Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management
•A shape-remodeled PCM macrocapsule was fabricated through a cast molding method.•The EBiInSn-based flexible shell can sustain a maximum stretching of 432%.•The prepared PCM macrocapsule can be remodeled as needed to a complicated shape.•An innovative PCM-based conformal thermal control method was d...
Saved in:
Published in | Applied energy Vol. 247; pp. 503 - 516 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A shape-remodeled PCM macrocapsule was fabricated through a cast molding method.•The EBiInSn-based flexible shell can sustain a maximum stretching of 432%.•The prepared PCM macrocapsule can be remodeled as needed to a complicated shape.•An innovative PCM-based conformal thermal control method was demonstrated.•The thermoelectric generation module based on PCM macrocapsule was developed.
This paper reports on a novel phase change material macrocapsule for thermal energy storage, which can be dynamically and repeatably remodeled as needed to a complicated shape with large-scale deformation. In addition, it effectively eliminates the stress mismatch, induced by the volumetric expansion (or shrink) of the phase change material during melting (or solidification), through the self-adaptative deformation of the coated flexible shell. The shape-remodeled macrocapsule, consisting of octadecanol as the core and the silicone elastomer for encapsulation, was prepared through a cast molding method. The high-concentration microparticles of low-melting Bi-In-Sn eutectic alloys were embedded into elastic shell for significantly enhancing its latent heat storage and heat conductivity. The prepared macrocapsule has a high latent heat density of 210.1 MJ/m3, which of the contribution from the shell is about 20%. The thermal conductivity of the macrocapsule core reaches to 1.53 W/m·K with a 428% increase compared with pure octadecanol. The flexible shell attains a high thermal conductivity of 1.98 W/m·K with an 890% increase compared with pure silicone, which also remains a high stretchability with 432% strain. The performance of shape remodeling, energy storage capacity, and heat charging and discharging rates of the macrocapsule were demonstrated in detail. The applications of the prepared macrocapsule as thermal management for the flexible electronic devices and the thermal storage for thermoelectric energy harvesting were also investigated. The present study opens the way for further development of elastic phase change material capsule applications in energy storage systems and thermal control engineering. |
---|---|
AbstractList | This paper reports on a novel phase change material macrocapsule for thermal energy storage, which can be dynamically and repeatably remodeled as needed to a complicated shape with large-scale deformation. In addition, it effectively eliminates the stress mismatch, induced by the volumetric expansion (or shrink) of the phase change material during melting (or solidification), through the self-adaptative deformation of the coated flexible shell. The shape-remodeled macrocapsule, consisting of octadecanol as the core and the silicone elastomer for encapsulation, was prepared through a cast molding method. The high-concentration microparticles of low-melting Bi-In-Sn eutectic alloys were embedded into elastic shell for significantly enhancing its latent heat storage and heat conductivity. The prepared macrocapsule has a high latent heat density of 210.1 MJ/m3, which of the contribution from the shell is about 20%. The thermal conductivity of the macrocapsule core reaches to 1.53 W/m·K with a 428% increase compared with pure octadecanol. The flexible shell attains a high thermal conductivity of 1.98 W/m·K with an 890% increase compared with pure silicone, which also remains a high stretchability with 432% strain. The performance of shape remodeling, energy storage capacity, and heat charging and discharging rates of the macrocapsule were demonstrated in detail. The applications of the prepared macrocapsule as thermal management for the flexible electronic devices and the thermal storage for thermoelectric energy harvesting were also investigated. The present study opens the way for further development of elastic phase change material capsule applications in energy storage systems and thermal control engineering. •A shape-remodeled PCM macrocapsule was fabricated through a cast molding method.•The EBiInSn-based flexible shell can sustain a maximum stretching of 432%.•The prepared PCM macrocapsule can be remodeled as needed to a complicated shape.•An innovative PCM-based conformal thermal control method was demonstrated.•The thermoelectric generation module based on PCM macrocapsule was developed. This paper reports on a novel phase change material macrocapsule for thermal energy storage, which can be dynamically and repeatably remodeled as needed to a complicated shape with large-scale deformation. In addition, it effectively eliminates the stress mismatch, induced by the volumetric expansion (or shrink) of the phase change material during melting (or solidification), through the self-adaptative deformation of the coated flexible shell. The shape-remodeled macrocapsule, consisting of octadecanol as the core and the silicone elastomer for encapsulation, was prepared through a cast molding method. The high-concentration microparticles of low-melting Bi-In-Sn eutectic alloys were embedded into elastic shell for significantly enhancing its latent heat storage and heat conductivity. The prepared macrocapsule has a high latent heat density of 210.1 MJ/m3, which of the contribution from the shell is about 20%. The thermal conductivity of the macrocapsule core reaches to 1.53 W/m·K with a 428% increase compared with pure octadecanol. The flexible shell attains a high thermal conductivity of 1.98 W/m·K with an 890% increase compared with pure silicone, which also remains a high stretchability with 432% strain. The performance of shape remodeling, energy storage capacity, and heat charging and discharging rates of the macrocapsule were demonstrated in detail. The applications of the prepared macrocapsule as thermal management for the flexible electronic devices and the thermal storage for thermoelectric energy harvesting were also investigated. The present study opens the way for further development of elastic phase change material capsule applications in energy storage systems and thermal control engineering. |
Author | Yu, De-Hai He, Zhi-Zhu |
Author_xml | – sequence: 1 givenname: De-Hai surname: Yu fullname: Yu, De-Hai – sequence: 2 givenname: Zhi-Zhu surname: He fullname: He, Zhi-Zhu email: zzhe@cau.edu.cn |
BookMark | eNqFkMFO3DAQhq2KSiyUV0A59pJ07CTORuoBhEpBQuIAnK2JPSFeJXZqeyvx9hhty4ELp5Fm_m9G852wI-cdMXbOoeLA5Y9dhSs5Cs8vlQDeV9BU0IkvbMO3nSh7zrdHbAM1yFJI3h-zkxh3ACC4gA2bHqZMl4EWb2gmUyyog9e4xv1MhR-LdcJIhZ7QPVMeJgoW51iMPhRporDgXByOFzH5gDmEzryPFnS5tZBL39jXMYN09q-esqfrX49XN-Xd_e_bq8u7UtdNm8qhaRro2600YpQgBj32SEJ2g-GkEQYhqe-44LIdBw2iB05GGz6MtdSiw7Y-Zd8Pe9fg_-wpJrXYqGme0ZHfRyVE3bV1B_02R-Uhmj-OMdCo1mAXDC-Kg3pTq3bqv1r1plZBo7LaDP78AGqbMFnvUkA7f45fHHDKHv5aCipqS06TsYF0Usbbz1a8Apq7nmA |
CitedBy_id | crossref_primary_10_1016_j_ensm_2021_05_048 crossref_primary_10_1002_adma_202403088 crossref_primary_10_1016_j_rser_2024_114481 crossref_primary_10_1016_j_est_2022_105341 crossref_primary_10_1016_j_energy_2023_127166 crossref_primary_10_1016_j_pmatsci_2024_101380 crossref_primary_10_1038_s41467_022_29090_1 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120737 crossref_primary_10_1002_adfm_202308677 crossref_primary_10_1016_j_powtec_2020_03_039 crossref_primary_10_1016_j_est_2023_108258 crossref_primary_10_1002_advs_202001274 crossref_primary_10_1016_j_est_2023_107912 crossref_primary_10_1021_acs_energyfuels_3c00266 crossref_primary_10_1007_s11630_025_2098_1 crossref_primary_10_1016_j_energy_2020_118698 crossref_primary_10_1016_j_est_2023_107718 crossref_primary_10_3390_en13184856 crossref_primary_10_1002_smll_202310252 crossref_primary_10_1021_acsaenm_3c00053 crossref_primary_10_1016_j_apenergy_2020_114886 crossref_primary_10_1007_s40820_022_01003_3 crossref_primary_10_1039_D2RA02734H crossref_primary_10_1016_j_solmat_2021_111186 crossref_primary_10_1016_j_apenergy_2019_114320 crossref_primary_10_1016_j_apenergy_2023_121300 crossref_primary_10_1021_acs_energyfuels_0c03739 crossref_primary_10_1002_adfm_202007376 crossref_primary_10_1039_D4NA00362D crossref_primary_10_1016_j_ijheatmasstransfer_2020_119366 crossref_primary_10_1016_j_est_2023_109579 crossref_primary_10_1016_j_applthermaleng_2021_117762 crossref_primary_10_1016_j_est_2022_104751 crossref_primary_10_1016_j_est_2023_108959 crossref_primary_10_1016_j_commatsci_2024_112898 crossref_primary_10_1016_j_renene_2021_07_129 crossref_primary_10_1021_acs_energyfuels_0c03370 crossref_primary_10_1615_JEnhHeatTransf_2023045699 crossref_primary_10_1016_j_solmat_2022_111655 crossref_primary_10_1016_j_est_2024_114757 crossref_primary_10_1021_acsaem_0c03116 crossref_primary_10_1142_S2810922822300070 crossref_primary_10_1016_j_est_2024_113029 crossref_primary_10_1080_23746149_2024_2324910 crossref_primary_10_3934_era_2022078 crossref_primary_10_1016_j_cej_2024_150390 crossref_primary_10_1002_adfm_202409884 crossref_primary_10_1016_j_cej_2020_127092 crossref_primary_10_1016_j_est_2024_115086 crossref_primary_10_1002_admi_202001936 crossref_primary_10_1016_j_molliq_2020_113760 crossref_primary_10_1007_s11431_022_2357_x crossref_primary_10_1016_j_est_2023_108834 crossref_primary_10_1016_j_conbuildmat_2022_129635 crossref_primary_10_1016_j_esd_2023_04_012 crossref_primary_10_1016_j_est_2022_106069 crossref_primary_10_1016_j_jechem_2024_12_052 crossref_primary_10_1016_j_mtsust_2023_100550 crossref_primary_10_1002_ente_202300544 crossref_primary_10_1039_C9RA06098G crossref_primary_10_1007_s43979_022_00018_4 crossref_primary_10_1016_j_solener_2021_07_043 crossref_primary_10_1016_j_ceramint_2023_02_135 crossref_primary_10_1016_j_est_2019_101134 crossref_primary_10_1021_acsami_2c15602 crossref_primary_10_23919_IEN_2022_0031 crossref_primary_10_1039_D2NJ03485A crossref_primary_10_1002_adfm_202200792 |
Cites_doi | 10.1016/j.enconman.2017.12.040 10.1016/j.solener.2018.12.041 10.1016/j.rser.2016.09.092 10.1016/j.enconman.2018.12.091 10.1016/j.scs.2018.10.046 10.1016/j.applthermaleng.2017.03.050 10.1016/j.applthermaleng.2012.07.014 10.1016/j.energy.2015.07.086 10.1016/j.applthermaleng.2016.08.027 10.1016/j.apenergy.2015.04.086 10.1016/j.apenergy.2018.11.017 10.1016/j.apenergy.2014.07.054 10.1016/j.apenergy.2018.03.156 10.1016/j.apenergy.2017.04.041 10.1016/j.rser.2016.10.014 10.1016/j.rser.2013.01.008 10.1016/j.nanoen.2015.02.016 10.1016/j.ijhydene.2017.04.136 10.1016/j.apenergy.2017.07.027 10.1016/j.rser.2017.01.159 10.1016/j.apenergy.2013.08.053 10.1016/j.apenergy.2016.02.106 10.1016/j.rser.2012.05.037 10.1016/j.rser.2014.07.191 10.1016/j.apenergy.2017.09.031 10.1016/j.applthermaleng.2014.02.069 10.1016/j.enconman.2016.12.046 10.1016/j.solener.2012.10.003 10.1016/j.apenergy.2013.11.048 10.1016/j.conbuildmat.2018.06.013 10.1016/j.apenergy.2017.10.046 10.1016/j.apenergy.2018.03.146 10.1016/j.apenergy.2016.06.034 10.1016/j.nanoen.2018.03.075 10.1016/j.rser.2015.03.038 10.1080/00218464.2011.575332 10.1016/j.enconman.2015.01.084 10.1016/j.apenergy.2017.12.106 10.1016/S1359-4311(02)00192-8 10.1016/j.rser.2015.12.238 10.1016/j.apenergy.2016.10.072 10.1016/j.enconman.2017.07.019 10.1016/j.solmat.2014.05.012 10.1016/S0038-092X(03)00117-8 10.1016/j.apenergy.2016.11.070 10.1016/j.solener.2018.03.014 10.1016/j.rser.2017.04.027 10.1016/j.ijheatmasstransfer.2018.08.049 10.1016/j.applthermaleng.2005.02.014 10.1016/j.apenergy.2017.10.032 10.1016/j.apenergy.2018.05.063 10.1016/j.cej.2018.09.013 10.1016/j.apenergy.2015.09.016 10.1016/j.pecs.2015.10.003 10.1039/C8CS00099A 10.1016/j.apenergy.2017.06.008 10.1016/j.enconman.2017.03.065 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apenergy.2019.04.072 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-9118 |
EndPage | 516 |
ExternalDocumentID | 10_1016_j_apenergy_2019_04_072 S0306261919307342 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c345t-b44409586d2f602bcf9ae267bd1eca0b26e9712165fbc02901edcd1bf36c27a53 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Fri Jul 11 10:34:24 EDT 2025 Tue Jul 01 02:53:38 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 Fri Feb 23 02:50:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bi-In-Sn eutectic alloy Thermoelectric power generation Thermal energy storage Thermal management PCM macrocapsule Octadecanol |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-b44409586d2f602bcf9ae267bd1eca0b26e9712165fbc02901edcd1bf36c27a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2237537098 |
PQPubID | 24069 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2237537098 crossref_primary_10_1016_j_apenergy_2019_04_072 crossref_citationtrail_10_1016_j_apenergy_2019_04_072 elsevier_sciencedirect_doi_10_1016_j_apenergy_2019_04_072 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 2019-08-00 20190801 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied energy |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Qureshi, Ali, Khushnood (b0075) 2018; 127 Jacob, Bruno (b0175) 2015; 48 Liu, Rao, Zhao, Huo, Li (b0140) 2015; 13 Cui, Tang, Qin, Xing, Liao, Wen (b0185) 2017; 185 Yang, Tan, He, Zhou, Liu (b0050) 2017; 119 de Gracia, Cabeza (b0160) 2017; 69 Cabeza, Barreneche, Martorell, Miro, Sari-Bey, Fois (b0065) 2015; 43 Xu, Li, Chan (b0015) 2015; 160 Lizana, Chacartegui, Barrios-Padura, Valverde (b0035) 2017; 203 Li, Wang, Dong, Dong, Atinafu, Chen (b0090) 2018; 217 Zhang, Yang, Jiang, He, Zhang, Fan (b0095) 2017; 197 Salunkhe, Shembekar (b0150) 2012; 16 Xu, Romagnoli, Sze, Py (b0025) 2017; 187 Umair, Zhang, Iqbal, Zhang, Tang (b0125) 2019; 235 Ge, Li, Mei, Liu (b0135) 2013; 21 Khan, Ibrahim, Mahbubul, Ali, Saidur, Al-Sulaiman (b0020) 2018; 166 Sahoo, Das, Rath (b0045) 2016; 59 Chen, Gao, Yang, Dong, Huang, Li (b0120) 2018; 49 Li, Jin, Ma, Yuan (b0205) 2018; 221 Anghel, Pavel, Constantinescu, Petrescu, Atkinson, Buixaderas (b0280) 2017; 208 Yang, Bai, Zhang, Hu, Jin, Yan (b0110) 2018; 225 Ma, Li, Xu, Peng (b0190) 2014; 132 Huang, Chen, Li, Atinafu, Gao, Dong (b0100) 2019; 356 Alam, Dhau, Goswami, Stefanakos (b0245) 2015; 154 Zalba, Marin, Cabeza, Mehling (b0005) 2003; 23 Zheng, Zhao, Sabol, Tuzla, Neti, Oztekin (b0195) 2013; 87 Shin, Park, Choi, Ko, Karng, Shin (b0255) 2019; 182 Atouei, Ranjbar, Rezania (b0030) 2017; 208 Zhao, Cheng, Liu, Dai (b0165) 2016; 178 Li, Cheng, Xie, Liu, Zhang (b0275) 2017; 149 Soares, Bastos, Pereira, Soares, Amaral, Asadi (b0040) 2017; 77 Liu, Fan, Zhu, Feng, Zhang, Zeng (b0220) 2016; 108 Wickramaratne, Dhau, Kamal, Myers, Goswami, Stefanakos (b0215) 2018; 221 Vicente, Silva (b0180) 2014; 67 Olivieri, Tenorio, Revuelta, Navarro, Cabeza (b0145) 2018; 181 Blaney, Neti, Misiolek, Oztekin (b0155) 2013; 50 Wang, Cheng, Li, Li, Xu (b0270) 2019; 179 Archibold, Gonzalez-Aguilar, Rahman, Goswami, Romero, Stefanakos (b0240) 2014; 116 Park, Shin, Lee, Shin, Karng (b0250) 2019; 45 Zhu, Li, Cai, Suo (b0290) 2011; 87 Fukahori, Nomura, Zhu, Sheng, Okinaka, Akiyama (b0210) 2016; 170 Milian, Gutierrez, Grageda, Ushak (b0060) 2017; 73 Elghool, Basrawi, Ibrahim, Habib, Ibrahim, Idris (b0285) 2017; 134 Li, Wu, Zhuang, Zhao, Tang, Ding (b0115) 2017; 206 Chandrasekaran, Cheralathan, Velraj (b0235) 2015; 90 Wei, Kawaguchi, Hirano, Takeuchi (b0260) 2005; 25 Nithyanandam, Pitchumani, Mathur (b0170) 2014; 113 Lv, Liu, Rao (b0105) 2017; 68 Barba, Spiga (b0265) 2003; 74 Navarro, Barreneche, Castell, Redpath, Griffiths, Cabeza (b0070) 2017; 13 Li, Li, Guan, Wang, Zhang, Liu (b0225) 2017; 42 Sharma, Ganesan, Tyagi, Metselaar, Sandaran (b0055) 2015; 95 Zhang, Li, Chen, Xiang, Ma, Xu (b0200) 2014; 128 Zhang, Baeyens, Caceres, Degreve, Lv (b0010) 2016; 53 Qian, Li, Feng, Nian (b0085) 2017; 143 Tian, Du, Wei, Deng, Wang, Ding (b0080) 2017; 204 Yu, Romagnoli, Al-Duri, Xie, Ding, Li (b0230) 2018; 157 Shchukina, Graham, Zheng, Shchukin (b0130) 2018; 47 Zhao (10.1016/j.apenergy.2019.04.072_b0165) 2016; 178 Vicente (10.1016/j.apenergy.2019.04.072_b0180) 2014; 67 Cabeza (10.1016/j.apenergy.2019.04.072_b0065) 2015; 43 Lv (10.1016/j.apenergy.2019.04.072_b0105) 2017; 68 Milian (10.1016/j.apenergy.2019.04.072_b0060) 2017; 73 de Gracia (10.1016/j.apenergy.2019.04.072_b0160) 2017; 69 Elghool (10.1016/j.apenergy.2019.04.072_b0285) 2017; 134 Ge (10.1016/j.apenergy.2019.04.072_b0135) 2013; 21 Blaney (10.1016/j.apenergy.2019.04.072_b0155) 2013; 50 Archibold (10.1016/j.apenergy.2019.04.072_b0240) 2014; 116 Khan (10.1016/j.apenergy.2019.04.072_b0020) 2018; 166 Zalba (10.1016/j.apenergy.2019.04.072_b0005) 2003; 23 Li (10.1016/j.apenergy.2019.04.072_b0225) 2017; 42 Tian (10.1016/j.apenergy.2019.04.072_b0080) 2017; 204 Park (10.1016/j.apenergy.2019.04.072_b0250) 2019; 45 Zhang (10.1016/j.apenergy.2019.04.072_b0200) 2014; 128 Huang (10.1016/j.apenergy.2019.04.072_b0100) 2019; 356 Sahoo (10.1016/j.apenergy.2019.04.072_b0045) 2016; 59 Qureshi (10.1016/j.apenergy.2019.04.072_b0075) 2018; 127 Shchukina (10.1016/j.apenergy.2019.04.072_b0130) 2018; 47 Li (10.1016/j.apenergy.2019.04.072_b0115) 2017; 206 Chen (10.1016/j.apenergy.2019.04.072_b0120) 2018; 49 Jacob (10.1016/j.apenergy.2019.04.072_b0175) 2015; 48 Ma (10.1016/j.apenergy.2019.04.072_b0190) 2014; 132 Atouei (10.1016/j.apenergy.2019.04.072_b0030) 2017; 208 Chandrasekaran (10.1016/j.apenergy.2019.04.072_b0235) 2015; 90 Shin (10.1016/j.apenergy.2019.04.072_b0255) 2019; 182 Soares (10.1016/j.apenergy.2019.04.072_b0040) 2017; 77 Zhu (10.1016/j.apenergy.2019.04.072_b0290) 2011; 87 Zhang (10.1016/j.apenergy.2019.04.072_b0095) 2017; 197 Wang (10.1016/j.apenergy.2019.04.072_b0270) 2019; 179 Xu (10.1016/j.apenergy.2019.04.072_b0015) 2015; 160 Li (10.1016/j.apenergy.2019.04.072_b0205) 2018; 221 Liu (10.1016/j.apenergy.2019.04.072_b0140) 2015; 13 Olivieri (10.1016/j.apenergy.2019.04.072_b0145) 2018; 181 Zheng (10.1016/j.apenergy.2019.04.072_b0195) 2013; 87 Umair (10.1016/j.apenergy.2019.04.072_b0125) 2019; 235 Navarro (10.1016/j.apenergy.2019.04.072_b0070) 2017; 13 Yang (10.1016/j.apenergy.2019.04.072_b0110) 2018; 225 Yang (10.1016/j.apenergy.2019.04.072_b0050) 2017; 119 Li (10.1016/j.apenergy.2019.04.072_b0090) 2018; 217 Cui (10.1016/j.apenergy.2019.04.072_b0185) 2017; 185 Li (10.1016/j.apenergy.2019.04.072_b0275) 2017; 149 Wickramaratne (10.1016/j.apenergy.2019.04.072_b0215) 2018; 221 Fukahori (10.1016/j.apenergy.2019.04.072_b0210) 2016; 170 Zhang (10.1016/j.apenergy.2019.04.072_b0010) 2016; 53 Qian (10.1016/j.apenergy.2019.04.072_b0085) 2017; 143 Xu (10.1016/j.apenergy.2019.04.072_b0025) 2017; 187 Alam (10.1016/j.apenergy.2019.04.072_b0245) 2015; 154 Sharma (10.1016/j.apenergy.2019.04.072_b0055) 2015; 95 Salunkhe (10.1016/j.apenergy.2019.04.072_b0150) 2012; 16 Barba (10.1016/j.apenergy.2019.04.072_b0265) 2003; 74 Anghel (10.1016/j.apenergy.2019.04.072_b0280) 2017; 208 Lizana (10.1016/j.apenergy.2019.04.072_b0035) 2017; 203 Liu (10.1016/j.apenergy.2019.04.072_b0220) 2016; 108 Yu (10.1016/j.apenergy.2019.04.072_b0230) 2018; 157 Nithyanandam (10.1016/j.apenergy.2019.04.072_b0170) 2014; 113 Wei (10.1016/j.apenergy.2019.04.072_b0260) 2005; 25 |
References_xml | – volume: 225 start-page: 585 year: 2018 end-page: 599 ident: b0110 article-title: Thermal and economic analysis of charging and discharging characteristics of composite phase change materials for cold storage publication-title: Appl Energy – volume: 48 start-page: 79 year: 2015 end-page: 87 ident: b0175 article-title: Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage publication-title: Renew Sustain Energy Rev – volume: 221 start-page: 1 year: 2018 end-page: 15 ident: b0205 article-title: Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material publication-title: Appl Energy – volume: 208 start-page: 1222 year: 2017 end-page: 1231 ident: b0280 article-title: Thermal transfer performance of a spherical encapsulated PEG 6000-based composite for thermal energy storage publication-title: Appl Energy – volume: 16 start-page: 5603 year: 2012 end-page: 5616 ident: b0150 article-title: A review on effect of phase change material encapsulation on the thermal performance of a system publication-title: Renew Sustain Energy Rev – volume: 53 start-page: 1 year: 2016 end-page: 40 ident: b0010 article-title: Thermal energy storage: recent developments and practical aspects publication-title: Prog Energy Combust – volume: 157 start-page: 619 year: 2018 end-page: 630 ident: b0230 article-title: Heat storage performance analysis and parameter design for encapsulated phase change materials publication-title: Energy Convers Manage – volume: 182 start-page: 508 year: 2019 end-page: 519 ident: b0255 article-title: A new type of heat storage system using the motion of phase change materials in an elliptical-shaped capsule publication-title: Energy Convers Manage – volume: 50 start-page: 555 year: 2013 end-page: 561 ident: b0155 article-title: Containment capsule stresses for encapsulated phase change materials publication-title: Appl Therm Eng – volume: 69 start-page: 1055 year: 2017 end-page: 1063 ident: b0160 article-title: Numerical simulation of a PCM packed bed system: A review publication-title: Renew Sustain Energy Rev – volume: 134 start-page: 260 year: 2017 end-page: 277 ident: b0285 article-title: A review on heat sink for thermo-electric power generation: Classifications and parameters affecting performance publication-title: Energy Convers Manage – volume: 206 start-page: 1147 year: 2017 end-page: 1157 ident: b0115 article-title: Preparation of novel copper-powder-sintered frame/paraffin form-stable phase change materials with extremely high thermal conductivity publication-title: Appl Energy – volume: 235 start-page: 846 year: 2019 end-page: 873 ident: b0125 article-title: Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage-A review publication-title: Appl Energy – volume: 77 start-page: 845 year: 2017 end-page: 860 ident: b0040 article-title: A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment publication-title: Renew Sustain Energy Rev – volume: 59 start-page: 550 year: 2016 end-page: 582 ident: b0045 article-title: Application of TCE-PCM based heat sinks for cooling of electronic components: A review publication-title: Renew Sustain Energy Rev – volume: 45 start-page: 143 year: 2019 end-page: 150 ident: b0250 article-title: Effective latent heat thermal energy storage system using thin flexible pouches publication-title: Sustain Cities Soc – volume: 185 start-page: 107 year: 2017 end-page: 118 ident: b0185 article-title: Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball publication-title: Appl Energy – volume: 74 start-page: 141 year: 2003 end-page: 148 ident: b0265 article-title: Discharge mode for encapsulated PCMs in storage tanks publication-title: Sol Energy – volume: 132 start-page: 568 year: 2014 end-page: 574 ident: b0190 article-title: Fe-shell/Cu-core encapsulated metallic phase change materials prepared by aerodynamic levitation method publication-title: Appl Energy – volume: 119 start-page: 34 year: 2017 end-page: 41 ident: b0050 article-title: Evaluation and optimization of low melting point metal PCM heat sink against ultra-high thermal shock publication-title: Appl Therm Eng – volume: 42 start-page: 18232 year: 2017 end-page: 18239 ident: b0225 article-title: Numerical study on melt fraction during melting of phase change material inside a sphere publication-title: Int J Hydrogen Energy – volume: 21 start-page: 331 year: 2013 end-page: 346 ident: b0135 article-title: Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area publication-title: Renew Sustain Energy Rev – volume: 43 start-page: 1399 year: 2015 end-page: 1414 ident: b0065 article-title: Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties publication-title: Renew Sustain Energy Rev – volume: 160 start-page: 286 year: 2015 end-page: 307 ident: b0015 article-title: Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments publication-title: Appl Energy – volume: 113 start-page: 1446 year: 2014 end-page: 1460 ident: b0170 article-title: Analysis of a latent thermocline storage system with encapsulated phase change materials for concentrating solar power publication-title: Appl Energy – volume: 128 start-page: 131 year: 2014 end-page: 137 ident: b0200 article-title: Encapsulation of copper-based phase change materials for high temperature thermal energy storage publication-title: Sol Energy Mat Sol C – volume: 95 start-page: 193 year: 2015 end-page: 228 ident: b0055 article-title: Developments in organic solid-liquid phase change materials and their applications in thermal energy storage publication-title: Energy Convers Manage – volume: 47 start-page: 4156 year: 2018 end-page: 4175 ident: b0130 article-title: Nanoencapsulation of phase change materials for advanced thermal energy storage systems publication-title: Chem Soc Rev – volume: 181 start-page: 638 year: 2018 end-page: 649 ident: b0145 article-title: Developing a PCM-enhanced mortar for thermally active precast walls publication-title: Constr Build Mater – volume: 204 start-page: 525 year: 2017 end-page: 530 ident: b0080 article-title: Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage publication-title: Appl Energy – volume: 221 start-page: 587 year: 2018 end-page: 596 ident: b0215 article-title: Macro-encapsulation and characterization of chloride based inorganic Phase change materials for high temperature thermal energy storage systems publication-title: Appl Energy – volume: 154 start-page: 92 year: 2015 end-page: 101 ident: b0245 article-title: Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems publication-title: Appl Energy – volume: 23 start-page: 251 year: 2003 end-page: 283 ident: b0005 article-title: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications publication-title: Appl Therm Eng – volume: 87 start-page: 466 year: 2011 end-page: 481 ident: b0290 article-title: Snap-through Expansion of a Gas Bubble in an Elastomer publication-title: J Adhesion – volume: 13 start-page: 262 year: 2017 end-page: 267 ident: b0070 article-title: High density polyethylene spheres with PCM for domestic hot water applications: Water tank and laboratory scale study publication-title: J Storage Mater – volume: 166 start-page: 334 year: 2018 end-page: 350 ident: b0020 article-title: Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review publication-title: Sol Energy – volume: 68 start-page: 707 year: 2017 end-page: 726 ident: b0105 article-title: Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications publication-title: Renew Sustain Energy Rev – volume: 203 start-page: 219 year: 2017 end-page: 239 ident: b0035 article-title: Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review publication-title: Appl Energy – volume: 143 start-page: 96 year: 2017 end-page: 108 ident: b0085 article-title: Single-walled carbon nanotube for shape stabilization and enhanced phase change heat transfer of polyethylene glycol phase change material publication-title: Energy Convers Manage – volume: 116 start-page: 243 year: 2014 end-page: 252 ident: b0240 article-title: The melting process of storage materials with relatively high phase change temperatures in partially filled spherical shells publication-title: Appl Energy – volume: 179 start-page: 128 year: 2019 end-page: 134 ident: b0270 article-title: Self-assembly of three-dimensional 1-octadecanol/graphene thermal storage materials publication-title: Sol Energy – volume: 67 start-page: 24 year: 2014 end-page: 34 ident: b0180 article-title: Brick masonry walls with PCM macrocapsules: An experimental approach publication-title: Appl Therm Eng – volume: 217 start-page: 369 year: 2018 end-page: 376 ident: b0090 article-title: Core-sheath structural carbon materials for integrated enhancement of thermal conductivity, and capacity publication-title: Appl Energy – volume: 178 start-page: 784 year: 2016 end-page: 799 ident: b0165 article-title: Thermal performance and cost analysis of a multi-layered solid-PCM thermocline thermal energy storage for CSP tower plants publication-title: Appl Energy – volume: 49 start-page: 86 year: 2018 end-page: 94 ident: b0120 article-title: Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting publication-title: Nano Energy – volume: 13 start-page: 814 year: 2015 end-page: 826 ident: b0140 article-title: Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement publication-title: Nano Energy – volume: 208 start-page: 332 year: 2017 end-page: 343 ident: b0030 article-title: Experimental investigation of two-stage thermoelectric generator system integrated with phase change materials publication-title: Appl Energy – volume: 90 start-page: 508 year: 2015 end-page: 515 ident: b0235 article-title: Effect of fill volume on solidification characteristics of DI (deionized) water in a spherical capsule - An experimental study publication-title: Energy – volume: 73 start-page: 983 year: 2017 end-page: 999 ident: b0060 article-title: A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties publication-title: Renew Sustain Energy Rev – volume: 197 start-page: 354 year: 2017 end-page: 363 ident: b0095 article-title: Graphene oxide-modified microencapsulated phase change materials with high encapsulation capacity and enhanced leakage-prevention performance publication-title: Appl Energy – volume: 127 start-page: 838 year: 2018 end-page: 856 ident: b0075 article-title: Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review publication-title: Int J Heat Mass Tran. – volume: 187 start-page: 281 year: 2017 end-page: 290 ident: b0025 article-title: Application of material assessment methodology in latent heat thermal energy storage for waste heat recovery publication-title: Appl Energy – volume: 108 start-page: 1200 year: 2016 end-page: 1205 ident: b0220 article-title: A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules publication-title: Appl Therm Eng – volume: 356 start-page: 641 year: 2019 end-page: 661 ident: b0100 article-title: Shape-stabilized phase change materials based on porous supports for thermal energy storage applications publication-title: Chem Eng J – volume: 25 start-page: 2903 year: 2005 end-page: 2920 ident: b0260 article-title: Study on a PCM heat storage system for rapid heat supply publication-title: Appl Therm Eng – volume: 87 start-page: 117 year: 2013 end-page: 126 ident: b0195 article-title: Encapsulated phase change materials for energy storage - Characterization by calorimetry publication-title: Sol Energy – volume: 149 start-page: 1 year: 2017 end-page: 12 ident: b0275 article-title: Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage publication-title: Energy Convers Manage – volume: 170 start-page: 324 year: 2016 end-page: 328 ident: b0210 article-title: Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage publication-title: Appl Energy – volume: 157 start-page: 619 year: 2018 ident: 10.1016/j.apenergy.2019.04.072_b0230 article-title: Heat storage performance analysis and parameter design for encapsulated phase change materials publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.12.040 – volume: 179 start-page: 128 year: 2019 ident: 10.1016/j.apenergy.2019.04.072_b0270 article-title: Self-assembly of three-dimensional 1-octadecanol/graphene thermal storage materials publication-title: Sol Energy doi: 10.1016/j.solener.2018.12.041 – volume: 13 start-page: 262 year: 2017 ident: 10.1016/j.apenergy.2019.04.072_b0070 article-title: High density polyethylene spheres with PCM for domestic hot water applications: Water tank and laboratory scale study publication-title: J Storage Mater – volume: 69 start-page: 1055 year: 2017 ident: 10.1016/j.apenergy.2019.04.072_b0160 article-title: Numerical simulation of a PCM packed bed system: A review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.09.092 – volume: 182 start-page: 508 year: 2019 ident: 10.1016/j.apenergy.2019.04.072_b0255 article-title: A new type of heat storage system using the motion of phase change materials in an elliptical-shaped capsule publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.12.091 – volume: 45 start-page: 143 year: 2019 ident: 10.1016/j.apenergy.2019.04.072_b0250 article-title: Effective latent heat thermal energy storage system using thin flexible pouches publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2018.10.046 – volume: 119 start-page: 34 year: 2017 ident: 10.1016/j.apenergy.2019.04.072_b0050 article-title: Evaluation and optimization of low melting point metal PCM heat sink against ultra-high thermal shock publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.03.050 – volume: 50 start-page: 555 year: 2013 ident: 10.1016/j.apenergy.2019.04.072_b0155 article-title: Containment capsule stresses for encapsulated phase change materials publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2012.07.014 – volume: 90 start-page: 508 year: 2015 ident: 10.1016/j.apenergy.2019.04.072_b0235 article-title: Effect of fill volume on solidification characteristics of DI (deionized) water in a spherical capsule - An experimental study publication-title: Energy doi: 10.1016/j.energy.2015.07.086 – volume: 108 start-page: 1200 year: 2016 ident: 10.1016/j.apenergy.2019.04.072_b0220 article-title: A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.08.027 – volume: 154 start-page: 92 year: 2015 ident: 10.1016/j.apenergy.2019.04.072_b0245 article-title: Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.04.086 – volume: 235 start-page: 846 year: 2019 ident: 10.1016/j.apenergy.2019.04.072_b0125 article-title: Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage-A review publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.11.017 – volume: 132 start-page: 568 year: 2014 ident: 10.1016/j.apenergy.2019.04.072_b0190 article-title: Fe-shell/Cu-core encapsulated metallic phase change materials prepared by aerodynamic levitation method publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.07.054 – volume: 221 start-page: 1 year: 2018 ident: 10.1016/j.apenergy.2019.04.072_b0205 article-title: Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.03.156 – volume: 197 start-page: 354 year: 2017 ident: 10.1016/j.apenergy.2019.04.072_b0095 article-title: Graphene oxide-modified microencapsulated phase change materials with high encapsulation capacity and enhanced leakage-prevention performance publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.04.041 – volume: 68 start-page: 707 year: 2017 ident: 10.1016/j.apenergy.2019.04.072_b0105 article-title: Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.10.014 – volume: 21 start-page: 331 year: 2013 ident: 10.1016/j.apenergy.2019.04.072_b0135 article-title: Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.01.008 – volume: 13 start-page: 814 year: 2015 ident: 10.1016/j.apenergy.2019.04.072_b0140 article-title: Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.02.016 – volume: 42 start-page: 18232 year: 2017 ident: 10.1016/j.apenergy.2019.04.072_b0225 article-title: Numerical study on melt fraction during melting of phase change material inside a sphere publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.04.136 – volume: 204 start-page: 525 year: 2017 ident: 10.1016/j.apenergy.2019.04.072_b0080 article-title: Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.07.027 – volume: 73 start-page: 983 year: 2017 ident: 10.1016/j.apenergy.2019.04.072_b0060 article-title: A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.01.159 – volume: 113 start-page: 1446 year: 2014 ident: 10.1016/j.apenergy.2019.04.072_b0170 article-title: Analysis of a latent thermocline storage system with encapsulated phase change materials for concentrating solar power publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.08.053 – volume: 170 start-page: 324 year: 2016 ident: 10.1016/j.apenergy.2019.04.072_b0210 article-title: Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.02.106 – volume: 16 start-page: 5603 year: 2012 ident: 10.1016/j.apenergy.2019.04.072_b0150 article-title: A review on effect of phase change material encapsulation on the thermal performance of a system publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2012.05.037 – volume: 43 start-page: 1399 year: 2015 ident: 10.1016/j.apenergy.2019.04.072_b0065 article-title: Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.07.191 – volume: 208 start-page: 1222 year: 2017 ident: 10.1016/j.apenergy.2019.04.072_b0280 article-title: Thermal transfer performance of a spherical encapsulated PEG 6000-based composite for thermal energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.09.031 – volume: 67 start-page: 24 year: 2014 ident: 10.1016/j.apenergy.2019.04.072_b0180 article-title: Brick masonry walls with PCM macrocapsules: An experimental approach publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2014.02.069 – volume: 134 start-page: 260 year: 2017 ident: 10.1016/j.apenergy.2019.04.072_b0285 article-title: A review on heat sink for thermo-electric power generation: Classifications and parameters affecting performance publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.12.046 – volume: 87 start-page: 117 year: 2013 ident: 10.1016/j.apenergy.2019.04.072_b0195 article-title: Encapsulated phase change materials for energy storage - Characterization by calorimetry publication-title: Sol Energy doi: 10.1016/j.solener.2012.10.003 – volume: 116 start-page: 243 year: 2014 ident: 10.1016/j.apenergy.2019.04.072_b0240 article-title: The melting process of storage materials with relatively high phase change temperatures in partially filled spherical shells publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.11.048 – volume: 181 start-page: 638 year: 2018 ident: 10.1016/j.apenergy.2019.04.072_b0145 article-title: Developing a PCM-enhanced mortar for thermally active precast walls publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.06.013 – volume: 206 start-page: 1147 year: 2017 ident: 10.1016/j.apenergy.2019.04.072_b0115 article-title: Preparation of novel copper-powder-sintered frame/paraffin form-stable phase change materials with extremely high thermal conductivity publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.10.046 – volume: 221 start-page: 587 year: 2018 ident: 10.1016/j.apenergy.2019.04.072_b0215 article-title: Macro-encapsulation and characterization of chloride based inorganic Phase change materials for high temperature thermal energy storage systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.03.146 – volume: 178 start-page: 784 year: 2016 ident: 10.1016/j.apenergy.2019.04.072_b0165 article-title: Thermal performance and cost analysis of a multi-layered solid-PCM thermocline thermal energy storage for CSP tower plants publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.06.034 – volume: 49 start-page: 86 year: 2018 ident: 10.1016/j.apenergy.2019.04.072_b0120 article-title: Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.075 – volume: 48 start-page: 79 year: 2015 ident: 10.1016/j.apenergy.2019.04.072_b0175 article-title: Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.03.038 – volume: 87 start-page: 466 year: 2011 ident: 10.1016/j.apenergy.2019.04.072_b0290 article-title: Snap-through Expansion of a Gas Bubble in an Elastomer publication-title: J Adhesion doi: 10.1080/00218464.2011.575332 – volume: 95 start-page: 193 year: 2015 ident: 10.1016/j.apenergy.2019.04.072_b0055 article-title: Developments in organic solid-liquid phase change materials and their applications in thermal energy storage publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2015.01.084 – volume: 217 start-page: 369 year: 2018 ident: 10.1016/j.apenergy.2019.04.072_b0090 article-title: Core-sheath structural carbon materials for integrated enhancement of thermal conductivity, and capacity publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.12.106 – volume: 23 start-page: 251 year: 2003 ident: 10.1016/j.apenergy.2019.04.072_b0005 article-title: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications publication-title: Appl Therm Eng doi: 10.1016/S1359-4311(02)00192-8 – volume: 59 start-page: 550 year: 2016 ident: 10.1016/j.apenergy.2019.04.072_b0045 article-title: Application of TCE-PCM based heat sinks for cooling of electronic components: A review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.12.238 – volume: 185 start-page: 107 year: 2017 ident: 10.1016/j.apenergy.2019.04.072_b0185 article-title: Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.10.072 – volume: 149 start-page: 1 year: 2017 ident: 10.1016/j.apenergy.2019.04.072_b0275 article-title: Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.07.019 – volume: 128 start-page: 131 year: 2014 ident: 10.1016/j.apenergy.2019.04.072_b0200 article-title: Encapsulation of copper-based phase change materials for high temperature thermal energy storage publication-title: Sol Energy Mat Sol C doi: 10.1016/j.solmat.2014.05.012 – volume: 74 start-page: 141 year: 2003 ident: 10.1016/j.apenergy.2019.04.072_b0265 article-title: Discharge mode for encapsulated PCMs in storage tanks publication-title: Sol Energy doi: 10.1016/S0038-092X(03)00117-8 – volume: 187 start-page: 281 year: 2017 ident: 10.1016/j.apenergy.2019.04.072_b0025 article-title: Application of material assessment methodology in latent heat thermal energy storage for waste heat recovery publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.11.070 – volume: 166 start-page: 334 year: 2018 ident: 10.1016/j.apenergy.2019.04.072_b0020 article-title: Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review publication-title: Sol Energy doi: 10.1016/j.solener.2018.03.014 – volume: 77 start-page: 845 year: 2017 ident: 10.1016/j.apenergy.2019.04.072_b0040 article-title: A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.04.027 – volume: 127 start-page: 838 year: 2018 ident: 10.1016/j.apenergy.2019.04.072_b0075 article-title: Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review publication-title: Int J Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2018.08.049 – volume: 25 start-page: 2903 year: 2005 ident: 10.1016/j.apenergy.2019.04.072_b0260 article-title: Study on a PCM heat storage system for rapid heat supply publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2005.02.014 – volume: 208 start-page: 332 year: 2017 ident: 10.1016/j.apenergy.2019.04.072_b0030 article-title: Experimental investigation of two-stage thermoelectric generator system integrated with phase change materials publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.10.032 – volume: 225 start-page: 585 year: 2018 ident: 10.1016/j.apenergy.2019.04.072_b0110 article-title: Thermal and economic analysis of charging and discharging characteristics of composite phase change materials for cold storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.05.063 – volume: 356 start-page: 641 year: 2019 ident: 10.1016/j.apenergy.2019.04.072_b0100 article-title: Shape-stabilized phase change materials based on porous supports for thermal energy storage applications publication-title: Chem Eng J doi: 10.1016/j.cej.2018.09.013 – volume: 160 start-page: 286 year: 2015 ident: 10.1016/j.apenergy.2019.04.072_b0015 article-title: Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.09.016 – volume: 53 start-page: 1 year: 2016 ident: 10.1016/j.apenergy.2019.04.072_b0010 article-title: Thermal energy storage: recent developments and practical aspects publication-title: Prog Energy Combust doi: 10.1016/j.pecs.2015.10.003 – volume: 47 start-page: 4156 year: 2018 ident: 10.1016/j.apenergy.2019.04.072_b0130 article-title: Nanoencapsulation of phase change materials for advanced thermal energy storage systems publication-title: Chem Soc Rev doi: 10.1039/C8CS00099A – volume: 203 start-page: 219 year: 2017 ident: 10.1016/j.apenergy.2019.04.072_b0035 article-title: Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.06.008 – volume: 143 start-page: 96 year: 2017 ident: 10.1016/j.apenergy.2019.04.072_b0085 article-title: Single-walled carbon nanotube for shape stabilization and enhanced phase change heat transfer of polyethylene glycol phase change material publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.03.065 |
SSID | ssj0002120 |
Score | 2.529852 |
Snippet | •A shape-remodeled PCM macrocapsule was fabricated through a cast molding method.•The EBiInSn-based flexible shell can sustain a maximum stretching of... This paper reports on a novel phase change material macrocapsule for thermal energy storage, which can be dynamically and repeatably remodeled as needed to a... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 503 |
SubjectTerms | alloys Bi-In-Sn eutectic alloy deformation electronic equipment encapsulation engineering heat latent heat melting microparticles Octadecanol PCM macrocapsule silicone solidification thermal conductivity thermal energy Thermal energy storage Thermal management Thermoelectric power generation |
Title | Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management |
URI | https://dx.doi.org/10.1016/j.apenergy.2019.04.072 https://www.proquest.com/docview/2237537098 |
Volume | 247 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwMhECZGL3owWjXWVzDximVZWHaPTVNTNXpRk94IsJBq2m2j7dXf7rCPtpoYDx53GViWGWa-CTMDQldJ7HTqZUwyQ1PCweKQVNOcyNRaCx6Jj3xwFB8ek8ELvxuK4QbqNbkwIayy1v2VTi-1df2mU69mZ_b62nkKaDfgf4AgIKc86GHOZZDy689VmAerSzMCMQnUa1nCb9d65soMuxDilZUlTyX7zUD9UNWl_bnZQ7s1cMTdam77aMMVLbSzVk6whY76q6w1IK237ccBGj2NYA7k3VX33uR4ouHjVoOHPHZ46vFsBMYMV0nA0DivxBIDoMUBIE5gtOoXcAimBBWEdZEvmybLEJpD9HLTf-4NSH3FArExF3NiOAcHT6RJznxCmbE-044l0uSRs5oalrhMRixKhDeWhjNXl9s8Mj5OLJNaxEdos5gW7hhhl2sLq-y49DG33GsmQHUKwbRx1HLaRqJZV2Xr-uPhGoyxagLN3lTDDxX4oShXwI826iz7zaoKHH_2yBq2qW-ypMBM_Nn3suGzgo0WTk904aaLDwU4Clw7SbP05B_jn6Lt8FSFEJ6hzfn7wp0DrJmbi1JuL9BW9_Z-8PgFq9_7eg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8QgEJ6Y9aAejM_4FhOvuJRCH0djNOtrL2rijQCFrMbtbnT9_w5buj4S48FrYWjLwDffhJkB4DhLnS58ntLSsIIKtDi00KyieWGtRY_EJz44irf9rPcgrh7l4xyctbkwIawyYn-D6VO0jk-6cTa746en7l1gu4H_IwXBdSoQh-dDdSrZgfnTy-tefwbIPFZnxP40CHxJFH4-0WM3TbILUV7ltOppzn-zUT_QemqCLlZgOXJHctp83irMuXoNlr5UFFyDzfPPxDXsGnfu2zoM7gb4DfTVNVffVGSo8eVWo5P84sjIk_EA7Rlp8oCxcdKsTIKclgSOOMTRml8gIZ4SUYjoupo1DWdRNBvwcHF-f9aj8ZYFalMhJ9QIgT6eLLKK-4xxY32pHc9yUyXOamZ45so84UkmvbEsHLu6ylaJ8Wlmea5lugmdelS7LSCu0hZn2Yncp8IKr7lE9JSSa-OYFWwbZDuvysYS5OEmjBfVxpo9q1YfKuhDMaFQH9vQncmNmyIcf0qUrdrUt-Wk0FL8KXvU6lnhXgsHKLp2o_c3hVQKvbuclcXOP8Y_hIXe_e2NurnsX-_CYmhpIgr3oDN5fXf7yHIm5iCu4g88J_4r |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape-remodeled+macrocapsule+of+phase+change+materials+for+thermal+energy+storage+and+thermal+management&rft.jtitle=Applied+energy&rft.au=Yu%2C+De-Hai&rft.au=He%2C+Zhi-Zhu&rft.date=2019-08-01&rft.issn=0306-2619&rft.volume=247+p.503-516&rft.spage=503&rft.epage=516&rft_id=info:doi/10.1016%2Fj.apenergy.2019.04.072&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |