Epithelial–Mesenchymal Transitioned Circulating Tumor Cells Capture for Detecting Tumor Progression
Purpose: This study aimed to detect cell-surface vimentin (CSV) on the surface of epithelial–mesenchymal transitioned (EMT) circulating tumor cells (CTC) from blood of patients with epithelial cancers. Experimental Design: In this study, 101 patients undergoing postsurgery adjuvant chemotherapy for...
Saved in:
Published in | Clinical cancer research Vol. 21; no. 4; pp. 899 - 906 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
15.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose: This study aimed to detect cell-surface vimentin (CSV) on the surface of epithelial–mesenchymal transitioned (EMT) circulating tumor cells (CTC) from blood of patients with epithelial cancers.
Experimental Design: In this study, 101 patients undergoing postsurgery adjuvant chemotherapy for metastatic colon cancer were recruited. EMT CTCs were detected from blood of patients using the 84-1 monoclonal antibody against CSV as a marker. EMT CTCs isolated were characterized further using EMT-specific markers, fluorescent in situ hybridization, and single-cell mutation analysis.
Results: Using the 84-1 antibody, we detected CSV exclusively on EMT CTCs from a variety of tumor types but not in the surrounding normal cells in the blood. The antibody exhibited very high specificity and sensitivity toward different epithelial cancer cells. With this antibody, we detected and enumerated EMT CTCs from patients. From our observations, we defined a cutoff of <5 or ≥5 EMT CTCs as the optimal threshold with respect to therapeutic response using ROC curves. Using this defined threshold, the presence of ≥5 EMT CTCs was associated with progressive disease, whereas patients with <5 EMT CTCs showed therapeutic response.
Conclusion: Taken together, the number of EMT CTCs detected correlated with the therapeutic outcome of the disease. These results establish CSV as a universal marker for EMT CTCs from a wide variety of tumor types and thus provide the foundation for emerging CTC detection technologies and for studying the molecular regulation of these EMT CTCs. Clin Cancer Res; 21(4); 899–906. ©2014 AACR. |
---|---|
AbstractList | This study aimed to detect cell-surface vimentin (CSV) on the surface of epithelial-mesenchymal transitioned (EMT) circulating tumor cells (CTC) from blood of patients with epithelial cancers.
In this study, 101 patients undergoing postsurgery adjuvant chemotherapy for metastatic colon cancer were recruited. EMT CTCs were detected from blood of patients using the 84-1 monoclonal antibody against CSV as a marker. EMT CTCs isolated were characterized further using EMT-specific markers, fluorescent in situ hybridization, and single-cell mutation analysis.
Using the 84-1 antibody, we detected CSV exclusively on EMT CTCs from a variety of tumor types but not in the surrounding normal cells in the blood. The antibody exhibited very high specificity and sensitivity toward different epithelial cancer cells. With this antibody, we detected and enumerated EMT CTCs from patients. From our observations, we defined a cutoff of <5 or ≥5 EMT CTCs as the optimal threshold with respect to therapeutic response using ROC curves. Using this defined threshold, the presence of ≥5 EMT CTCs was associated with progressive disease, whereas patients with <5 EMT CTCs showed therapeutic response.
Taken together, the number of EMT CTCs detected correlated with the therapeutic outcome of the disease. These results establish CSV as a universal marker for EMT CTCs from a wide variety of tumor types and thus provide the foundation for emerging CTC detection technologies and for studying the molecular regulation of these EMT CTCs. This study aimed to detect cell-surface vimentin (CSV) on the surface of epithelial-mesenchymal transitioned (EMT) circulating tumor cells (CTC) from blood of patients with epithelial cancers.PURPOSEThis study aimed to detect cell-surface vimentin (CSV) on the surface of epithelial-mesenchymal transitioned (EMT) circulating tumor cells (CTC) from blood of patients with epithelial cancers.In this study, 101 patients undergoing postsurgery adjuvant chemotherapy for metastatic colon cancer were recruited. EMT CTCs were detected from blood of patients using the 84-1 monoclonal antibody against CSV as a marker. EMT CTCs isolated were characterized further using EMT-specific markers, fluorescent in situ hybridization, and single-cell mutation analysis.EXPERIMENTAL DESIGNIn this study, 101 patients undergoing postsurgery adjuvant chemotherapy for metastatic colon cancer were recruited. EMT CTCs were detected from blood of patients using the 84-1 monoclonal antibody against CSV as a marker. EMT CTCs isolated were characterized further using EMT-specific markers, fluorescent in situ hybridization, and single-cell mutation analysis.Using the 84-1 antibody, we detected CSV exclusively on EMT CTCs from a variety of tumor types but not in the surrounding normal cells in the blood. The antibody exhibited very high specificity and sensitivity toward different epithelial cancer cells. With this antibody, we detected and enumerated EMT CTCs from patients. From our observations, we defined a cutoff of <5 or ≥5 EMT CTCs as the optimal threshold with respect to therapeutic response using ROC curves. Using this defined threshold, the presence of ≥5 EMT CTCs was associated with progressive disease, whereas patients with <5 EMT CTCs showed therapeutic response.RESULTSUsing the 84-1 antibody, we detected CSV exclusively on EMT CTCs from a variety of tumor types but not in the surrounding normal cells in the blood. The antibody exhibited very high specificity and sensitivity toward different epithelial cancer cells. With this antibody, we detected and enumerated EMT CTCs from patients. From our observations, we defined a cutoff of <5 or ≥5 EMT CTCs as the optimal threshold with respect to therapeutic response using ROC curves. Using this defined threshold, the presence of ≥5 EMT CTCs was associated with progressive disease, whereas patients with <5 EMT CTCs showed therapeutic response.Taken together, the number of EMT CTCs detected correlated with the therapeutic outcome of the disease. These results establish CSV as a universal marker for EMT CTCs from a wide variety of tumor types and thus provide the foundation for emerging CTC detection technologies and for studying the molecular regulation of these EMT CTCs.CONCLUSIONTaken together, the number of EMT CTCs detected correlated with the therapeutic outcome of the disease. These results establish CSV as a universal marker for EMT CTCs from a wide variety of tumor types and thus provide the foundation for emerging CTC detection technologies and for studying the molecular regulation of these EMT CTCs. Purpose: This study aimed to detect cell-surface vimentin (CSV) on the surface of epithelial–mesenchymal transitioned (EMT) circulating tumor cells (CTC) from blood of patients with epithelial cancers. Experimental Design: In this study, 101 patients undergoing postsurgery adjuvant chemotherapy for metastatic colon cancer were recruited. EMT CTCs were detected from blood of patients using the 84-1 monoclonal antibody against CSV as a marker. EMT CTCs isolated were characterized further using EMT-specific markers, fluorescent in situ hybridization, and single-cell mutation analysis. Results: Using the 84-1 antibody, we detected CSV exclusively on EMT CTCs from a variety of tumor types but not in the surrounding normal cells in the blood. The antibody exhibited very high specificity and sensitivity toward different epithelial cancer cells. With this antibody, we detected and enumerated EMT CTCs from patients. From our observations, we defined a cutoff of <5 or ≥5 EMT CTCs as the optimal threshold with respect to therapeutic response using ROC curves. Using this defined threshold, the presence of ≥5 EMT CTCs was associated with progressive disease, whereas patients with <5 EMT CTCs showed therapeutic response. Conclusion: Taken together, the number of EMT CTCs detected correlated with the therapeutic outcome of the disease. These results establish CSV as a universal marker for EMT CTCs from a wide variety of tumor types and thus provide the foundation for emerging CTC detection technologies and for studying the molecular regulation of these EMT CTCs. Clin Cancer Res; 21(4); 899–906. ©2014 AACR. |
Author | Satelli, Arun Brownlee, Zachary Bellister, Seth Kopetz, Scott Ellis, Lee M. Meng, Qing H. Mitra, Abhisek Li, Shulin Xia, Xueqing Overman, Michael J. |
AuthorAffiliation | 2 Department of Surgical Oncology, Division of Surgery & Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 1 Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas 4 Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 3 Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 5 The University of Texas Graduate School of Biomedical Sciences, Houston, Texas |
AuthorAffiliation_xml | – name: 5 The University of Texas Graduate School of Biomedical Sciences, Houston, Texas – name: 1 Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas – name: 3 Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas – name: 2 Department of Surgical Oncology, Division of Surgery & Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas – name: 4 Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas |
Author_xml | – sequence: 1 givenname: Arun surname: Satelli fullname: Satelli, Arun – sequence: 2 givenname: Abhisek surname: Mitra fullname: Mitra, Abhisek – sequence: 3 givenname: Zachary surname: Brownlee fullname: Brownlee, Zachary – sequence: 4 givenname: Xueqing surname: Xia fullname: Xia, Xueqing – sequence: 5 givenname: Seth surname: Bellister fullname: Bellister, Seth – sequence: 6 givenname: Michael J. surname: Overman fullname: Overman, Michael J. – sequence: 7 givenname: Scott surname: Kopetz fullname: Kopetz, Scott – sequence: 8 givenname: Lee M. surname: Ellis fullname: Ellis, Lee M. – sequence: 9 givenname: Qing H. surname: Meng fullname: Meng, Qing H. – sequence: 10 givenname: Shulin surname: Li fullname: Li, Shulin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25516888$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctq3DAYhUVIyK19hAQvu3EqWdchUCjOpYWEljJdC1n-PaMg21NJDmSXd-gb9kkik0xJu8hKQjrnfNJ_jtDuMA6A0AnBZ4Rw9ZFgqUrMaHVW1z9KwkqsFmwHHRLOZUkrwXfzfqs5QEcx3mFMGMFsHx1UnBOhlDpEcLlxaQ3eGf_n8fctRBjs-qE3vlgGM0SXXMa2Re2CnbxJblgVy6kfQ1GD97GozSZNAYoun1xAAvtK8T2MqwAx5oR3aK8zPsL7l_UY_by6XNZfyptv11_rzzelpYynsmG8y6_qlDQdaSupjGyJMoIurMCiVV1Fm6ZRwIBxUnHcckk6KcyiwXzBsKXH6NNz7mZqemgtDCkYrzfB9SY86NE4_e_N4NZ6Nd5rRimTVOSADy8BYfw1QUy6d9Hmr5oBxilqIrikFROYZunpa9ZfyHa2WXD-LLBhjDFAp61LZh5oRjuvCdZzk3puSc8t6dykJkzPTWY3_8-9BbztewJZgqUP |
CitedBy_id | crossref_primary_10_1016_j_gene_2017_05_040 crossref_primary_10_3390_ph15010075 crossref_primary_10_1186_s12935_020_01389_3 crossref_primary_10_3390_jpm12020154 crossref_primary_10_1007_s12663_024_02250_0 crossref_primary_10_1016_j_bone_2020_115693 crossref_primary_10_1038_s41698_022_00289_1 crossref_primary_10_2217_fon_2016_0109 crossref_primary_10_3390_cancers12123588 crossref_primary_10_1136_jitc_2021_003633 crossref_primary_10_1002_elps_202100318 crossref_primary_10_1186_s12885_020_07203_7 crossref_primary_10_3389_fonc_2021_672687 crossref_primary_10_3389_fonc_2019_00874 crossref_primary_10_1016_j_urolonc_2015_03_016 crossref_primary_10_1155_2017_9474532 crossref_primary_10_3390_cancers11060783 crossref_primary_10_1002_cam4_70216 crossref_primary_10_1016_j_ebiom_2016_07_027 crossref_primary_10_1186_s13046_024_03140_6 crossref_primary_10_1016_j_talanta_2018_01_067 crossref_primary_10_1038_s41598_019_53660_x crossref_primary_10_1117_1_JBO_27_7_076003 crossref_primary_10_18632_oncotarget_19722 crossref_primary_10_1016_j_bios_2023_115564 crossref_primary_10_3390_cancers11111716 crossref_primary_10_3390_nano10020383 crossref_primary_10_3892_ol_2022_13310 crossref_primary_10_1038_s41598_017_13501_1 crossref_primary_10_1016_j_trsl_2017_04_002 crossref_primary_10_3390_cancers15061831 crossref_primary_10_1158_1078_0432_CCR_17_3078 crossref_primary_10_1007_s13277_016_4796_5 crossref_primary_10_3390_cells11030376 crossref_primary_10_3389_fonc_2021_760765 crossref_primary_10_3390_cancers11010059 crossref_primary_10_3390_ijms17081308 crossref_primary_10_1038_s41423_023_00980_8 crossref_primary_10_1038_srep21903 crossref_primary_10_3390_cancers9120171 crossref_primary_10_1089_dna_2017_3981 crossref_primary_10_3390_cancers12040867 crossref_primary_10_3390_molecules30050976 crossref_primary_10_1136_jclinpath_2015_202985 crossref_primary_10_1016_j_canlet_2018_09_012 crossref_primary_10_1016_j_addr_2017_12_004 crossref_primary_10_1038_s41598_023_46458_5 crossref_primary_10_3892_or_2024_8815 crossref_primary_10_1158_1078_0432_CCR_17_2312 crossref_primary_10_1038_s41598_021_82634_1 crossref_primary_10_1007_s13277_015_3432_0 crossref_primary_10_1007_s12020_022_03066_z crossref_primary_10_3390_cancers13092189 crossref_primary_10_1016_j_canlet_2019_04_007 crossref_primary_10_1002_1878_0261_12017 crossref_primary_10_3390_ijms24098404 crossref_primary_10_1515_med_2024_1074 crossref_primary_10_1016_j_bios_2023_115140 crossref_primary_10_1155_2022_9916228 crossref_primary_10_1016_j_tcb_2018_12_001 crossref_primary_10_1093_glycob_cwac067 crossref_primary_10_1016_j_trecan_2021_07_001 crossref_primary_10_3390_ijms160714655 crossref_primary_10_1002_cam4_4236 crossref_primary_10_3389_fonc_2022_725318 crossref_primary_10_1007_s00018_020_03529_4 crossref_primary_10_1093_clinchem_hvad191 crossref_primary_10_3390_cancers13102290 crossref_primary_10_3389_fonc_2021_602222 crossref_primary_10_3390_cancers15102825 crossref_primary_10_2147_CMAR_S253997 crossref_primary_10_1111_codi_14927 crossref_primary_10_1038_s41698_019_0095_0 crossref_primary_10_1586_14737159_2015_1091311 crossref_primary_10_1016_j_heliyon_2024_e35524 crossref_primary_10_18632_oncotarget_4037 crossref_primary_10_1007_s10238_024_01518_6 crossref_primary_10_1007_s00109_016_1500_6 crossref_primary_10_3390_cancers12041005 crossref_primary_10_3390_diagnostics8030059 crossref_primary_10_1038_srep28910 crossref_primary_10_3109_10408363_2015_1023430 crossref_primary_10_1158_1078_0432_CCR_22_0721 crossref_primary_10_3390_cancers14163985 crossref_primary_10_1063_5_0159399 crossref_primary_10_3389_fbioe_2022_806238 crossref_primary_10_1002_1878_0261_12081 crossref_primary_10_1002_jcph_486 crossref_primary_10_3390_diagnostics11112040 crossref_primary_10_1016_j_stem_2018_11_011 crossref_primary_10_1053_j_seminoncol_2015_05_010 crossref_primary_10_2147_CMAR_S316544 crossref_primary_10_3892_ol_2019_10218 crossref_primary_10_1111_cas_15255 crossref_primary_10_18632_oncotarget_12458 crossref_primary_10_1186_s12957_023_03215_2 crossref_primary_10_1021_acs_biomac_7b01515 crossref_primary_10_1002_advs_202301059 crossref_primary_10_1097_SLA_0000000000005708 crossref_primary_10_1021_acs_analchem_9b01181 crossref_primary_10_18632_oncotarget_18277 crossref_primary_10_3390_ijms18040622 crossref_primary_10_3390_ijms18040743 crossref_primary_10_3390_cancers12123674 crossref_primary_10_1016_j_semcdb_2016_08_025 crossref_primary_10_1186_s40425_019_0631_z crossref_primary_10_14309_ctg_0000000000000055 crossref_primary_10_7717_peerj_10777 crossref_primary_10_3390_s20051317 crossref_primary_10_1101_gad_305805_117 crossref_primary_10_3389_fcell_2021_660924 crossref_primary_10_3390_cancers11111750 crossref_primary_10_1016_j_ceb_2015_06_004 crossref_primary_10_1007_s10637_018_00717_9 crossref_primary_10_15252_embr_202154265 crossref_primary_10_3748_wjg_v25_i1_138 crossref_primary_10_3389_fonc_2020_00792 crossref_primary_10_1158_1541_7786_MCR_16_0011 crossref_primary_10_1002_1878_0261_12643 crossref_primary_10_1042_BCJ20160782 crossref_primary_10_1016_j_drup_2019_100645 crossref_primary_10_18632_oncotarget_14065 crossref_primary_10_3390_cancers13153869 crossref_primary_10_1007_s10388_021_00829_x crossref_primary_10_1038_s41392_021_00817_8 crossref_primary_10_14309_ctg_0000000000000265 crossref_primary_10_1111_cbdd_13019 crossref_primary_10_3390_cancers11060806 crossref_primary_10_1186_s12885_016_2192_6 crossref_primary_10_1007_s10555_023_10124_z crossref_primary_10_3390_mi9110563 crossref_primary_10_1007_s10555_017_9682_0 crossref_primary_10_1002_dvdy_24506 crossref_primary_10_1586_14789450_2016_1112742 crossref_primary_10_1007_s11033_019_04873_w crossref_primary_10_3390_biomedicines11010203 crossref_primary_10_1016_j_ebiom_2019_07_044 crossref_primary_10_1016_j_trsl_2019_07_003 crossref_primary_10_3389_fonc_2021_802188 crossref_primary_10_1002_ijc_33140 crossref_primary_10_18632_oncotarget_10175 crossref_primary_10_3389_fonc_2020_00789 crossref_primary_10_1039_C7RA03663A crossref_primary_10_1016_j_snb_2023_135111 crossref_primary_10_1021_acs_analchem_9b05203 crossref_primary_10_3389_fonc_2022_1024783 crossref_primary_10_1111_cpr_12267 crossref_primary_10_1038_s41416_022_01768_9 crossref_primary_10_3389_fonc_2021_760267 crossref_primary_10_3390_cancers8010008 crossref_primary_10_1016_j_canlet_2019_03_009 crossref_primary_10_1016_j_biopha_2024_117726 crossref_primary_10_1158_1078_0432_CCR_16_3081 crossref_primary_10_1186_s13046_020_01601_2 crossref_primary_10_3389_fonc_2021_681130 crossref_primary_10_1007_s00432_020_03244_4 crossref_primary_10_1080_2162402X_2017_1420450 crossref_primary_10_3390_cancers13112723 crossref_primary_10_3390_cancers15153853 crossref_primary_10_1016_j_canlet_2017_05_032 crossref_primary_10_18632_oncotarget_17632 crossref_primary_10_3390_ijms22147469 crossref_primary_10_1007_s00109_021_02162_3 crossref_primary_10_1021_acs_analchem_9b05690 crossref_primary_10_1002_elps_201900374 |
Cites_doi | 10.1002/cam4.4 10.1073/pnas.0703900104 10.1158/0008-5472.CAN-12-0326 10.1038/nrc1694 10.1007/s00018-011-0735-1 10.1158/0008-5472.CAN-13-1739 10.4049/jimmunol.176.1.652 10.1373/clinchem.2012.188557 10.1056/NEJMoa040766 10.1016/j.devcel.2008.05.009 10.1126/science.1228522 10.1158/2159-8290.CD-11-0215 10.1038/sj.bjc.6603193 10.1093/jnci/djn419 10.1016/S0092-8674(00)00122-7 10.1038/nrc1370 10.1586/erm.11.33 10.1038/mt.2011.38 10.1073/pnas.171610498 10.1371/journal.pone.0018023 10.1172/JCI39104 10.1186/1479-5876-10-138 10.1148/radiology.143.1.7063747 10.1158/1078-0432.CCR-08-0030 10.1016/j.ymeth.2013.06.034 10.1371/journal.pone.0033788 |
ContentType | Journal Article |
Copyright | 2014 American Association for Cancer Research. |
Copyright_xml | – notice: 2014 American Association for Cancer Research. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1158/1078-0432.CCR-14-0894 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1557-3265 |
EndPage | 906 |
ExternalDocumentID | PMC4334736 25516888 10_1158_1078_0432_CCR_14_0894 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01CA120895 – fundername: NCI NIH HHS grantid: R01 CA120895 – fundername: NCI NIH HHS grantid: P30 CA016672 |
GroupedDBID | --- 18M 29B 2FS 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BR6 BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P QTD RCR RHI RNS SJN TR2 W2D W8F WOQ YKV CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c345t-b45f888f87af1d278a7d18a639c606d8f23bbb8e4e451250d571f76a9b05940c3 |
ISSN | 1078-0432 1557-3265 |
IngestDate | Thu Aug 21 14:12:31 EDT 2025 Fri Jul 11 15:05:24 EDT 2025 Mon Jul 21 05:59:53 EDT 2025 Thu Apr 24 22:58:22 EDT 2025 Tue Jul 01 03:06:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | 2014 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c345t-b45f888f87af1d278a7d18a639c606d8f23bbb8e4e451250d571f76a9b05940c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25516888 |
PQID | 1657324603 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4334736 proquest_miscellaneous_1657324603 pubmed_primary_25516888 crossref_citationtrail_10_1158_1078_0432_CCR_14_0894 crossref_primary_10_1158_1078_0432_CCR_14_0894 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-15 |
PublicationDateYYYYMMDD | 2015-02-15 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Clinical cancer research |
PublicationTitleAlternate | Clin Cancer Res |
PublicationYear | 2015 |
References | Powell (2022061103151485400_bib6) 2012; 7 Sieuwerts (2022061103151485400_bib3) 2009; 101 Satelli (2022061103151485400_bib9) 2014; 74 Yu (2022061103151485400_bib4) 2013; 339 Huet (2022061103151485400_bib8) 2006; 176 Brabletz (2022061103151485400_bib14) 2005; 5 Yang (2022061103151485400_bib18) 2008; 14 Cristofanilli (2022061103151485400_bib22) 2004; 351 Bitting (2022061103151485400_bib12) 2013; 64 Satelli (2022061103151485400_bib5) 2011; 68 Parkinson (2022061103151485400_bib2) 2012; 10 Brabletz (2022061103151485400_bib16) 2001; 98 Gasch (2022061103151485400_bib17) 2013; 59 Pecot (2022061103151485400_bib10) 2011; 1 Yokobori (2022061103151485400_bib11) 2013; 73 Pantel (2022061103151485400_bib1) 2004; 4 Cutrera (2022061103151485400_bib7) 2011; 19 Shioiri (2022061103151485400_bib20) 2006; 94 Mani (2022061103151485400_bib24) 2007; 104 Hanley (2022061103151485400_bib13) 1982; 143 Bienz (2022061103151485400_bib15) 2000; 103 Gomez (2022061103151485400_bib19) 2011; 6 Danova (2022061103151485400_bib21) 2011; 11 Pierga (2022061103151485400_bib26) 2008; 14 Fan (2022061103151485400_bib25) 2012; 1 Kalluri (2022061103151485400_bib23) 2009; 119 23372014 - Science. 2013 Feb 1;339(6119):580-4 15170447 - Nat Rev Cancer. 2004 Jun;4(6):448-56 16148886 - Nat Rev Cancer. 2005 Sep;5(9):744-9 19487818 - J Clin Invest. 2009 Jun;119(6):1420-8 23378342 - Cancer Res. 2013 Apr 1;73(7):2059-69 15317891 - N Engl J Med. 2004 Aug 19;351(8):781-91 23845299 - Methods. 2013 Dec 1;64(2):129-36 21386825 - Mol Ther. 2011 Aug;19(8):1468-77 18980996 - Clin Cancer Res. 2008 Nov 1;14(21):7004-10 11526241 - Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10356-61 7063747 - Radiology. 1982 Apr;143(1):29-36 19116383 - J Natl Cancer Inst. 2009 Jan 7;101(1):61-6 18539112 - Dev Cell. 2008 Jun;14(6):818-29 23342249 - Cancer Med. 2012 Aug;1(1):5-16 16773075 - Br J Cancer. 2006 Jun 19;94(12):1816-22 17537911 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10069-74 21637948 - Cell Mol Life Sci. 2011 Sep;68(18):3033-46 23136247 - Clin Chem. 2013 Jan;59(1):252-60 22747748 - J Transl Med. 2012;10:138 16365461 - J Immunol. 2006 Jan 1;176(1):652-9 24448245 - Cancer Res. 2014 Mar 15;74(6):1645-50 22180853 - Cancer Discov. 2011 Dec;1(7):580-6 22586443 - PLoS One. 2012;7(5):e33788 21464926 - PLoS One. 2011;6(3):e18023 21707456 - Expert Rev Mol Diagn. 2011 Jun;11(5):473-85 11057903 - Cell. 2000 Oct 13;103(2):311-20 |
References_xml | – volume: 1 start-page: 5 year: 2012 ident: 2022061103151485400_bib25 article-title: Overexpression of snail induces epithelial-mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells publication-title: Cancer Med doi: 10.1002/cam4.4 – volume: 104 start-page: 10069 year: 2007 ident: 2022061103151485400_bib24 article-title: Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0703900104 – volume: 73 start-page: 2059 year: 2013 ident: 2022061103151485400_bib11 article-title: Plastin3 is a novel marker for circulating tumor cells undergoing the epithelial-mesenchymal transition and is associated with colorectal cancer prognosis publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-0326 – volume: 5 start-page: 744 year: 2005 ident: 2022061103151485400_bib14 article-title: Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression publication-title: Nat Rev Cancer doi: 10.1038/nrc1694 – volume: 68 start-page: 3033 year: 2011 ident: 2022061103151485400_bib5 article-title: Vimentin in cancer and its potential as a molecular target for cancer therapy publication-title: Cell Mol Life Sci doi: 10.1007/s00018-011-0735-1 – volume: 74 start-page: 1645 year: 2014 ident: 2022061103151485400_bib9 article-title: Universal marker and detection tool for human sarcoma circulating tumor cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-13-1739 – volume: 176 start-page: 652 year: 2006 ident: 2022061103151485400_bib8 article-title: SC5 mAb represents a unique tool for the detection of extracellular vimentin as a specific marker of Sezary cells publication-title: J Immunol doi: 10.4049/jimmunol.176.1.652 – volume: 59 start-page: 252 year: 2013 ident: 2022061103151485400_bib17 article-title: Heterogeneity of epidermal growth factor receptor status and mutations of KRAS/PIK3CA in circulating tumor cells of patients with colorectal cancer publication-title: Clin Chem doi: 10.1373/clinchem.2012.188557 – volume: 351 start-page: 781 year: 2004 ident: 2022061103151485400_bib22 article-title: Circulating tumor cells, disease progression, and survival in metastatic breast cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa040766 – volume: 14 start-page: 818 year: 2008 ident: 2022061103151485400_bib18 article-title: Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis publication-title: Dev Cell doi: 10.1016/j.devcel.2008.05.009 – volume: 339 start-page: 580 year: 2013 ident: 2022061103151485400_bib4 article-title: Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition publication-title: Science doi: 10.1126/science.1228522 – volume: 1 start-page: 580 year: 2011 ident: 2022061103151485400_bib10 article-title: A novel platform for detection of CK+ and CK− CTCs publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-11-0215 – volume: 94 start-page: 1816 year: 2006 ident: 2022061103151485400_bib20 article-title: Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients publication-title: Br J Cancer doi: 10.1038/sj.bjc.6603193 – volume: 101 start-page: 61 year: 2009 ident: 2022061103151485400_bib3 article-title: Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djn419 – volume: 103 start-page: 311 year: 2000 ident: 2022061103151485400_bib15 article-title: Linking colorectal cancer to Wnt signaling publication-title: Cell doi: 10.1016/S0092-8674(00)00122-7 – volume: 4 start-page: 448 year: 2004 ident: 2022061103151485400_bib1 article-title: Dissecting the metastatic cascade publication-title: Nat Rev Cancer doi: 10.1038/nrc1370 – volume: 11 start-page: 473 year: 2011 ident: 2022061103151485400_bib21 article-title: Isolation of rare circulating tumor cells in cancer patients: technical aspects and clinical implications publication-title: Expert Rev Mol Diagn doi: 10.1586/erm.11.33 – volume: 19 start-page: 1468 year: 2011 ident: 2022061103151485400_bib7 article-title: Discovery of a linear peptide for improving tumor targeting of gene products and treatment of distal tumors by IL-12 gene therapy publication-title: Mol Ther doi: 10.1038/mt.2011.38 – volume: 98 start-page: 10356 year: 2001 ident: 2022061103151485400_bib16 article-title: Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.171610498 – volume: 6 start-page: e18023 year: 2011 ident: 2022061103151485400_bib19 article-title: TWIST1 is expressed in colorectal carcinomas and predicts patient survival publication-title: PLoS ONE doi: 10.1371/journal.pone.0018023 – volume: 119 start-page: 1420 year: 2009 ident: 2022061103151485400_bib23 article-title: The basics of epithelial-mesenchymal transition publication-title: J Clin Invest doi: 10.1172/JCI39104 – volume: 10 start-page: 138 year: 2012 ident: 2022061103151485400_bib2 article-title: Considerations in the development of circulating tumor cell technology for clinical use publication-title: J Transl Med doi: 10.1186/1479-5876-10-138 – volume: 143 start-page: 29 year: 1982 ident: 2022061103151485400_bib13 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – volume: 14 start-page: 7004 year: 2008 ident: 2022061103151485400_bib26 article-title: Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-08-0030 – volume: 64 start-page: 129 year: 2013 ident: 2022061103151485400_bib12 article-title: Development of a method to isolate circulating tumor cells using mesenchymal-based capture publication-title: Methods doi: 10.1016/j.ymeth.2013.06.034 – volume: 7 start-page: e33788 year: 2012 ident: 2022061103151485400_bib6 article-title: Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines publication-title: PLoS ONE doi: 10.1371/journal.pone.0033788 – reference: 21637948 - Cell Mol Life Sci. 2011 Sep;68(18):3033-46 – reference: 15317891 - N Engl J Med. 2004 Aug 19;351(8):781-91 – reference: 18980996 - Clin Cancer Res. 2008 Nov 1;14(21):7004-10 – reference: 23136247 - Clin Chem. 2013 Jan;59(1):252-60 – reference: 11057903 - Cell. 2000 Oct 13;103(2):311-20 – reference: 11526241 - Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10356-61 – reference: 7063747 - Radiology. 1982 Apr;143(1):29-36 – reference: 17537911 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10069-74 – reference: 23342249 - Cancer Med. 2012 Aug;1(1):5-16 – reference: 21386825 - Mol Ther. 2011 Aug;19(8):1468-77 – reference: 18539112 - Dev Cell. 2008 Jun;14(6):818-29 – reference: 16773075 - Br J Cancer. 2006 Jun 19;94(12):1816-22 – reference: 21707456 - Expert Rev Mol Diagn. 2011 Jun;11(5):473-85 – reference: 19116383 - J Natl Cancer Inst. 2009 Jan 7;101(1):61-6 – reference: 23845299 - Methods. 2013 Dec 1;64(2):129-36 – reference: 23372014 - Science. 2013 Feb 1;339(6119):580-4 – reference: 21464926 - PLoS One. 2011;6(3):e18023 – reference: 15170447 - Nat Rev Cancer. 2004 Jun;4(6):448-56 – reference: 16365461 - J Immunol. 2006 Jan 1;176(1):652-9 – reference: 16148886 - Nat Rev Cancer. 2005 Sep;5(9):744-9 – reference: 19487818 - J Clin Invest. 2009 Jun;119(6):1420-8 – reference: 22180853 - Cancer Discov. 2011 Dec;1(7):580-6 – reference: 22586443 - PLoS One. 2012;7(5):e33788 – reference: 23378342 - Cancer Res. 2013 Apr 1;73(7):2059-69 – reference: 22747748 - J Transl Med. 2012;10:138 – reference: 24448245 - Cancer Res. 2014 Mar 15;74(6):1645-50 |
SSID | ssj0014104 |
Score | 2.5487761 |
Snippet | Purpose: This study aimed to detect cell-surface vimentin (CSV) on the surface of epithelial–mesenchymal transitioned (EMT) circulating tumor cells (CTC) from... This study aimed to detect cell-surface vimentin (CSV) on the surface of epithelial-mesenchymal transitioned (EMT) circulating tumor cells (CTC) from blood of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 899 |
SubjectTerms | Adult Aged Antibodies, Monoclonal Biomarkers, Tumor - analysis Colonic Neoplasms - diagnosis Disease Progression Epithelial-Mesenchymal Transition Female Flow Cytometry Humans In Situ Hybridization, Fluorescence Male Middle Aged Neoplastic Cells, Circulating Sensitivity and Specificity Single-Cell Analysis Vimentin - analysis Vimentin - biosynthesis |
Title | Epithelial–Mesenchymal Transitioned Circulating Tumor Cells Capture for Detecting Tumor Progression |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25516888 https://www.proquest.com/docview/1657324603 https://pubmed.ncbi.nlm.nih.gov/PMC4334736 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BkRAXxLspDxmJW-QQ78O7OaKQqkBbJEikiIu1D1uJ1KTBtQ_l1zP7sOPQSBQuVmSvvdbMl_HM7M43CL2TUgpNsIkVMyKm4IDEMsdpzM0QK2qkxNqxfZ6nJzP6ec7m21S2qy6p1ED_2ltX8j9ahXOgV1sl-w-abR8KJ-A36BeOoGE43krHk42tqLiAieKVrSLSi-uV2zwO3x_PQWT6ellq16LLlkXVq8uyb3P1lpJ64xYP7DZDk9ulhO0It2nLE3Z0nddxU0WpLVTKfiAKahPK36Wj93Tmpqxb1J0tq9Jnb9VieZVvS4M6RP0_pC3_atP7c7-Fd17nP5tPa8hMJK7S29dmNsaUgQHDvhfEIN9zLlhgXyMdkEY75lT45kk3zTwTLuNg2YEpwYPx-Fuc0HgofMPkXVrt86_Z8ez0NJtO5tO76B6GeMK2uvj46Uu73EQT12eyfblQ6gXTvN87ya4TcyMy-XODbcdjmT5CD0OoEX3wuHmM7uTrJ-j-WdhM8RTp_fCJuvCJOvCJHDgiB58owCcC-EQtfMKIDnyeodnxZDo-iUPPjVgTyqpYUVYIIQrBZZEYzIXkJhES_FgNoa4RBSZKKZHTnIKryIaG8aTgqRwpS_wz1OQ5OljD-x2iSFOthcGEJExRzkci0cwweNpImyItTA_RRoiZDoT0ti_KReYCUyYyK_vMyj4D2UOQmlnZ99CgvW3jGVn-dsPbRkMZ2E4rJbnOL-urLEkZh4AiHZIeeuE11j4S2xVkkEQP8R1dtgMsL_vulfVy4fjZKSGUk_ToFvO-RA-2_5xX6KAq6_w1eLmVeuMQ-hsJJawC |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epithelial-mesenchymal+transitioned+circulating+tumor+cells+capture+for+detecting+tumor+progression&rft.jtitle=Clinical+cancer+research&rft.au=Satelli%2C+Arun&rft.au=Mitra%2C+Abhisek&rft.au=Brownlee%2C+Zachary&rft.au=Xia%2C+Xueqing&rft.date=2015-02-15&rft.issn=1557-3265&rft.eissn=1557-3265&rft.volume=21&rft.issue=4&rft.spage=899&rft_id=info:doi/10.1158%2F1078-0432.CCR-14-0894&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon |