Production of jet fuel range hydrocarbons using a magnetic Ni–Fe/SAPO-11 catalyst for solvent-free hydrodeoxygenation of jatropha oil
A novel, multifunctional Nix–Fe/SAPO-11 catalyst was synthesized and characterized, and its activity was evaluated for the solvent-free hydrodeoxygenation of jatropha oil. The catalyst has a spherical structure and moderate acid strength, and exhibited excellent cyclization and deoxidation activity....
Saved in:
Published in | Biomass & bioenergy Vol. 177; p. 106927 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0961-9534 1873-2909 |
DOI | 10.1016/j.biombioe.2023.106927 |
Cover
Loading…
Abstract | A novel, multifunctional Nix–Fe/SAPO-11 catalyst was synthesized and characterized, and its activity was evaluated for the solvent-free hydrodeoxygenation of jatropha oil. The catalyst has a spherical structure and moderate acid strength, and exhibited excellent cyclization and deoxidation activity. The inclusion of iron facilitated the dispersion of active components. Consequently, the iron-nickel alloy particle size remained small, resulting in an optimal distribution of the product. The composition of the products is linear alkanes (59.83%), isoparaffins (4.16%), aromatics (8.41%), and naphthenes (12.03%), where jet fuel components are relatively high, accounting for 55.04% of C8–C16 hydrocarbons. Interestingly, the iron present in the catalyst allowed the use of an external magnetic field for the rapid separation and recycling of the catalyst. Despite multiple uses, the recycled catalyst maintained high activity following five cycles, with hydrocarbon content consistently above 85%. The synergic effect of the metallic and acid sites of the catalyst, let to realize one-pot hydrodeoxygenation, isomerization, aromatization, and cracking of substrate forming bio-jet fuel range hydrocarbons.
[Display omitted]
•A low-cost, easily recyclable magnetic Ni–Fe catalyst was prepared.•The presence of Fe promoted the dispersion of Ni in the catalyst.•Bio-jet fuels hydrocarbons containing naphthenes and aromatics were prepared. |
---|---|
AbstractList | A novel, multifunctional Nix–Fe/SAPO-11 catalyst was synthesized and characterized, and its activity was evaluated for the solvent-free hydrodeoxygenation of jatropha oil. The catalyst has a spherical structure and moderate acid strength, and exhibited excellent cyclization and deoxidation activity. The inclusion of iron facilitated the dispersion of active components. Consequently, the iron-nickel alloy particle size remained small, resulting in an optimal distribution of the product. The composition of the products is linear alkanes (59.83%), isoparaffins (4.16%), aromatics (8.41%), and naphthenes (12.03%), where jet fuel components are relatively high, accounting for 55.04% of C8–C16 hydrocarbons. Interestingly, the iron present in the catalyst allowed the use of an external magnetic field for the rapid separation and recycling of the catalyst. Despite multiple uses, the recycled catalyst maintained high activity following five cycles, with hydrocarbon content consistently above 85%. The synergic effect of the metallic and acid sites of the catalyst, let to realize one-pot hydrodeoxygenation, isomerization, aromatization, and cracking of substrate forming bio-jet fuel range hydrocarbons.
[Display omitted]
•A low-cost, easily recyclable magnetic Ni–Fe catalyst was prepared.•The presence of Fe promoted the dispersion of Ni in the catalyst.•Bio-jet fuels hydrocarbons containing naphthenes and aromatics were prepared. A novel, multifunctional Nix-Fe/SAPO-11 catalyst was synthesized and characterized, and its activity was evaluated for the solvent-free hydrodeoxygenation of jatropha oil. The catalyst has a spherical structure and moderate acid strength, and exhibited excellent cyclization and deoxidation activity. The inclusion of iron facilitated the dispersion of active components. Consequently, the iron-nickel alloy particle size remained small, resulting in an optimal distribution of the product. The composition of the products is linear alkanes (59.83%), isoparaffins (4.16%), aromatics (8.41%), and naphthenes (12.03%), where jet fuel components are relatively high, accounting for 55.04% of C8-C16 hydrocarbons. Interestingly, the iron present in the catalyst allowed the use of an external magnetic field for the rapid separation and recycling of the catalyst. Despite multiple uses, the recycled catalyst maintained high activity following five cycles, with hydrocarbon content consistently above 85%. The synergic effect of the metallic and acid sites of the catalyst, let to realize one-pot hydrodeoxygenation, isomerization, aromatization, and cracking of substrate forming bio-jet fuel range hydrocarbons. |
ArticleNumber | 106927 |
Author | Wei, Xiaocui Cao, Yang Tang, Hongbiao Jibran, Khalil Wang, Shurong Dai, Qiqi Li, Jin |
Author_xml | – sequence: 1 givenname: Hongbiao surname: Tang fullname: Tang, Hongbiao organization: College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China – sequence: 2 givenname: Qiqi surname: Dai fullname: Dai, Qiqi organization: College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China – sequence: 3 givenname: Yang surname: Cao fullname: Cao, Yang organization: Qiongtai Normal University, Haikou, 571127, China – sequence: 4 givenname: Jin surname: Li fullname: Li, Jin email: lijin@hainanu.edu.cn organization: College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China – sequence: 5 givenname: Xiaocui surname: Wei fullname: Wei, Xiaocui organization: College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China – sequence: 6 givenname: Khalil surname: Jibran fullname: Jibran, Khalil organization: College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China – sequence: 7 givenname: Shurong surname: Wang fullname: Wang, Shurong organization: College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China |
BookMark | eNqFkM9qHDEMh01JoZu0r1B87GU21nj-GXpoCE0TCE2g7dloPPLGy6y9tT2he-utD5A37JN0kk1zyCUHIRD6fULfITvwwRNj70EsQUBzvF72LmzmomUpSjkPG1W2r9gCulYWpRLqgC2EaqBQtazesMOU1kJAJSpYsD_XMQyTyS54HixfU-Z2opFH9CviN7shBoOxDz7xKTm_4sg3uPKUneFf3d_fd2d0_O3k-qoA4AYzjrs0E0LkKYy35HNhIz1yBgq_divy-HQMcwzbG-TBjW_Za4tjoneP_Yj9OPv8_fS8uLz6cnF6clkYWdW56JuuBcDKDlJUvUGEerCNUZW1wnZdV5pWNUgWkKBXsmlsLToQda96YQZB8oh92HO3MfycKGW9ccnQOKKnMCUtoZYtlFLAvNrsV00MKUWyehvdBuNOg9D35vVa_zev783rvfk5-PFZ0Lj88HWO6MaX45_2cZo93DqKOhlH3tDgIpmsh-BeQvwDLBypZw |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_153078 crossref_primary_10_1007_s10934_024_01719_0 crossref_primary_10_1134_S0965544124010092 crossref_primary_10_3390_molecules29184325 crossref_primary_10_1016_j_apcatb_2025_125258 crossref_primary_10_1016_j_renene_2024_121135 crossref_primary_10_1016_j_fluid_2024_114236 crossref_primary_10_1016_j_fuel_2025_134695 crossref_primary_10_1080_15567036_2024_2349710 crossref_primary_10_1002_cplu_202400075 crossref_primary_10_1016_j_jiec_2025_02_002 |
Cites_doi | 10.1016/j.apenergy.2011.02.012 10.1016/j.enconman.2020.112859 10.1021/acs.inorgchem.6b02363 10.1016/j.apcata.2013.08.009 10.1016/j.fuel.2015.07.010 10.1016/j.rser.2009.10.003 10.1002/anie.200602866 10.1021/ef300047a 10.1016/j.rser.2017.10.091 10.1016/j.jiec.2016.01.001 10.1039/D0GC00096E 10.1016/j.molcata.2013.09.029 10.1016/j.fuproc.2019.01.008 10.1016/j.rser.2014.10.013 10.1016/j.ijhydene.2020.05.201 10.1021/acs.energyfuels.0c03489 10.1016/j.enconman.2022.115956 10.1080/21663831.2018.1477847 10.1016/j.indcrop.2020.112182 10.1038/srep37701 10.1016/j.cej.2012.02.027 10.1080/23312009.2018.1514686 10.1016/j.apcata.2016.10.011 10.1016/j.fuel.2017.04.082 10.1016/j.fuel.2019.116345 10.1038/s41560-018-0197-x 10.1021/ie060334i 10.1039/c0ee00744g 10.1016/j.jenvman.2022.114772 10.1016/j.fuproc.2019.106312 10.1016/j.fuel.2021.122780 10.1002/anie.200460552 10.1016/j.fuel.2019.01.179 10.1016/j.renene.2019.01.085 10.1016/j.apsusc.2009.04.153 10.1021/jacs.0c08631 10.1016/j.biombioe.2022.106563 10.1016/j.apcata.2014.11.007 10.1016/j.fuel.2019.115821 10.1007/s11244-010-9456-1 10.1016/j.apcata.2007.03.021 10.1016/j.fuel.2020.117465 10.1016/j.jclepro.2017.03.148 10.1038/s41560-020-00709-1 10.1016/j.cej.2022.139528 10.1039/C4RA07932A 10.1016/j.apcata.2007.07.047 10.1016/j.fuel.2015.08.063 10.1016/j.biombioe.2018.02.014 10.1016/j.cjche.2019.12.022 10.1016/S1872-5813(16)30052-4 10.1016/j.fuproc.2010.12.007 10.1016/j.apcatb.2019.04.065 10.1016/j.energy.2021.123048 10.1021/acs.iecr.0c01937 10.1016/j.jechem.2022.12.017 10.1039/D0RA06302A |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.biombioe.2023.106927 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1873-2909 |
ExternalDocumentID | 10_1016_j_biombioe_2023_106927 S096195342300226X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AATLK AAXUO ABFNM ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SCC SDF SDG SES SEW SPC SPCBC SSA SSG SSJ SSR SSZ T5K VH1 WUQ ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c345t-b68711a4fd304bcaa15df6c94ff0f8882c796aef1ae1b9366f508105b9b0cd0e3 |
IEDL.DBID | .~1 |
ISSN | 0961-9534 |
IngestDate | Wed Jul 02 04:50:49 EDT 2025 Tue Jul 01 01:49:58 EDT 2025 Thu Apr 24 23:10:15 EDT 2025 Fri Feb 23 02:36:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | One-pot method Ni–Fe/SAPO-11 Hydrodeoxygenation Jatropha oil Jet fuel |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-b68711a4fd304bcaa15df6c94ff0f8882c796aef1ae1b9366f508105b9b0cd0e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3153712301 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153712301 crossref_primary_10_1016_j_biombioe_2023_106927 crossref_citationtrail_10_1016_j_biombioe_2023_106927 elsevier_sciencedirect_doi_10_1016_j_biombioe_2023_106927 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Biomass & bioenergy |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Božič, Čopar (bib28) 2019; 99 Verma, Rana, Kumar, Sibi, Sinha (bib34) 2015; 490 Chen, Wang, Zhang, Wang (bib38) 2015; 159 Li, Chen, Hao, Zhang, Du, Zhang (bib12) 2019; 139 Yamashita, Hayes (bib36) 2009; 255 Kushwaha, Banerjee, Ahmad, Shetti, Aminabhavi, Pant, Ahmad (bib49) 2022; 310 Zhang, Chen, Dong, Yuan, Xu (bib29) 2007; 332 Zhou, Kerkhoven, Nielsen (bib2) 2018; 3 Liu, Zuo, Wang, Ma, Zhang (bib14) 2013; 468 Fang, Zheng, Luo, Du, Roldan, Leoni, Yuan (bib20) 2017; 529 Alexandropoulos, Fournet, Cunha-Silva, Christou, Stamatatos (bib26) 2016; 55 Yu, Zhao, Li, Koh (bib39) 2020; 142 Xin, Yang, Lei, Du, Zhou, Li, Hu (bib44) 2020; 59 Li, Fan, Wu, Lin, Ma, Li, Ye, Wang, Cheng, Zheng, Jiang (bib35) 2023; 452 Long, Zhai, Liu, Cao, Jiang, Wang, Wei, Liu, Jiang, Xu (bib50) 2020; 200 Nie, Souza, Noronha, An, Sooknoi, Resasco (bib24) 2014; 388 Verma, Kumar, Rana, Sinha (bib11) 2011; 4 Chen, Wang, Luo, Yang, Li, Li, Ye, Wang, Zheng (bib51) 2022; 314 Jing, Liu, Pu, Cui, Wang, Wang, Liu (bib32) 2016; 6 Dhar, Vekariya, Bhadja (bib60) 2018; 4 Zhang, Song, Liu, Zhang, Chen, Ma (bib41) 2023; 79 Han, Rehman, Wang, Rykov, Gutierrez, Zhao, Wang, Ma, Lercher (bib19) 2019; 253 Lahijani, Mohammadi, Mohamed, Ismail, Lee, Amini (bib7) 2022; 268 Khalit, Marliza, Asikin-Mijan, Gamal, Saiman, Ibrahim, Taufiq-Yap (bib45) 2020; 10 Mathias, Iva, Päivi, Kari, Dmitry (bib5) 2006; 45 Tsang, Caps, Paraskevas, Chadwick, Thompsett (bib25) 2004; 43 Wen, Wang, Xu, Fan (bib33) 2019; 255 Lin, Chen, Wang (bib10) 2020; 260 Zhang, Lin, Wang, Zheng, Hu (bib58) 2014; 150–151 Morgan, Santillan-Jimenez, Harman-Ware, Ji, Grubb, Crocker (bib55) 2012; 189–190 Rabaev, Landau, Vidruk-Nehemya, Koukouliev, Zarchin, Herskowitz (bib13) 2015; 161 Zhao, Tan, He, An, Xie, Jiang, Zhu, Wu, Zhang, Li, Zhang, Chen, Liu, Dong, Tang (bib31) 2020; 5 Chen, Li, Liu, Zhang, Zi (bib16) 2020; 146 Naik, Goud, Rout, Dalai (bib4) 2010; 14 Tang, Lin, Cao, Jibran, Li (bib22) 2022; 243 Jozwiak, Kaczmarek, Maniecki, Ignaczak, Maniukiewicz (bib23) 2007; 326 Li, Luo, Jin, Li, Zhang, Zhang, Xie (bib3) 2018; 82 Yang, Xing, Sun, Miao, Li, Lv, Wang, Yuan (bib61) 2019; 187 Scaldaferri, Pasa (bib57) 2019; 245 Zhang, Cheng, Zhu, Guo, Yang (bib43) 2020; 269 Gyergyek, Kocjan, Bjelić, Grilc, Likozar, Makovec (bib48) 2018; 6 Österberg, Sipponen, Mattos, Rojasa (bib27) 2020; 22 Gong, Shinozaki, Shi, Qian (bib40) 2012; 26 Khan, Qureshi, Lup, Patah, Daud (bib53) 2022; 164 Guo, Song, Buhain (bib1) 2015; 42 Li, Xu, Zhai, Liu, Zhang (bib30) 2017; 203 Noriega, Tirado, Méndez, Marroquín, Ancheyta (bib42) 2020; 28 Krar, Kasza, Kovacs, Kallo, Hancsok (bib8) 2011; 92 Yu, Chen, Ren (bib17) 2014; 4 Tang, Dai, Cao, Wei, Li, Zou (bib21) 2021; 35 Shafaghat, Rezaei, Daud (bib18) 2016; 35 Bhattacharjee, Tan (bib6) 2017; 156 Lu, Salabas, Schiith (bib46) 2007; 46 Li, Yang, Han, Rong (bib52) 2020; 45 Olah, Prakash, Molnar, Sommer (bib59) 2009 Bharath, Rambabu, Hai, Banat, Taher, Schmidt, Show (bib37) 2020; 213 Liu, Yang, Jing, Xi, Qiao (bib9) 2016; 44 Khalit, Asikin-Mijan, Marliza, Safa-Gamal, Shamsuddin, Azreena, Saiman, Taufiq-Yap (bib15) 2022; 164 Hu, Guan, Wang, Han (bib47) 2011; 88 Valencia, García-Cruz, Uc, Ramírez-Verduzco, Amezcua-Allieri, Aburto (bib54) 2018; 112 Morgan, Grubb, Santillan-Jimenez, Crocker (bib56) 2010; 53 Morgan (10.1016/j.biombioe.2023.106927_bib56) 2010; 53 Fang (10.1016/j.biombioe.2023.106927_bib20) 2017; 529 Naik (10.1016/j.biombioe.2023.106927_bib4) 2010; 14 Jing (10.1016/j.biombioe.2023.106927_bib32) 2016; 6 Lu (10.1016/j.biombioe.2023.106927_bib46) 2007; 46 Khalit (10.1016/j.biombioe.2023.106927_bib15) 2022; 164 Nie (10.1016/j.biombioe.2023.106927_bib24) 2014; 388 Gyergyek (10.1016/j.biombioe.2023.106927_bib48) 2018; 6 Khalit (10.1016/j.biombioe.2023.106927_bib45) 2020; 10 Bharath (10.1016/j.biombioe.2023.106927_bib37) 2020; 213 Tang (10.1016/j.biombioe.2023.106927_bib21) 2021; 35 Scaldaferri (10.1016/j.biombioe.2023.106927_bib57) 2019; 245 Tang (10.1016/j.biombioe.2023.106927_bib22) 2022; 243 Chen (10.1016/j.biombioe.2023.106927_bib38) 2015; 159 Chen (10.1016/j.biombioe.2023.106927_bib51) 2022; 314 Gong (10.1016/j.biombioe.2023.106927_bib40) 2012; 26 Morgan (10.1016/j.biombioe.2023.106927_bib55) 2012; 189–190 Guo (10.1016/j.biombioe.2023.106927_bib1) 2015; 42 Lin (10.1016/j.biombioe.2023.106927_bib10) 2020; 260 Han (10.1016/j.biombioe.2023.106927_bib19) 2019; 253 Long (10.1016/j.biombioe.2023.106927_bib50) 2020; 200 Kushwaha (10.1016/j.biombioe.2023.106927_bib49) 2022; 310 Yamashita (10.1016/j.biombioe.2023.106927_bib36) 2009; 255 Verma (10.1016/j.biombioe.2023.106927_bib11) 2011; 4 Zhao (10.1016/j.biombioe.2023.106927_bib31) 2020; 5 Li (10.1016/j.biombioe.2023.106927_bib52) 2020; 45 Verma (10.1016/j.biombioe.2023.106927_bib34) 2015; 490 Jozwiak (10.1016/j.biombioe.2023.106927_bib23) 2007; 326 Alexandropoulos (10.1016/j.biombioe.2023.106927_bib26) 2016; 55 Božič (10.1016/j.biombioe.2023.106927_bib28) 2019; 99 Valencia (10.1016/j.biombioe.2023.106927_bib54) 2018; 112 Liu (10.1016/j.biombioe.2023.106927_bib14) 2013; 468 Yu (10.1016/j.biombioe.2023.106927_bib17) 2014; 4 Wen (10.1016/j.biombioe.2023.106927_bib33) 2019; 255 Khan (10.1016/j.biombioe.2023.106927_bib53) 2022; 164 Olah (10.1016/j.biombioe.2023.106927_bib59) 2009 Shafaghat (10.1016/j.biombioe.2023.106927_bib18) 2016; 35 Zhang (10.1016/j.biombioe.2023.106927_bib43) 2020; 269 Dhar (10.1016/j.biombioe.2023.106927_bib60) 2018; 4 Li (10.1016/j.biombioe.2023.106927_bib35) 2023; 452 Hu (10.1016/j.biombioe.2023.106927_bib47) 2011; 88 Bhattacharjee (10.1016/j.biombioe.2023.106927_bib6) 2017; 156 Xin (10.1016/j.biombioe.2023.106927_bib44) 2020; 59 Liu (10.1016/j.biombioe.2023.106927_bib9) 2016; 44 Lahijani (10.1016/j.biombioe.2023.106927_bib7) 2022; 268 Yang (10.1016/j.biombioe.2023.106927_bib61) 2019; 187 Tsang (10.1016/j.biombioe.2023.106927_bib25) 2004; 43 Zhang (10.1016/j.biombioe.2023.106927_bib58) 2014; 150–151 Li (10.1016/j.biombioe.2023.106927_bib12) 2019; 139 Krar (10.1016/j.biombioe.2023.106927_bib8) 2011; 92 Chen (10.1016/j.biombioe.2023.106927_bib16) 2020; 146 Rabaev (10.1016/j.biombioe.2023.106927_bib13) 2015; 161 Yu (10.1016/j.biombioe.2023.106927_bib39) 2020; 142 Zhou (10.1016/j.biombioe.2023.106927_bib2) 2018; 3 Österberg (10.1016/j.biombioe.2023.106927_bib27) 2020; 22 Li (10.1016/j.biombioe.2023.106927_bib30) 2017; 203 Mathias (10.1016/j.biombioe.2023.106927_bib5) 2006; 45 Zhang (10.1016/j.biombioe.2023.106927_bib41) 2023; 79 Li (10.1016/j.biombioe.2023.106927_bib3) 2018; 82 Noriega (10.1016/j.biombioe.2023.106927_bib42) 2020; 28 Zhang (10.1016/j.biombioe.2023.106927_bib29) 2007; 332 |
References_xml | – volume: 44 start-page: 1211 year: 2016 end-page: 1216 ident: bib9 article-title: Hydrodeoxygenation of fatty acid methyl esters and isomerization of products over NiP/SAPO-11 catalysts publication-title: J. Fuel Chem. Technol. – volume: 326 start-page: 17 year: 2007 end-page: 27 ident: bib23 article-title: Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres publication-title: Appl. Catal., A – volume: 112 start-page: 37 year: 2018 end-page: 44 ident: bib54 article-title: Unravelling the chemical reactions of fatty acids and triacylglycerides under hydrodeoxygenation conditions based on a comprehensive thermodynamic analysis publication-title: Biomass Bioenergy – volume: 99 year: 2019 ident: bib28 article-title: Spherical structure factor and classification of hyperuniformity on the sphere publication-title: Phys. Rev. E – volume: 82 start-page: 3762 year: 2018 end-page: 3797 ident: bib3 article-title: Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels publication-title: Renew. Sustain. Energy Rev. – volume: 5 start-page: 881 year: 2020 end-page: 890 ident: bib31 article-title: Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction publication-title: Nat. Energy – volume: 269 year: 2020 ident: bib43 article-title: Jet fuel range hydrocarbons production through competitive pathways of hydrocracking and isomerization over HPW-Ni/MCM-41 catalyst publication-title: Fuel – volume: 200 year: 2020 ident: bib50 article-title: Mechanism investigation on the formation of olefins and paraffin from the thermochemical catalytic conversion of triglycerides catalyzed by alkali metal catalysts publication-title: Fuel Process. Technol. – volume: 146 year: 2020 ident: bib16 article-title: Effects of metal promoters on one-step Pt/SAPO-11 catalytic hydrotreatment of castor oil to C8-C16 alkanes publication-title: Ind. Crop. Prod. – volume: 35 start-page: 4138 year: 2021 end-page: 4147 ident: bib21 article-title: In situ hydrodeoxygenation of phenol as a model compound for pyrolysis oil using raney Ni and molecular sieve catalysts publication-title: Energy Fuel. – volume: 150–151 year: 2014 ident: bib58 article-title: Hydroprocessing of waste cooking oil over a dispersed nano catalyst: kinetics study and temperature effect publication-title: Appl. Catal. B Environ. – volume: 388 start-page: 47 year: 2014 end-page: 55 ident: bib24 article-title: Selective conversion of m-cresol to toluene over bimetallic Ni-Fe catalysts publication-title: J. Mol. Catal. Chem. – volume: 22 start-page: 2712 year: 2020 end-page: 2733 ident: bib27 article-title: Spherical lignin particles: a review on their sustainability and applications publication-title: Green Chem. – volume: 28 start-page: 1670 year: 2020 end-page: 1683 ident: bib42 article-title: Hydrodeoxygenation of vegetable oil in batch reactor: experimental considerations publication-title: Chin. J. Chem. Eng. – volume: 35 start-page: 268 year: 2016 end-page: 276 ident: bib18 article-title: Catalytic hydrodeoxygenation of simulated phenolic bio-oil to cycloalkanes and aromatic hydrocarbons over bifunctional metal/acid catalysts of Ni/HBeta, Fe/HBeta and NiFe/HBeta publication-title: J. Ind. Engineer. Chem. – volume: 268 year: 2022 ident: bib7 article-title: Upgrading biomass-derived pyrolysis bio-oil to bio-jet fuel through catalytic cracking and hydrodeoxygenation: a review of recent progress publication-title: Energy Convers. Manag. – volume: 213 year: 2020 ident: bib37 article-title: Catalytic hydrodeoxygenation of biomass-derived pyrolysis oil over alloyed bimetallic Ni3Fe nanocatalyst for high-grade biofuel production publication-title: Energy Convers. Manag. – volume: 43 start-page: 5645 year: 2004 end-page: 5649 ident: bib25 article-title: Magnetically separable, carbon‐supported nanocatalysts for the manufacture of fine chemicals publication-title: Angew. Chem. Int. Ed. – volume: 139 start-page: 551 year: 2019 end-page: 559 ident: bib12 article-title: Optimization of aviation kerosene from one-step hydrotreatment of catalytic jatropha oil over SDBS-Pt/SAPO-11 by response surface methodology publication-title: Renew. Energy – volume: 45 start-page: 5708 year: 2006 end-page: 5715 ident: bib5 article-title: Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel publication-title: Ind. Eng. Chem. Res. – volume: 10 start-page: 37218 year: 2020 end-page: 37232 ident: bib45 article-title: Development of bimetallic nickel-based catalysts supported on activated carbon for green fuel production publication-title: RSC Adv. – volume: 42 start-page: 712 year: 2015 end-page: 725 ident: bib1 article-title: Bioenergy and biofuels: history, status, and perspective publication-title: Renew. Sustain. Energy Rev. – volume: 255 start-page: 8194 year: 2009 ident: bib36 article-title: Analysis of XPS spectra of Fe publication-title: Appl. Surf. Sci. – start-page: 501 year: 2009 end-page: 539 ident: bib59 publication-title: Superacid Chemistry – volume: 4 year: 2018 ident: bib60 article-title: n-Alkane isomerization by catalysis—a method of industrial importance: an overview publication-title: Cogent. Chem. – volume: 245 start-page: 458 year: 2019 end-page: 466 ident: bib57 article-title: Production of jet fuel and green diesel range biohydrocarbons by hydroprocessing of soybean oil over niobium phosphate catalyst publication-title: Fuel – volume: 161 start-page: 287 year: 2015 end-page: 294 ident: bib13 article-title: Conversion of vegetable oils on Pt/Al publication-title: Fuel – volume: 14 start-page: 578 year: 2010 end-page: 597 ident: bib4 article-title: Production of first and second generation biofuels: a comprehensive review publication-title: Renew. Sustain. Energy Rev. – volume: 26 year: 2012 ident: bib40 article-title: Hydrotreating of jatropha oil over alumina based catalysts publication-title: Energy Fuel. – volume: 490 start-page: 108 year: 2015 end-page: 116 ident: bib34 article-title: Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11 publication-title: Appl. Catal., A – volume: 260 year: 2020 ident: bib10 article-title: The production of bio-jet fuel from palm oil derived alkanes publication-title: Fuel – volume: 164 year: 2022 ident: bib15 article-title: One-pot decarboxylation and decarbonylation reaction of waste cooking oil over activated carbon supported nickel-zinc catalyst into diesel-like fuels publication-title: J. Anal. Appl. Pyrolysis – volume: 529 start-page: 20 year: 2017 end-page: 31 ident: bib20 article-title: Product tunable behavior of carbon nanotubes-supported Ni-Fe catalysts for guaiacol Hydrodeoxygenation publication-title: Appl. Catal., A – volume: 45 start-page: 21364 year: 2020 end-page: 21379 ident: bib52 article-title: Hydrocracking of Jatropha oil to aromatic compounds over the LaNiMo/ZSM-5 catalyst publication-title: Int. J. Hydrogen Energy – volume: 92 start-page: 886 year: 2011 end-page: 892 ident: bib8 article-title: Bio gas oils with improved low temperature properties publication-title: Fuel Process. Technol. – volume: 156 start-page: 203 year: 2017 end-page: 213 ident: bib6 article-title: Hydrodeoxygenation of oleic acid in hexane containing pressurized CO publication-title: J. Clean. Prod. – volume: 4 start-page: 1667 year: 2011 end-page: 1671 ident: bib11 article-title: Aviation fuel production from lipids by a single-step route using hierarchical mesoporous zeolites publication-title: Energy Environ. Sci. – volume: 468 start-page: 68 year: 2013 end-page: 74 ident: bib14 article-title: One-step hydrodeoxygenation of palm oil to isomerized hydrocarbon fuels over Ni supported on nano-sized SAPO-11 catalysts publication-title: Appl. Catal., A – volume: 159 start-page: 430 year: 2015 end-page: 435 ident: bib38 article-title: Effect of support on the NiMo phase and its catalytic hydrodeoxygenation of triglycerides publication-title: Fuel – volume: 4 start-page: 46427 year: 2014 end-page: 46436 ident: bib17 article-title: Promotional effect of Fe on performance of Ni/SiO publication-title: RSC Adv. – volume: 46 start-page: 1222 year: 2007 end-page: 1244 ident: bib46 article-title: Magnetic nanoparticles: synthesis, protection, functionalization, and application publication-title: Angew. Chem. Int. Ed. – volume: 142 start-page: 18223 year: 2020 end-page: 18230 ident: bib39 article-title: Iron-Catalyzed tunable and site-selective olefin transposition publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 12118 year: 2016 end-page: 12121 ident: bib26 article-title: F molecular nanoclusters": a 2-nm-Sized {Mn29} cluster with a spherical structure publication-title: Inorg. Chem. – volume: 187 start-page: 52 year: 2019 end-page: 62 ident: bib61 article-title: Citric-acid-induced mesoporous SAPO-11 loaded with highly dispersed nickel for enhanced hydroisomerization of oleic acid to iso-alkanes publication-title: Fuel Process. Technol. – volume: 452 year: 2023 ident: bib35 article-title: Enhancing hydrodeoxygenation-isomerization of FAME over M-SAPO-11 in one-step process: effect of in-situ isomorphic substitution of transition metals and synergy of PtxSny alloy publication-title: Chem. Eng. J. – volume: 314 year: 2022 ident: bib51 article-title: Selective production of alkanes and fatty alcohol via hydrodeoxygenation of palmitic acid over red mud-supported nickel catalysts publication-title: Fuel – volume: 164 year: 2022 ident: bib53 article-title: Role of Ni–Fe/ZSM-5/SAPO-11 bifunctional catalyst on hydrodeoxygenation of palm oil and triolein for alternative jet fuel production publication-title: Biomass Bioenergy – volume: 253 start-page: 348 year: 2019 end-page: 358 ident: bib19 article-title: The synergistic effect between Ni sites and Ni-Fe alloy sites on hydrodeoxygenation of lignin-derived phenols publication-title: Appl. Catal. B Environ. – volume: 88 start-page: 2685 year: 2011 end-page: 2690 ident: bib47 article-title: Nano-magnetic catalyst KF/CaO-Fe publication-title: Appl. Energy – volume: 3 start-page: 925 year: 2018 end-page: 935 ident: bib2 article-title: Barriers and opportunities in bio-based production of hydrocarbons publication-title: Nat. Energy – volume: 79 start-page: 22 year: 2023 end-page: 30 ident: bib41 article-title: Synthesis of high density and low freezing point jet fuels range cycloalkanes with cyclopentanone and lignin-derived vanillins publication-title: J. Energy Chem. – volume: 6 start-page: 426 year: 2018 end-page: 431 ident: bib48 article-title: Magnetically separable Ru-based nano-catalyst for the hydrogenation/hydro-deoxygenation of lignin-derived platform chemicals publication-title: Mater. Res. Lett. – volume: 53 start-page: 820 year: 2010 end-page: 829 ident: bib56 article-title: Conversion of triglycerides to hydrocarbons over supported metal catalysts publication-title: Top. Catal. – volume: 6 year: 2016 ident: bib32 article-title: Dependence of phase configurations, microstructures and magnetic properties of iron-nickel (Fe-Ni) alloy nanoribbons on deoxidization temperature in hydrogen publication-title: Sci. Rep. – volume: 189–190 start-page: 346 year: 2012 end-page: 355 ident: bib55 article-title: Catalytic deoxygenation of triglycerides to hydrocarbons over supported nickel catalysts publication-title: Chem. Eng. J. – volume: 243 year: 2022 ident: bib22 article-title: Influence of NiMoP phase on hydrodeoxygenation pathways of jatropha oil publication-title: Energy – volume: 332 start-page: 46 year: 2007 end-page: 55 ident: bib29 article-title: Characterization and hydroisomerization performance of SAPO-11 molecular sieves synthesized in different media publication-title: Appl. Catal., A – volume: 203 start-page: 23 year: 2017 end-page: 31 ident: bib30 article-title: Hydrogenation of biomass-derived ethyl levulinate into γ-valerolactone by activated carbon supported bimetallic Ni and Fe catalysts publication-title: Fuel – volume: 255 year: 2019 ident: bib33 article-title: Hierarchical SAPO-11 molecular sieve-based catalysts for enhancing the double-branchedhydroisomerization of alkanes publication-title: Fuel – volume: 59 start-page: 17373 year: 2020 end-page: 17386 ident: bib44 article-title: Ni–Fe catalysts supported on γ-Al publication-title: Ind. Eng. Chem. Res. – volume: 310 year: 2022 ident: bib49 article-title: Catalytic production and application of bio-renewable butyl butyrate as jet fuel blend- A review publication-title: J. Environ. Manag. – volume: 88 start-page: 2685 year: 2011 ident: 10.1016/j.biombioe.2023.106927_bib47 article-title: Nano-magnetic catalyst KF/CaO-Fe3O4 for biodiesel production publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.02.012 – volume: 213 year: 2020 ident: 10.1016/j.biombioe.2023.106927_bib37 article-title: Catalytic hydrodeoxygenation of biomass-derived pyrolysis oil over alloyed bimetallic Ni3Fe nanocatalyst for high-grade biofuel production publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.112859 – volume: 55 start-page: 12118 issue: 23 year: 2016 ident: 10.1016/j.biombioe.2023.106927_bib26 article-title: F molecular nanoclusters": a 2-nm-Sized {Mn29} cluster with a spherical structure publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b02363 – volume: 468 start-page: 68 year: 2013 ident: 10.1016/j.biombioe.2023.106927_bib14 article-title: One-step hydrodeoxygenation of palm oil to isomerized hydrocarbon fuels over Ni supported on nano-sized SAPO-11 catalysts publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2013.08.009 – volume: 159 start-page: 430 year: 2015 ident: 10.1016/j.biombioe.2023.106927_bib38 article-title: Effect of support on the NiMo phase and its catalytic hydrodeoxygenation of triglycerides publication-title: Fuel doi: 10.1016/j.fuel.2015.07.010 – volume: 14 start-page: 578 year: 2010 ident: 10.1016/j.biombioe.2023.106927_bib4 article-title: Production of first and second generation biofuels: a comprehensive review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2009.10.003 – volume: 46 start-page: 1222 year: 2007 ident: 10.1016/j.biombioe.2023.106927_bib46 article-title: Magnetic nanoparticles: synthesis, protection, functionalization, and application publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200602866 – volume: 26 year: 2012 ident: 10.1016/j.biombioe.2023.106927_bib40 article-title: Hydrotreating of jatropha oil over alumina based catalysts publication-title: Energy Fuel. doi: 10.1021/ef300047a – volume: 82 start-page: 3762 year: 2018 ident: 10.1016/j.biombioe.2023.106927_bib3 article-title: Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.10.091 – volume: 35 start-page: 268 year: 2016 ident: 10.1016/j.biombioe.2023.106927_bib18 article-title: Catalytic hydrodeoxygenation of simulated phenolic bio-oil to cycloalkanes and aromatic hydrocarbons over bifunctional metal/acid catalysts of Ni/HBeta, Fe/HBeta and NiFe/HBeta publication-title: J. Ind. Engineer. Chem. doi: 10.1016/j.jiec.2016.01.001 – volume: 22 start-page: 2712 year: 2020 ident: 10.1016/j.biombioe.2023.106927_bib27 article-title: Spherical lignin particles: a review on their sustainability and applications publication-title: Green Chem. doi: 10.1039/D0GC00096E – volume: 388 start-page: 47 year: 2014 ident: 10.1016/j.biombioe.2023.106927_bib24 article-title: Selective conversion of m-cresol to toluene over bimetallic Ni-Fe catalysts publication-title: J. Mol. Catal. Chem. doi: 10.1016/j.molcata.2013.09.029 – volume: 187 start-page: 52 year: 2019 ident: 10.1016/j.biombioe.2023.106927_bib61 article-title: Citric-acid-induced mesoporous SAPO-11 loaded with highly dispersed nickel for enhanced hydroisomerization of oleic acid to iso-alkanes publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2019.01.008 – volume: 42 start-page: 712 year: 2015 ident: 10.1016/j.biombioe.2023.106927_bib1 article-title: Bioenergy and biofuels: history, status, and perspective publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.10.013 – volume: 99 issue: 3–1 year: 2019 ident: 10.1016/j.biombioe.2023.106927_bib28 article-title: Spherical structure factor and classification of hyperuniformity on the sphere publication-title: Phys. Rev. E – volume: 45 start-page: 21364 year: 2020 ident: 10.1016/j.biombioe.2023.106927_bib52 article-title: Hydrocracking of Jatropha oil to aromatic compounds over the LaNiMo/ZSM-5 catalyst publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.05.201 – volume: 35 start-page: 4138 year: 2021 ident: 10.1016/j.biombioe.2023.106927_bib21 article-title: In situ hydrodeoxygenation of phenol as a model compound for pyrolysis oil using raney Ni and molecular sieve catalysts publication-title: Energy Fuel. doi: 10.1021/acs.energyfuels.0c03489 – volume: 268 year: 2022 ident: 10.1016/j.biombioe.2023.106927_bib7 article-title: Upgrading biomass-derived pyrolysis bio-oil to bio-jet fuel through catalytic cracking and hydrodeoxygenation: a review of recent progress publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2022.115956 – volume: 6 start-page: 426 year: 2018 ident: 10.1016/j.biombioe.2023.106927_bib48 article-title: Magnetically separable Ru-based nano-catalyst for the hydrogenation/hydro-deoxygenation of lignin-derived platform chemicals publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2018.1477847 – volume: 146 year: 2020 ident: 10.1016/j.biombioe.2023.106927_bib16 article-title: Effects of metal promoters on one-step Pt/SAPO-11 catalytic hydrotreatment of castor oil to C8-C16 alkanes publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2020.112182 – volume: 6 year: 2016 ident: 10.1016/j.biombioe.2023.106927_bib32 article-title: Dependence of phase configurations, microstructures and magnetic properties of iron-nickel (Fe-Ni) alloy nanoribbons on deoxidization temperature in hydrogen publication-title: Sci. Rep. doi: 10.1038/srep37701 – volume: 189–190 start-page: 346 year: 2012 ident: 10.1016/j.biombioe.2023.106927_bib55 article-title: Catalytic deoxygenation of triglycerides to hydrocarbons over supported nickel catalysts publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.02.027 – volume: 4 issue: 1 year: 2018 ident: 10.1016/j.biombioe.2023.106927_bib60 article-title: n-Alkane isomerization by catalysis—a method of industrial importance: an overview publication-title: Cogent. Chem. doi: 10.1080/23312009.2018.1514686 – volume: 529 start-page: 20 year: 2017 ident: 10.1016/j.biombioe.2023.106927_bib20 article-title: Product tunable behavior of carbon nanotubes-supported Ni-Fe catalysts for guaiacol Hydrodeoxygenation publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2016.10.011 – volume: 203 start-page: 23 year: 2017 ident: 10.1016/j.biombioe.2023.106927_bib30 article-title: Hydrogenation of biomass-derived ethyl levulinate into γ-valerolactone by activated carbon supported bimetallic Ni and Fe catalysts publication-title: Fuel doi: 10.1016/j.fuel.2017.04.082 – volume: 260 year: 2020 ident: 10.1016/j.biombioe.2023.106927_bib10 article-title: The production of bio-jet fuel from palm oil derived alkanes publication-title: Fuel doi: 10.1016/j.fuel.2019.116345 – volume: 3 start-page: 925 year: 2018 ident: 10.1016/j.biombioe.2023.106927_bib2 article-title: Barriers and opportunities in bio-based production of hydrocarbons publication-title: Nat. Energy doi: 10.1038/s41560-018-0197-x – volume: 45 start-page: 5708 year: 2006 ident: 10.1016/j.biombioe.2023.106927_bib5 article-title: Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie060334i – volume: 4 start-page: 1667 year: 2011 ident: 10.1016/j.biombioe.2023.106927_bib11 article-title: Aviation fuel production from lipids by a single-step route using hierarchical mesoporous zeolites publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00744g – volume: 310 year: 2022 ident: 10.1016/j.biombioe.2023.106927_bib49 article-title: Catalytic production and application of bio-renewable butyl butyrate as jet fuel blend- A review publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2022.114772 – volume: 200 year: 2020 ident: 10.1016/j.biombioe.2023.106927_bib50 article-title: Mechanism investigation on the formation of olefins and paraffin from the thermochemical catalytic conversion of triglycerides catalyzed by alkali metal catalysts publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2019.106312 – volume: 314 year: 2022 ident: 10.1016/j.biombioe.2023.106927_bib51 article-title: Selective production of alkanes and fatty alcohol via hydrodeoxygenation of palmitic acid over red mud-supported nickel catalysts publication-title: Fuel doi: 10.1016/j.fuel.2021.122780 – volume: 43 start-page: 5645 year: 2004 ident: 10.1016/j.biombioe.2023.106927_bib25 article-title: Magnetically separable, carbon‐supported nanocatalysts for the manufacture of fine chemicals publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200460552 – volume: 245 start-page: 458 year: 2019 ident: 10.1016/j.biombioe.2023.106927_bib57 article-title: Production of jet fuel and green diesel range biohydrocarbons by hydroprocessing of soybean oil over niobium phosphate catalyst publication-title: Fuel doi: 10.1016/j.fuel.2019.01.179 – volume: 150–151 year: 2014 ident: 10.1016/j.biombioe.2023.106927_bib58 article-title: Hydroprocessing of waste cooking oil over a dispersed nano catalyst: kinetics study and temperature effect publication-title: Appl. Catal. B Environ. – volume: 139 start-page: 551 year: 2019 ident: 10.1016/j.biombioe.2023.106927_bib12 article-title: Optimization of aviation kerosene from one-step hydrotreatment of catalytic jatropha oil over SDBS-Pt/SAPO-11 by response surface methodology publication-title: Renew. Energy doi: 10.1016/j.renene.2019.01.085 – volume: 255 start-page: 8194 year: 2009 ident: 10.1016/j.biombioe.2023.106927_bib36 article-title: Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2009.04.153 – volume: 142 start-page: 18223 year: 2020 ident: 10.1016/j.biombioe.2023.106927_bib39 article-title: Iron-Catalyzed tunable and site-selective olefin transposition publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c08631 – volume: 164 year: 2022 ident: 10.1016/j.biombioe.2023.106927_bib53 article-title: Role of Ni–Fe/ZSM-5/SAPO-11 bifunctional catalyst on hydrodeoxygenation of palm oil and triolein for alternative jet fuel production publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2022.106563 – volume: 490 start-page: 108 year: 2015 ident: 10.1016/j.biombioe.2023.106927_bib34 article-title: Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11 publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2014.11.007 – volume: 255 year: 2019 ident: 10.1016/j.biombioe.2023.106927_bib33 article-title: Hierarchical SAPO-11 molecular sieve-based catalysts for enhancing the double-branchedhydroisomerization of alkanes publication-title: Fuel doi: 10.1016/j.fuel.2019.115821 – volume: 53 start-page: 820 year: 2010 ident: 10.1016/j.biombioe.2023.106927_bib56 article-title: Conversion of triglycerides to hydrocarbons over supported metal catalysts publication-title: Top. Catal. doi: 10.1007/s11244-010-9456-1 – volume: 326 start-page: 17 year: 2007 ident: 10.1016/j.biombioe.2023.106927_bib23 article-title: Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2007.03.021 – volume: 269 year: 2020 ident: 10.1016/j.biombioe.2023.106927_bib43 article-title: Jet fuel range hydrocarbons production through competitive pathways of hydrocracking and isomerization over HPW-Ni/MCM-41 catalyst publication-title: Fuel doi: 10.1016/j.fuel.2020.117465 – volume: 156 start-page: 203 year: 2017 ident: 10.1016/j.biombioe.2023.106927_bib6 article-title: Hydrodeoxygenation of oleic acid in hexane containing pressurized CO2 using Fe/SBA-15 as catalyst publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.03.148 – volume: 5 start-page: 881 year: 2020 ident: 10.1016/j.biombioe.2023.106927_bib31 article-title: Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction publication-title: Nat. Energy doi: 10.1038/s41560-020-00709-1 – volume: 452 year: 2023 ident: 10.1016/j.biombioe.2023.106927_bib35 article-title: Enhancing hydrodeoxygenation-isomerization of FAME over M-SAPO-11 in one-step process: effect of in-situ isomorphic substitution of transition metals and synergy of PtxSny alloy publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139528 – start-page: 501 year: 2009 ident: 10.1016/j.biombioe.2023.106927_bib59 – volume: 4 start-page: 46427 year: 2014 ident: 10.1016/j.biombioe.2023.106927_bib17 article-title: Promotional effect of Fe on performance of Ni/SiO2 for deoxygenation of methyl laurate as a model compound to hydrocarbons publication-title: RSC Adv. doi: 10.1039/C4RA07932A – volume: 332 start-page: 46 year: 2007 ident: 10.1016/j.biombioe.2023.106927_bib29 article-title: Characterization and hydroisomerization performance of SAPO-11 molecular sieves synthesized in different media publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2007.07.047 – volume: 161 start-page: 287 year: 2015 ident: 10.1016/j.biombioe.2023.106927_bib13 article-title: Conversion of vegetable oils on Pt/Al2O3/SAPO-11 to diesel and jet fuels containing aromatics publication-title: Fuel doi: 10.1016/j.fuel.2015.08.063 – volume: 164 year: 2022 ident: 10.1016/j.biombioe.2023.106927_bib15 article-title: One-pot decarboxylation and decarbonylation reaction of waste cooking oil over activated carbon supported nickel-zinc catalyst into diesel-like fuels publication-title: J. Anal. Appl. Pyrolysis – volume: 112 start-page: 37 year: 2018 ident: 10.1016/j.biombioe.2023.106927_bib54 article-title: Unravelling the chemical reactions of fatty acids and triacylglycerides under hydrodeoxygenation conditions based on a comprehensive thermodynamic analysis publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2018.02.014 – volume: 28 start-page: 1670 issue: 6 year: 2020 ident: 10.1016/j.biombioe.2023.106927_bib42 article-title: Hydrodeoxygenation of vegetable oil in batch reactor: experimental considerations publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2019.12.022 – volume: 44 start-page: 1211 year: 2016 ident: 10.1016/j.biombioe.2023.106927_bib9 article-title: Hydrodeoxygenation of fatty acid methyl esters and isomerization of products over NiP/SAPO-11 catalysts publication-title: J. Fuel Chem. Technol. doi: 10.1016/S1872-5813(16)30052-4 – volume: 92 start-page: 886 year: 2011 ident: 10.1016/j.biombioe.2023.106927_bib8 article-title: Bio gas oils with improved low temperature properties publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2010.12.007 – volume: 253 start-page: 348 year: 2019 ident: 10.1016/j.biombioe.2023.106927_bib19 article-title: The synergistic effect between Ni sites and Ni-Fe alloy sites on hydrodeoxygenation of lignin-derived phenols publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.04.065 – volume: 243 year: 2022 ident: 10.1016/j.biombioe.2023.106927_bib22 article-title: Influence of NiMoP phase on hydrodeoxygenation pathways of jatropha oil publication-title: Energy doi: 10.1016/j.energy.2021.123048 – volume: 59 start-page: 17373 year: 2020 ident: 10.1016/j.biombioe.2023.106927_bib44 article-title: Ni–Fe catalysts supported on γ-Al2O3/HZSM-5 for transformation of palmitic acid into hydrocarbon fuel publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c01937 – volume: 79 start-page: 22 year: 2023 ident: 10.1016/j.biombioe.2023.106927_bib41 article-title: Synthesis of high density and low freezing point jet fuels range cycloalkanes with cyclopentanone and lignin-derived vanillins publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.12.017 – volume: 10 start-page: 37218 year: 2020 ident: 10.1016/j.biombioe.2023.106927_bib45 article-title: Development of bimetallic nickel-based catalysts supported on activated carbon for green fuel production publication-title: RSC Adv. doi: 10.1039/D0RA06302A |
SSID | ssj0014041 |
Score | 2.4942193 |
Snippet | A novel, multifunctional Nix–Fe/SAPO-11 catalyst was synthesized and characterized, and its activity was evaluated for the solvent-free hydrodeoxygenation of... A novel, multifunctional Nix-Fe/SAPO-11 catalyst was synthesized and characterized, and its activity was evaluated for the solvent-free hydrodeoxygenation of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106927 |
SubjectTerms | alloys aromatic compounds aromatization bioenergy biomass catalysts fuels Hydrodeoxygenation iron isomerization Jatropha oil Jet fuel magnetic fields Ni–Fe/SAPO-11 oils One-pot method particle size synergism |
Title | Production of jet fuel range hydrocarbons using a magnetic Ni–Fe/SAPO-11 catalyst for solvent-free hydrodeoxygenation of jatropha oil |
URI | https://dx.doi.org/10.1016/j.biombioe.2023.106927 https://www.proquest.com/docview/3153712301 |
Volume | 177 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxELaqcoEDgkJF-amMxNXdde31xseoahRAhEqlUm6WvbbbRGE32iQSuSBuPABvyJMwsz-hIKQeOOxhLY935RnPjO35Zgh5MwhyYLnL2MA7xyToP6YFl8zqrBCB6zwIBDh_mKjxlXw3zaZ75KzHwmBYZaf7W53eaOuuJelmM1nOZsklFivRGWawQ0OkpohglzmG9Z183YV5YPaYpmoedMarSnkLJTw_QYg7PJgu81RAo9JYXebfBuovVd3Yn9Ej8rBzHOmw_bfHZC-UB-TBrXSCB-Tw_DdqDbp2y3b1hHy_aPO6Ag9oFek8rGnchAWtEVlAb7YerJitHQggxTj4a2rpZ3tdIr6RTmY_v_0YheRyePGRcU6b857tCkaoagqCi_GSLNahG8eH6ssWhNLuPoaH7csbS6vZ4im5Gp1_OhuzrgIDK4TM1swp2E9xK6MXqXSFtTzzURVaxphG2DufFrlWNkRuA3daKBXB3wOPzWmXFj4N4pDsl1UZnhHqpU29t8LzUMg8V9YBrQf3z9uBDFk4Ilk_7abo0pNjlYyF6ePQ5qZnl0F2mZZdRyTZ0S3bBB13Uuieq-YPUTNgRe6kfd2LgYF1iJcrtgzVZmUEmI4c3ICUP_-P8V-Q-_jWRgu-JPvrehNegdezdseNWB-Te8O378eTX908BoU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELdG9wA8IBhMG-OPkXgNiWfHqR-raVXHtjJpm9Q3y47trVVJqrSV6Nve-AB8Qz4Jd01SBkLaAw95cXxO5Dvfne273xHysetF1zCbRl1nbSRA_0WKMxEZlebcM5V5jgnO50M5uBafR-loixy1uTAYVtno_lqnr7V10xI3sxnPxuP4EouVqBQR7NAQydEjso3oVKJDtnsnp4Ph5jJBJOsCltgfbyvFvUThySfMcocHETMPOTRKhQVm_m2j_tLWaxPUf06eNb4j7dW_94Js-WKHPL2HKLhDdo9_J65B12blzl-S7xc1tCuwgZaBTvyChqWf0gqTC-jtyoEhM5UFGaQYCn9DDf1qbgpMcaTD8c-7H30fX_YuvkSM0fWRz2oOI5QVBdnFkMkoVL4Zx_ny2wrk0mw-hufts1tDy_H0FbnuH18dDaKmCEOUc5EuIithS8WMCI4nwubGsNQFmSsRQhJg-3yYZ0oaH5jxzCouZQCXD5w2q2ySu8TzXdIpysLvEeqESZwz3DGfiyyTxgKtAw_Qma7wqd8naTvtOm8QyrFQxlS3oWgT3bJLI7t0za59Em_oZjVGx4MUquWq_kPaNBiSB2k_tGKgYSni_YopfLmcaw7WIwNPIGGv_2P89-Tx4Or8TJ-dDE8PyBN8UwcPviGdRbX0b8EJWth3jZD_AshcCTY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Production+of+jet+fuel+range+hydrocarbons+using+a+magnetic+Ni-Fe%2FSAPO-11+catalyst+for+solvent-free+hydrodeoxygenation+of+jatropha+oil&rft.jtitle=Biomass+%26+bioenergy&rft.au=Tang%2C+Hongbiao&rft.au=Dai%2C+Qiqi&rft.au=Cao%2C+Yang&rft.au=Li%2C+Jin&rft.date=2023-10-01&rft.issn=0961-9534&rft_id=info:doi/10.1016%2Fj.biombioe.2023.106927&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-9534&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-9534&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-9534&client=summon |