTiP1hgINPuUft6IdJHSJviAkml4wdzo6bUNj8gFWSOMmJuxpHJ_XqHPLU9ONOo3TgG8y-jFoPCA7BrqIhz_3Pnm6vnq8uC3uH27uLs7vCy0XZSqelwaQ8RZEI6SsUGpdg4GqkS03-ShbkVOU2JYSa9RgaiEzmmMocbGU--R4mjsE_zpiTKq3UWPXgUM_RiV5KeuGsYrnajVVdfAxBjRqCLaHsFGcqS_9aq1-9asv_WrSn8HTP6C26VtmCmC7__GzCcfs4c1iUFFbzPpbG7JE1Xr734hPKVis_g |
CitedBy_id | crossref_primary_10_1016_j_energy_2025_134536 crossref_primary_10_1016_j_psep_2024_06_079 crossref_primary_10_1115_1_4065349 crossref_primary_10_3390_en17081973 crossref_primary_10_1016_j_energy_2024_133420 crossref_primary_10_1016_j_tsep_2025_103385 crossref_primary_10_1016_j_est_2025_115871 crossref_primary_10_1016_j_est_2025_116169 crossref_primary_10_1016_j_renene_2024_122067 crossref_primary_10_1016_j_est_2024_112613 crossref_primary_10_1016_j_est_2024_112436 crossref_primary_10_1108_HFF_06_2024_0424 crossref_primary_10_1007_s40430_024_05236_8 crossref_primary_10_1016_j_est_2024_114375 crossref_primary_10_1016_j_applthermaleng_2024_123040 crossref_primary_10_18686_cest237 crossref_primary_10_1016_j_buildenv_2024_112291 crossref_primary_10_1016_j_jobe_2024_110567 crossref_primary_10_1016_j_energy_2024_132500 crossref_primary_10_1016_j_energy_2024_132501 crossref_primary_10_1088_3050_2454_adbaf7 crossref_primary_10_1016_j_est_2024_114807 crossref_primary_10_1016_j_energy_2024_132101 crossref_primary_10_1016_j_enganabound_2024_105895 crossref_primary_10_1016_j_est_2024_112723 crossref_primary_10_3390_en17143376 crossref_primary_10_1016_j_energy_2024_131813 crossref_primary_10_1016_j_est_2024_113452 crossref_primary_10_1016_j_ijheatfluidflow_2024_109445 crossref_primary_10_1016_j_tsep_2024_102530 crossref_primary_10_1016_j_ijheatfluidflow_2024_109561 crossref_primary_10_1016_j_tsep_2024_102756 crossref_primary_10_1177_00405175241292834 |
Cites_doi | 10.1016/j.apenergy.2021.118465 10.1016/j.enconman.2023.117407 10.1016/j.icheatmasstransfer.2023.107095 10.1016/j.energy.2023.128164 10.1016/j.apenergy.2018.03.189 10.1016/j.solmat.2023.112584 10.1016/j.rser.2020.109727 10.1016/j.energy.2022.124521 10.1016/j.ijheatmasstransfer.2018.03.095 10.1016/j.jclepro.2021.128573 10.1016/j.apenergy.2020.116277 10.1016/j.ijheatmasstransfer.2023.123892 10.1016/j.apenergy.2013.10.065 10.1016/j.applthermaleng.2022.118812 10.1016/j.ijheatmasstransfer.2009.06.027 10.1016/j.apenergy.2017.08.087 10.1016/j.nanoen.2022.107476 10.1016/j.est.2022.106423 10.1016/j.icheatmasstransfer.2011.09.013 10.1016/j.rser.2023.113792 10.1016/j.apenergy.2023.121458 10.1016/j.est.2021.102626 10.1016/j.pecs.2023.101109 10.1016/j.applthermaleng.2017.07.163 10.1016/j.rser.2023.113447 10.1016/j.est.2021.102442 10.1016/j.ijheatmasstransfer.2022.123455 10.1016/j.rser.2022.112912 10.1016/j.enconman.2022.116276 10.1016/j.renene.2021.04.076 10.1016/j.enconman.2020.113295 10.1038/s41893-022-01033-0 10.1063/1.1700493 10.1016/j.est.2022.105461 10.1016/j.energy.2023.127100 10.1016/j.rser.2021.111410 10.1016/j.adapen.2023.100154 10.1016/j.icheatmasstransfer.2022.105993 10.1016/j.enbuild.2023.113099 10.1016/j.applthermaleng.2020.115492 10.1016/j.energy.2020.117400 10.1016/j.joule.2023.06.015 10.1038/s41467-023-41105-z 10.1016/j.energy.2018.12.196 10.1016/j.jclepro.2021.129922 10.1016/j.est.2023.108161 10.1016/j.jclepro.2019.01.122 10.1016/j.est.2023.106801 10.1016/j.applthermaleng.2022.118877 10.1016/j.energy.2023.129018 10.1016/j.apenergy.2015.09.016 10.1016/j.ijheatmasstransfer.2021.121667 10.1080/10407782.2019.1599273 10.1016/j.applthermaleng.2022.119480 10.1038/s41560-019-0425-z 10.1016/j.apenergy.2022.120435 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apenergy.2024.122997 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-9118 |
ExternalDocumentID | 10_1016_j_apenergy_2024_122997 S0306261924003805 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ LY6 R2- SAC SSH WUQ ZY4 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c345t-b8fae01da292336e3cc7afa693d1f93d5d236ee3ed53e7ecaf723c34d23a5e483 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Fri Aug 22 20:24:04 EDT 2025 Thu Apr 24 22:56:38 EDT 2025 Tue Jul 01 04:01:22 EDT 2025 Sat Apr 13 16:37:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Solidification properties Sinusoidal temperature Metal nanoparticle Phase change heat storage Optimal design |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-b8fae01da292336e3cc7afa693d1f93d5d236ee3ed53e7ecaf723c34d23a5e483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3153790061 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153790061 crossref_primary_10_1016_j_apenergy_2024_122997 crossref_citationtrail_10_1016_j_apenergy_2024_122997 elsevier_sciencedirect_doi_10_1016_j_apenergy_2024_122997 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-15 |
PublicationDateYYYYMMDD | 2024-05-15 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Applied energy |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liaw, Kurnia, Lai, Ong, Zar, Muhammad (bb0295) 2023; 282 Rahman, Oni, Gemechu, Kumar (bb0035) 2020; 223 Soltani, Soltani, Karimi, Nathwani (bb0205) 2021; 179 Zhang, Yan (bb0080) 2022; 270 Li, Lu, Huang, Chang, Yu, Jiang (bb0050) 2021; 283 Huang, Zhou, Luo, Yang, Cheng, Yan (bb0040) 2023; 12 Kurnia, Sasmito (bb0175) 2018; 227 Huang, Li, Xiao, Guo, Wang, Gao (bb0155) 2023; 331 Choure, Alam, Kumar (bb0100) 2023; 72 Sivasakthivel, Murugesan, Thomas (bb0300) 2014; 116 Huang, Li, Li, Yang, Li (bb0250) 2023; 263 Huang, Li, Li, Gao, Yang, Sundén (bb0160) 2023; 205 Vajjha, Das (bb0270) 2009; 52 Gupta, Tiwari, Said (bb0065) 2022; 49 Wong-Pinto, Milian, Ushak (bb0115) 2020; 122 Qays, Ahmad, Habibi, Aziz, Mahmoud (bb0025) 2023; 183 Singh, Patel (bb0245) 2022; 134 Yu, Jiang, Li, Qian, Wang, Wang (bb0180) 2023; 219 Huang, Li, Li, Meng, Yang, Sundén (bb0225) 2023; 271 Brinkman (bb0265) 1952; 20 Sheikholeslami, Mahian (bb0140) 2019; 215 Arasu, Mujumdar (bb0280) 2012; 39 Li, Huang, Huang, Gao, Hu, Yang (bb0105) 2023; 347 Gonzalez, Tomlinson, Martínez Ceseña, Basheer, Obuobie, Padi (bb0020) 2023; 6 Loni, Mahian, Markides, Bellos, Le Roux, Kasaeian (bb0060) 2021; 150 Hassan, Jamil, Hussain, Ali, Janjua, Khushnood (bb0125) 2022; 49 Costa, Mahkamov, Kenisarin, Lynn, Halimic, Mullen (bb0055) 2018 Ye, Arıcı (bb0230) 2023; 144 Huang, Li, Lu, Li, Yang, Yan (bb0290) 2023; 290 Cioccolanti, Tascioni, Arteconi (bb0070) 2018; 221 Zheng, Sun, Chen, He, Yin, Xu (bb0170) 2023; 62 Zhang, Lu, Wang, Zhu, Zhang, Wang (bb0255) 2022; 199 Iachachene, Halouane, Achab (bb0215) 2023; 149 Huang, Li, Xiao, Li, Yang, He (bb0150) 2023 Modi, Wang, Negnevitsky (bb0220) 2022; 214 Mahdi, Lohrasbi, Ganji, Nsofor (bb0260) 2018; 124 Fathi, Mussa (bb0185) 2021; 39 Li, Yu, Wang, Lu, Huang, Chang (bb0095) 2020; 199 Xu, Li, Chan (bb0130) 2015; 160 Omoyele, Hoffmann, Koivisto, Larrañeta, Weinand, Linßen (bb0030) 2024; 189 Brockway, Owen, Brand-Correa, Hardt (bb0005) 2019; 4 Freeman, Guarracino, Kalogirou, Markides (bb0075) 2017; 127 Cui, Si, Li, Li, Lu, Ma (bb0120) 2022; 169 Ali, Rehman, Arıcı, Said, Duraković, Mohammed (bb0045) 2024; 100 Pordanjani, Aghakhani, Afrand, Sharifpur, Meyer, Xu (bb0275) 2021; 320 Soltani, Soltani, Karimi, Nathwani (bb0135) 2022; 331 Safari, Kamkari, Hooman, Khodadadi (bb0235) 2022; 255 Zhang, Li, Yao, Tian, Yan (bb0085) 2022; 100 Jaberi Khosroshahi, Hossainpour (bb0195) 2022; 55 Jaberi Khosroshahi, Hossainpour (bb0190) 2021; 36 Mehta, Vaghela, Rathod, Banerjee (bb0200) 2019; 75 Soltani, Soltani, Nathwani (bb0210) 2023; 58 Yang, Zheng, Cai, Xu (bb0165) 2022; 215 Safari, Abolghasemi, Kamkari (bb0240) 2021; 174 Achakulwisut, Erickson, Guivarch, Schaeffer, Brutschin, Pye (bb0015) 2023; 14 Zhang, Banihabib, Fadnes, Sazon, Ahmed, Assadi (bb0305) 2023; 292 Diaconu, Cruceru, Anghelescu (bb0110) 2023; 61 Cui, Li, Li, Lu, Ma, Wang (bb0145) 2022; 309 Xiong, Zheng, Shah (bb0285) 2020; 178 Navidi, El Gamal, Rajagopal (bb0010) 2023; 7 Yu, Li, Lu, Huang, Roskilly (bb0090) 2019; 170 Zheng (10.1016/j.apenergy.2024.122997_bb0170) 2023; 62 Liaw (10.1016/j.apenergy.2024.122997_bb0295) 2023; 282 Soltani (10.1016/j.apenergy.2024.122997_bb0210) 2023; 58 Vajjha (10.1016/j.apenergy.2024.122997_bb0270) 2009; 52 Ali (10.1016/j.apenergy.2024.122997_bb0045) 2024; 100 Jaberi Khosroshahi (10.1016/j.apenergy.2024.122997_bb0190) 2021; 36 Cioccolanti (10.1016/j.apenergy.2024.122997_bb0070) 2018; 221 Yang (10.1016/j.apenergy.2024.122997_bb0165) 2022; 215 Soltani (10.1016/j.apenergy.2024.122997_bb0205) 2021; 179 Fathi (10.1016/j.apenergy.2024.122997_bb0185) 2021; 39 Iachachene (10.1016/j.apenergy.2024.122997_bb0215) 2023; 149 Zhang (10.1016/j.apenergy.2024.122997_bb0080) 2022; 270 Jaberi Khosroshahi (10.1016/j.apenergy.2024.122997_bb0195) 2022; 55 Rahman (10.1016/j.apenergy.2024.122997_bb0035) 2020; 223 Zhang (10.1016/j.apenergy.2024.122997_bb0255) 2022; 199 Cui (10.1016/j.apenergy.2024.122997_bb0120) 2022; 169 Xu (10.1016/j.apenergy.2024.122997_bb0130) 2015; 160 Wong-Pinto (10.1016/j.apenergy.2024.122997_bb0115) 2020; 122 Sheikholeslami (10.1016/j.apenergy.2024.122997_bb0140) 2019; 215 Soltani (10.1016/j.apenergy.2024.122997_bb0135) 2022; 331 Yu (10.1016/j.apenergy.2024.122997_bb0180) 2023; 219 Pordanjani (10.1016/j.apenergy.2024.122997_bb0275) 2021; 320 Huang (10.1016/j.apenergy.2024.122997_bb0040) 2023; 12 Safari (10.1016/j.apenergy.2024.122997_bb0240) 2021; 174 Mehta (10.1016/j.apenergy.2024.122997_bb0200) 2019; 75 Brockway (10.1016/j.apenergy.2024.122997_bb0005) 2019; 4 Huang (10.1016/j.apenergy.2024.122997_bb0155) 2023; 331 Navidi (10.1016/j.apenergy.2024.122997_bb0010) 2023; 7 Choure (10.1016/j.apenergy.2024.122997_bb0100) 2023; 72 Li (10.1016/j.apenergy.2024.122997_bb0105) 2023; 347 Cui (10.1016/j.apenergy.2024.122997_bb0145) 2022; 309 Arasu (10.1016/j.apenergy.2024.122997_bb0280) 2012; 39 Hassan (10.1016/j.apenergy.2024.122997_bb0125) 2022; 49 Mahdi (10.1016/j.apenergy.2024.122997_bb0260) 2018; 124 Sivasakthivel (10.1016/j.apenergy.2024.122997_bb0300) 2014; 116 Achakulwisut (10.1016/j.apenergy.2024.122997_bb0015) 2023; 14 Zhang (10.1016/j.apenergy.2024.122997_bb0305) 2023; 292 Diaconu (10.1016/j.apenergy.2024.122997_bb0110) 2023; 61 Huang (10.1016/j.apenergy.2024.122997_bb0225) 2023; 271 Safari (10.1016/j.apenergy.2024.122997_bb0235) 2022; 255 Huang (10.1016/j.apenergy.2024.122997_bb0160) 2023; 205 Freeman (10.1016/j.apenergy.2024.122997_bb0075) 2017; 127 Xiong (10.1016/j.apenergy.2024.122997_bb0285) 2020; 178 Modi (10.1016/j.apenergy.2024.122997_bb0220) 2022; 214 Zhang (10.1016/j.apenergy.2024.122997_bb0085) 2022; 100 Huang (10.1016/j.apenergy.2024.122997_bb0150) 2023 Kurnia (10.1016/j.apenergy.2024.122997_bb0175) 2018; 227 Gonzalez (10.1016/j.apenergy.2024.122997_bb0020) 2023; 6 Singh (10.1016/j.apenergy.2024.122997_bb0245) 2022; 134 Costa (10.1016/j.apenergy.2024.122997_bb0055) 2018 Huang (10.1016/j.apenergy.2024.122997_bb0290) 2023; 290 Yu (10.1016/j.apenergy.2024.122997_bb0090) 2019; 170 Li (10.1016/j.apenergy.2024.122997_bb0095) 2020; 199 Qays (10.1016/j.apenergy.2024.122997_bb0025) 2023; 183 Gupta (10.1016/j.apenergy.2024.122997_bb0065) 2022; 49 Huang (10.1016/j.apenergy.2024.122997_bb0250) 2023; 263 Brinkman (10.1016/j.apenergy.2024.122997_bb0265) 1952; 20 Loni (10.1016/j.apenergy.2024.122997_bb0060) 2021; 150 Omoyele (10.1016/j.apenergy.2024.122997_bb0030) 2024; 189 Ye (10.1016/j.apenergy.2024.122997_bb0230) 2023; 144 Li (10.1016/j.apenergy.2024.122997_bb0050) 2021; 283 |
References_xml | – volume: 149 year: 2023 ident: bb0215 article-title: Heat transfer enhancement in lid-driven cavity with rotating cylinder: exploring NEPCMs and magnetic field effects publication-title: Int Commun Heat Mass Transf – volume: 183 year: 2023 ident: bb0025 article-title: System strength shortfall challenges for renewable energy-based power systems: a review publication-title: Renew Sustain Energy Rev – volume: 134 year: 2022 ident: bb0245 article-title: Effect of mushy zone constant on the melting of a solid-liquid PCM under hyper-gravity conditions publication-title: Int Commun Heat Mass Transf – volume: 179 year: 2021 ident: bb0205 article-title: Heat transfer enhancement in latent heat thermal energy storage unit using a combination of fins and rotational mechanisms publication-title: Int J Heat Mass Transf – volume: 150 year: 2021 ident: bb0060 article-title: A review of solar-driven organic Rankine cycles: recent challenges and future outlook publication-title: Renew Sustain Energy Rev – year: 2018 ident: bb0055 article-title: Solar salt latent heat thermal storage for a small solar organic rankine cycle plant publication-title: Energy Sustainability: American Society of Mechanical Engineers – volume: 39 year: 2021 ident: bb0185 article-title: Experimental study on the effect of tube rotation on performance of horizontal shell and tube latent heat energy storage publication-title: J Energy Storage – volume: 52 start-page: 4675 year: 2009 end-page: 4682 ident: bb0270 article-title: Experimental determination of thermal conductivity of three nanofluids and development of new correlations publication-title: Int J Heat Mass Transf – volume: 320 year: 2021 ident: bb0275 article-title: Nanofluids: physical phenomena, applications in thermal systems and the environment effects-a critical review publication-title: J Clean Prod – volume: 292 year: 2023 ident: bb0305 article-title: Techno-economic analysis of a biogas-fueled micro gas turbine cogeneration system with seasonal thermal energy storage publication-title: Energ Conver Manage – volume: 189 year: 2024 ident: bb0030 article-title: Increasing the resolution of solar and wind time series for energy system modeling: a review publication-title: Renew Sustain Energy Rev – volume: 271 year: 2023 ident: bb0225 article-title: Optimization of melting performance of a heat storage tank under rotation conditions: based on taguchi design and response surface method publication-title: Energy – volume: 263 year: 2023 ident: bb0250 article-title: An in-depth study on melting performance of latent heat thermal energy storage system under rotation mechanism by fluctuating heat source publication-title: Solar Energy Mater Solar Cells – volume: 215 start-page: 963 year: 2019 end-page: 977 ident: bb0140 article-title: Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems publication-title: J Clean Prod – volume: 12 year: 2023 ident: bb0040 article-title: Experimental research and multi-physical modeling progress of zinc-nickel single flow battery: a critical review publication-title: Adv Appl Energy – volume: 160 start-page: 286 year: 2015 end-page: 307 ident: bb0130 article-title: Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments publication-title: Appl Energy – volume: 215 year: 2022 ident: bb0165 article-title: Experimental study on the effect of rotation on melting performance of shell-and-tube latent heat thermal energy storage unit publication-title: Appl Therm Eng – volume: 39 start-page: 8 year: 2012 end-page: 16 ident: bb0280 article-title: Numerical study on melting of paraffin wax with Al2O3 in a square enclosure publication-title: Int Commun Heat Mass Transf – volume: 199 year: 2020 ident: bb0095 article-title: Effects of fluctuating thermal sources on a shell-and-tube latent thermal energy storage during charging process publication-title: Energy – volume: 14 start-page: 5425 year: 2023 ident: bb0015 article-title: Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions publication-title: Nat Commun – volume: 116 start-page: 76 year: 2014 end-page: 85 ident: bb0300 article-title: Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept publication-title: Appl Energy – volume: 223 year: 2020 ident: bb0035 article-title: Assessment of energy storage technologies: a review publication-title: Energ Conver Manage – volume: 100 year: 2022 ident: bb0085 article-title: Heat transfer characteristics and compatibility of molten salt/ceramic porous composite phase change material publication-title: Nano Energy – volume: 144 year: 2023 ident: bb0230 article-title: 3D validation, 2D feasibility, corrected and developed correlations for pure solid-gallium phase change modeling by enthalpy-porosity methodology publication-title: Int Commun Heat Mass Transf – volume: 290 year: 2023 ident: bb0290 article-title: Depth optimization of solidification properties of a latent heat energy storage unit under constant rotation mechanism publication-title: Energ Buildings – volume: 169 year: 2022 ident: bb0120 article-title: Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: a review publication-title: Renew Sustain Energy Rev – volume: 283 year: 2021 ident: bb0050 article-title: Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage publication-title: Appl Energy – volume: 7 start-page: 1769 year: 2023 end-page: 1792 ident: bb0010 article-title: Coordinating distributed energy resources for reliability can significantly reduce future distribution grid upgrades and peak load publication-title: Joule – volume: 4 start-page: 612 year: 2019 end-page: 621 ident: bb0005 article-title: Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources publication-title: Nat Energy – volume: 127 start-page: 1543 year: 2017 end-page: 1554 ident: bb0075 article-title: A small-scale solar organic Rankine cycle combined heat and power system with integrated thermal energy storage publication-title: Appl Therm Eng – volume: 49 year: 2022 ident: bb0125 article-title: Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: a state of the art review publication-title: Sustain Energy Technol Assess – volume: 331 year: 2023 ident: bb0155 article-title: Investigation and optimization of solidification performance of a triplex-tube latent heat thermal energy storage system by rotational mechanism publication-title: Appl Energy – volume: 49 year: 2022 ident: bb0065 article-title: Solar organic Rankine cycle and its poly-generation applications – a review publication-title: Sustain Energy Technol Assess – volume: 174 start-page: 102 year: 2021 end-page: 121 ident: bb0240 article-title: Experimental and numerical investigations of thermal performance enhancement in a latent heat storage heat exchanger using bifurcated and straight fins publication-title: Renew Energy – volume: 122 year: 2020 ident: bb0115 article-title: Progress on use of nanoparticles in salt hydrates as phase change materials publication-title: Renew Sustain Energy Rev – volume: 61 year: 2023 ident: bb0110 article-title: A critical review on heat transfer enhancement techniques in latent heat storage systems based on phase change materials publication-title: Passive and Active Techniques, System Designs and Optimization Journal of Energy Storage – volume: 205 year: 2023 ident: bb0160 article-title: Investigation and optimization on melting performance of a triplex-tube heat storage tank by rotational mechanism publication-title: Int J Heat Mass Transf – volume: 178 year: 2020 ident: bb0285 article-title: Nano-enhanced phase change materials (NePCMs): A review of numerical simulations publication-title: Appl Therm Eng – volume: 199 year: 2022 ident: bb0255 article-title: Experimental investigation on the charging and discharging performance enhancement of a vertical latent heat thermal energy storage unit via snowflake fin design publication-title: Int J Heat Mass Transf – start-page: 128164 year: 2023 ident: bb0150 article-title: Structural optimization of melting process of a latent heat energy storage unit and application of flip mechanism publication-title: Energy – volume: 227 start-page: 542 year: 2018 end-page: 554 ident: bb0175 article-title: Numerical investigation of heat transfer performance of a rotating latent heat thermal energy storage publication-title: Appl Energy – volume: 270 year: 2022 ident: bb0080 article-title: Thermal performance of latent heat energy storage system with/without enhancement under solar fluctuation for organic Rankine power cycle publication-title: Energ Conver Manage – volume: 6 start-page: 415 year: 2023 end-page: 427 ident: bb0020 article-title: Designing diversified renewable energy systems to balance multisector performance publication-title: Nat Sustain – volume: 309 year: 2022 ident: bb0145 article-title: Combined effects of nanoparticles and ultrasonic field on thermal energy storage performance of phase change materials with metal foam publication-title: Appl Energy – volume: 219 year: 2023 ident: bb0180 article-title: Synergistic improvement of melting rate and heat storage capacity by a rotation-based method for shell-and-tube latent thermal energy storage publication-title: Appl Therm Eng – volume: 58 year: 2023 ident: bb0210 article-title: Optimization of thermal energy storage: evaluation of natural convection and melting-solidification time of eccentricity for a rotational shell-and-tube unit publication-title: J Energy Storage – volume: 100 year: 2024 ident: bb0045 article-title: Advances in thermal energy storage: fundamentals and applications publication-title: Progr Energy Combust Sci – volume: 55 year: 2022 ident: bb0195 article-title: A numerical investigation on the finned storage rotation effect on the phase change material melting process of latent heat thermal energy storage system publication-title: J Energy Storage – volume: 255 year: 2022 ident: bb0235 article-title: Sensitivity analysis of design parameters for melting process of lauric acid in the vertically and horizontally oriented rectangular thermal storage units publication-title: Energy – volume: 20 start-page: 571 year: 1952 ident: bb0265 article-title: The viscosity of concentrated suspensions and solutions publication-title: J Chem Phys – volume: 36 year: 2021 ident: bb0190 article-title: Investigation of storage rotation effect on phase change material charging process in latent heat thermal energy storage system publication-title: J Energy Storage – volume: 347 year: 2023 ident: bb0105 article-title: Machine learning and multilayer perceptron enhanced CFD approach for improving design on latent heat storage tank publication-title: Appl Energy – volume: 62 year: 2023 ident: bb0170 article-title: Study of the melting performance of shell-and-tube latent heat thermal energy storage unit under the action of rotating finned tube publication-title: J Energy Storage – volume: 124 start-page: 663 year: 2018 end-page: 676 ident: bb0260 article-title: Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger publication-title: Int J Heat Mass Transf – volume: 72 year: 2023 ident: bb0100 article-title: A review on heat transfer enhancement techniques for PCM based thermal energy storage system publication-title: J Energy Storage – volume: 331 year: 2022 ident: bb0135 article-title: Optimization of shell and tube thermal energy storage unit based on the effects of adding fins, nanoparticles and rotational mechanism publication-title: J Clean Prod – volume: 170 start-page: 1098 year: 2019 end-page: 1112 ident: bb0090 article-title: Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery publication-title: Energy – volume: 221 start-page: 464 year: 2018 end-page: 476 ident: bb0070 article-title: Mathematical modelling of operation modes and performance evaluation of an innovative small-scale concentrated solar organic Rankine cycle plant publication-title: Appl Energy – volume: 75 start-page: 489 year: 2019 end-page: 508 ident: bb0200 article-title: Heat transfer intensification in horizontal shell and tube latent heat storage unit publication-title: Numer Heat Transf Part A: Appl – volume: 282 year: 2023 ident: bb0295 article-title: Optimization of a novel impulse gas turbine nozzle and blades design utilizing Taguchi method for micro-scale power generation publication-title: Energy – volume: 214 year: 2022 ident: bb0220 article-title: Melting and solidification characteristics of a semi-rotational eccentric tube horizontal latent heat thermal energy storage publication-title: Appl Therm Eng – year: 2018 ident: 10.1016/j.apenergy.2024.122997_bb0055 article-title: Solar salt latent heat thermal storage for a small solar organic rankine cycle plant – volume: 309 year: 2022 ident: 10.1016/j.apenergy.2024.122997_bb0145 article-title: Combined effects of nanoparticles and ultrasonic field on thermal energy storage performance of phase change materials with metal foam publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.118465 – volume: 292 year: 2023 ident: 10.1016/j.apenergy.2024.122997_bb0305 article-title: Techno-economic analysis of a biogas-fueled micro gas turbine cogeneration system with seasonal thermal energy storage publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2023.117407 – volume: 149 year: 2023 ident: 10.1016/j.apenergy.2024.122997_bb0215 article-title: Heat transfer enhancement in lid-driven cavity with rotating cylinder: exploring NEPCMs and magnetic field effects publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2023.107095 – start-page: 128164 year: 2023 ident: 10.1016/j.apenergy.2024.122997_bb0150 article-title: Structural optimization of melting process of a latent heat energy storage unit and application of flip mechanism publication-title: Energy doi: 10.1016/j.energy.2023.128164 – volume: 221 start-page: 464 year: 2018 ident: 10.1016/j.apenergy.2024.122997_bb0070 article-title: Mathematical modelling of operation modes and performance evaluation of an innovative small-scale concentrated solar organic Rankine cycle plant publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.03.189 – volume: 263 year: 2023 ident: 10.1016/j.apenergy.2024.122997_bb0250 article-title: An in-depth study on melting performance of latent heat thermal energy storage system under rotation mechanism by fluctuating heat source publication-title: Solar Energy Mater Solar Cells doi: 10.1016/j.solmat.2023.112584 – volume: 49 year: 2022 ident: 10.1016/j.apenergy.2024.122997_bb0125 article-title: Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: a state of the art review publication-title: Sustain Energy Technol Assess – volume: 122 year: 2020 ident: 10.1016/j.apenergy.2024.122997_bb0115 article-title: Progress on use of nanoparticles in salt hydrates as phase change materials publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.109727 – volume: 255 year: 2022 ident: 10.1016/j.apenergy.2024.122997_bb0235 article-title: Sensitivity analysis of design parameters for melting process of lauric acid in the vertically and horizontally oriented rectangular thermal storage units publication-title: Energy doi: 10.1016/j.energy.2022.124521 – volume: 124 start-page: 663 year: 2018 ident: 10.1016/j.apenergy.2024.122997_bb0260 article-title: Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.03.095 – volume: 320 year: 2021 ident: 10.1016/j.apenergy.2024.122997_bb0275 article-title: Nanofluids: physical phenomena, applications in thermal systems and the environment effects-a critical review publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.128573 – volume: 283 year: 2021 ident: 10.1016/j.apenergy.2024.122997_bb0050 article-title: Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.116277 – volume: 205 year: 2023 ident: 10.1016/j.apenergy.2024.122997_bb0160 article-title: Investigation and optimization on melting performance of a triplex-tube heat storage tank by rotational mechanism publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2023.123892 – volume: 116 start-page: 76 year: 2014 ident: 10.1016/j.apenergy.2024.122997_bb0300 article-title: Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.10.065 – volume: 214 year: 2022 ident: 10.1016/j.apenergy.2024.122997_bb0220 article-title: Melting and solidification characteristics of a semi-rotational eccentric tube horizontal latent heat thermal energy storage publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2022.118812 – volume: 52 start-page: 4675 year: 2009 ident: 10.1016/j.apenergy.2024.122997_bb0270 article-title: Experimental determination of thermal conductivity of three nanofluids and development of new correlations publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2009.06.027 – volume: 61 year: 2023 ident: 10.1016/j.apenergy.2024.122997_bb0110 article-title: A critical review on heat transfer enhancement techniques in latent heat storage systems based on phase change materials – volume: 227 start-page: 542 year: 2018 ident: 10.1016/j.apenergy.2024.122997_bb0175 article-title: Numerical investigation of heat transfer performance of a rotating latent heat thermal energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.08.087 – volume: 100 year: 2022 ident: 10.1016/j.apenergy.2024.122997_bb0085 article-title: Heat transfer characteristics and compatibility of molten salt/ceramic porous composite phase change material publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107476 – volume: 58 year: 2023 ident: 10.1016/j.apenergy.2024.122997_bb0210 article-title: Optimization of thermal energy storage: evaluation of natural convection and melting-solidification time of eccentricity for a rotational shell-and-tube unit publication-title: J Energy Storage doi: 10.1016/j.est.2022.106423 – volume: 39 start-page: 8 year: 2012 ident: 10.1016/j.apenergy.2024.122997_bb0280 article-title: Numerical study on melting of paraffin wax with Al2O3 in a square enclosure publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2011.09.013 – volume: 189 year: 2024 ident: 10.1016/j.apenergy.2024.122997_bb0030 article-title: Increasing the resolution of solar and wind time series for energy system modeling: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2023.113792 – volume: 347 year: 2023 ident: 10.1016/j.apenergy.2024.122997_bb0105 article-title: Machine learning and multilayer perceptron enhanced CFD approach for improving design on latent heat storage tank publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.121458 – volume: 39 year: 2021 ident: 10.1016/j.apenergy.2024.122997_bb0185 article-title: Experimental study on the effect of tube rotation on performance of horizontal shell and tube latent heat energy storage publication-title: J Energy Storage doi: 10.1016/j.est.2021.102626 – volume: 100 year: 2024 ident: 10.1016/j.apenergy.2024.122997_bb0045 article-title: Advances in thermal energy storage: fundamentals and applications publication-title: Progr Energy Combust Sci doi: 10.1016/j.pecs.2023.101109 – volume: 127 start-page: 1543 year: 2017 ident: 10.1016/j.apenergy.2024.122997_bb0075 article-title: A small-scale solar organic Rankine cycle combined heat and power system with integrated thermal energy storage publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.07.163 – volume: 183 year: 2023 ident: 10.1016/j.apenergy.2024.122997_bb0025 article-title: System strength shortfall challenges for renewable energy-based power systems: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2023.113447 – volume: 36 year: 2021 ident: 10.1016/j.apenergy.2024.122997_bb0190 article-title: Investigation of storage rotation effect on phase change material charging process in latent heat thermal energy storage system publication-title: J Energy Storage doi: 10.1016/j.est.2021.102442 – volume: 199 year: 2022 ident: 10.1016/j.apenergy.2024.122997_bb0255 article-title: Experimental investigation on the charging and discharging performance enhancement of a vertical latent heat thermal energy storage unit via snowflake fin design publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2022.123455 – volume: 169 year: 2022 ident: 10.1016/j.apenergy.2024.122997_bb0120 article-title: Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2022.112912 – volume: 270 year: 2022 ident: 10.1016/j.apenergy.2024.122997_bb0080 article-title: Thermal performance of latent heat energy storage system with/without enhancement under solar fluctuation for organic Rankine power cycle publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2022.116276 – volume: 174 start-page: 102 year: 2021 ident: 10.1016/j.apenergy.2024.122997_bb0240 article-title: Experimental and numerical investigations of thermal performance enhancement in a latent heat storage heat exchanger using bifurcated and straight fins publication-title: Renew Energy doi: 10.1016/j.renene.2021.04.076 – volume: 223 year: 2020 ident: 10.1016/j.apenergy.2024.122997_bb0035 article-title: Assessment of energy storage technologies: a review publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2020.113295 – volume: 6 start-page: 415 year: 2023 ident: 10.1016/j.apenergy.2024.122997_bb0020 article-title: Designing diversified renewable energy systems to balance multisector performance publication-title: Nat Sustain doi: 10.1038/s41893-022-01033-0 – volume: 20 start-page: 571 year: 1952 ident: 10.1016/j.apenergy.2024.122997_bb0265 article-title: The viscosity of concentrated suspensions and solutions publication-title: J Chem Phys doi: 10.1063/1.1700493 – volume: 55 year: 2022 ident: 10.1016/j.apenergy.2024.122997_bb0195 article-title: A numerical investigation on the finned storage rotation effect on the phase change material melting process of latent heat thermal energy storage system publication-title: J Energy Storage doi: 10.1016/j.est.2022.105461 – volume: 271 year: 2023 ident: 10.1016/j.apenergy.2024.122997_bb0225 article-title: Optimization of melting performance of a heat storage tank under rotation conditions: based on taguchi design and response surface method publication-title: Energy doi: 10.1016/j.energy.2023.127100 – volume: 150 year: 2021 ident: 10.1016/j.apenergy.2024.122997_bb0060 article-title: A review of solar-driven organic Rankine cycles: recent challenges and future outlook publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2021.111410 – volume: 12 year: 2023 ident: 10.1016/j.apenergy.2024.122997_bb0040 article-title: Experimental research and multi-physical modeling progress of zinc-nickel single flow battery: a critical review publication-title: Adv Appl Energy doi: 10.1016/j.adapen.2023.100154 – volume: 134 year: 2022 ident: 10.1016/j.apenergy.2024.122997_bb0245 article-title: Effect of mushy zone constant on the melting of a solid-liquid PCM under hyper-gravity conditions publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2022.105993 – volume: 290 year: 2023 ident: 10.1016/j.apenergy.2024.122997_bb0290 article-title: Depth optimization of solidification properties of a latent heat energy storage unit under constant rotation mechanism publication-title: Energ Buildings doi: 10.1016/j.enbuild.2023.113099 – volume: 178 year: 2020 ident: 10.1016/j.apenergy.2024.122997_bb0285 article-title: Nano-enhanced phase change materials (NePCMs): A review of numerical simulations publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2020.115492 – volume: 199 year: 2020 ident: 10.1016/j.apenergy.2024.122997_bb0095 article-title: Effects of fluctuating thermal sources on a shell-and-tube latent thermal energy storage during charging process publication-title: Energy doi: 10.1016/j.energy.2020.117400 – volume: 144 year: 2023 ident: 10.1016/j.apenergy.2024.122997_bb0230 article-title: 3D validation, 2D feasibility, corrected and developed correlations for pure solid-gallium phase change modeling by enthalpy-porosity methodology publication-title: Int Commun Heat Mass Transf – volume: 49 year: 2022 ident: 10.1016/j.apenergy.2024.122997_bb0065 article-title: Solar organic Rankine cycle and its poly-generation applications – a review publication-title: Sustain Energy Technol Assess – volume: 7 start-page: 1769 year: 2023 ident: 10.1016/j.apenergy.2024.122997_bb0010 article-title: Coordinating distributed energy resources for reliability can significantly reduce future distribution grid upgrades and peak load publication-title: Joule doi: 10.1016/j.joule.2023.06.015 – volume: 14 start-page: 5425 year: 2023 ident: 10.1016/j.apenergy.2024.122997_bb0015 article-title: Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions publication-title: Nat Commun doi: 10.1038/s41467-023-41105-z – volume: 170 start-page: 1098 year: 2019 ident: 10.1016/j.apenergy.2024.122997_bb0090 article-title: Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery publication-title: Energy doi: 10.1016/j.energy.2018.12.196 – volume: 331 year: 2022 ident: 10.1016/j.apenergy.2024.122997_bb0135 article-title: Optimization of shell and tube thermal energy storage unit based on the effects of adding fins, nanoparticles and rotational mechanism publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.129922 – volume: 72 year: 2023 ident: 10.1016/j.apenergy.2024.122997_bb0100 article-title: A review on heat transfer enhancement techniques for PCM based thermal energy storage system publication-title: J Energy Storage doi: 10.1016/j.est.2023.108161 – volume: 215 start-page: 963 year: 2019 ident: 10.1016/j.apenergy.2024.122997_bb0140 article-title: Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.01.122 – volume: 62 year: 2023 ident: 10.1016/j.apenergy.2024.122997_bb0170 article-title: Study of the melting performance of shell-and-tube latent heat thermal energy storage unit under the action of rotating finned tube publication-title: J Energy Storage doi: 10.1016/j.est.2023.106801 – volume: 215 year: 2022 ident: 10.1016/j.apenergy.2024.122997_bb0165 article-title: Experimental study on the effect of rotation on melting performance of shell-and-tube latent heat thermal energy storage unit publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2022.118877 – volume: 282 year: 2023 ident: 10.1016/j.apenergy.2024.122997_bb0295 article-title: Optimization of a novel impulse gas turbine nozzle and blades design utilizing Taguchi method for micro-scale power generation publication-title: Energy doi: 10.1016/j.energy.2023.129018 – volume: 160 start-page: 286 year: 2015 ident: 10.1016/j.apenergy.2024.122997_bb0130 article-title: Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.09.016 – volume: 179 year: 2021 ident: 10.1016/j.apenergy.2024.122997_bb0205 article-title: Heat transfer enhancement in latent heat thermal energy storage unit using a combination of fins and rotational mechanisms publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2021.121667 – volume: 75 start-page: 489 year: 2019 ident: 10.1016/j.apenergy.2024.122997_bb0200 article-title: Heat transfer intensification in horizontal shell and tube latent heat storage unit publication-title: Numer Heat Transf Part A: Appl doi: 10.1080/10407782.2019.1599273 – volume: 219 year: 2023 ident: 10.1016/j.apenergy.2024.122997_bb0180 article-title: Synergistic improvement of melting rate and heat storage capacity by a rotation-based method for shell-and-tube latent thermal energy storage publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2022.119480 – volume: 4 start-page: 612 year: 2019 ident: 10.1016/j.apenergy.2024.122997_bb0005 article-title: Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources publication-title: Nat Energy doi: 10.1038/s41560-019-0425-z – volume: 331 year: 2023 ident: 10.1016/j.apenergy.2024.122997_bb0155 article-title: Investigation and optimization of solidification performance of a triplex-tube latent heat thermal energy storage system by rotational mechanism publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.120435 |
SSID | ssj0002120 |
Score | 2.5861664 |
Snippet | The combination of latent heat storage (LHS) technology with the Organic Rankine Cycle represents a widely recognized solar thermoelectric conversion means.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 122997 |
SubjectTerms | heat transfer latent heat Metal nanoparticle nanoparticles Optimal design Phase change heat storage Sinusoidal temperature solar energy solidification Solidification properties Taguchi method temperature thermal conductivity thermal energy viscosity |
Title | Design optimization on solidification performance of a rotating latent heat thermal energy storage system subject to fluctuating heat source |
URI | https://dx.doi.org/10.1016/j.apenergy.2024.122997 https://www.proquest.com/docview/3153790061 |
Volume | 362 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELcQvLCHiY-hwaAy0l7TprFT148IigpovGxIvFlOfJ6KSlLR9HV_AX80d7FDYdLEw6QoUiyflfgudz_7PszYdxCZ8GOnE--LLJEqtUlhZZo4X6SQlxq0o33IH7ej6Z28vs_vN9h5lwtDYZVR9wed3mrr2DKIszlYzGaDn4R2wwKC3FttHVMpFUl5_886zCOLpRmxc0K932QJP_TtAtoMO1wnZrI_zFA3q38ZqL9UdWt_LnfY5wgc-Vl4t122AdUe-_SmnOAeO5iss9awa_xtl_vs-aKN0-A16ofHmHjJ8UK5mzmKFQoti3USAa89t_ypJkd99ZvPEZFWDSfFzQkxPuLw4Zs4RVeiTuKhJDRfrgra2eFNzf18Rdkp7QAtZXAUfGF3l5Nf59MkHsOQlELmTVKMvYV06GyGYFCMQJSlst6OtHBDj7fcZdgKAlwuQEFpvcoEkmKzzUGOxQHbrOoKvjJuwWuplbYupaI6dB4giAIRUVl6q8Aesrybe1PGGuV0VMbcdMFoD6bjmSGemcCzQzZ4pVuEKh0fUuiOteadvBk0JR_SnnayYPBnJA-LraBeLY1A-6E0wcKj_xj_G9umJ4pRGObHbLN5WsEJQp-m6LWy3WNbZ1c309sXYgoKgQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LTsMwLEJwAA6Ip3gTJK7duqZdlyPiofG8ABK3KG0cNDTaiXVXvoCPxm5SBkiIA1LVgxtHbe3YTvxi7AhEJGzPyMDaLAriNNRBpuMwMDYLIcklSEPnkDe33f5DfPmYPM6wkyYXhsIqvex3Mr2W1h7S9n-zPRoM2ndk7boNBLm3qI7pXIzLl9oYtN6mcR6Rr82IowMa_iVN-LmlR1Cn2OFGMYpbnQiFc_qbhvohq2sFdL7MlrzlyI_dy62wGShW2eKXeoKrbONsmraGQ_26Ha-x99M6UIOXKCBefOYlxwsZb2AoWMhBRtMsAl5arvlrSZ764okP0SQtKk6Sm5PJ-ILTu2_iFF6JQom7mtB8PMnoaIdXJbfDCaWn1BPUmM5TsM4ezs_uT_qB78MQ5CJOqiDrWQ1hx-gIrUHRBZHnqba6K4XpWLwlJkIoCDCJgBRybdNIICqCdQJxT2yw2aIsYJNxDVbGMpXahFRVhxoCgsjQJMpzq1PQWyxp_r3KfZFy6pUxVE002rNqaKaIZsrRbIu1P_FGrkzHnxiyIa36xnAKdcmfuIcNLyhcjeRi0QWUk7ESqEBSSXbh9j_mP2Dz_fuba3V9cXu1wxboCQUsdJJdNlu9TmAP7aAq26_5_ANYugwP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+optimization+on+solidification+performance+of+a+rotating+latent+heat+thermal+energy+storage+system+subject+to+fluctuating+heat+source&rft.jtitle=Applied+energy&rft.au=Huang%2C+Xinyu&rft.au=Li%2C+Fangfei&rft.au=Guo%2C+Junfei&rft.au=Li%2C+Yuanji&rft.date=2024-05-15&rft.issn=0306-2619&rft.volume=362&rft.spage=122997&rft_id=info:doi/10.1016%2Fj.apenergy.2024.122997&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2024_122997 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |