Design optimization on solidification performance of a rotating latent heat thermal energy storage system subject to fluctuating heat source

The combination of latent heat storage (LHS) technology with the Organic Rankine Cycle represents a widely recognized solar thermoelectric conversion means. However, this technology is hindered by the instability of solar energy and the poor thermal conductivity of thermal storage materials. This st...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 362; p. 122997
Main Authors Huang, Xinyu, Li, Fangfei, Guo, Junfei, Li, Yuanji, Du, Rui, Yang, Xiaohu, He, Ya-Ling
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The combination of latent heat storage (LHS) technology with the Organic Rankine Cycle represents a widely recognized solar thermoelectric conversion means. However, this technology is hindered by the instability of solar energy and the poor thermal conductivity of thermal storage materials. This study addresses the challenges posed by solar energy fluctuations by implementing a sinusoidal heat source condition during the heat release process of LHS system. Furthermore, a comprehensive approach is taken to enhance heat transfer, incorporating both active methods such as rotational conditions, and passive methods using metal nanoparticles and high-performance fins. The Taguchi method is employed to optimize rotation speed, heat source amplitude, and half-period of the latent heat storage unit, and the resulting heat release performance is compared between different structures and the optimized structures. The findings from optimal design analysis reveal that rotation speed has the most significant influence on mean heat discharging rate and solidification time, followed by the heat source amplitude and half-cycle period. There is a notable interaction between heat source amplitude and half-cycle period. Compared to the initial structure, the optimal structure identified through the optimal design shortens the solidification time by 11.18%, increases the mean heat discharging rate by 13.04% and raises the average temperature response by 18.82%. Furthermore, the addition of Al2O3 nanoparticles further enhances heat discharging properties. Specifically, the presence of 2.5% and 5% Al2O3 nanoparticles shortens unit solidification time by 9.52% and 18.83% and increases the mean heat release rate by 7.69% and 17.26%. It is noted that the incorporation of rotating-fit nanoparticles partly compensates for the limitations of increased viscosity and particle settlement associated with metal nanoparticles, although it does not fully address the challenges related to reduced heat storage/release. •This study lays a foundation for the comprehensive application of LHTES and ORC.•Sinusoidal wave heat source is applied to a triple-tube LHTES under rotation conditions.•The parameters of sinusoidal heat source are optimized by Taguchi method.•The solidification performance of the optimized structure is enhanced by 13.04%.
AbstractList The combination of latent heat storage (LHS) technology with the Organic Rankine Cycle represents a widely recognized solar thermoelectric conversion means. However, this technology is hindered by the instability of solar energy and the poor thermal conductivity of thermal storage materials. This study addresses the challenges posed by solar energy fluctuations by implementing a sinusoidal heat source condition during the heat release process of LHS system. Furthermore, a comprehensive approach is taken to enhance heat transfer, incorporating both active methods such as rotational conditions, and passive methods using metal nanoparticles and high-performance fins. The Taguchi method is employed to optimize rotation speed, heat source amplitude, and half-period of the latent heat storage unit, and the resulting heat release performance is compared between different structures and the optimized structures. The findings from optimal design analysis reveal that rotation speed has the most significant influence on mean heat discharging rate and solidification time, followed by the heat source amplitude and half-cycle period. There is a notable interaction between heat source amplitude and half-cycle period. Compared to the initial structure, the optimal structure identified through the optimal design shortens the solidification time by 11.18%, increases the mean heat discharging rate by 13.04% and raises the average temperature response by 18.82%. Furthermore, the addition of Al2O3 nanoparticles further enhances heat discharging properties. Specifically, the presence of 2.5% and 5% Al2O3 nanoparticles shortens unit solidification time by 9.52% and 18.83% and increases the mean heat release rate by 7.69% and 17.26%. It is noted that the incorporation of rotating-fit nanoparticles partly compensates for the limitations of increased viscosity and particle settlement associated with metal nanoparticles, although it does not fully address the challenges related to reduced heat storage/release. •This study lays a foundation for the comprehensive application of LHTES and ORC.•Sinusoidal wave heat source is applied to a triple-tube LHTES under rotation conditions.•The parameters of sinusoidal heat source are optimized by Taguchi method.•The solidification performance of the optimized structure is enhanced by 13.04%.
The combination of latent heat storage (LHS) technology with the Organic Rankine Cycle represents a widely recognized solar thermoelectric conversion means. However, this technology is hindered by the instability of solar energy and the poor thermal conductivity of thermal storage materials. This study addresses the challenges posed by solar energy fluctuations by implementing a sinusoidal heat source condition during the heat release process of LHS system. Furthermore, a comprehensive approach is taken to enhance heat transfer, incorporating both active methods such as rotational conditions, and passive methods using metal nanoparticles and high-performance fins. The Taguchi method is employed to optimize rotation speed, heat source amplitude, and half-period of the latent heat storage unit, and the resulting heat release performance is compared between different structures and the optimized structures. The findings from optimal design analysis reveal that rotation speed has the most significant influence on mean heat discharging rate and solidification time, followed by the heat source amplitude and half-cycle period. There is a notable interaction between heat source amplitude and half-cycle period. Compared to the initial structure, the optimal structure identified through the optimal design shortens the solidification time by 11.18%, increases the mean heat discharging rate by 13.04% and raises the average temperature response by 18.82%. Furthermore, the addition of Al₂O₃ nanoparticles further enhances heat discharging properties. Specifically, the presence of 2.5% and 5% Al₂O₃ nanoparticles shortens unit solidification time by 9.52% and 18.83% and increases the mean heat release rate by 7.69% and 17.26%. It is noted that the incorporation of rotating-fit nanoparticles partly compensates for the limitations of increased viscosity and particle settlement associated with metal nanoparticles, although it does not fully address the challenges related to reduced heat storage/release.
ArticleNumber 122997
Author Li, Fangfei
Li, Yuanji
He, Ya-Ling
Du, Rui
Guo, Junfei
Yang, Xiaohu
Huang, Xinyu
Author_xml – sequence: 1
  givenname: Xinyu
  surname: Huang
  fullname: Huang, Xinyu
  organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 2
  givenname: Fangfei
  surname: Li
  fullname: Li, Fangfei
  organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 3
  givenname: Junfei
  surname: Guo
  fullname: Guo, Junfei
  organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 4
  givenname: Yuanji
  surname: Li
  fullname: Li, Yuanji
  organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 5
  givenname: Rui
  surname: Du
  fullname: Du, Rui
  organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 6
  givenname: Xiaohu
  surname: Yang
  fullname: Yang, Xiaohu
  email: xiaohuyang@xjtu.edu.cn
  organization: Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 7
  givenname: Ya-Ling
  surname: He
  fullname: He, Ya-Ling
  organization: Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
BookMark eNqFkMtKxDAUhoMoOF5eQbJ00zGXaTsFF4p3ENzoOhzTkzFDm9QkFcZn8KGNVjdu3CTkz_8dDt8e2XbeISFHnM0549XJeg4DOgyrzVwwsZhzIZqm3iIzvqxF0XC-3CYzJllViIo3u2QvxjVjTHDBZuTjEqNdOeqHZHv7Dsn6_HA0-s621lg9JQMG40MPTiP1hgINPuUft6IdJHSJviAkml4wdzo6bUNj8gFWSOMmJuxpHJ_XqHPLU9ONOo3TgG8y-jFoPCA7BrqIhz_3Pnm6vnq8uC3uH27uLs7vCy0XZSqelwaQ8RZEI6SsUGpdg4GqkS03-ShbkVOU2JYSa9RgaiEzmmMocbGU--R4mjsE_zpiTKq3UWPXgUM_RiV5KeuGsYrnajVVdfAxBjRqCLaHsFGcqS_9aq1-9asv_WrSn8HTP6C26VtmCmC7__GzCcfs4c1iUFFbzPpbG7JE1Xr734hPKVis_g
CitedBy_id crossref_primary_10_1016_j_energy_2025_134536
crossref_primary_10_1016_j_psep_2024_06_079
crossref_primary_10_1115_1_4065349
crossref_primary_10_3390_en17081973
crossref_primary_10_1016_j_energy_2024_133420
crossref_primary_10_1016_j_tsep_2025_103385
crossref_primary_10_1016_j_est_2025_115871
crossref_primary_10_1016_j_est_2025_116169
crossref_primary_10_1016_j_renene_2024_122067
crossref_primary_10_1016_j_est_2024_112613
crossref_primary_10_1016_j_est_2024_112436
crossref_primary_10_1108_HFF_06_2024_0424
crossref_primary_10_1007_s40430_024_05236_8
crossref_primary_10_1016_j_est_2024_114375
crossref_primary_10_1016_j_applthermaleng_2024_123040
crossref_primary_10_18686_cest237
crossref_primary_10_1016_j_buildenv_2024_112291
crossref_primary_10_1016_j_jobe_2024_110567
crossref_primary_10_1016_j_energy_2024_132500
crossref_primary_10_1016_j_energy_2024_132501
crossref_primary_10_1088_3050_2454_adbaf7
crossref_primary_10_1016_j_est_2024_114807
crossref_primary_10_1016_j_energy_2024_132101
crossref_primary_10_1016_j_enganabound_2024_105895
crossref_primary_10_1016_j_est_2024_112723
crossref_primary_10_3390_en17143376
crossref_primary_10_1016_j_energy_2024_131813
crossref_primary_10_1016_j_est_2024_113452
crossref_primary_10_1016_j_ijheatfluidflow_2024_109445
crossref_primary_10_1016_j_tsep_2024_102530
crossref_primary_10_1016_j_ijheatfluidflow_2024_109561
crossref_primary_10_1016_j_tsep_2024_102756
crossref_primary_10_1177_00405175241292834
Cites_doi 10.1016/j.apenergy.2021.118465
10.1016/j.enconman.2023.117407
10.1016/j.icheatmasstransfer.2023.107095
10.1016/j.energy.2023.128164
10.1016/j.apenergy.2018.03.189
10.1016/j.solmat.2023.112584
10.1016/j.rser.2020.109727
10.1016/j.energy.2022.124521
10.1016/j.ijheatmasstransfer.2018.03.095
10.1016/j.jclepro.2021.128573
10.1016/j.apenergy.2020.116277
10.1016/j.ijheatmasstransfer.2023.123892
10.1016/j.apenergy.2013.10.065
10.1016/j.applthermaleng.2022.118812
10.1016/j.ijheatmasstransfer.2009.06.027
10.1016/j.apenergy.2017.08.087
10.1016/j.nanoen.2022.107476
10.1016/j.est.2022.106423
10.1016/j.icheatmasstransfer.2011.09.013
10.1016/j.rser.2023.113792
10.1016/j.apenergy.2023.121458
10.1016/j.est.2021.102626
10.1016/j.pecs.2023.101109
10.1016/j.applthermaleng.2017.07.163
10.1016/j.rser.2023.113447
10.1016/j.est.2021.102442
10.1016/j.ijheatmasstransfer.2022.123455
10.1016/j.rser.2022.112912
10.1016/j.enconman.2022.116276
10.1016/j.renene.2021.04.076
10.1016/j.enconman.2020.113295
10.1038/s41893-022-01033-0
10.1063/1.1700493
10.1016/j.est.2022.105461
10.1016/j.energy.2023.127100
10.1016/j.rser.2021.111410
10.1016/j.adapen.2023.100154
10.1016/j.icheatmasstransfer.2022.105993
10.1016/j.enbuild.2023.113099
10.1016/j.applthermaleng.2020.115492
10.1016/j.energy.2020.117400
10.1016/j.joule.2023.06.015
10.1038/s41467-023-41105-z
10.1016/j.energy.2018.12.196
10.1016/j.jclepro.2021.129922
10.1016/j.est.2023.108161
10.1016/j.jclepro.2019.01.122
10.1016/j.est.2023.106801
10.1016/j.applthermaleng.2022.118877
10.1016/j.energy.2023.129018
10.1016/j.apenergy.2015.09.016
10.1016/j.ijheatmasstransfer.2021.121667
10.1080/10407782.2019.1599273
10.1016/j.applthermaleng.2022.119480
10.1038/s41560-019-0425-z
10.1016/j.apenergy.2022.120435
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2024.122997
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2024_122997
S0306261924003805
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
LY6
R2-
SAC
SSH
WUQ
ZY4
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c345t-b8fae01da292336e3cc7afa693d1f93d5d236ee3ed53e7ecaf723c34d23a5e483
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Fri Aug 22 20:24:04 EDT 2025
Thu Apr 24 22:56:38 EDT 2025
Tue Jul 01 04:01:22 EDT 2025
Sat Apr 13 16:37:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Solidification properties
Sinusoidal temperature
Metal nanoparticle
Phase change heat storage
Optimal design
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-b8fae01da292336e3cc7afa693d1f93d5d236ee3ed53e7ecaf723c34d23a5e483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153790061
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153790061
crossref_primary_10_1016_j_apenergy_2024_122997
crossref_citationtrail_10_1016_j_apenergy_2024_122997
elsevier_sciencedirect_doi_10_1016_j_apenergy_2024_122997
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-15
PublicationDateYYYYMMDD 2024-05-15
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liaw, Kurnia, Lai, Ong, Zar, Muhammad (bb0295) 2023; 282
Rahman, Oni, Gemechu, Kumar (bb0035) 2020; 223
Soltani, Soltani, Karimi, Nathwani (bb0205) 2021; 179
Zhang, Yan (bb0080) 2022; 270
Li, Lu, Huang, Chang, Yu, Jiang (bb0050) 2021; 283
Huang, Zhou, Luo, Yang, Cheng, Yan (bb0040) 2023; 12
Kurnia, Sasmito (bb0175) 2018; 227
Huang, Li, Xiao, Guo, Wang, Gao (bb0155) 2023; 331
Choure, Alam, Kumar (bb0100) 2023; 72
Sivasakthivel, Murugesan, Thomas (bb0300) 2014; 116
Huang, Li, Li, Yang, Li (bb0250) 2023; 263
Huang, Li, Li, Gao, Yang, Sundén (bb0160) 2023; 205
Vajjha, Das (bb0270) 2009; 52
Gupta, Tiwari, Said (bb0065) 2022; 49
Wong-Pinto, Milian, Ushak (bb0115) 2020; 122
Qays, Ahmad, Habibi, Aziz, Mahmoud (bb0025) 2023; 183
Singh, Patel (bb0245) 2022; 134
Yu, Jiang, Li, Qian, Wang, Wang (bb0180) 2023; 219
Huang, Li, Li, Meng, Yang, Sundén (bb0225) 2023; 271
Brinkman (bb0265) 1952; 20
Sheikholeslami, Mahian (bb0140) 2019; 215
Arasu, Mujumdar (bb0280) 2012; 39
Li, Huang, Huang, Gao, Hu, Yang (bb0105) 2023; 347
Gonzalez, Tomlinson, Martínez Ceseña, Basheer, Obuobie, Padi (bb0020) 2023; 6
Loni, Mahian, Markides, Bellos, Le Roux, Kasaeian (bb0060) 2021; 150
Hassan, Jamil, Hussain, Ali, Janjua, Khushnood (bb0125) 2022; 49
Costa, Mahkamov, Kenisarin, Lynn, Halimic, Mullen (bb0055) 2018
Ye, Arıcı (bb0230) 2023; 144
Huang, Li, Lu, Li, Yang, Yan (bb0290) 2023; 290
Cioccolanti, Tascioni, Arteconi (bb0070) 2018; 221
Zheng, Sun, Chen, He, Yin, Xu (bb0170) 2023; 62
Zhang, Lu, Wang, Zhu, Zhang, Wang (bb0255) 2022; 199
Iachachene, Halouane, Achab (bb0215) 2023; 149
Huang, Li, Xiao, Li, Yang, He (bb0150) 2023
Modi, Wang, Negnevitsky (bb0220) 2022; 214
Mahdi, Lohrasbi, Ganji, Nsofor (bb0260) 2018; 124
Fathi, Mussa (bb0185) 2021; 39
Li, Yu, Wang, Lu, Huang, Chang (bb0095) 2020; 199
Xu, Li, Chan (bb0130) 2015; 160
Omoyele, Hoffmann, Koivisto, Larrañeta, Weinand, Linßen (bb0030) 2024; 189
Brockway, Owen, Brand-Correa, Hardt (bb0005) 2019; 4
Freeman, Guarracino, Kalogirou, Markides (bb0075) 2017; 127
Cui, Si, Li, Li, Lu, Ma (bb0120) 2022; 169
Ali, Rehman, Arıcı, Said, Duraković, Mohammed (bb0045) 2024; 100
Pordanjani, Aghakhani, Afrand, Sharifpur, Meyer, Xu (bb0275) 2021; 320
Soltani, Soltani, Karimi, Nathwani (bb0135) 2022; 331
Safari, Kamkari, Hooman, Khodadadi (bb0235) 2022; 255
Zhang, Li, Yao, Tian, Yan (bb0085) 2022; 100
Jaberi Khosroshahi, Hossainpour (bb0195) 2022; 55
Jaberi Khosroshahi, Hossainpour (bb0190) 2021; 36
Mehta, Vaghela, Rathod, Banerjee (bb0200) 2019; 75
Soltani, Soltani, Nathwani (bb0210) 2023; 58
Yang, Zheng, Cai, Xu (bb0165) 2022; 215
Safari, Abolghasemi, Kamkari (bb0240) 2021; 174
Achakulwisut, Erickson, Guivarch, Schaeffer, Brutschin, Pye (bb0015) 2023; 14
Zhang, Banihabib, Fadnes, Sazon, Ahmed, Assadi (bb0305) 2023; 292
Diaconu, Cruceru, Anghelescu (bb0110) 2023; 61
Cui, Li, Li, Lu, Ma, Wang (bb0145) 2022; 309
Xiong, Zheng, Shah (bb0285) 2020; 178
Navidi, El Gamal, Rajagopal (bb0010) 2023; 7
Yu, Li, Lu, Huang, Roskilly (bb0090) 2019; 170
Zheng (10.1016/j.apenergy.2024.122997_bb0170) 2023; 62
Liaw (10.1016/j.apenergy.2024.122997_bb0295) 2023; 282
Soltani (10.1016/j.apenergy.2024.122997_bb0210) 2023; 58
Vajjha (10.1016/j.apenergy.2024.122997_bb0270) 2009; 52
Ali (10.1016/j.apenergy.2024.122997_bb0045) 2024; 100
Jaberi Khosroshahi (10.1016/j.apenergy.2024.122997_bb0190) 2021; 36
Cioccolanti (10.1016/j.apenergy.2024.122997_bb0070) 2018; 221
Yang (10.1016/j.apenergy.2024.122997_bb0165) 2022; 215
Soltani (10.1016/j.apenergy.2024.122997_bb0205) 2021; 179
Fathi (10.1016/j.apenergy.2024.122997_bb0185) 2021; 39
Iachachene (10.1016/j.apenergy.2024.122997_bb0215) 2023; 149
Zhang (10.1016/j.apenergy.2024.122997_bb0080) 2022; 270
Jaberi Khosroshahi (10.1016/j.apenergy.2024.122997_bb0195) 2022; 55
Rahman (10.1016/j.apenergy.2024.122997_bb0035) 2020; 223
Zhang (10.1016/j.apenergy.2024.122997_bb0255) 2022; 199
Cui (10.1016/j.apenergy.2024.122997_bb0120) 2022; 169
Xu (10.1016/j.apenergy.2024.122997_bb0130) 2015; 160
Wong-Pinto (10.1016/j.apenergy.2024.122997_bb0115) 2020; 122
Sheikholeslami (10.1016/j.apenergy.2024.122997_bb0140) 2019; 215
Soltani (10.1016/j.apenergy.2024.122997_bb0135) 2022; 331
Yu (10.1016/j.apenergy.2024.122997_bb0180) 2023; 219
Pordanjani (10.1016/j.apenergy.2024.122997_bb0275) 2021; 320
Huang (10.1016/j.apenergy.2024.122997_bb0040) 2023; 12
Safari (10.1016/j.apenergy.2024.122997_bb0240) 2021; 174
Mehta (10.1016/j.apenergy.2024.122997_bb0200) 2019; 75
Brockway (10.1016/j.apenergy.2024.122997_bb0005) 2019; 4
Huang (10.1016/j.apenergy.2024.122997_bb0155) 2023; 331
Navidi (10.1016/j.apenergy.2024.122997_bb0010) 2023; 7
Choure (10.1016/j.apenergy.2024.122997_bb0100) 2023; 72
Li (10.1016/j.apenergy.2024.122997_bb0105) 2023; 347
Cui (10.1016/j.apenergy.2024.122997_bb0145) 2022; 309
Arasu (10.1016/j.apenergy.2024.122997_bb0280) 2012; 39
Hassan (10.1016/j.apenergy.2024.122997_bb0125) 2022; 49
Mahdi (10.1016/j.apenergy.2024.122997_bb0260) 2018; 124
Sivasakthivel (10.1016/j.apenergy.2024.122997_bb0300) 2014; 116
Achakulwisut (10.1016/j.apenergy.2024.122997_bb0015) 2023; 14
Zhang (10.1016/j.apenergy.2024.122997_bb0305) 2023; 292
Diaconu (10.1016/j.apenergy.2024.122997_bb0110) 2023; 61
Huang (10.1016/j.apenergy.2024.122997_bb0225) 2023; 271
Safari (10.1016/j.apenergy.2024.122997_bb0235) 2022; 255
Huang (10.1016/j.apenergy.2024.122997_bb0160) 2023; 205
Freeman (10.1016/j.apenergy.2024.122997_bb0075) 2017; 127
Xiong (10.1016/j.apenergy.2024.122997_bb0285) 2020; 178
Modi (10.1016/j.apenergy.2024.122997_bb0220) 2022; 214
Zhang (10.1016/j.apenergy.2024.122997_bb0085) 2022; 100
Huang (10.1016/j.apenergy.2024.122997_bb0150) 2023
Kurnia (10.1016/j.apenergy.2024.122997_bb0175) 2018; 227
Gonzalez (10.1016/j.apenergy.2024.122997_bb0020) 2023; 6
Singh (10.1016/j.apenergy.2024.122997_bb0245) 2022; 134
Costa (10.1016/j.apenergy.2024.122997_bb0055) 2018
Huang (10.1016/j.apenergy.2024.122997_bb0290) 2023; 290
Yu (10.1016/j.apenergy.2024.122997_bb0090) 2019; 170
Li (10.1016/j.apenergy.2024.122997_bb0095) 2020; 199
Qays (10.1016/j.apenergy.2024.122997_bb0025) 2023; 183
Gupta (10.1016/j.apenergy.2024.122997_bb0065) 2022; 49
Huang (10.1016/j.apenergy.2024.122997_bb0250) 2023; 263
Brinkman (10.1016/j.apenergy.2024.122997_bb0265) 1952; 20
Loni (10.1016/j.apenergy.2024.122997_bb0060) 2021; 150
Omoyele (10.1016/j.apenergy.2024.122997_bb0030) 2024; 189
Ye (10.1016/j.apenergy.2024.122997_bb0230) 2023; 144
Li (10.1016/j.apenergy.2024.122997_bb0050) 2021; 283
References_xml – volume: 149
  year: 2023
  ident: bb0215
  article-title: Heat transfer enhancement in lid-driven cavity with rotating cylinder: exploring NEPCMs and magnetic field effects
  publication-title: Int Commun Heat Mass Transf
– volume: 183
  year: 2023
  ident: bb0025
  article-title: System strength shortfall challenges for renewable energy-based power systems: a review
  publication-title: Renew Sustain Energy Rev
– volume: 134
  year: 2022
  ident: bb0245
  article-title: Effect of mushy zone constant on the melting of a solid-liquid PCM under hyper-gravity conditions
  publication-title: Int Commun Heat Mass Transf
– volume: 179
  year: 2021
  ident: bb0205
  article-title: Heat transfer enhancement in latent heat thermal energy storage unit using a combination of fins and rotational mechanisms
  publication-title: Int J Heat Mass Transf
– volume: 150
  year: 2021
  ident: bb0060
  article-title: A review of solar-driven organic Rankine cycles: recent challenges and future outlook
  publication-title: Renew Sustain Energy Rev
– year: 2018
  ident: bb0055
  article-title: Solar salt latent heat thermal storage for a small solar organic rankine cycle plant
  publication-title: Energy Sustainability: American Society of Mechanical Engineers
– volume: 39
  year: 2021
  ident: bb0185
  article-title: Experimental study on the effect of tube rotation on performance of horizontal shell and tube latent heat energy storage
  publication-title: J Energy Storage
– volume: 52
  start-page: 4675
  year: 2009
  end-page: 4682
  ident: bb0270
  article-title: Experimental determination of thermal conductivity of three nanofluids and development of new correlations
  publication-title: Int J Heat Mass Transf
– volume: 320
  year: 2021
  ident: bb0275
  article-title: Nanofluids: physical phenomena, applications in thermal systems and the environment effects-a critical review
  publication-title: J Clean Prod
– volume: 292
  year: 2023
  ident: bb0305
  article-title: Techno-economic analysis of a biogas-fueled micro gas turbine cogeneration system with seasonal thermal energy storage
  publication-title: Energ Conver Manage
– volume: 189
  year: 2024
  ident: bb0030
  article-title: Increasing the resolution of solar and wind time series for energy system modeling: a review
  publication-title: Renew Sustain Energy Rev
– volume: 271
  year: 2023
  ident: bb0225
  article-title: Optimization of melting performance of a heat storage tank under rotation conditions: based on taguchi design and response surface method
  publication-title: Energy
– volume: 263
  year: 2023
  ident: bb0250
  article-title: An in-depth study on melting performance of latent heat thermal energy storage system under rotation mechanism by fluctuating heat source
  publication-title: Solar Energy Mater Solar Cells
– volume: 215
  start-page: 963
  year: 2019
  end-page: 977
  ident: bb0140
  article-title: Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems
  publication-title: J Clean Prod
– volume: 12
  year: 2023
  ident: bb0040
  article-title: Experimental research and multi-physical modeling progress of zinc-nickel single flow battery: a critical review
  publication-title: Adv Appl Energy
– volume: 160
  start-page: 286
  year: 2015
  end-page: 307
  ident: bb0130
  article-title: Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments
  publication-title: Appl Energy
– volume: 215
  year: 2022
  ident: bb0165
  article-title: Experimental study on the effect of rotation on melting performance of shell-and-tube latent heat thermal energy storage unit
  publication-title: Appl Therm Eng
– volume: 39
  start-page: 8
  year: 2012
  end-page: 16
  ident: bb0280
  article-title: Numerical study on melting of paraffin wax with Al2O3 in a square enclosure
  publication-title: Int Commun Heat Mass Transf
– volume: 199
  year: 2020
  ident: bb0095
  article-title: Effects of fluctuating thermal sources on a shell-and-tube latent thermal energy storage during charging process
  publication-title: Energy
– volume: 14
  start-page: 5425
  year: 2023
  ident: bb0015
  article-title: Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions
  publication-title: Nat Commun
– volume: 116
  start-page: 76
  year: 2014
  end-page: 85
  ident: bb0300
  article-title: Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept
  publication-title: Appl Energy
– volume: 223
  year: 2020
  ident: bb0035
  article-title: Assessment of energy storage technologies: a review
  publication-title: Energ Conver Manage
– volume: 100
  year: 2022
  ident: bb0085
  article-title: Heat transfer characteristics and compatibility of molten salt/ceramic porous composite phase change material
  publication-title: Nano Energy
– volume: 144
  year: 2023
  ident: bb0230
  article-title: 3D validation, 2D feasibility, corrected and developed correlations for pure solid-gallium phase change modeling by enthalpy-porosity methodology
  publication-title: Int Commun Heat Mass Transf
– volume: 290
  year: 2023
  ident: bb0290
  article-title: Depth optimization of solidification properties of a latent heat energy storage unit under constant rotation mechanism
  publication-title: Energ Buildings
– volume: 169
  year: 2022
  ident: bb0120
  article-title: Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: a review
  publication-title: Renew Sustain Energy Rev
– volume: 283
  year: 2021
  ident: bb0050
  article-title: Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage
  publication-title: Appl Energy
– volume: 7
  start-page: 1769
  year: 2023
  end-page: 1792
  ident: bb0010
  article-title: Coordinating distributed energy resources for reliability can significantly reduce future distribution grid upgrades and peak load
  publication-title: Joule
– volume: 4
  start-page: 612
  year: 2019
  end-page: 621
  ident: bb0005
  article-title: Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources
  publication-title: Nat Energy
– volume: 127
  start-page: 1543
  year: 2017
  end-page: 1554
  ident: bb0075
  article-title: A small-scale solar organic Rankine cycle combined heat and power system with integrated thermal energy storage
  publication-title: Appl Therm Eng
– volume: 49
  year: 2022
  ident: bb0125
  article-title: Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: a state of the art review
  publication-title: Sustain Energy Technol Assess
– volume: 331
  year: 2023
  ident: bb0155
  article-title: Investigation and optimization of solidification performance of a triplex-tube latent heat thermal energy storage system by rotational mechanism
  publication-title: Appl Energy
– volume: 49
  year: 2022
  ident: bb0065
  article-title: Solar organic Rankine cycle and its poly-generation applications – a review
  publication-title: Sustain Energy Technol Assess
– volume: 174
  start-page: 102
  year: 2021
  end-page: 121
  ident: bb0240
  article-title: Experimental and numerical investigations of thermal performance enhancement in a latent heat storage heat exchanger using bifurcated and straight fins
  publication-title: Renew Energy
– volume: 122
  year: 2020
  ident: bb0115
  article-title: Progress on use of nanoparticles in salt hydrates as phase change materials
  publication-title: Renew Sustain Energy Rev
– volume: 61
  year: 2023
  ident: bb0110
  article-title: A critical review on heat transfer enhancement techniques in latent heat storage systems based on phase change materials
  publication-title: Passive and Active Techniques, System Designs and Optimization Journal of Energy Storage
– volume: 205
  year: 2023
  ident: bb0160
  article-title: Investigation and optimization on melting performance of a triplex-tube heat storage tank by rotational mechanism
  publication-title: Int J Heat Mass Transf
– volume: 178
  year: 2020
  ident: bb0285
  article-title: Nano-enhanced phase change materials (NePCMs): A review of numerical simulations
  publication-title: Appl Therm Eng
– volume: 199
  year: 2022
  ident: bb0255
  article-title: Experimental investigation on the charging and discharging performance enhancement of a vertical latent heat thermal energy storage unit via snowflake fin design
  publication-title: Int J Heat Mass Transf
– start-page: 128164
  year: 2023
  ident: bb0150
  article-title: Structural optimization of melting process of a latent heat energy storage unit and application of flip mechanism
  publication-title: Energy
– volume: 227
  start-page: 542
  year: 2018
  end-page: 554
  ident: bb0175
  article-title: Numerical investigation of heat transfer performance of a rotating latent heat thermal energy storage
  publication-title: Appl Energy
– volume: 270
  year: 2022
  ident: bb0080
  article-title: Thermal performance of latent heat energy storage system with/without enhancement under solar fluctuation for organic Rankine power cycle
  publication-title: Energ Conver Manage
– volume: 6
  start-page: 415
  year: 2023
  end-page: 427
  ident: bb0020
  article-title: Designing diversified renewable energy systems to balance multisector performance
  publication-title: Nat Sustain
– volume: 309
  year: 2022
  ident: bb0145
  article-title: Combined effects of nanoparticles and ultrasonic field on thermal energy storage performance of phase change materials with metal foam
  publication-title: Appl Energy
– volume: 219
  year: 2023
  ident: bb0180
  article-title: Synergistic improvement of melting rate and heat storage capacity by a rotation-based method for shell-and-tube latent thermal energy storage
  publication-title: Appl Therm Eng
– volume: 58
  year: 2023
  ident: bb0210
  article-title: Optimization of thermal energy storage: evaluation of natural convection and melting-solidification time of eccentricity for a rotational shell-and-tube unit
  publication-title: J Energy Storage
– volume: 100
  year: 2024
  ident: bb0045
  article-title: Advances in thermal energy storage: fundamentals and applications
  publication-title: Progr Energy Combust Sci
– volume: 55
  year: 2022
  ident: bb0195
  article-title: A numerical investigation on the finned storage rotation effect on the phase change material melting process of latent heat thermal energy storage system
  publication-title: J Energy Storage
– volume: 255
  year: 2022
  ident: bb0235
  article-title: Sensitivity analysis of design parameters for melting process of lauric acid in the vertically and horizontally oriented rectangular thermal storage units
  publication-title: Energy
– volume: 20
  start-page: 571
  year: 1952
  ident: bb0265
  article-title: The viscosity of concentrated suspensions and solutions
  publication-title: J Chem Phys
– volume: 36
  year: 2021
  ident: bb0190
  article-title: Investigation of storage rotation effect on phase change material charging process in latent heat thermal energy storage system
  publication-title: J Energy Storage
– volume: 347
  year: 2023
  ident: bb0105
  article-title: Machine learning and multilayer perceptron enhanced CFD approach for improving design on latent heat storage tank
  publication-title: Appl Energy
– volume: 62
  year: 2023
  ident: bb0170
  article-title: Study of the melting performance of shell-and-tube latent heat thermal energy storage unit under the action of rotating finned tube
  publication-title: J Energy Storage
– volume: 124
  start-page: 663
  year: 2018
  end-page: 676
  ident: bb0260
  article-title: Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger
  publication-title: Int J Heat Mass Transf
– volume: 72
  year: 2023
  ident: bb0100
  article-title: A review on heat transfer enhancement techniques for PCM based thermal energy storage system
  publication-title: J Energy Storage
– volume: 331
  year: 2022
  ident: bb0135
  article-title: Optimization of shell and tube thermal energy storage unit based on the effects of adding fins, nanoparticles and rotational mechanism
  publication-title: J Clean Prod
– volume: 170
  start-page: 1098
  year: 2019
  end-page: 1112
  ident: bb0090
  article-title: Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery
  publication-title: Energy
– volume: 221
  start-page: 464
  year: 2018
  end-page: 476
  ident: bb0070
  article-title: Mathematical modelling of operation modes and performance evaluation of an innovative small-scale concentrated solar organic Rankine cycle plant
  publication-title: Appl Energy
– volume: 75
  start-page: 489
  year: 2019
  end-page: 508
  ident: bb0200
  article-title: Heat transfer intensification in horizontal shell and tube latent heat storage unit
  publication-title: Numer Heat Transf Part A: Appl
– volume: 282
  year: 2023
  ident: bb0295
  article-title: Optimization of a novel impulse gas turbine nozzle and blades design utilizing Taguchi method for micro-scale power generation
  publication-title: Energy
– volume: 214
  year: 2022
  ident: bb0220
  article-title: Melting and solidification characteristics of a semi-rotational eccentric tube horizontal latent heat thermal energy storage
  publication-title: Appl Therm Eng
– year: 2018
  ident: 10.1016/j.apenergy.2024.122997_bb0055
  article-title: Solar salt latent heat thermal storage for a small solar organic rankine cycle plant
– volume: 309
  year: 2022
  ident: 10.1016/j.apenergy.2024.122997_bb0145
  article-title: Combined effects of nanoparticles and ultrasonic field on thermal energy storage performance of phase change materials with metal foam
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.118465
– volume: 292
  year: 2023
  ident: 10.1016/j.apenergy.2024.122997_bb0305
  article-title: Techno-economic analysis of a biogas-fueled micro gas turbine cogeneration system with seasonal thermal energy storage
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2023.117407
– volume: 149
  year: 2023
  ident: 10.1016/j.apenergy.2024.122997_bb0215
  article-title: Heat transfer enhancement in lid-driven cavity with rotating cylinder: exploring NEPCMs and magnetic field effects
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2023.107095
– start-page: 128164
  year: 2023
  ident: 10.1016/j.apenergy.2024.122997_bb0150
  article-title: Structural optimization of melting process of a latent heat energy storage unit and application of flip mechanism
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128164
– volume: 221
  start-page: 464
  year: 2018
  ident: 10.1016/j.apenergy.2024.122997_bb0070
  article-title: Mathematical modelling of operation modes and performance evaluation of an innovative small-scale concentrated solar organic Rankine cycle plant
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.03.189
– volume: 263
  year: 2023
  ident: 10.1016/j.apenergy.2024.122997_bb0250
  article-title: An in-depth study on melting performance of latent heat thermal energy storage system under rotation mechanism by fluctuating heat source
  publication-title: Solar Energy Mater Solar Cells
  doi: 10.1016/j.solmat.2023.112584
– volume: 49
  year: 2022
  ident: 10.1016/j.apenergy.2024.122997_bb0125
  article-title: Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: a state of the art review
  publication-title: Sustain Energy Technol Assess
– volume: 122
  year: 2020
  ident: 10.1016/j.apenergy.2024.122997_bb0115
  article-title: Progress on use of nanoparticles in salt hydrates as phase change materials
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2020.109727
– volume: 255
  year: 2022
  ident: 10.1016/j.apenergy.2024.122997_bb0235
  article-title: Sensitivity analysis of design parameters for melting process of lauric acid in the vertically and horizontally oriented rectangular thermal storage units
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124521
– volume: 124
  start-page: 663
  year: 2018
  ident: 10.1016/j.apenergy.2024.122997_bb0260
  article-title: Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.03.095
– volume: 320
  year: 2021
  ident: 10.1016/j.apenergy.2024.122997_bb0275
  article-title: Nanofluids: physical phenomena, applications in thermal systems and the environment effects-a critical review
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2021.128573
– volume: 283
  year: 2021
  ident: 10.1016/j.apenergy.2024.122997_bb0050
  article-title: Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.116277
– volume: 205
  year: 2023
  ident: 10.1016/j.apenergy.2024.122997_bb0160
  article-title: Investigation and optimization on melting performance of a triplex-tube heat storage tank by rotational mechanism
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2023.123892
– volume: 116
  start-page: 76
  year: 2014
  ident: 10.1016/j.apenergy.2024.122997_bb0300
  article-title: Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.10.065
– volume: 214
  year: 2022
  ident: 10.1016/j.apenergy.2024.122997_bb0220
  article-title: Melting and solidification characteristics of a semi-rotational eccentric tube horizontal latent heat thermal energy storage
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2022.118812
– volume: 52
  start-page: 4675
  year: 2009
  ident: 10.1016/j.apenergy.2024.122997_bb0270
  article-title: Experimental determination of thermal conductivity of three nanofluids and development of new correlations
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2009.06.027
– volume: 61
  year: 2023
  ident: 10.1016/j.apenergy.2024.122997_bb0110
  article-title: A critical review on heat transfer enhancement techniques in latent heat storage systems based on phase change materials
– volume: 227
  start-page: 542
  year: 2018
  ident: 10.1016/j.apenergy.2024.122997_bb0175
  article-title: Numerical investigation of heat transfer performance of a rotating latent heat thermal energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.08.087
– volume: 100
  year: 2022
  ident: 10.1016/j.apenergy.2024.122997_bb0085
  article-title: Heat transfer characteristics and compatibility of molten salt/ceramic porous composite phase change material
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107476
– volume: 58
  year: 2023
  ident: 10.1016/j.apenergy.2024.122997_bb0210
  article-title: Optimization of thermal energy storage: evaluation of natural convection and melting-solidification time of eccentricity for a rotational shell-and-tube unit
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.106423
– volume: 39
  start-page: 8
  year: 2012
  ident: 10.1016/j.apenergy.2024.122997_bb0280
  article-title: Numerical study on melting of paraffin wax with Al2O3 in a square enclosure
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2011.09.013
– volume: 189
  year: 2024
  ident: 10.1016/j.apenergy.2024.122997_bb0030
  article-title: Increasing the resolution of solar and wind time series for energy system modeling: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2023.113792
– volume: 347
  year: 2023
  ident: 10.1016/j.apenergy.2024.122997_bb0105
  article-title: Machine learning and multilayer perceptron enhanced CFD approach for improving design on latent heat storage tank
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121458
– volume: 39
  year: 2021
  ident: 10.1016/j.apenergy.2024.122997_bb0185
  article-title: Experimental study on the effect of tube rotation on performance of horizontal shell and tube latent heat energy storage
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.102626
– volume: 100
  year: 2024
  ident: 10.1016/j.apenergy.2024.122997_bb0045
  article-title: Advances in thermal energy storage: fundamentals and applications
  publication-title: Progr Energy Combust Sci
  doi: 10.1016/j.pecs.2023.101109
– volume: 127
  start-page: 1543
  year: 2017
  ident: 10.1016/j.apenergy.2024.122997_bb0075
  article-title: A small-scale solar organic Rankine cycle combined heat and power system with integrated thermal energy storage
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.07.163
– volume: 183
  year: 2023
  ident: 10.1016/j.apenergy.2024.122997_bb0025
  article-title: System strength shortfall challenges for renewable energy-based power systems: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2023.113447
– volume: 36
  year: 2021
  ident: 10.1016/j.apenergy.2024.122997_bb0190
  article-title: Investigation of storage rotation effect on phase change material charging process in latent heat thermal energy storage system
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.102442
– volume: 199
  year: 2022
  ident: 10.1016/j.apenergy.2024.122997_bb0255
  article-title: Experimental investigation on the charging and discharging performance enhancement of a vertical latent heat thermal energy storage unit via snowflake fin design
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2022.123455
– volume: 169
  year: 2022
  ident: 10.1016/j.apenergy.2024.122997_bb0120
  article-title: Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112912
– volume: 270
  year: 2022
  ident: 10.1016/j.apenergy.2024.122997_bb0080
  article-title: Thermal performance of latent heat energy storage system with/without enhancement under solar fluctuation for organic Rankine power cycle
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2022.116276
– volume: 174
  start-page: 102
  year: 2021
  ident: 10.1016/j.apenergy.2024.122997_bb0240
  article-title: Experimental and numerical investigations of thermal performance enhancement in a latent heat storage heat exchanger using bifurcated and straight fins
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.04.076
– volume: 223
  year: 2020
  ident: 10.1016/j.apenergy.2024.122997_bb0035
  article-title: Assessment of energy storage technologies: a review
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2020.113295
– volume: 6
  start-page: 415
  year: 2023
  ident: 10.1016/j.apenergy.2024.122997_bb0020
  article-title: Designing diversified renewable energy systems to balance multisector performance
  publication-title: Nat Sustain
  doi: 10.1038/s41893-022-01033-0
– volume: 20
  start-page: 571
  year: 1952
  ident: 10.1016/j.apenergy.2024.122997_bb0265
  article-title: The viscosity of concentrated suspensions and solutions
  publication-title: J Chem Phys
  doi: 10.1063/1.1700493
– volume: 55
  year: 2022
  ident: 10.1016/j.apenergy.2024.122997_bb0195
  article-title: A numerical investigation on the finned storage rotation effect on the phase change material melting process of latent heat thermal energy storage system
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.105461
– volume: 271
  year: 2023
  ident: 10.1016/j.apenergy.2024.122997_bb0225
  article-title: Optimization of melting performance of a heat storage tank under rotation conditions: based on taguchi design and response surface method
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127100
– volume: 150
  year: 2021
  ident: 10.1016/j.apenergy.2024.122997_bb0060
  article-title: A review of solar-driven organic Rankine cycles: recent challenges and future outlook
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2021.111410
– volume: 12
  year: 2023
  ident: 10.1016/j.apenergy.2024.122997_bb0040
  article-title: Experimental research and multi-physical modeling progress of zinc-nickel single flow battery: a critical review
  publication-title: Adv Appl Energy
  doi: 10.1016/j.adapen.2023.100154
– volume: 134
  year: 2022
  ident: 10.1016/j.apenergy.2024.122997_bb0245
  article-title: Effect of mushy zone constant on the melting of a solid-liquid PCM under hyper-gravity conditions
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2022.105993
– volume: 290
  year: 2023
  ident: 10.1016/j.apenergy.2024.122997_bb0290
  article-title: Depth optimization of solidification properties of a latent heat energy storage unit under constant rotation mechanism
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2023.113099
– volume: 178
  year: 2020
  ident: 10.1016/j.apenergy.2024.122997_bb0285
  article-title: Nano-enhanced phase change materials (NePCMs): A review of numerical simulations
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2020.115492
– volume: 199
  year: 2020
  ident: 10.1016/j.apenergy.2024.122997_bb0095
  article-title: Effects of fluctuating thermal sources on a shell-and-tube latent thermal energy storage during charging process
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117400
– volume: 144
  year: 2023
  ident: 10.1016/j.apenergy.2024.122997_bb0230
  article-title: 3D validation, 2D feasibility, corrected and developed correlations for pure solid-gallium phase change modeling by enthalpy-porosity methodology
  publication-title: Int Commun Heat Mass Transf
– volume: 49
  year: 2022
  ident: 10.1016/j.apenergy.2024.122997_bb0065
  article-title: Solar organic Rankine cycle and its poly-generation applications – a review
  publication-title: Sustain Energy Technol Assess
– volume: 7
  start-page: 1769
  year: 2023
  ident: 10.1016/j.apenergy.2024.122997_bb0010
  article-title: Coordinating distributed energy resources for reliability can significantly reduce future distribution grid upgrades and peak load
  publication-title: Joule
  doi: 10.1016/j.joule.2023.06.015
– volume: 14
  start-page: 5425
  year: 2023
  ident: 10.1016/j.apenergy.2024.122997_bb0015
  article-title: Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-41105-z
– volume: 170
  start-page: 1098
  year: 2019
  ident: 10.1016/j.apenergy.2024.122997_bb0090
  article-title: Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.196
– volume: 331
  year: 2022
  ident: 10.1016/j.apenergy.2024.122997_bb0135
  article-title: Optimization of shell and tube thermal energy storage unit based on the effects of adding fins, nanoparticles and rotational mechanism
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2021.129922
– volume: 72
  year: 2023
  ident: 10.1016/j.apenergy.2024.122997_bb0100
  article-title: A review on heat transfer enhancement techniques for PCM based thermal energy storage system
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.108161
– volume: 215
  start-page: 963
  year: 2019
  ident: 10.1016/j.apenergy.2024.122997_bb0140
  article-title: Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.01.122
– volume: 62
  year: 2023
  ident: 10.1016/j.apenergy.2024.122997_bb0170
  article-title: Study of the melting performance of shell-and-tube latent heat thermal energy storage unit under the action of rotating finned tube
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.106801
– volume: 215
  year: 2022
  ident: 10.1016/j.apenergy.2024.122997_bb0165
  article-title: Experimental study on the effect of rotation on melting performance of shell-and-tube latent heat thermal energy storage unit
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2022.118877
– volume: 282
  year: 2023
  ident: 10.1016/j.apenergy.2024.122997_bb0295
  article-title: Optimization of a novel impulse gas turbine nozzle and blades design utilizing Taguchi method for micro-scale power generation
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129018
– volume: 160
  start-page: 286
  year: 2015
  ident: 10.1016/j.apenergy.2024.122997_bb0130
  article-title: Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.09.016
– volume: 179
  year: 2021
  ident: 10.1016/j.apenergy.2024.122997_bb0205
  article-title: Heat transfer enhancement in latent heat thermal energy storage unit using a combination of fins and rotational mechanisms
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2021.121667
– volume: 75
  start-page: 489
  year: 2019
  ident: 10.1016/j.apenergy.2024.122997_bb0200
  article-title: Heat transfer intensification in horizontal shell and tube latent heat storage unit
  publication-title: Numer Heat Transf Part A: Appl
  doi: 10.1080/10407782.2019.1599273
– volume: 219
  year: 2023
  ident: 10.1016/j.apenergy.2024.122997_bb0180
  article-title: Synergistic improvement of melting rate and heat storage capacity by a rotation-based method for shell-and-tube latent thermal energy storage
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2022.119480
– volume: 4
  start-page: 612
  year: 2019
  ident: 10.1016/j.apenergy.2024.122997_bb0005
  article-title: Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources
  publication-title: Nat Energy
  doi: 10.1038/s41560-019-0425-z
– volume: 331
  year: 2023
  ident: 10.1016/j.apenergy.2024.122997_bb0155
  article-title: Investigation and optimization of solidification performance of a triplex-tube latent heat thermal energy storage system by rotational mechanism
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120435
SSID ssj0002120
Score 2.5861664
Snippet The combination of latent heat storage (LHS) technology with the Organic Rankine Cycle represents a widely recognized solar thermoelectric conversion means....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122997
SubjectTerms heat transfer
latent heat
Metal nanoparticle
nanoparticles
Optimal design
Phase change heat storage
Sinusoidal temperature
solar energy
solidification
Solidification properties
Taguchi method
temperature
thermal conductivity
thermal energy
viscosity
Title Design optimization on solidification performance of a rotating latent heat thermal energy storage system subject to fluctuating heat source
URI https://dx.doi.org/10.1016/j.apenergy.2024.122997
https://www.proquest.com/docview/3153790061
Volume 362
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELcQvLCHiY-hwaAy0l7TprFT148IigpovGxIvFlOfJ6KSlLR9HV_AX80d7FDYdLEw6QoUiyflfgudz_7PszYdxCZ8GOnE--LLJEqtUlhZZo4X6SQlxq0o33IH7ej6Z28vs_vN9h5lwtDYZVR9wed3mrr2DKIszlYzGaDn4R2wwKC3FttHVMpFUl5_886zCOLpRmxc0K932QJP_TtAtoMO1wnZrI_zFA3q38ZqL9UdWt_LnfY5wgc-Vl4t122AdUe-_SmnOAeO5iss9awa_xtl_vs-aKN0-A16ofHmHjJ8UK5mzmKFQoti3USAa89t_ypJkd99ZvPEZFWDSfFzQkxPuLw4Zs4RVeiTuKhJDRfrgra2eFNzf18Rdkp7QAtZXAUfGF3l5Nf59MkHsOQlELmTVKMvYV06GyGYFCMQJSlst6OtHBDj7fcZdgKAlwuQEFpvcoEkmKzzUGOxQHbrOoKvjJuwWuplbYupaI6dB4giAIRUVl6q8Aesrybe1PGGuV0VMbcdMFoD6bjmSGemcCzQzZ4pVuEKh0fUuiOteadvBk0JR_SnnayYPBnJA-LraBeLY1A-6E0wcKj_xj_G9umJ4pRGObHbLN5WsEJQp-m6LWy3WNbZ1c309sXYgoKgQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LTsMwLEJwAA6Ip3gTJK7duqZdlyPiofG8ABK3KG0cNDTaiXVXvoCPxm5SBkiIA1LVgxtHbe3YTvxi7AhEJGzPyMDaLAriNNRBpuMwMDYLIcklSEPnkDe33f5DfPmYPM6wkyYXhsIqvex3Mr2W1h7S9n-zPRoM2ndk7boNBLm3qI7pXIzLl9oYtN6mcR6Rr82IowMa_iVN-LmlR1Cn2OFGMYpbnQiFc_qbhvohq2sFdL7MlrzlyI_dy62wGShW2eKXeoKrbONsmraGQ_26Ha-x99M6UIOXKCBefOYlxwsZb2AoWMhBRtMsAl5arvlrSZ764okP0SQtKk6Sm5PJ-ILTu2_iFF6JQom7mtB8PMnoaIdXJbfDCaWn1BPUmM5TsM4ezs_uT_qB78MQ5CJOqiDrWQ1hx-gIrUHRBZHnqba6K4XpWLwlJkIoCDCJgBRybdNIICqCdQJxT2yw2aIsYJNxDVbGMpXahFRVhxoCgsjQJMpzq1PQWyxp_r3KfZFy6pUxVE002rNqaKaIZsrRbIu1P_FGrkzHnxiyIa36xnAKdcmfuIcNLyhcjeRi0QWUk7ESqEBSSXbh9j_mP2Dz_fuba3V9cXu1wxboCQUsdJJdNlu9TmAP7aAq26_5_ANYugwP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+optimization+on+solidification+performance+of+a+rotating+latent+heat+thermal+energy+storage+system+subject+to+fluctuating+heat+source&rft.jtitle=Applied+energy&rft.au=Huang%2C+Xinyu&rft.au=Li%2C+Fangfei&rft.au=Guo%2C+Junfei&rft.au=Li%2C+Yuanji&rft.date=2024-05-15&rft.issn=0306-2619&rft.volume=362&rft.spage=122997&rft_id=info:doi/10.1016%2Fj.apenergy.2024.122997&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2024_122997
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon