Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management

•A shape-remodeled PCM macrocapsule was fabricated through a cast molding method.•The EBiInSn-based flexible shell can sustain a maximum stretching of 432%.•The prepared PCM macrocapsule can be remodeled as needed to a complicated shape.•An innovative PCM-based conformal thermal control method was d...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 247; pp. 503 - 516
Main Authors Yu, De-Hai, He, Zhi-Zhu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A shape-remodeled PCM macrocapsule was fabricated through a cast molding method.•The EBiInSn-based flexible shell can sustain a maximum stretching of 432%.•The prepared PCM macrocapsule can be remodeled as needed to a complicated shape.•An innovative PCM-based conformal thermal control method was demonstrated.•The thermoelectric generation module based on PCM macrocapsule was developed. This paper reports on a novel phase change material macrocapsule for thermal energy storage, which can be dynamically and repeatably remodeled as needed to a complicated shape with large-scale deformation. In addition, it effectively eliminates the stress mismatch, induced by the volumetric expansion (or shrink) of the phase change material during melting (or solidification), through the self-adaptative deformation of the coated flexible shell. The shape-remodeled macrocapsule, consisting of octadecanol as the core and the silicone elastomer for encapsulation, was prepared through a cast molding method. The high-concentration microparticles of low-melting Bi-In-Sn eutectic alloys were embedded into elastic shell for significantly enhancing its latent heat storage and heat conductivity. The prepared macrocapsule has a high latent heat density of 210.1 MJ/m3, which of the contribution from the shell is about 20%. The thermal conductivity of the macrocapsule core reaches to 1.53 W/m·K with a 428% increase compared with pure octadecanol. The flexible shell attains a high thermal conductivity of 1.98 W/m·K with an 890% increase compared with pure silicone, which also remains a high stretchability with 432% strain. The performance of shape remodeling, energy storage capacity, and heat charging and discharging rates of the macrocapsule were demonstrated in detail. The applications of the prepared macrocapsule as thermal management for the flexible electronic devices and the thermal storage for thermoelectric energy harvesting were also investigated. The present study opens the way for further development of elastic phase change material capsule applications in energy storage systems and thermal control engineering.
AbstractList This paper reports on a novel phase change material macrocapsule for thermal energy storage, which can be dynamically and repeatably remodeled as needed to a complicated shape with large-scale deformation. In addition, it effectively eliminates the stress mismatch, induced by the volumetric expansion (or shrink) of the phase change material during melting (or solidification), through the self-adaptative deformation of the coated flexible shell. The shape-remodeled macrocapsule, consisting of octadecanol as the core and the silicone elastomer for encapsulation, was prepared through a cast molding method. The high-concentration microparticles of low-melting Bi-In-Sn eutectic alloys were embedded into elastic shell for significantly enhancing its latent heat storage and heat conductivity. The prepared macrocapsule has a high latent heat density of 210.1 MJ/m3, which of the contribution from the shell is about 20%. The thermal conductivity of the macrocapsule core reaches to 1.53 W/m·K with a 428% increase compared with pure octadecanol. The flexible shell attains a high thermal conductivity of 1.98 W/m·K with an 890% increase compared with pure silicone, which also remains a high stretchability with 432% strain. The performance of shape remodeling, energy storage capacity, and heat charging and discharging rates of the macrocapsule were demonstrated in detail. The applications of the prepared macrocapsule as thermal management for the flexible electronic devices and the thermal storage for thermoelectric energy harvesting were also investigated. The present study opens the way for further development of elastic phase change material capsule applications in energy storage systems and thermal control engineering.
•A shape-remodeled PCM macrocapsule was fabricated through a cast molding method.•The EBiInSn-based flexible shell can sustain a maximum stretching of 432%.•The prepared PCM macrocapsule can be remodeled as needed to a complicated shape.•An innovative PCM-based conformal thermal control method was demonstrated.•The thermoelectric generation module based on PCM macrocapsule was developed. This paper reports on a novel phase change material macrocapsule for thermal energy storage, which can be dynamically and repeatably remodeled as needed to a complicated shape with large-scale deformation. In addition, it effectively eliminates the stress mismatch, induced by the volumetric expansion (or shrink) of the phase change material during melting (or solidification), through the self-adaptative deformation of the coated flexible shell. The shape-remodeled macrocapsule, consisting of octadecanol as the core and the silicone elastomer for encapsulation, was prepared through a cast molding method. The high-concentration microparticles of low-melting Bi-In-Sn eutectic alloys were embedded into elastic shell for significantly enhancing its latent heat storage and heat conductivity. The prepared macrocapsule has a high latent heat density of 210.1 MJ/m3, which of the contribution from the shell is about 20%. The thermal conductivity of the macrocapsule core reaches to 1.53 W/m·K with a 428% increase compared with pure octadecanol. The flexible shell attains a high thermal conductivity of 1.98 W/m·K with an 890% increase compared with pure silicone, which also remains a high stretchability with 432% strain. The performance of shape remodeling, energy storage capacity, and heat charging and discharging rates of the macrocapsule were demonstrated in detail. The applications of the prepared macrocapsule as thermal management for the flexible electronic devices and the thermal storage for thermoelectric energy harvesting were also investigated. The present study opens the way for further development of elastic phase change material capsule applications in energy storage systems and thermal control engineering.
Author Yu, De-Hai
He, Zhi-Zhu
Author_xml – sequence: 1
  givenname: De-Hai
  surname: Yu
  fullname: Yu, De-Hai
– sequence: 2
  givenname: Zhi-Zhu
  surname: He
  fullname: He, Zhi-Zhu
  email: zzhe@cau.edu.cn
BookMark eNqFkMFO3DAQhq2KSiyUV0A59pJ07CTORuoBhEpBQuIAnK2JPSFeJXZqeyvx9hhty4ELp5Fm_m9G852wI-cdMXbOoeLA5Y9dhSs5Cs8vlQDeV9BU0IkvbMO3nSh7zrdHbAM1yFJI3h-zkxh3ACC4gA2bHqZMl4EWb2gmUyyog9e4xv1MhR-LdcJIhZ7QPVMeJgoW51iMPhRporDgXByOFzH5gDmEzryPFnS5tZBL39jXMYN09q-esqfrX49XN-Xd_e_bq8u7UtdNm8qhaRro2600YpQgBj32SEJ2g-GkEQYhqe-44LIdBw2iB05GGz6MtdSiw7Y-Zd8Pe9fg_-wpJrXYqGme0ZHfRyVE3bV1B_02R-Uhmj-OMdCo1mAXDC-Kg3pTq3bqv1r1plZBo7LaDP78AGqbMFnvUkA7f45fHHDKHv5aCipqS06TsYF0Usbbz1a8Apq7nmA
CitedBy_id crossref_primary_10_1016_j_ensm_2021_05_048
crossref_primary_10_1002_adma_202403088
crossref_primary_10_1016_j_rser_2024_114481
crossref_primary_10_1016_j_est_2022_105341
crossref_primary_10_1016_j_energy_2023_127166
crossref_primary_10_1016_j_pmatsci_2024_101380
crossref_primary_10_1038_s41467_022_29090_1
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120737
crossref_primary_10_1002_adfm_202308677
crossref_primary_10_1016_j_powtec_2020_03_039
crossref_primary_10_1016_j_est_2023_108258
crossref_primary_10_1002_advs_202001274
crossref_primary_10_1016_j_est_2023_107912
crossref_primary_10_1021_acs_energyfuels_3c00266
crossref_primary_10_1007_s11630_025_2098_1
crossref_primary_10_1016_j_energy_2020_118698
crossref_primary_10_1016_j_est_2023_107718
crossref_primary_10_3390_en13184856
crossref_primary_10_1002_smll_202310252
crossref_primary_10_1021_acsaenm_3c00053
crossref_primary_10_1016_j_apenergy_2020_114886
crossref_primary_10_1007_s40820_022_01003_3
crossref_primary_10_1039_D2RA02734H
crossref_primary_10_1016_j_solmat_2021_111186
crossref_primary_10_1016_j_apenergy_2019_114320
crossref_primary_10_1016_j_apenergy_2023_121300
crossref_primary_10_1021_acs_energyfuels_0c03739
crossref_primary_10_1002_adfm_202007376
crossref_primary_10_1039_D4NA00362D
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119366
crossref_primary_10_1016_j_est_2023_109579
crossref_primary_10_1016_j_applthermaleng_2021_117762
crossref_primary_10_1016_j_est_2022_104751
crossref_primary_10_1016_j_est_2023_108959
crossref_primary_10_1016_j_commatsci_2024_112898
crossref_primary_10_1016_j_renene_2021_07_129
crossref_primary_10_1021_acs_energyfuels_0c03370
crossref_primary_10_1615_JEnhHeatTransf_2023045699
crossref_primary_10_1016_j_solmat_2022_111655
crossref_primary_10_1016_j_est_2024_114757
crossref_primary_10_1021_acsaem_0c03116
crossref_primary_10_1142_S2810922822300070
crossref_primary_10_1016_j_est_2024_113029
crossref_primary_10_1080_23746149_2024_2324910
crossref_primary_10_3934_era_2022078
crossref_primary_10_1016_j_cej_2024_150390
crossref_primary_10_1002_adfm_202409884
crossref_primary_10_1016_j_cej_2020_127092
crossref_primary_10_1016_j_est_2024_115086
crossref_primary_10_1002_admi_202001936
crossref_primary_10_1016_j_molliq_2020_113760
crossref_primary_10_1007_s11431_022_2357_x
crossref_primary_10_1016_j_est_2023_108834
crossref_primary_10_1016_j_conbuildmat_2022_129635
crossref_primary_10_1016_j_esd_2023_04_012
crossref_primary_10_1016_j_est_2022_106069
crossref_primary_10_1016_j_jechem_2024_12_052
crossref_primary_10_1016_j_mtsust_2023_100550
crossref_primary_10_1002_ente_202300544
crossref_primary_10_1039_C9RA06098G
crossref_primary_10_1007_s43979_022_00018_4
crossref_primary_10_1016_j_solener_2021_07_043
crossref_primary_10_1016_j_ceramint_2023_02_135
crossref_primary_10_1016_j_est_2019_101134
crossref_primary_10_1021_acsami_2c15602
crossref_primary_10_23919_IEN_2022_0031
crossref_primary_10_1039_D2NJ03485A
crossref_primary_10_1002_adfm_202200792
Cites_doi 10.1016/j.enconman.2017.12.040
10.1016/j.solener.2018.12.041
10.1016/j.rser.2016.09.092
10.1016/j.enconman.2018.12.091
10.1016/j.scs.2018.10.046
10.1016/j.applthermaleng.2017.03.050
10.1016/j.applthermaleng.2012.07.014
10.1016/j.energy.2015.07.086
10.1016/j.applthermaleng.2016.08.027
10.1016/j.apenergy.2015.04.086
10.1016/j.apenergy.2018.11.017
10.1016/j.apenergy.2014.07.054
10.1016/j.apenergy.2018.03.156
10.1016/j.apenergy.2017.04.041
10.1016/j.rser.2016.10.014
10.1016/j.rser.2013.01.008
10.1016/j.nanoen.2015.02.016
10.1016/j.ijhydene.2017.04.136
10.1016/j.apenergy.2017.07.027
10.1016/j.rser.2017.01.159
10.1016/j.apenergy.2013.08.053
10.1016/j.apenergy.2016.02.106
10.1016/j.rser.2012.05.037
10.1016/j.rser.2014.07.191
10.1016/j.apenergy.2017.09.031
10.1016/j.applthermaleng.2014.02.069
10.1016/j.enconman.2016.12.046
10.1016/j.solener.2012.10.003
10.1016/j.apenergy.2013.11.048
10.1016/j.conbuildmat.2018.06.013
10.1016/j.apenergy.2017.10.046
10.1016/j.apenergy.2018.03.146
10.1016/j.apenergy.2016.06.034
10.1016/j.nanoen.2018.03.075
10.1016/j.rser.2015.03.038
10.1080/00218464.2011.575332
10.1016/j.enconman.2015.01.084
10.1016/j.apenergy.2017.12.106
10.1016/S1359-4311(02)00192-8
10.1016/j.rser.2015.12.238
10.1016/j.apenergy.2016.10.072
10.1016/j.enconman.2017.07.019
10.1016/j.solmat.2014.05.012
10.1016/S0038-092X(03)00117-8
10.1016/j.apenergy.2016.11.070
10.1016/j.solener.2018.03.014
10.1016/j.rser.2017.04.027
10.1016/j.ijheatmasstransfer.2018.08.049
10.1016/j.applthermaleng.2005.02.014
10.1016/j.apenergy.2017.10.032
10.1016/j.apenergy.2018.05.063
10.1016/j.cej.2018.09.013
10.1016/j.apenergy.2015.09.016
10.1016/j.pecs.2015.10.003
10.1039/C8CS00099A
10.1016/j.apenergy.2017.06.008
10.1016/j.enconman.2017.03.065
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2019.04.072
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 516
ExternalDocumentID 10_1016_j_apenergy_2019_04_072
S0306261919307342
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c345t-b44409586d2f602bcf9ae267bd1eca0b26e9712165fbc02901edcd1bf36c27a53
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Fri Jul 11 10:34:24 EDT 2025
Tue Jul 01 02:53:38 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
Fri Feb 23 02:50:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bi-In-Sn eutectic alloy
Thermoelectric power generation
Thermal energy storage
Thermal management
PCM macrocapsule
Octadecanol
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-b44409586d2f602bcf9ae267bd1eca0b26e9712165fbc02901edcd1bf36c27a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2237537098
PQPubID 24069
PageCount 14
ParticipantIDs proquest_miscellaneous_2237537098
crossref_primary_10_1016_j_apenergy_2019_04_072
crossref_citationtrail_10_1016_j_apenergy_2019_04_072
elsevier_sciencedirect_doi_10_1016_j_apenergy_2019_04_072
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
2019-08-00
20190801
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Qureshi, Ali, Khushnood (b0075) 2018; 127
Jacob, Bruno (b0175) 2015; 48
Liu, Rao, Zhao, Huo, Li (b0140) 2015; 13
Cui, Tang, Qin, Xing, Liao, Wen (b0185) 2017; 185
Yang, Tan, He, Zhou, Liu (b0050) 2017; 119
de Gracia, Cabeza (b0160) 2017; 69
Cabeza, Barreneche, Martorell, Miro, Sari-Bey, Fois (b0065) 2015; 43
Xu, Li, Chan (b0015) 2015; 160
Lizana, Chacartegui, Barrios-Padura, Valverde (b0035) 2017; 203
Li, Wang, Dong, Dong, Atinafu, Chen (b0090) 2018; 217
Zhang, Yang, Jiang, He, Zhang, Fan (b0095) 2017; 197
Salunkhe, Shembekar (b0150) 2012; 16
Xu, Romagnoli, Sze, Py (b0025) 2017; 187
Umair, Zhang, Iqbal, Zhang, Tang (b0125) 2019; 235
Ge, Li, Mei, Liu (b0135) 2013; 21
Khan, Ibrahim, Mahbubul, Ali, Saidur, Al-Sulaiman (b0020) 2018; 166
Sahoo, Das, Rath (b0045) 2016; 59
Chen, Gao, Yang, Dong, Huang, Li (b0120) 2018; 49
Li, Jin, Ma, Yuan (b0205) 2018; 221
Anghel, Pavel, Constantinescu, Petrescu, Atkinson, Buixaderas (b0280) 2017; 208
Yang, Bai, Zhang, Hu, Jin, Yan (b0110) 2018; 225
Ma, Li, Xu, Peng (b0190) 2014; 132
Huang, Chen, Li, Atinafu, Gao, Dong (b0100) 2019; 356
Alam, Dhau, Goswami, Stefanakos (b0245) 2015; 154
Zalba, Marin, Cabeza, Mehling (b0005) 2003; 23
Zheng, Zhao, Sabol, Tuzla, Neti, Oztekin (b0195) 2013; 87
Shin, Park, Choi, Ko, Karng, Shin (b0255) 2019; 182
Atouei, Ranjbar, Rezania (b0030) 2017; 208
Zhao, Cheng, Liu, Dai (b0165) 2016; 178
Li, Cheng, Xie, Liu, Zhang (b0275) 2017; 149
Soares, Bastos, Pereira, Soares, Amaral, Asadi (b0040) 2017; 77
Liu, Fan, Zhu, Feng, Zhang, Zeng (b0220) 2016; 108
Wickramaratne, Dhau, Kamal, Myers, Goswami, Stefanakos (b0215) 2018; 221
Vicente, Silva (b0180) 2014; 67
Olivieri, Tenorio, Revuelta, Navarro, Cabeza (b0145) 2018; 181
Blaney, Neti, Misiolek, Oztekin (b0155) 2013; 50
Wang, Cheng, Li, Li, Xu (b0270) 2019; 179
Archibold, Gonzalez-Aguilar, Rahman, Goswami, Romero, Stefanakos (b0240) 2014; 116
Park, Shin, Lee, Shin, Karng (b0250) 2019; 45
Zhu, Li, Cai, Suo (b0290) 2011; 87
Fukahori, Nomura, Zhu, Sheng, Okinaka, Akiyama (b0210) 2016; 170
Milian, Gutierrez, Grageda, Ushak (b0060) 2017; 73
Elghool, Basrawi, Ibrahim, Habib, Ibrahim, Idris (b0285) 2017; 134
Li, Wu, Zhuang, Zhao, Tang, Ding (b0115) 2017; 206
Chandrasekaran, Cheralathan, Velraj (b0235) 2015; 90
Wei, Kawaguchi, Hirano, Takeuchi (b0260) 2005; 25
Nithyanandam, Pitchumani, Mathur (b0170) 2014; 113
Lv, Liu, Rao (b0105) 2017; 68
Barba, Spiga (b0265) 2003; 74
Navarro, Barreneche, Castell, Redpath, Griffiths, Cabeza (b0070) 2017; 13
Li, Li, Guan, Wang, Zhang, Liu (b0225) 2017; 42
Sharma, Ganesan, Tyagi, Metselaar, Sandaran (b0055) 2015; 95
Zhang, Li, Chen, Xiang, Ma, Xu (b0200) 2014; 128
Zhang, Baeyens, Caceres, Degreve, Lv (b0010) 2016; 53
Qian, Li, Feng, Nian (b0085) 2017; 143
Tian, Du, Wei, Deng, Wang, Ding (b0080) 2017; 204
Yu, Romagnoli, Al-Duri, Xie, Ding, Li (b0230) 2018; 157
Shchukina, Graham, Zheng, Shchukin (b0130) 2018; 47
Zhao (10.1016/j.apenergy.2019.04.072_b0165) 2016; 178
Vicente (10.1016/j.apenergy.2019.04.072_b0180) 2014; 67
Cabeza (10.1016/j.apenergy.2019.04.072_b0065) 2015; 43
Lv (10.1016/j.apenergy.2019.04.072_b0105) 2017; 68
Milian (10.1016/j.apenergy.2019.04.072_b0060) 2017; 73
de Gracia (10.1016/j.apenergy.2019.04.072_b0160) 2017; 69
Elghool (10.1016/j.apenergy.2019.04.072_b0285) 2017; 134
Ge (10.1016/j.apenergy.2019.04.072_b0135) 2013; 21
Blaney (10.1016/j.apenergy.2019.04.072_b0155) 2013; 50
Archibold (10.1016/j.apenergy.2019.04.072_b0240) 2014; 116
Khan (10.1016/j.apenergy.2019.04.072_b0020) 2018; 166
Zalba (10.1016/j.apenergy.2019.04.072_b0005) 2003; 23
Li (10.1016/j.apenergy.2019.04.072_b0225) 2017; 42
Tian (10.1016/j.apenergy.2019.04.072_b0080) 2017; 204
Park (10.1016/j.apenergy.2019.04.072_b0250) 2019; 45
Zhang (10.1016/j.apenergy.2019.04.072_b0200) 2014; 128
Huang (10.1016/j.apenergy.2019.04.072_b0100) 2019; 356
Sahoo (10.1016/j.apenergy.2019.04.072_b0045) 2016; 59
Qureshi (10.1016/j.apenergy.2019.04.072_b0075) 2018; 127
Shchukina (10.1016/j.apenergy.2019.04.072_b0130) 2018; 47
Li (10.1016/j.apenergy.2019.04.072_b0115) 2017; 206
Chen (10.1016/j.apenergy.2019.04.072_b0120) 2018; 49
Jacob (10.1016/j.apenergy.2019.04.072_b0175) 2015; 48
Ma (10.1016/j.apenergy.2019.04.072_b0190) 2014; 132
Atouei (10.1016/j.apenergy.2019.04.072_b0030) 2017; 208
Chandrasekaran (10.1016/j.apenergy.2019.04.072_b0235) 2015; 90
Shin (10.1016/j.apenergy.2019.04.072_b0255) 2019; 182
Soares (10.1016/j.apenergy.2019.04.072_b0040) 2017; 77
Zhu (10.1016/j.apenergy.2019.04.072_b0290) 2011; 87
Zhang (10.1016/j.apenergy.2019.04.072_b0095) 2017; 197
Wang (10.1016/j.apenergy.2019.04.072_b0270) 2019; 179
Xu (10.1016/j.apenergy.2019.04.072_b0015) 2015; 160
Li (10.1016/j.apenergy.2019.04.072_b0205) 2018; 221
Liu (10.1016/j.apenergy.2019.04.072_b0140) 2015; 13
Olivieri (10.1016/j.apenergy.2019.04.072_b0145) 2018; 181
Zheng (10.1016/j.apenergy.2019.04.072_b0195) 2013; 87
Umair (10.1016/j.apenergy.2019.04.072_b0125) 2019; 235
Navarro (10.1016/j.apenergy.2019.04.072_b0070) 2017; 13
Yang (10.1016/j.apenergy.2019.04.072_b0110) 2018; 225
Yang (10.1016/j.apenergy.2019.04.072_b0050) 2017; 119
Li (10.1016/j.apenergy.2019.04.072_b0090) 2018; 217
Cui (10.1016/j.apenergy.2019.04.072_b0185) 2017; 185
Li (10.1016/j.apenergy.2019.04.072_b0275) 2017; 149
Wickramaratne (10.1016/j.apenergy.2019.04.072_b0215) 2018; 221
Fukahori (10.1016/j.apenergy.2019.04.072_b0210) 2016; 170
Zhang (10.1016/j.apenergy.2019.04.072_b0010) 2016; 53
Qian (10.1016/j.apenergy.2019.04.072_b0085) 2017; 143
Xu (10.1016/j.apenergy.2019.04.072_b0025) 2017; 187
Alam (10.1016/j.apenergy.2019.04.072_b0245) 2015; 154
Sharma (10.1016/j.apenergy.2019.04.072_b0055) 2015; 95
Salunkhe (10.1016/j.apenergy.2019.04.072_b0150) 2012; 16
Barba (10.1016/j.apenergy.2019.04.072_b0265) 2003; 74
Anghel (10.1016/j.apenergy.2019.04.072_b0280) 2017; 208
Lizana (10.1016/j.apenergy.2019.04.072_b0035) 2017; 203
Liu (10.1016/j.apenergy.2019.04.072_b0220) 2016; 108
Yu (10.1016/j.apenergy.2019.04.072_b0230) 2018; 157
Nithyanandam (10.1016/j.apenergy.2019.04.072_b0170) 2014; 113
Wei (10.1016/j.apenergy.2019.04.072_b0260) 2005; 25
References_xml – volume: 225
  start-page: 585
  year: 2018
  end-page: 599
  ident: b0110
  article-title: Thermal and economic analysis of charging and discharging characteristics of composite phase change materials for cold storage
  publication-title: Appl Energy
– volume: 48
  start-page: 79
  year: 2015
  end-page: 87
  ident: b0175
  article-title: Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage
  publication-title: Renew Sustain Energy Rev
– volume: 221
  start-page: 1
  year: 2018
  end-page: 15
  ident: b0205
  article-title: Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material
  publication-title: Appl Energy
– volume: 208
  start-page: 1222
  year: 2017
  end-page: 1231
  ident: b0280
  article-title: Thermal transfer performance of a spherical encapsulated PEG 6000-based composite for thermal energy storage
  publication-title: Appl Energy
– volume: 16
  start-page: 5603
  year: 2012
  end-page: 5616
  ident: b0150
  article-title: A review on effect of phase change material encapsulation on the thermal performance of a system
  publication-title: Renew Sustain Energy Rev
– volume: 53
  start-page: 1
  year: 2016
  end-page: 40
  ident: b0010
  article-title: Thermal energy storage: recent developments and practical aspects
  publication-title: Prog Energy Combust
– volume: 157
  start-page: 619
  year: 2018
  end-page: 630
  ident: b0230
  article-title: Heat storage performance analysis and parameter design for encapsulated phase change materials
  publication-title: Energy Convers Manage
– volume: 182
  start-page: 508
  year: 2019
  end-page: 519
  ident: b0255
  article-title: A new type of heat storage system using the motion of phase change materials in an elliptical-shaped capsule
  publication-title: Energy Convers Manage
– volume: 50
  start-page: 555
  year: 2013
  end-page: 561
  ident: b0155
  article-title: Containment capsule stresses for encapsulated phase change materials
  publication-title: Appl Therm Eng
– volume: 69
  start-page: 1055
  year: 2017
  end-page: 1063
  ident: b0160
  article-title: Numerical simulation of a PCM packed bed system: A review
  publication-title: Renew Sustain Energy Rev
– volume: 134
  start-page: 260
  year: 2017
  end-page: 277
  ident: b0285
  article-title: A review on heat sink for thermo-electric power generation: Classifications and parameters affecting performance
  publication-title: Energy Convers Manage
– volume: 206
  start-page: 1147
  year: 2017
  end-page: 1157
  ident: b0115
  article-title: Preparation of novel copper-powder-sintered frame/paraffin form-stable phase change materials with extremely high thermal conductivity
  publication-title: Appl Energy
– volume: 235
  start-page: 846
  year: 2019
  end-page: 873
  ident: b0125
  article-title: Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage-A review
  publication-title: Appl Energy
– volume: 77
  start-page: 845
  year: 2017
  end-page: 860
  ident: b0040
  article-title: A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment
  publication-title: Renew Sustain Energy Rev
– volume: 59
  start-page: 550
  year: 2016
  end-page: 582
  ident: b0045
  article-title: Application of TCE-PCM based heat sinks for cooling of electronic components: A review
  publication-title: Renew Sustain Energy Rev
– volume: 45
  start-page: 143
  year: 2019
  end-page: 150
  ident: b0250
  article-title: Effective latent heat thermal energy storage system using thin flexible pouches
  publication-title: Sustain Cities Soc
– volume: 185
  start-page: 107
  year: 2017
  end-page: 118
  ident: b0185
  article-title: Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball
  publication-title: Appl Energy
– volume: 74
  start-page: 141
  year: 2003
  end-page: 148
  ident: b0265
  article-title: Discharge mode for encapsulated PCMs in storage tanks
  publication-title: Sol Energy
– volume: 132
  start-page: 568
  year: 2014
  end-page: 574
  ident: b0190
  article-title: Fe-shell/Cu-core encapsulated metallic phase change materials prepared by aerodynamic levitation method
  publication-title: Appl Energy
– volume: 119
  start-page: 34
  year: 2017
  end-page: 41
  ident: b0050
  article-title: Evaluation and optimization of low melting point metal PCM heat sink against ultra-high thermal shock
  publication-title: Appl Therm Eng
– volume: 42
  start-page: 18232
  year: 2017
  end-page: 18239
  ident: b0225
  article-title: Numerical study on melt fraction during melting of phase change material inside a sphere
  publication-title: Int J Hydrogen Energy
– volume: 21
  start-page: 331
  year: 2013
  end-page: 346
  ident: b0135
  article-title: Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area
  publication-title: Renew Sustain Energy Rev
– volume: 43
  start-page: 1399
  year: 2015
  end-page: 1414
  ident: b0065
  article-title: Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties
  publication-title: Renew Sustain Energy Rev
– volume: 160
  start-page: 286
  year: 2015
  end-page: 307
  ident: b0015
  article-title: Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments
  publication-title: Appl Energy
– volume: 113
  start-page: 1446
  year: 2014
  end-page: 1460
  ident: b0170
  article-title: Analysis of a latent thermocline storage system with encapsulated phase change materials for concentrating solar power
  publication-title: Appl Energy
– volume: 128
  start-page: 131
  year: 2014
  end-page: 137
  ident: b0200
  article-title: Encapsulation of copper-based phase change materials for high temperature thermal energy storage
  publication-title: Sol Energy Mat Sol C
– volume: 95
  start-page: 193
  year: 2015
  end-page: 228
  ident: b0055
  article-title: Developments in organic solid-liquid phase change materials and their applications in thermal energy storage
  publication-title: Energy Convers Manage
– volume: 47
  start-page: 4156
  year: 2018
  end-page: 4175
  ident: b0130
  article-title: Nanoencapsulation of phase change materials for advanced thermal energy storage systems
  publication-title: Chem Soc Rev
– volume: 181
  start-page: 638
  year: 2018
  end-page: 649
  ident: b0145
  article-title: Developing a PCM-enhanced mortar for thermally active precast walls
  publication-title: Constr Build Mater
– volume: 204
  start-page: 525
  year: 2017
  end-page: 530
  ident: b0080
  article-title: Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage
  publication-title: Appl Energy
– volume: 221
  start-page: 587
  year: 2018
  end-page: 596
  ident: b0215
  article-title: Macro-encapsulation and characterization of chloride based inorganic Phase change materials for high temperature thermal energy storage systems
  publication-title: Appl Energy
– volume: 154
  start-page: 92
  year: 2015
  end-page: 101
  ident: b0245
  article-title: Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems
  publication-title: Appl Energy
– volume: 23
  start-page: 251
  year: 2003
  end-page: 283
  ident: b0005
  article-title: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications
  publication-title: Appl Therm Eng
– volume: 87
  start-page: 466
  year: 2011
  end-page: 481
  ident: b0290
  article-title: Snap-through Expansion of a Gas Bubble in an Elastomer
  publication-title: J Adhesion
– volume: 13
  start-page: 262
  year: 2017
  end-page: 267
  ident: b0070
  article-title: High density polyethylene spheres with PCM for domestic hot water applications: Water tank and laboratory scale study
  publication-title: J Storage Mater
– volume: 166
  start-page: 334
  year: 2018
  end-page: 350
  ident: b0020
  article-title: Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review
  publication-title: Sol Energy
– volume: 68
  start-page: 707
  year: 2017
  end-page: 726
  ident: b0105
  article-title: Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications
  publication-title: Renew Sustain Energy Rev
– volume: 203
  start-page: 219
  year: 2017
  end-page: 239
  ident: b0035
  article-title: Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review
  publication-title: Appl Energy
– volume: 143
  start-page: 96
  year: 2017
  end-page: 108
  ident: b0085
  article-title: Single-walled carbon nanotube for shape stabilization and enhanced phase change heat transfer of polyethylene glycol phase change material
  publication-title: Energy Convers Manage
– volume: 116
  start-page: 243
  year: 2014
  end-page: 252
  ident: b0240
  article-title: The melting process of storage materials with relatively high phase change temperatures in partially filled spherical shells
  publication-title: Appl Energy
– volume: 179
  start-page: 128
  year: 2019
  end-page: 134
  ident: b0270
  article-title: Self-assembly of three-dimensional 1-octadecanol/graphene thermal storage materials
  publication-title: Sol Energy
– volume: 67
  start-page: 24
  year: 2014
  end-page: 34
  ident: b0180
  article-title: Brick masonry walls with PCM macrocapsules: An experimental approach
  publication-title: Appl Therm Eng
– volume: 217
  start-page: 369
  year: 2018
  end-page: 376
  ident: b0090
  article-title: Core-sheath structural carbon materials for integrated enhancement of thermal conductivity, and capacity
  publication-title: Appl Energy
– volume: 178
  start-page: 784
  year: 2016
  end-page: 799
  ident: b0165
  article-title: Thermal performance and cost analysis of a multi-layered solid-PCM thermocline thermal energy storage for CSP tower plants
  publication-title: Appl Energy
– volume: 49
  start-page: 86
  year: 2018
  end-page: 94
  ident: b0120
  article-title: Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting
  publication-title: Nano Energy
– volume: 13
  start-page: 814
  year: 2015
  end-page: 826
  ident: b0140
  article-title: Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement
  publication-title: Nano Energy
– volume: 208
  start-page: 332
  year: 2017
  end-page: 343
  ident: b0030
  article-title: Experimental investigation of two-stage thermoelectric generator system integrated with phase change materials
  publication-title: Appl Energy
– volume: 90
  start-page: 508
  year: 2015
  end-page: 515
  ident: b0235
  article-title: Effect of fill volume on solidification characteristics of DI (deionized) water in a spherical capsule - An experimental study
  publication-title: Energy
– volume: 73
  start-page: 983
  year: 2017
  end-page: 999
  ident: b0060
  article-title: A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties
  publication-title: Renew Sustain Energy Rev
– volume: 197
  start-page: 354
  year: 2017
  end-page: 363
  ident: b0095
  article-title: Graphene oxide-modified microencapsulated phase change materials with high encapsulation capacity and enhanced leakage-prevention performance
  publication-title: Appl Energy
– volume: 127
  start-page: 838
  year: 2018
  end-page: 856
  ident: b0075
  article-title: Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review
  publication-title: Int J Heat Mass Tran.
– volume: 187
  start-page: 281
  year: 2017
  end-page: 290
  ident: b0025
  article-title: Application of material assessment methodology in latent heat thermal energy storage for waste heat recovery
  publication-title: Appl Energy
– volume: 108
  start-page: 1200
  year: 2016
  end-page: 1205
  ident: b0220
  article-title: A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules
  publication-title: Appl Therm Eng
– volume: 356
  start-page: 641
  year: 2019
  end-page: 661
  ident: b0100
  article-title: Shape-stabilized phase change materials based on porous supports for thermal energy storage applications
  publication-title: Chem Eng J
– volume: 25
  start-page: 2903
  year: 2005
  end-page: 2920
  ident: b0260
  article-title: Study on a PCM heat storage system for rapid heat supply
  publication-title: Appl Therm Eng
– volume: 87
  start-page: 117
  year: 2013
  end-page: 126
  ident: b0195
  article-title: Encapsulated phase change materials for energy storage - Characterization by calorimetry
  publication-title: Sol Energy
– volume: 149
  start-page: 1
  year: 2017
  end-page: 12
  ident: b0275
  article-title: Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage
  publication-title: Energy Convers Manage
– volume: 170
  start-page: 324
  year: 2016
  end-page: 328
  ident: b0210
  article-title: Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage
  publication-title: Appl Energy
– volume: 157
  start-page: 619
  year: 2018
  ident: 10.1016/j.apenergy.2019.04.072_b0230
  article-title: Heat storage performance analysis and parameter design for encapsulated phase change materials
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.12.040
– volume: 179
  start-page: 128
  year: 2019
  ident: 10.1016/j.apenergy.2019.04.072_b0270
  article-title: Self-assembly of three-dimensional 1-octadecanol/graphene thermal storage materials
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2018.12.041
– volume: 13
  start-page: 262
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.072_b0070
  article-title: High density polyethylene spheres with PCM for domestic hot water applications: Water tank and laboratory scale study
  publication-title: J Storage Mater
– volume: 69
  start-page: 1055
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.072_b0160
  article-title: Numerical simulation of a PCM packed bed system: A review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.09.092
– volume: 182
  start-page: 508
  year: 2019
  ident: 10.1016/j.apenergy.2019.04.072_b0255
  article-title: A new type of heat storage system using the motion of phase change materials in an elliptical-shaped capsule
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.12.091
– volume: 45
  start-page: 143
  year: 2019
  ident: 10.1016/j.apenergy.2019.04.072_b0250
  article-title: Effective latent heat thermal energy storage system using thin flexible pouches
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2018.10.046
– volume: 119
  start-page: 34
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.072_b0050
  article-title: Evaluation and optimization of low melting point metal PCM heat sink against ultra-high thermal shock
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.03.050
– volume: 50
  start-page: 555
  year: 2013
  ident: 10.1016/j.apenergy.2019.04.072_b0155
  article-title: Containment capsule stresses for encapsulated phase change materials
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2012.07.014
– volume: 90
  start-page: 508
  year: 2015
  ident: 10.1016/j.apenergy.2019.04.072_b0235
  article-title: Effect of fill volume on solidification characteristics of DI (deionized) water in a spherical capsule - An experimental study
  publication-title: Energy
  doi: 10.1016/j.energy.2015.07.086
– volume: 108
  start-page: 1200
  year: 2016
  ident: 10.1016/j.apenergy.2019.04.072_b0220
  article-title: A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.08.027
– volume: 154
  start-page: 92
  year: 2015
  ident: 10.1016/j.apenergy.2019.04.072_b0245
  article-title: Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.04.086
– volume: 235
  start-page: 846
  year: 2019
  ident: 10.1016/j.apenergy.2019.04.072_b0125
  article-title: Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage-A review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.11.017
– volume: 132
  start-page: 568
  year: 2014
  ident: 10.1016/j.apenergy.2019.04.072_b0190
  article-title: Fe-shell/Cu-core encapsulated metallic phase change materials prepared by aerodynamic levitation method
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.07.054
– volume: 221
  start-page: 1
  year: 2018
  ident: 10.1016/j.apenergy.2019.04.072_b0205
  article-title: Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.03.156
– volume: 197
  start-page: 354
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.072_b0095
  article-title: Graphene oxide-modified microencapsulated phase change materials with high encapsulation capacity and enhanced leakage-prevention performance
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.04.041
– volume: 68
  start-page: 707
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.072_b0105
  article-title: Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.10.014
– volume: 21
  start-page: 331
  year: 2013
  ident: 10.1016/j.apenergy.2019.04.072_b0135
  article-title: Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.01.008
– volume: 13
  start-page: 814
  year: 2015
  ident: 10.1016/j.apenergy.2019.04.072_b0140
  article-title: Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.02.016
– volume: 42
  start-page: 18232
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.072_b0225
  article-title: Numerical study on melt fraction during melting of phase change material inside a sphere
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.04.136
– volume: 204
  start-page: 525
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.072_b0080
  article-title: Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.07.027
– volume: 73
  start-page: 983
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.072_b0060
  article-title: A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.01.159
– volume: 113
  start-page: 1446
  year: 2014
  ident: 10.1016/j.apenergy.2019.04.072_b0170
  article-title: Analysis of a latent thermocline storage system with encapsulated phase change materials for concentrating solar power
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.08.053
– volume: 170
  start-page: 324
  year: 2016
  ident: 10.1016/j.apenergy.2019.04.072_b0210
  article-title: Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.02.106
– volume: 16
  start-page: 5603
  year: 2012
  ident: 10.1016/j.apenergy.2019.04.072_b0150
  article-title: A review on effect of phase change material encapsulation on the thermal performance of a system
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2012.05.037
– volume: 43
  start-page: 1399
  year: 2015
  ident: 10.1016/j.apenergy.2019.04.072_b0065
  article-title: Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.07.191
– volume: 208
  start-page: 1222
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.072_b0280
  article-title: Thermal transfer performance of a spherical encapsulated PEG 6000-based composite for thermal energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.09.031
– volume: 67
  start-page: 24
  year: 2014
  ident: 10.1016/j.apenergy.2019.04.072_b0180
  article-title: Brick masonry walls with PCM macrocapsules: An experimental approach
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2014.02.069
– volume: 134
  start-page: 260
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.072_b0285
  article-title: A review on heat sink for thermo-electric power generation: Classifications and parameters affecting performance
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.12.046
– volume: 87
  start-page: 117
  year: 2013
  ident: 10.1016/j.apenergy.2019.04.072_b0195
  article-title: Encapsulated phase change materials for energy storage - Characterization by calorimetry
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2012.10.003
– volume: 116
  start-page: 243
  year: 2014
  ident: 10.1016/j.apenergy.2019.04.072_b0240
  article-title: The melting process of storage materials with relatively high phase change temperatures in partially filled spherical shells
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.11.048
– volume: 181
  start-page: 638
  year: 2018
  ident: 10.1016/j.apenergy.2019.04.072_b0145
  article-title: Developing a PCM-enhanced mortar for thermally active precast walls
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2018.06.013
– volume: 206
  start-page: 1147
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.072_b0115
  article-title: Preparation of novel copper-powder-sintered frame/paraffin form-stable phase change materials with extremely high thermal conductivity
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.10.046
– volume: 221
  start-page: 587
  year: 2018
  ident: 10.1016/j.apenergy.2019.04.072_b0215
  article-title: Macro-encapsulation and characterization of chloride based inorganic Phase change materials for high temperature thermal energy storage systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.03.146
– volume: 178
  start-page: 784
  year: 2016
  ident: 10.1016/j.apenergy.2019.04.072_b0165
  article-title: Thermal performance and cost analysis of a multi-layered solid-PCM thermocline thermal energy storage for CSP tower plants
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.06.034
– volume: 49
  start-page: 86
  year: 2018
  ident: 10.1016/j.apenergy.2019.04.072_b0120
  article-title: Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.075
– volume: 48
  start-page: 79
  year: 2015
  ident: 10.1016/j.apenergy.2019.04.072_b0175
  article-title: Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.03.038
– volume: 87
  start-page: 466
  year: 2011
  ident: 10.1016/j.apenergy.2019.04.072_b0290
  article-title: Snap-through Expansion of a Gas Bubble in an Elastomer
  publication-title: J Adhesion
  doi: 10.1080/00218464.2011.575332
– volume: 95
  start-page: 193
  year: 2015
  ident: 10.1016/j.apenergy.2019.04.072_b0055
  article-title: Developments in organic solid-liquid phase change materials and their applications in thermal energy storage
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.01.084
– volume: 217
  start-page: 369
  year: 2018
  ident: 10.1016/j.apenergy.2019.04.072_b0090
  article-title: Core-sheath structural carbon materials for integrated enhancement of thermal conductivity, and capacity
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.12.106
– volume: 23
  start-page: 251
  year: 2003
  ident: 10.1016/j.apenergy.2019.04.072_b0005
  article-title: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications
  publication-title: Appl Therm Eng
  doi: 10.1016/S1359-4311(02)00192-8
– volume: 59
  start-page: 550
  year: 2016
  ident: 10.1016/j.apenergy.2019.04.072_b0045
  article-title: Application of TCE-PCM based heat sinks for cooling of electronic components: A review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.12.238
– volume: 185
  start-page: 107
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.072_b0185
  article-title: Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.10.072
– volume: 149
  start-page: 1
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.072_b0275
  article-title: Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.07.019
– volume: 128
  start-page: 131
  year: 2014
  ident: 10.1016/j.apenergy.2019.04.072_b0200
  article-title: Encapsulation of copper-based phase change materials for high temperature thermal energy storage
  publication-title: Sol Energy Mat Sol C
  doi: 10.1016/j.solmat.2014.05.012
– volume: 74
  start-page: 141
  year: 2003
  ident: 10.1016/j.apenergy.2019.04.072_b0265
  article-title: Discharge mode for encapsulated PCMs in storage tanks
  publication-title: Sol Energy
  doi: 10.1016/S0038-092X(03)00117-8
– volume: 187
  start-page: 281
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.072_b0025
  article-title: Application of material assessment methodology in latent heat thermal energy storage for waste heat recovery
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.11.070
– volume: 166
  start-page: 334
  year: 2018
  ident: 10.1016/j.apenergy.2019.04.072_b0020
  article-title: Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2018.03.014
– volume: 77
  start-page: 845
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.072_b0040
  article-title: A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.04.027
– volume: 127
  start-page: 838
  year: 2018
  ident: 10.1016/j.apenergy.2019.04.072_b0075
  article-title: Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review
  publication-title: Int J Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2018.08.049
– volume: 25
  start-page: 2903
  year: 2005
  ident: 10.1016/j.apenergy.2019.04.072_b0260
  article-title: Study on a PCM heat storage system for rapid heat supply
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2005.02.014
– volume: 208
  start-page: 332
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.072_b0030
  article-title: Experimental investigation of two-stage thermoelectric generator system integrated with phase change materials
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.10.032
– volume: 225
  start-page: 585
  year: 2018
  ident: 10.1016/j.apenergy.2019.04.072_b0110
  article-title: Thermal and economic analysis of charging and discharging characteristics of composite phase change materials for cold storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.05.063
– volume: 356
  start-page: 641
  year: 2019
  ident: 10.1016/j.apenergy.2019.04.072_b0100
  article-title: Shape-stabilized phase change materials based on porous supports for thermal energy storage applications
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2018.09.013
– volume: 160
  start-page: 286
  year: 2015
  ident: 10.1016/j.apenergy.2019.04.072_b0015
  article-title: Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.09.016
– volume: 53
  start-page: 1
  year: 2016
  ident: 10.1016/j.apenergy.2019.04.072_b0010
  article-title: Thermal energy storage: recent developments and practical aspects
  publication-title: Prog Energy Combust
  doi: 10.1016/j.pecs.2015.10.003
– volume: 47
  start-page: 4156
  year: 2018
  ident: 10.1016/j.apenergy.2019.04.072_b0130
  article-title: Nanoencapsulation of phase change materials for advanced thermal energy storage systems
  publication-title: Chem Soc Rev
  doi: 10.1039/C8CS00099A
– volume: 203
  start-page: 219
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.072_b0035
  article-title: Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.06.008
– volume: 143
  start-page: 96
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.072_b0085
  article-title: Single-walled carbon nanotube for shape stabilization and enhanced phase change heat transfer of polyethylene glycol phase change material
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.03.065
SSID ssj0002120
Score 2.529852
Snippet •A shape-remodeled PCM macrocapsule was fabricated through a cast molding method.•The EBiInSn-based flexible shell can sustain a maximum stretching of...
This paper reports on a novel phase change material macrocapsule for thermal energy storage, which can be dynamically and repeatably remodeled as needed to a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 503
SubjectTerms alloys
Bi-In-Sn eutectic alloy
deformation
electronic equipment
encapsulation
engineering
heat
latent heat
melting
microparticles
Octadecanol
PCM macrocapsule
silicone
solidification
thermal conductivity
thermal energy
Thermal energy storage
Thermal management
Thermoelectric power generation
Title Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management
URI https://dx.doi.org/10.1016/j.apenergy.2019.04.072
https://www.proquest.com/docview/2237537098
Volume 247
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwMhECZGL3owWjXWVzDximVZWHaPTVNTNXpRk94IsJBq2m2j7dXf7rCPtpoYDx53GViWGWa-CTMDQldJ7HTqZUwyQ1PCweKQVNOcyNRaCx6Jj3xwFB8ek8ELvxuK4QbqNbkwIayy1v2VTi-1df2mU69mZ_b62nkKaDfgf4AgIKc86GHOZZDy689VmAerSzMCMQnUa1nCb9d65soMuxDilZUlTyX7zUD9UNWl_bnZQ7s1cMTdam77aMMVLbSzVk6whY76q6w1IK237ccBGj2NYA7k3VX33uR4ouHjVoOHPHZ46vFsBMYMV0nA0DivxBIDoMUBIE5gtOoXcAimBBWEdZEvmybLEJpD9HLTf-4NSH3FArExF3NiOAcHT6RJznxCmbE-044l0uSRs5oalrhMRixKhDeWhjNXl9s8Mj5OLJNaxEdos5gW7hhhl2sLq-y49DG33GsmQHUKwbRx1HLaRqJZV2Xr-uPhGoyxagLN3lTDDxX4oShXwI826iz7zaoKHH_2yBq2qW-ypMBM_Nn3suGzgo0WTk904aaLDwU4Clw7SbP05B_jn6Lt8FSFEJ6hzfn7wp0DrJmbi1JuL9BW9_Z-8PgFq9_7eg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8QgEJ6Y9aAejM_4FhOvuJRCH0djNOtrL2rijQCFrMbtbnT9_w5buj4S48FrYWjLwDffhJkB4DhLnS58ntLSsIIKtDi00KyieWGtRY_EJz44irf9rPcgrh7l4xyctbkwIawyYn-D6VO0jk-6cTa746en7l1gu4H_IwXBdSoQh-dDdSrZgfnTy-tefwbIPFZnxP40CHxJFH4-0WM3TbILUV7ltOppzn-zUT_QemqCLlZgOXJHctp83irMuXoNlr5UFFyDzfPPxDXsGnfu2zoM7gb4DfTVNVffVGSo8eVWo5P84sjIk_EA7Rlp8oCxcdKsTIKclgSOOMTRml8gIZ4SUYjoupo1DWdRNBvwcHF-f9aj8ZYFalMhJ9QIgT6eLLKK-4xxY32pHc9yUyXOamZ45so84UkmvbEsHLu6ylaJ8Wlmea5lugmdelS7LSCu0hZn2Yncp8IKr7lE9JSSa-OYFWwbZDuvysYS5OEmjBfVxpo9q1YfKuhDMaFQH9vQncmNmyIcf0qUrdrUt-Wk0FL8KXvU6lnhXgsHKLp2o_c3hVQKvbuclcXOP8Y_hIXe_e2NurnsX-_CYmhpIgr3oDN5fXf7yHIm5iCu4g88J_4r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape-remodeled+macrocapsule+of+phase+change+materials+for+thermal+energy+storage+and+thermal+management&rft.jtitle=Applied+energy&rft.au=Yu%2C+De-Hai&rft.au=He%2C+Zhi-Zhu&rft.date=2019-08-01&rft.issn=0306-2619&rft.volume=247+p.503-516&rft.spage=503&rft.epage=516&rft_id=info:doi/10.1016%2Fj.apenergy.2019.04.072&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon