Epithelial–Mesenchymal Transitioned Circulating Tumor Cells Capture for Detecting Tumor Progression

Purpose: This study aimed to detect cell-surface vimentin (CSV) on the surface of epithelial–mesenchymal transitioned (EMT) circulating tumor cells (CTC) from blood of patients with epithelial cancers. Experimental Design: In this study, 101 patients undergoing postsurgery adjuvant chemotherapy for...

Full description

Saved in:
Bibliographic Details
Published inClinical cancer research Vol. 21; no. 4; pp. 899 - 906
Main Authors Satelli, Arun, Mitra, Abhisek, Brownlee, Zachary, Xia, Xueqing, Bellister, Seth, Overman, Michael J., Kopetz, Scott, Ellis, Lee M., Meng, Qing H., Li, Shulin
Format Journal Article
LanguageEnglish
Published United States 15.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose: This study aimed to detect cell-surface vimentin (CSV) on the surface of epithelial–mesenchymal transitioned (EMT) circulating tumor cells (CTC) from blood of patients with epithelial cancers. Experimental Design: In this study, 101 patients undergoing postsurgery adjuvant chemotherapy for metastatic colon cancer were recruited. EMT CTCs were detected from blood of patients using the 84-1 monoclonal antibody against CSV as a marker. EMT CTCs isolated were characterized further using EMT-specific markers, fluorescent in situ hybridization, and single-cell mutation analysis. Results: Using the 84-1 antibody, we detected CSV exclusively on EMT CTCs from a variety of tumor types but not in the surrounding normal cells in the blood. The antibody exhibited very high specificity and sensitivity toward different epithelial cancer cells. With this antibody, we detected and enumerated EMT CTCs from patients. From our observations, we defined a cutoff of <5 or ≥5 EMT CTCs as the optimal threshold with respect to therapeutic response using ROC curves. Using this defined threshold, the presence of ≥5 EMT CTCs was associated with progressive disease, whereas patients with <5 EMT CTCs showed therapeutic response. Conclusion: Taken together, the number of EMT CTCs detected correlated with the therapeutic outcome of the disease. These results establish CSV as a universal marker for EMT CTCs from a wide variety of tumor types and thus provide the foundation for emerging CTC detection technologies and for studying the molecular regulation of these EMT CTCs. Clin Cancer Res; 21(4); 899–906. ©2014 AACR.
AbstractList This study aimed to detect cell-surface vimentin (CSV) on the surface of epithelial-mesenchymal transitioned (EMT) circulating tumor cells (CTC) from blood of patients with epithelial cancers. In this study, 101 patients undergoing postsurgery adjuvant chemotherapy for metastatic colon cancer were recruited. EMT CTCs were detected from blood of patients using the 84-1 monoclonal antibody against CSV as a marker. EMT CTCs isolated were characterized further using EMT-specific markers, fluorescent in situ hybridization, and single-cell mutation analysis. Using the 84-1 antibody, we detected CSV exclusively on EMT CTCs from a variety of tumor types but not in the surrounding normal cells in the blood. The antibody exhibited very high specificity and sensitivity toward different epithelial cancer cells. With this antibody, we detected and enumerated EMT CTCs from patients. From our observations, we defined a cutoff of <5 or ≥5 EMT CTCs as the optimal threshold with respect to therapeutic response using ROC curves. Using this defined threshold, the presence of ≥5 EMT CTCs was associated with progressive disease, whereas patients with <5 EMT CTCs showed therapeutic response. Taken together, the number of EMT CTCs detected correlated with the therapeutic outcome of the disease. These results establish CSV as a universal marker for EMT CTCs from a wide variety of tumor types and thus provide the foundation for emerging CTC detection technologies and for studying the molecular regulation of these EMT CTCs.
This study aimed to detect cell-surface vimentin (CSV) on the surface of epithelial-mesenchymal transitioned (EMT) circulating tumor cells (CTC) from blood of patients with epithelial cancers.PURPOSEThis study aimed to detect cell-surface vimentin (CSV) on the surface of epithelial-mesenchymal transitioned (EMT) circulating tumor cells (CTC) from blood of patients with epithelial cancers.In this study, 101 patients undergoing postsurgery adjuvant chemotherapy for metastatic colon cancer were recruited. EMT CTCs were detected from blood of patients using the 84-1 monoclonal antibody against CSV as a marker. EMT CTCs isolated were characterized further using EMT-specific markers, fluorescent in situ hybridization, and single-cell mutation analysis.EXPERIMENTAL DESIGNIn this study, 101 patients undergoing postsurgery adjuvant chemotherapy for metastatic colon cancer were recruited. EMT CTCs were detected from blood of patients using the 84-1 monoclonal antibody against CSV as a marker. EMT CTCs isolated were characterized further using EMT-specific markers, fluorescent in situ hybridization, and single-cell mutation analysis.Using the 84-1 antibody, we detected CSV exclusively on EMT CTCs from a variety of tumor types but not in the surrounding normal cells in the blood. The antibody exhibited very high specificity and sensitivity toward different epithelial cancer cells. With this antibody, we detected and enumerated EMT CTCs from patients. From our observations, we defined a cutoff of <5 or ≥5 EMT CTCs as the optimal threshold with respect to therapeutic response using ROC curves. Using this defined threshold, the presence of ≥5 EMT CTCs was associated with progressive disease, whereas patients with <5 EMT CTCs showed therapeutic response.RESULTSUsing the 84-1 antibody, we detected CSV exclusively on EMT CTCs from a variety of tumor types but not in the surrounding normal cells in the blood. The antibody exhibited very high specificity and sensitivity toward different epithelial cancer cells. With this antibody, we detected and enumerated EMT CTCs from patients. From our observations, we defined a cutoff of <5 or ≥5 EMT CTCs as the optimal threshold with respect to therapeutic response using ROC curves. Using this defined threshold, the presence of ≥5 EMT CTCs was associated with progressive disease, whereas patients with <5 EMT CTCs showed therapeutic response.Taken together, the number of EMT CTCs detected correlated with the therapeutic outcome of the disease. These results establish CSV as a universal marker for EMT CTCs from a wide variety of tumor types and thus provide the foundation for emerging CTC detection technologies and for studying the molecular regulation of these EMT CTCs.CONCLUSIONTaken together, the number of EMT CTCs detected correlated with the therapeutic outcome of the disease. These results establish CSV as a universal marker for EMT CTCs from a wide variety of tumor types and thus provide the foundation for emerging CTC detection technologies and for studying the molecular regulation of these EMT CTCs.
Purpose: This study aimed to detect cell-surface vimentin (CSV) on the surface of epithelial–mesenchymal transitioned (EMT) circulating tumor cells (CTC) from blood of patients with epithelial cancers. Experimental Design: In this study, 101 patients undergoing postsurgery adjuvant chemotherapy for metastatic colon cancer were recruited. EMT CTCs were detected from blood of patients using the 84-1 monoclonal antibody against CSV as a marker. EMT CTCs isolated were characterized further using EMT-specific markers, fluorescent in situ hybridization, and single-cell mutation analysis. Results: Using the 84-1 antibody, we detected CSV exclusively on EMT CTCs from a variety of tumor types but not in the surrounding normal cells in the blood. The antibody exhibited very high specificity and sensitivity toward different epithelial cancer cells. With this antibody, we detected and enumerated EMT CTCs from patients. From our observations, we defined a cutoff of <5 or ≥5 EMT CTCs as the optimal threshold with respect to therapeutic response using ROC curves. Using this defined threshold, the presence of ≥5 EMT CTCs was associated with progressive disease, whereas patients with <5 EMT CTCs showed therapeutic response. Conclusion: Taken together, the number of EMT CTCs detected correlated with the therapeutic outcome of the disease. These results establish CSV as a universal marker for EMT CTCs from a wide variety of tumor types and thus provide the foundation for emerging CTC detection technologies and for studying the molecular regulation of these EMT CTCs. Clin Cancer Res; 21(4); 899–906. ©2014 AACR.
Author Satelli, Arun
Brownlee, Zachary
Bellister, Seth
Kopetz, Scott
Ellis, Lee M.
Meng, Qing H.
Mitra, Abhisek
Li, Shulin
Xia, Xueqing
Overman, Michael J.
AuthorAffiliation 2 Department of Surgical Oncology, Division of Surgery & Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
1 Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
4 Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
3 Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
5 The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
AuthorAffiliation_xml – name: 5 The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
– name: 1 Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
– name: 3 Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
– name: 2 Department of Surgical Oncology, Division of Surgery & Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
– name: 4 Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
Author_xml – sequence: 1
  givenname: Arun
  surname: Satelli
  fullname: Satelli, Arun
– sequence: 2
  givenname: Abhisek
  surname: Mitra
  fullname: Mitra, Abhisek
– sequence: 3
  givenname: Zachary
  surname: Brownlee
  fullname: Brownlee, Zachary
– sequence: 4
  givenname: Xueqing
  surname: Xia
  fullname: Xia, Xueqing
– sequence: 5
  givenname: Seth
  surname: Bellister
  fullname: Bellister, Seth
– sequence: 6
  givenname: Michael J.
  surname: Overman
  fullname: Overman, Michael J.
– sequence: 7
  givenname: Scott
  surname: Kopetz
  fullname: Kopetz, Scott
– sequence: 8
  givenname: Lee M.
  surname: Ellis
  fullname: Ellis, Lee M.
– sequence: 9
  givenname: Qing H.
  surname: Meng
  fullname: Meng, Qing H.
– sequence: 10
  givenname: Shulin
  surname: Li
  fullname: Li, Shulin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25516888$$D View this record in MEDLINE/PubMed
BookMark eNp9kctq3DAYhUVIyK19hAQvu3EqWdchUCjOpYWEljJdC1n-PaMg21NJDmSXd-gb9kkik0xJu8hKQjrnfNJ_jtDuMA6A0AnBZ4Rw9ZFgqUrMaHVW1z9KwkqsFmwHHRLOZUkrwXfzfqs5QEcx3mFMGMFsHx1UnBOhlDpEcLlxaQ3eGf_n8fctRBjs-qE3vlgGM0SXXMa2Re2CnbxJblgVy6kfQ1GD97GozSZNAYoun1xAAvtK8T2MqwAx5oR3aK8zPsL7l_UY_by6XNZfyptv11_rzzelpYynsmG8y6_qlDQdaSupjGyJMoIurMCiVV1Fm6ZRwIBxUnHcckk6KcyiwXzBsKXH6NNz7mZqemgtDCkYrzfB9SY86NE4_e_N4NZ6Nd5rRimTVOSADy8BYfw1QUy6d9Hmr5oBxilqIrikFROYZunpa9ZfyHa2WXD-LLBhjDFAp61LZh5oRjuvCdZzk3puSc8t6dykJkzPTWY3_8-9BbztewJZgqUP
CitedBy_id crossref_primary_10_1016_j_gene_2017_05_040
crossref_primary_10_3390_ph15010075
crossref_primary_10_1186_s12935_020_01389_3
crossref_primary_10_3390_jpm12020154
crossref_primary_10_1007_s12663_024_02250_0
crossref_primary_10_1016_j_bone_2020_115693
crossref_primary_10_1038_s41698_022_00289_1
crossref_primary_10_2217_fon_2016_0109
crossref_primary_10_3390_cancers12123588
crossref_primary_10_1136_jitc_2021_003633
crossref_primary_10_1002_elps_202100318
crossref_primary_10_1186_s12885_020_07203_7
crossref_primary_10_3389_fonc_2021_672687
crossref_primary_10_3389_fonc_2019_00874
crossref_primary_10_1016_j_urolonc_2015_03_016
crossref_primary_10_1155_2017_9474532
crossref_primary_10_3390_cancers11060783
crossref_primary_10_1002_cam4_70216
crossref_primary_10_1016_j_ebiom_2016_07_027
crossref_primary_10_1186_s13046_024_03140_6
crossref_primary_10_1016_j_talanta_2018_01_067
crossref_primary_10_1038_s41598_019_53660_x
crossref_primary_10_1117_1_JBO_27_7_076003
crossref_primary_10_18632_oncotarget_19722
crossref_primary_10_1016_j_bios_2023_115564
crossref_primary_10_3390_cancers11111716
crossref_primary_10_3390_nano10020383
crossref_primary_10_3892_ol_2022_13310
crossref_primary_10_1038_s41598_017_13501_1
crossref_primary_10_1016_j_trsl_2017_04_002
crossref_primary_10_3390_cancers15061831
crossref_primary_10_1158_1078_0432_CCR_17_3078
crossref_primary_10_1007_s13277_016_4796_5
crossref_primary_10_3390_cells11030376
crossref_primary_10_3389_fonc_2021_760765
crossref_primary_10_3390_cancers11010059
crossref_primary_10_3390_ijms17081308
crossref_primary_10_1038_s41423_023_00980_8
crossref_primary_10_1038_srep21903
crossref_primary_10_3390_cancers9120171
crossref_primary_10_1089_dna_2017_3981
crossref_primary_10_3390_cancers12040867
crossref_primary_10_3390_molecules30050976
crossref_primary_10_1136_jclinpath_2015_202985
crossref_primary_10_1016_j_canlet_2018_09_012
crossref_primary_10_1016_j_addr_2017_12_004
crossref_primary_10_1038_s41598_023_46458_5
crossref_primary_10_3892_or_2024_8815
crossref_primary_10_1158_1078_0432_CCR_17_2312
crossref_primary_10_1038_s41598_021_82634_1
crossref_primary_10_1007_s13277_015_3432_0
crossref_primary_10_1007_s12020_022_03066_z
crossref_primary_10_3390_cancers13092189
crossref_primary_10_1016_j_canlet_2019_04_007
crossref_primary_10_1002_1878_0261_12017
crossref_primary_10_3390_ijms24098404
crossref_primary_10_1515_med_2024_1074
crossref_primary_10_1016_j_bios_2023_115140
crossref_primary_10_1155_2022_9916228
crossref_primary_10_1016_j_tcb_2018_12_001
crossref_primary_10_1093_glycob_cwac067
crossref_primary_10_1016_j_trecan_2021_07_001
crossref_primary_10_3390_ijms160714655
crossref_primary_10_1002_cam4_4236
crossref_primary_10_3389_fonc_2022_725318
crossref_primary_10_1007_s00018_020_03529_4
crossref_primary_10_1093_clinchem_hvad191
crossref_primary_10_3390_cancers13102290
crossref_primary_10_3389_fonc_2021_602222
crossref_primary_10_3390_cancers15102825
crossref_primary_10_2147_CMAR_S253997
crossref_primary_10_1111_codi_14927
crossref_primary_10_1038_s41698_019_0095_0
crossref_primary_10_1586_14737159_2015_1091311
crossref_primary_10_1016_j_heliyon_2024_e35524
crossref_primary_10_18632_oncotarget_4037
crossref_primary_10_1007_s10238_024_01518_6
crossref_primary_10_1007_s00109_016_1500_6
crossref_primary_10_3390_cancers12041005
crossref_primary_10_3390_diagnostics8030059
crossref_primary_10_1038_srep28910
crossref_primary_10_3109_10408363_2015_1023430
crossref_primary_10_1158_1078_0432_CCR_22_0721
crossref_primary_10_3390_cancers14163985
crossref_primary_10_1063_5_0159399
crossref_primary_10_3389_fbioe_2022_806238
crossref_primary_10_1002_1878_0261_12081
crossref_primary_10_1002_jcph_486
crossref_primary_10_3390_diagnostics11112040
crossref_primary_10_1016_j_stem_2018_11_011
crossref_primary_10_1053_j_seminoncol_2015_05_010
crossref_primary_10_2147_CMAR_S316544
crossref_primary_10_3892_ol_2019_10218
crossref_primary_10_1111_cas_15255
crossref_primary_10_18632_oncotarget_12458
crossref_primary_10_1186_s12957_023_03215_2
crossref_primary_10_1021_acs_biomac_7b01515
crossref_primary_10_1002_advs_202301059
crossref_primary_10_1097_SLA_0000000000005708
crossref_primary_10_1021_acs_analchem_9b01181
crossref_primary_10_18632_oncotarget_18277
crossref_primary_10_3390_ijms18040622
crossref_primary_10_3390_ijms18040743
crossref_primary_10_3390_cancers12123674
crossref_primary_10_1016_j_semcdb_2016_08_025
crossref_primary_10_1186_s40425_019_0631_z
crossref_primary_10_14309_ctg_0000000000000055
crossref_primary_10_7717_peerj_10777
crossref_primary_10_3390_s20051317
crossref_primary_10_1101_gad_305805_117
crossref_primary_10_3389_fcell_2021_660924
crossref_primary_10_3390_cancers11111750
crossref_primary_10_1016_j_ceb_2015_06_004
crossref_primary_10_1007_s10637_018_00717_9
crossref_primary_10_15252_embr_202154265
crossref_primary_10_3748_wjg_v25_i1_138
crossref_primary_10_3389_fonc_2020_00792
crossref_primary_10_1158_1541_7786_MCR_16_0011
crossref_primary_10_1002_1878_0261_12643
crossref_primary_10_1042_BCJ20160782
crossref_primary_10_1016_j_drup_2019_100645
crossref_primary_10_18632_oncotarget_14065
crossref_primary_10_3390_cancers13153869
crossref_primary_10_1007_s10388_021_00829_x
crossref_primary_10_1038_s41392_021_00817_8
crossref_primary_10_14309_ctg_0000000000000265
crossref_primary_10_1111_cbdd_13019
crossref_primary_10_3390_cancers11060806
crossref_primary_10_1186_s12885_016_2192_6
crossref_primary_10_1007_s10555_023_10124_z
crossref_primary_10_3390_mi9110563
crossref_primary_10_1007_s10555_017_9682_0
crossref_primary_10_1002_dvdy_24506
crossref_primary_10_1586_14789450_2016_1112742
crossref_primary_10_1007_s11033_019_04873_w
crossref_primary_10_3390_biomedicines11010203
crossref_primary_10_1016_j_ebiom_2019_07_044
crossref_primary_10_1016_j_trsl_2019_07_003
crossref_primary_10_3389_fonc_2021_802188
crossref_primary_10_1002_ijc_33140
crossref_primary_10_18632_oncotarget_10175
crossref_primary_10_3389_fonc_2020_00789
crossref_primary_10_1039_C7RA03663A
crossref_primary_10_1016_j_snb_2023_135111
crossref_primary_10_1021_acs_analchem_9b05203
crossref_primary_10_3389_fonc_2022_1024783
crossref_primary_10_1111_cpr_12267
crossref_primary_10_1038_s41416_022_01768_9
crossref_primary_10_3389_fonc_2021_760267
crossref_primary_10_3390_cancers8010008
crossref_primary_10_1016_j_canlet_2019_03_009
crossref_primary_10_1016_j_biopha_2024_117726
crossref_primary_10_1158_1078_0432_CCR_16_3081
crossref_primary_10_1186_s13046_020_01601_2
crossref_primary_10_3389_fonc_2021_681130
crossref_primary_10_1007_s00432_020_03244_4
crossref_primary_10_1080_2162402X_2017_1420450
crossref_primary_10_3390_cancers13112723
crossref_primary_10_3390_cancers15153853
crossref_primary_10_1016_j_canlet_2017_05_032
crossref_primary_10_18632_oncotarget_17632
crossref_primary_10_3390_ijms22147469
crossref_primary_10_1007_s00109_021_02162_3
crossref_primary_10_1021_acs_analchem_9b05690
crossref_primary_10_1002_elps_201900374
Cites_doi 10.1002/cam4.4
10.1073/pnas.0703900104
10.1158/0008-5472.CAN-12-0326
10.1038/nrc1694
10.1007/s00018-011-0735-1
10.1158/0008-5472.CAN-13-1739
10.4049/jimmunol.176.1.652
10.1373/clinchem.2012.188557
10.1056/NEJMoa040766
10.1016/j.devcel.2008.05.009
10.1126/science.1228522
10.1158/2159-8290.CD-11-0215
10.1038/sj.bjc.6603193
10.1093/jnci/djn419
10.1016/S0092-8674(00)00122-7
10.1038/nrc1370
10.1586/erm.11.33
10.1038/mt.2011.38
10.1073/pnas.171610498
10.1371/journal.pone.0018023
10.1172/JCI39104
10.1186/1479-5876-10-138
10.1148/radiology.143.1.7063747
10.1158/1078-0432.CCR-08-0030
10.1016/j.ymeth.2013.06.034
10.1371/journal.pone.0033788
ContentType Journal Article
Copyright 2014 American Association for Cancer Research.
Copyright_xml – notice: 2014 American Association for Cancer Research.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1158/1078-0432.CCR-14-0894
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1557-3265
EndPage 906
ExternalDocumentID PMC4334736
25516888
10_1158_1078_0432_CCR_14_0894
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01CA120895
– fundername: NCI NIH HHS
  grantid: R01 CA120895
– fundername: NCI NIH HHS
  grantid: P30 CA016672
GroupedDBID ---
18M
29B
2FS
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BR6
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
QTD
RCR
RHI
RNS
SJN
TR2
W2D
W8F
WOQ
YKV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c345t-b45f888f87af1d278a7d18a639c606d8f23bbb8e4e451250d571f76a9b05940c3
ISSN 1078-0432
1557-3265
IngestDate Thu Aug 21 14:12:31 EDT 2025
Fri Jul 11 15:05:24 EDT 2025
Mon Jul 21 05:59:53 EDT 2025
Thu Apr 24 22:58:22 EDT 2025
Tue Jul 01 03:06:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2014 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-b45f888f87af1d278a7d18a639c606d8f23bbb8e4e451250d571f76a9b05940c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25516888
PQID 1657324603
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4334736
proquest_miscellaneous_1657324603
pubmed_primary_25516888
crossref_citationtrail_10_1158_1078_0432_CCR_14_0894
crossref_primary_10_1158_1078_0432_CCR_14_0894
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-15
PublicationDateYYYYMMDD 2015-02-15
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Clinical cancer research
PublicationTitleAlternate Clin Cancer Res
PublicationYear 2015
References Powell (2022061103151485400_bib6) 2012; 7
Sieuwerts (2022061103151485400_bib3) 2009; 101
Satelli (2022061103151485400_bib9) 2014; 74
Yu (2022061103151485400_bib4) 2013; 339
Huet (2022061103151485400_bib8) 2006; 176
Brabletz (2022061103151485400_bib14) 2005; 5
Yang (2022061103151485400_bib18) 2008; 14
Cristofanilli (2022061103151485400_bib22) 2004; 351
Bitting (2022061103151485400_bib12) 2013; 64
Satelli (2022061103151485400_bib5) 2011; 68
Parkinson (2022061103151485400_bib2) 2012; 10
Brabletz (2022061103151485400_bib16) 2001; 98
Gasch (2022061103151485400_bib17) 2013; 59
Pecot (2022061103151485400_bib10) 2011; 1
Yokobori (2022061103151485400_bib11) 2013; 73
Pantel (2022061103151485400_bib1) 2004; 4
Cutrera (2022061103151485400_bib7) 2011; 19
Shioiri (2022061103151485400_bib20) 2006; 94
Mani (2022061103151485400_bib24) 2007; 104
Hanley (2022061103151485400_bib13) 1982; 143
Bienz (2022061103151485400_bib15) 2000; 103
Gomez (2022061103151485400_bib19) 2011; 6
Danova (2022061103151485400_bib21) 2011; 11
Pierga (2022061103151485400_bib26) 2008; 14
Fan (2022061103151485400_bib25) 2012; 1
Kalluri (2022061103151485400_bib23) 2009; 119
23372014 - Science. 2013 Feb 1;339(6119):580-4
15170447 - Nat Rev Cancer. 2004 Jun;4(6):448-56
16148886 - Nat Rev Cancer. 2005 Sep;5(9):744-9
19487818 - J Clin Invest. 2009 Jun;119(6):1420-8
23378342 - Cancer Res. 2013 Apr 1;73(7):2059-69
15317891 - N Engl J Med. 2004 Aug 19;351(8):781-91
23845299 - Methods. 2013 Dec 1;64(2):129-36
21386825 - Mol Ther. 2011 Aug;19(8):1468-77
18980996 - Clin Cancer Res. 2008 Nov 1;14(21):7004-10
11526241 - Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10356-61
7063747 - Radiology. 1982 Apr;143(1):29-36
19116383 - J Natl Cancer Inst. 2009 Jan 7;101(1):61-6
18539112 - Dev Cell. 2008 Jun;14(6):818-29
23342249 - Cancer Med. 2012 Aug;1(1):5-16
16773075 - Br J Cancer. 2006 Jun 19;94(12):1816-22
17537911 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10069-74
21637948 - Cell Mol Life Sci. 2011 Sep;68(18):3033-46
23136247 - Clin Chem. 2013 Jan;59(1):252-60
22747748 - J Transl Med. 2012;10:138
16365461 - J Immunol. 2006 Jan 1;176(1):652-9
24448245 - Cancer Res. 2014 Mar 15;74(6):1645-50
22180853 - Cancer Discov. 2011 Dec;1(7):580-6
22586443 - PLoS One. 2012;7(5):e33788
21464926 - PLoS One. 2011;6(3):e18023
21707456 - Expert Rev Mol Diagn. 2011 Jun;11(5):473-85
11057903 - Cell. 2000 Oct 13;103(2):311-20
References_xml – volume: 1
  start-page: 5
  year: 2012
  ident: 2022061103151485400_bib25
  article-title: Overexpression of snail induces epithelial-mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells
  publication-title: Cancer Med
  doi: 10.1002/cam4.4
– volume: 104
  start-page: 10069
  year: 2007
  ident: 2022061103151485400_bib24
  article-title: Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0703900104
– volume: 73
  start-page: 2059
  year: 2013
  ident: 2022061103151485400_bib11
  article-title: Plastin3 is a novel marker for circulating tumor cells undergoing the epithelial-mesenchymal transition and is associated with colorectal cancer prognosis
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-0326
– volume: 5
  start-page: 744
  year: 2005
  ident: 2022061103151485400_bib14
  article-title: Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1694
– volume: 68
  start-page: 3033
  year: 2011
  ident: 2022061103151485400_bib5
  article-title: Vimentin in cancer and its potential as a molecular target for cancer therapy
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-011-0735-1
– volume: 74
  start-page: 1645
  year: 2014
  ident: 2022061103151485400_bib9
  article-title: Universal marker and detection tool for human sarcoma circulating tumor cells
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-13-1739
– volume: 176
  start-page: 652
  year: 2006
  ident: 2022061103151485400_bib8
  article-title: SC5 mAb represents a unique tool for the detection of extracellular vimentin as a specific marker of Sezary cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.176.1.652
– volume: 59
  start-page: 252
  year: 2013
  ident: 2022061103151485400_bib17
  article-title: Heterogeneity of epidermal growth factor receptor status and mutations of KRAS/PIK3CA in circulating tumor cells of patients with colorectal cancer
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2012.188557
– volume: 351
  start-page: 781
  year: 2004
  ident: 2022061103151485400_bib22
  article-title: Circulating tumor cells, disease progression, and survival in metastatic breast cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa040766
– volume: 14
  start-page: 818
  year: 2008
  ident: 2022061103151485400_bib18
  article-title: Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2008.05.009
– volume: 339
  start-page: 580
  year: 2013
  ident: 2022061103151485400_bib4
  article-title: Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition
  publication-title: Science
  doi: 10.1126/science.1228522
– volume: 1
  start-page: 580
  year: 2011
  ident: 2022061103151485400_bib10
  article-title: A novel platform for detection of CK+ and CK− CTCs
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-11-0215
– volume: 94
  start-page: 1816
  year: 2006
  ident: 2022061103151485400_bib20
  article-title: Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6603193
– volume: 101
  start-page: 61
  year: 2009
  ident: 2022061103151485400_bib3
  article-title: Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djn419
– volume: 103
  start-page: 311
  year: 2000
  ident: 2022061103151485400_bib15
  article-title: Linking colorectal cancer to Wnt signaling
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00122-7
– volume: 4
  start-page: 448
  year: 2004
  ident: 2022061103151485400_bib1
  article-title: Dissecting the metastatic cascade
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1370
– volume: 11
  start-page: 473
  year: 2011
  ident: 2022061103151485400_bib21
  article-title: Isolation of rare circulating tumor cells in cancer patients: technical aspects and clinical implications
  publication-title: Expert Rev Mol Diagn
  doi: 10.1586/erm.11.33
– volume: 19
  start-page: 1468
  year: 2011
  ident: 2022061103151485400_bib7
  article-title: Discovery of a linear peptide for improving tumor targeting of gene products and treatment of distal tumors by IL-12 gene therapy
  publication-title: Mol Ther
  doi: 10.1038/mt.2011.38
– volume: 98
  start-page: 10356
  year: 2001
  ident: 2022061103151485400_bib16
  article-title: Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.171610498
– volume: 6
  start-page: e18023
  year: 2011
  ident: 2022061103151485400_bib19
  article-title: TWIST1 is expressed in colorectal carcinomas and predicts patient survival
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0018023
– volume: 119
  start-page: 1420
  year: 2009
  ident: 2022061103151485400_bib23
  article-title: The basics of epithelial-mesenchymal transition
  publication-title: J Clin Invest
  doi: 10.1172/JCI39104
– volume: 10
  start-page: 138
  year: 2012
  ident: 2022061103151485400_bib2
  article-title: Considerations in the development of circulating tumor cell technology for clinical use
  publication-title: J Transl Med
  doi: 10.1186/1479-5876-10-138
– volume: 143
  start-page: 29
  year: 1982
  ident: 2022061103151485400_bib13
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 14
  start-page: 7004
  year: 2008
  ident: 2022061103151485400_bib26
  article-title: Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-08-0030
– volume: 64
  start-page: 129
  year: 2013
  ident: 2022061103151485400_bib12
  article-title: Development of a method to isolate circulating tumor cells using mesenchymal-based capture
  publication-title: Methods
  doi: 10.1016/j.ymeth.2013.06.034
– volume: 7
  start-page: e33788
  year: 2012
  ident: 2022061103151485400_bib6
  article-title: Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0033788
– reference: 21637948 - Cell Mol Life Sci. 2011 Sep;68(18):3033-46
– reference: 15317891 - N Engl J Med. 2004 Aug 19;351(8):781-91
– reference: 18980996 - Clin Cancer Res. 2008 Nov 1;14(21):7004-10
– reference: 23136247 - Clin Chem. 2013 Jan;59(1):252-60
– reference: 11057903 - Cell. 2000 Oct 13;103(2):311-20
– reference: 11526241 - Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10356-61
– reference: 7063747 - Radiology. 1982 Apr;143(1):29-36
– reference: 17537911 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10069-74
– reference: 23342249 - Cancer Med. 2012 Aug;1(1):5-16
– reference: 21386825 - Mol Ther. 2011 Aug;19(8):1468-77
– reference: 18539112 - Dev Cell. 2008 Jun;14(6):818-29
– reference: 16773075 - Br J Cancer. 2006 Jun 19;94(12):1816-22
– reference: 21707456 - Expert Rev Mol Diagn. 2011 Jun;11(5):473-85
– reference: 19116383 - J Natl Cancer Inst. 2009 Jan 7;101(1):61-6
– reference: 23845299 - Methods. 2013 Dec 1;64(2):129-36
– reference: 23372014 - Science. 2013 Feb 1;339(6119):580-4
– reference: 21464926 - PLoS One. 2011;6(3):e18023
– reference: 15170447 - Nat Rev Cancer. 2004 Jun;4(6):448-56
– reference: 16365461 - J Immunol. 2006 Jan 1;176(1):652-9
– reference: 16148886 - Nat Rev Cancer. 2005 Sep;5(9):744-9
– reference: 19487818 - J Clin Invest. 2009 Jun;119(6):1420-8
– reference: 22180853 - Cancer Discov. 2011 Dec;1(7):580-6
– reference: 22586443 - PLoS One. 2012;7(5):e33788
– reference: 23378342 - Cancer Res. 2013 Apr 1;73(7):2059-69
– reference: 22747748 - J Transl Med. 2012;10:138
– reference: 24448245 - Cancer Res. 2014 Mar 15;74(6):1645-50
SSID ssj0014104
Score 2.5487761
Snippet Purpose: This study aimed to detect cell-surface vimentin (CSV) on the surface of epithelial–mesenchymal transitioned (EMT) circulating tumor cells (CTC) from...
This study aimed to detect cell-surface vimentin (CSV) on the surface of epithelial-mesenchymal transitioned (EMT) circulating tumor cells (CTC) from blood of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 899
SubjectTerms Adult
Aged
Antibodies, Monoclonal
Biomarkers, Tumor - analysis
Colonic Neoplasms - diagnosis
Disease Progression
Epithelial-Mesenchymal Transition
Female
Flow Cytometry
Humans
In Situ Hybridization, Fluorescence
Male
Middle Aged
Neoplastic Cells, Circulating
Sensitivity and Specificity
Single-Cell Analysis
Vimentin - analysis
Vimentin - biosynthesis
Title Epithelial–Mesenchymal Transitioned Circulating Tumor Cells Capture for Detecting Tumor Progression
URI https://www.ncbi.nlm.nih.gov/pubmed/25516888
https://www.proquest.com/docview/1657324603
https://pubmed.ncbi.nlm.nih.gov/PMC4334736
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BkRAXxLspDxmJW-QQ78O7OaKQqkBbJEikiIu1D1uJ1KTBtQ_l1zP7sOPQSBQuVmSvvdbMl_HM7M43CL2TUgpNsIkVMyKm4IDEMsdpzM0QK2qkxNqxfZ6nJzP6ec7m21S2qy6p1ED_2ltX8j9ahXOgV1sl-w-abR8KJ-A36BeOoGE43krHk42tqLiAieKVrSLSi-uV2zwO3x_PQWT6ellq16LLlkXVq8uyb3P1lpJ64xYP7DZDk9ulhO0It2nLE3Z0nddxU0WpLVTKfiAKahPK36Wj93Tmpqxb1J0tq9Jnb9VieZVvS4M6RP0_pC3_atP7c7-Fd17nP5tPa8hMJK7S29dmNsaUgQHDvhfEIN9zLlhgXyMdkEY75lT45kk3zTwTLuNg2YEpwYPx-Fuc0HgofMPkXVrt86_Z8ez0NJtO5tO76B6GeMK2uvj46Uu73EQT12eyfblQ6gXTvN87ya4TcyMy-XODbcdjmT5CD0OoEX3wuHmM7uTrJ-j-WdhM8RTp_fCJuvCJOvCJHDgiB58owCcC-EQtfMKIDnyeodnxZDo-iUPPjVgTyqpYUVYIIQrBZZEYzIXkJhES_FgNoa4RBSZKKZHTnIKryIaG8aTgqRwpS_wz1OQ5OljD-x2iSFOthcGEJExRzkci0cwweNpImyItTA_RRoiZDoT0ti_KReYCUyYyK_vMyj4D2UOQmlnZ99CgvW3jGVn-dsPbRkMZ2E4rJbnOL-urLEkZh4AiHZIeeuE11j4S2xVkkEQP8R1dtgMsL_vulfVy4fjZKSGUk_ToFvO-RA-2_5xX6KAq6_w1eLmVeuMQ-hsJJawC
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epithelial-mesenchymal+transitioned+circulating+tumor+cells+capture+for+detecting+tumor+progression&rft.jtitle=Clinical+cancer+research&rft.au=Satelli%2C+Arun&rft.au=Mitra%2C+Abhisek&rft.au=Brownlee%2C+Zachary&rft.au=Xia%2C+Xueqing&rft.date=2015-02-15&rft.issn=1557-3265&rft.eissn=1557-3265&rft.volume=21&rft.issue=4&rft.spage=899&rft_id=info:doi/10.1158%2F1078-0432.CCR-14-0894&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon