Anticorrosive properties of a green and sustainable inhibitor from leaves extract of Cannabis sativa plant: Experimental and theoretical approach

[Display omitted] •Leaves extract of Cannabis sativa plant were used for the corrosion resistance.•The adsorption of inhibitor was shown by UV–vis.•Hypothetical investigations (computational) showed a very valuable report.•MD simulations agree with the experimental results. The leaves extract of the...

Full description

Saved in:
Bibliographic Details
Published inColloids and surfaces. A, Physicochemical and engineering aspects Vol. 614; p. 126211
Main Authors Haldhar, R., Prasad, D., Mandal, N., Benhiba, F., Bahadur, I., Dagdag, O.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 05.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Leaves extract of Cannabis sativa plant were used for the corrosion resistance.•The adsorption of inhibitor was shown by UV–vis.•Hypothetical investigations (computational) showed a very valuable report.•MD simulations agree with the experimental results. The leaves extract of the Cannabis sativaplant was used for the corrosion resistance of low carbon steel (LCS) in the acidic medium (0.5 M sulfuric acid) utilizing the weight-loss method, Tafel and EIS. The state of mixed inhibitor adsorption on the LCS surface is shown by potentiodynamic polarization. C. sativaachieved anextraordinary inhibition efficiency of 97.31 % at 200 mg/L of inhibitor concentration. SEM and AFM were used to know about the thin layer which was formed on the surface of LCS for its protection from corrosion and the adsorption of inhibitor were shown by UV–vis. spectroscopic technique. FT-IR technique confirmed the existence of functional groups and the heteroatoms exhibit in the inhibitor. Adsorbanceby the inhibitory molecules on the LCS surface followed the Langmuir adsorption isotherm. Hypothetical investigations (computational) showed a very valuable report. All acquired outcomes ensure that C. sativaleaves extract can procedure an effectualpreventing layer and restrict the corrosion procedure. The results of the molecular dynamics (MD) simulations agree with the appointed inhibition efficiencies of the experimentally.
AbstractList [Display omitted] •Leaves extract of Cannabis sativa plant were used for the corrosion resistance.•The adsorption of inhibitor was shown by UV–vis.•Hypothetical investigations (computational) showed a very valuable report.•MD simulations agree with the experimental results. The leaves extract of the Cannabis sativaplant was used for the corrosion resistance of low carbon steel (LCS) in the acidic medium (0.5 M sulfuric acid) utilizing the weight-loss method, Tafel and EIS. The state of mixed inhibitor adsorption on the LCS surface is shown by potentiodynamic polarization. C. sativaachieved anextraordinary inhibition efficiency of 97.31 % at 200 mg/L of inhibitor concentration. SEM and AFM were used to know about the thin layer which was formed on the surface of LCS for its protection from corrosion and the adsorption of inhibitor were shown by UV–vis. spectroscopic technique. FT-IR technique confirmed the existence of functional groups and the heteroatoms exhibit in the inhibitor. Adsorbanceby the inhibitory molecules on the LCS surface followed the Langmuir adsorption isotherm. Hypothetical investigations (computational) showed a very valuable report. All acquired outcomes ensure that C. sativaleaves extract can procedure an effectualpreventing layer and restrict the corrosion procedure. The results of the molecular dynamics (MD) simulations agree with the appointed inhibition efficiencies of the experimentally.
The leaves extract of the Cannabis sativaplant was used for the corrosion resistance of low carbon steel (LCS) in the acidic medium (0.5 M sulfuric acid) utilizing the weight-loss method, Tafel and EIS. The state of mixed inhibitor adsorption on the LCS surface is shown by potentiodynamic polarization. C. sativaachieved anextraordinary inhibition efficiency of 97.31 % at 200 mg/L of inhibitor concentration. SEM and AFM were used to know about the thin layer which was formed on the surface of LCS for its protection from corrosion and the adsorption of inhibitor were shown by UV–vis. spectroscopic technique. FT-IR technique confirmed the existence of functional groups and the heteroatoms exhibit in the inhibitor. Adsorbanceby the inhibitory molecules on the LCS surface followed the Langmuir adsorption isotherm. Hypothetical investigations (computational) showed a very valuable report. All acquired outcomes ensure that C. sativaleaves extract can procedure an effectualpreventing layer and restrict the corrosion procedure. The results of the molecular dynamics (MD) simulations agree with the appointed inhibition efficiencies of the experimentally.
ArticleNumber 126211
Author Bahadur, I.
Benhiba, F.
Prasad, D.
Haldhar, R.
Mandal, N.
Dagdag, O.
Author_xml – sequence: 1
  givenname: R.
  surname: Haldhar
  fullname: Haldhar, R.
  organization: Department of Chemistry, Lovely Professional University, Phagwara, 144411, India
– sequence: 2
  givenname: D.
  surname: Prasad
  fullname: Prasad, D.
  email: dwarika.maithani@gmail.com
  organization: Department of Chemistry, Shri Guru Ram Rai University, Dehradun, 248001, India
– sequence: 3
  givenname: N.
  surname: Mandal
  fullname: Mandal, N.
  organization: Department of Chemistry, Kumaun University, Nainital, 263001, India
– sequence: 4
  givenname: F.
  surname: Benhiba
  fullname: Benhiba, F.
  organization: Laboratory of Separation Processes (LSP), Faculty of Sciences, IbnTofail University, Kenitra, Morocco
– sequence: 5
  givenname: I.
  surname: Bahadur
  fullname: Bahadur, I.
  email: bahadur.indra@nwu.ac.za
  organization: Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, South Africa
– sequence: 6
  givenname: O.
  surname: Dagdag
  fullname: Dagdag, O.
  organization: Department of Process Engineering, Sidi Mohammed Ben Abdallah University, Fes, 30050, Morocco
BookMark eNqFkE1vEzEQhn0oUj_oX0A-ckmwvfZ6t-JAFZUPqRIXOFuz3lky0cZebCcqP4N_jEPKhUtPlqX3eWfmuWYXIQZk7I0Uaylk-2639nHOhzTBWgkl11K1SsoLdiV6ZVfWGnvJrnPeCSG0sf0V-30fCvmYUsx0RL6kuGAqhJnHiQP_kRADhzDyfMgFKMAwI6ewpYFKTHxKcc9nhGMF8Kkk8OUEbiDUJGWeodAR-DJDKHf84amW0x5DgflvadliTFgXOP2XOhz89jV7NcGc8fb5vWHfPz5823xePX799GVz_7jyjTZlBYMeu0kraBozTKPRfjLSd2i1UUPXoYTRdgP0emiU0mNvwFqsjnRvW2Ggb27Y23NvHfvzgLm4PWWPc10V4yE7ZYzsWyWsqdH2HPVVU044uaWeAemXk8KdvLud--fdnby7s_cKvv8P9FSqkhiqKppfxj-ccawejoTJZU8YPI6U0Bc3Rnqp4g8SZqtO
CitedBy_id crossref_primary_10_3390_ijms26020548
crossref_primary_10_1007_s42250_023_00782_5
crossref_primary_10_1016_j_molliq_2023_123754
crossref_primary_10_1080_01694243_2022_2055347
crossref_primary_10_1007_s11814_022_1246_5
crossref_primary_10_1016_j_colsurfa_2022_128745
crossref_primary_10_1016_j_molliq_2023_121976
crossref_primary_10_1021_acsomega_3c06824
crossref_primary_10_1016_j_jmrt_2024_02_174
crossref_primary_10_1016_j_molliq_2021_116184
crossref_primary_10_1016_j_corsci_2022_110199
crossref_primary_10_1016_j_molstruc_2022_133508
crossref_primary_10_1038_s41598_022_24793_3
crossref_primary_10_1016_j_inoche_2023_111722
crossref_primary_10_1016_j_mtcomm_2022_105265
crossref_primary_10_1016_j_mtcomm_2023_106673
crossref_primary_10_1016_j_colsurfa_2024_135555
crossref_primary_10_1021_acsomega_1c04500
crossref_primary_10_3390_molecules28041581
crossref_primary_10_1016_j_colsurfa_2024_135911
crossref_primary_10_1016_j_molliq_2022_119522
crossref_primary_10_1016_j_susmat_2025_e01305
crossref_primary_10_1016_j_ijoes_2024_100768
crossref_primary_10_1016_j_arabjc_2022_103948
crossref_primary_10_1016_j_colsurfa_2023_132727
crossref_primary_10_1016_j_colsurfa_2021_127120
crossref_primary_10_1002_cbdv_202403132
crossref_primary_10_1016_j_mseb_2023_116287
crossref_primary_10_1007_s40735_021_00571_y
crossref_primary_10_3390_coatings13050860
crossref_primary_10_1016_j_jics_2023_100916
crossref_primary_10_1016_j_molliq_2023_122652
crossref_primary_10_1038_s41598_023_41975_9
crossref_primary_10_1016_j_colsurfa_2025_136399
crossref_primary_10_1039_D4NJ04038D
crossref_primary_10_3390_lubricants10030043
crossref_primary_10_1080_17518253_2021_1985173
crossref_primary_10_1007_s40735_022_00630_y
crossref_primary_10_1016_j_scitotenv_2023_161871
crossref_primary_10_1021_acs_iecr_1c01946
crossref_primary_10_1016_j_molliq_2022_119839
crossref_primary_10_1016_j_molliq_2022_118867
crossref_primary_10_1002_open_202400273
crossref_primary_10_37394_232015_2021_17_59
crossref_primary_10_1016_j_indcrop_2022_115640
crossref_primary_10_1016_j_ijbiomac_2024_130769
crossref_primary_10_1016_j_colsurfa_2022_130885
crossref_primary_10_1016_j_inoche_2024_112030
crossref_primary_10_1016_j_molliq_2022_119790
crossref_primary_10_1016_j_jece_2022_108891
crossref_primary_10_1038_s41598_023_45283_0
crossref_primary_10_1016_j_jtice_2021_09_026
crossref_primary_10_1016_j_molliq_2023_123332
crossref_primary_10_1016_j_jiec_2023_02_013
crossref_primary_10_1016_j_ijoes_2023_100345
crossref_primary_10_1007_s40735_023_00814_0
crossref_primary_10_1016_j_colsurfa_2025_136349
crossref_primary_10_1016_j_molliq_2022_119988
crossref_primary_10_1039_D1RA04976C
crossref_primary_10_1016_j_molliq_2021_118218
crossref_primary_10_1016_j_molliq_2021_117886
crossref_primary_10_1016_j_jics_2024_101172
crossref_primary_10_1016_j_molliq_2023_121268
crossref_primary_10_1016_j_colsurfa_2022_128892
crossref_primary_10_1016_j_jtice_2023_104712
crossref_primary_10_1007_s11356_024_35159_9
crossref_primary_10_1016_j_scp_2023_101170
crossref_primary_10_1016_j_molliq_2022_119384
crossref_primary_10_4028_p_8fp2dg
crossref_primary_10_1016_j_molliq_2023_122715
crossref_primary_10_3390_su13105569
crossref_primary_10_1016_j_corcom_2022_05_004
crossref_primary_10_1016_j_jtice_2023_105044
crossref_primary_10_3390_met11071062
crossref_primary_10_1016_j_jtice_2023_105047
crossref_primary_10_1016_j_conbuildmat_2024_136832
crossref_primary_10_1016_j_jiec_2024_06_013
crossref_primary_10_1016_j_jiec_2024_04_019
crossref_primary_10_3389_fmats_2022_879525
crossref_primary_10_1016_j_inoche_2022_109963
crossref_primary_10_1007_s13369_023_07693_0
crossref_primary_10_1016_j_molstruc_2023_136466
crossref_primary_10_1016_j_colsurfa_2024_133207
crossref_primary_10_1016_j_jelechem_2024_118699
crossref_primary_10_1016_j_mseb_2023_116779
Cites_doi 10.1016/j.jtice.2019.10.005
10.1016/j.sajce.2016.07.002
10.1016/j.jiec.2014.10.020
10.1016/j.inoche.2020.107858
10.1016/j.jclepro.2018.11.053
10.1016/j.molliq.2020.113367
10.1016/j.molliq.2020.113493
10.1016/j.corsci.2012.08.033
10.1016/j.jiec.2019.12.019
10.1016/j.phytochem.2015.04.007
10.1016/j.jcis.2020.04.022
10.1016/j.molliq.2015.12.008
10.1007/s13369-019-04270-2
10.1016/j.cplett.2020.137181
10.1016/j.scp.2018.07.002
10.1016/j.corsci.2008.01.013
10.1016/j.phytochem.2012.11.001
10.1016/j.jece.2018.08.025
10.1016/j.cjche.2020.03.002
10.1016/j.corsci.2012.05.003
10.1016/j.corsci.2011.03.021
10.1016/j.molliq.2019.111559
10.1016/j.corsci.2011.11.005
10.1016/j.matchemphys.2005.08.014
10.1016/j.corsci.2014.10.002
10.1016/j.jtice.2019.04.002
10.1016/j.corsci.2012.03.036
10.20964/2017.09.63
10.1016/j.corsci.2006.04.013
10.1016/j.molliq.2019.04.045
10.1016/j.comptc.2013.04.001
10.1021/jp980939v
10.1016/j.corsci.2009.05.024
10.1016/j.corsci.2012.07.017
10.1016/j.molliq.2018.01.144
10.1016/j.molliq.2019.04.137
10.1007/s11668-018-0491-8
10.1016/j.molliq.2016.03.049
10.1016/j.corsci.2008.05.009
10.1016/j.comptc.2015.04.003
10.1080/00986445.2013.790816
10.1140/epjp/i2018-12165-0
10.1016/j.bioelechem.2018.07.006
10.1063/1.439486
10.1016/j.matchemphys.2011.08.001
10.1016/j.cplett.2020.137771
10.1016/j.jece.2016.10.022
10.1039/C8QM00120K
10.1016/j.bioelechem.2019.107339
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.colsurfa.2021.126211
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
ExternalDocumentID 10_1016_j_colsurfa_2021_126211
S0927775721000807
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATTM
AAXKI
AAXUO
ABMAC
ABNEU
ABNUV
ABXRA
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AEZYN
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SPC
SPD
SSG
SSH
SSK
SSM
SSQ
SSZ
T5K
WH7
~02
~G-
29F
AAQXK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIIUN
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
RIG
SCB
SEW
VH1
WUQ
7S9
L.6
ID FETCH-LOGICAL-c345t-ab4d8f42a335bfd54cf51c8e7452b88e1ad78ba94b3224d95a77e101497605a93
IEDL.DBID .~1
ISSN 0927-7757
IngestDate Fri Jul 11 10:54:26 EDT 2025
Tue Jul 01 02:41:59 EDT 2025
Thu Apr 24 22:58:17 EDT 2025
Sun Apr 06 06:58:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords AFM
Polarization
SEM
Low carbon steel
Theoretical studies
EIS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-ab4d8f42a335bfd54cf51c8e7452b88e1ad78ba94b3224d95a77e101497605a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2551962075
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551962075
crossref_primary_10_1016_j_colsurfa_2021_126211
crossref_citationtrail_10_1016_j_colsurfa_2021_126211
elsevier_sciencedirect_doi_10_1016_j_colsurfa_2021_126211
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-05
PublicationDateYYYYMMDD 2021-04-05
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-05
  day: 05
PublicationDecade 2020
PublicationTitle Colloids and surfaces. A, Physicochemical and engineering aspects
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Deng (bib0060) 2012; 65
Garai, Garai, Jaisankar, Singh, Elango (bib0150) 2012; 60
Okafor, Ikpi, Uwah, Ebenso, Ekpe, Umoren (bib0070) 2008; 50
Rbaa, Benhiba, Galai, Abousalem, Ouakki, Chin-HungLai, Jama, Warad, EbnTouhami, Zarrouk (bib0130) 2020; 754
Rahim, Rocca, Steinmetz, Kassim, Adnan, Sani Ibrahim (bib0045) 2007; 49
Dehghani, Bahlakeh, Ramezanzadeh, Ramezanzadeh (bib0235) 2019; 100
Saxena, Prasad, Haldhar (bib0005) 2018; 124
Soltani, Tavakkoli, Khayatkashani, Jalali, Mosavizade (bib0030) 2012; 62
Bagga, Gadi, Yadav, Kumar, Chopra, Singh (bib0020) 2016; 4
Bahlakeh, Dehghani, Ramezanzadeh, Ramezanzadeh (bib0190) 2019; 293
Guo, Duan, He, Sun, Fan, Hu (bib0125) 2013; 1015
(bib0135) 2016
Torres (bib0065) 2011; 53
Ostovari, Hoseinieh, Peikari, Shadizadeh, Hashemi (bib0055) 2009; 51
Ahmed (bib0110) 2015; 117
Saxena, Prasad, Haldhar (bib0035) 2018; 18
Noor (bib0090) 2011; 131
Haldhar, Prasad, Bhardwaj (bib0155) 2020; 45
Keramatinia, Ramezanzadeh, Mahdavian (bib0240) 2019; 105
Njoku, Ukaga, Ikenna, Oguzie, Oguzie, Ibisi (bib0085) 2016; 219
Haldhar, Prasad, Saxena (bib0160) 2018; 6
Sun (bib0140) 1998; 102
Happyana (bib0105) 2013; 87
Tang, Li, Li, Mu, Liu (bib0205) 2006; 97
Oguzie, Chidiebere, Oguzie, Adindu, Momoh-Yahaya (bib0100) 2014; 201
Haldhar, Prasad, Saxena, Kumar (bib0015) 2018; 9
Haddadi, Alibakhshi, Bahlakeh, Ramezanzadeh, Mahdavian (bib0255) 2019; 284
Benhiba, Hsissou, Benzekri, Belghiti, Lamhamdi, Bellaouchou, Guenbour, Boukhris, Oudda, Warad, Zarrouk (bib0215) 2020; 312
Deng, Li (bib0080) 2012; 55
Alibakhshi, Ramezanzadeh, Bahlakeh, Ramezanzadeh, Mahdavian, Motamedi (bib0225) 2018; 255
Andersen (bib0145) 1980; 72
Shahabi, Hamidi, Ghasemi, Norouzi, Shakeri (bib0195) 2019; 285
Haldhar, Prasad, Saxena, Kaur (bib0115) 2018; 133
Ji, Anjum, Sundaram, Prakash (bib0040) 2015; 90
Hassan, Khadom, Kurshed (bib0120) 2016; 22
Deng, Li (bib0050) 2012; 64
Benhiba, Benzekri, Guenbour, Tabyaoui, Bellaouchou, Boukhris, Oudda, Warad, Zarrouk (bib0180) 2020; 28
Xie, Liu, Han, Li, Liu, Chen (bib0175) 2015; 1063
Hsissou, Benhiba, Abbout, Dagdag, Benkhaya Avni Berisha, Erramli, Elharfi (bib0210) 2020; 115
Radojčić, Berković, Kovač, Vorkapić-Furač (bib0075) 2008; 50
Hejazi (bib0165) 2015; 25
Dehghani, Bahlakeh, Ramezanzadeh (bib0245) 2019; 130
Hsissou, Benhiba, Dagdag, El Bouchti, Nouneh, Assouag, Briche, Zarrouk, Elharfi (bib0200) 2020; 574
Dehghani, Bahlaked, Ramezanzadeh, Ramezanzadeh (bib0230) 2020; 84
Garai, Garai, Jaisankar, Singh, Elango (bib0010) 2012; 60
Alibakhshi, Ramezanzadeh, Haddadi, Bahlakeh, Ramezanzadeh, Mahdavian (bib0250) 2019; 210
Saxena, Prasad, Haldhar (bib0025) 2017; 12
Berrissoul, Ouarhach, Benhiba, Romane, Zarrouk, Guenbour, Dikici, Dafali (bib0220) 2020; 313
Haldhar, Prasad, Saxena, Singh (bib0170) 2018; 2
Benhiba, Serrar, Hsissou, Guenbour, Bellaouchou, Tabyaoui, Boukhris, Oudda, Warad, Zarrouk (bib0185) 2020; 743
Rose, Kim, Rajagopal, Arumugam, Devarayan (bib0095) 2016; 214
Benhiba (10.1016/j.colsurfa.2021.126211_bib0180) 2020; 28
Haddadi (10.1016/j.colsurfa.2021.126211_bib0255) 2019; 284
Andersen (10.1016/j.colsurfa.2021.126211_bib0145) 1980; 72
Soltani (10.1016/j.colsurfa.2021.126211_bib0030) 2012; 62
Rahim (10.1016/j.colsurfa.2021.126211_bib0045) 2007; 49
Torres (10.1016/j.colsurfa.2021.126211_bib0065) 2011; 53
Bagga (10.1016/j.colsurfa.2021.126211_bib0020) 2016; 4
Deng (10.1016/j.colsurfa.2021.126211_bib0050) 2012; 64
Alibakhshi (10.1016/j.colsurfa.2021.126211_bib0225) 2018; 255
Haldhar (10.1016/j.colsurfa.2021.126211_bib0015) 2018; 9
Njoku (10.1016/j.colsurfa.2021.126211_bib0085) 2016; 219
Ostovari (10.1016/j.colsurfa.2021.126211_bib0055) 2009; 51
Oguzie (10.1016/j.colsurfa.2021.126211_bib0100) 2014; 201
Shahabi (10.1016/j.colsurfa.2021.126211_bib0195) 2019; 285
Saxena (10.1016/j.colsurfa.2021.126211_bib0035) 2018; 18
Alibakhshi (10.1016/j.colsurfa.2021.126211_bib0250) 2019; 210
Hejazi (10.1016/j.colsurfa.2021.126211_bib0165) 2015; 25
Hassan (10.1016/j.colsurfa.2021.126211_bib0120) 2016; 22
Okafor (10.1016/j.colsurfa.2021.126211_bib0070) 2008; 50
Saxena (10.1016/j.colsurfa.2021.126211_bib0025) 2017; 12
Ahmed (10.1016/j.colsurfa.2021.126211_bib0110) 2015; 117
Berrissoul (10.1016/j.colsurfa.2021.126211_bib0220) 2020; 313
Sun (10.1016/j.colsurfa.2021.126211_bib0140) 1998; 102
Dehghani (10.1016/j.colsurfa.2021.126211_bib0235) 2019; 100
Hsissou (10.1016/j.colsurfa.2021.126211_bib0210) 2020; 115
Garai (10.1016/j.colsurfa.2021.126211_bib0150) 2012; 60
Benhiba (10.1016/j.colsurfa.2021.126211_bib0215) 2020; 312
Xie (10.1016/j.colsurfa.2021.126211_bib0175) 2015; 1063
Rose (10.1016/j.colsurfa.2021.126211_bib0095) 2016; 214
Dehghani (10.1016/j.colsurfa.2021.126211_bib0230) 2020; 84
Noor (10.1016/j.colsurfa.2021.126211_bib0090) 2011; 131
Haldhar (10.1016/j.colsurfa.2021.126211_bib0170) 2018; 2
Happyana (10.1016/j.colsurfa.2021.126211_bib0105) 2013; 87
Haldhar (10.1016/j.colsurfa.2021.126211_bib0155) 2020; 45
Haldhar (10.1016/j.colsurfa.2021.126211_bib0115) 2018; 133
Tang (10.1016/j.colsurfa.2021.126211_bib0205) 2006; 97
Keramatinia (10.1016/j.colsurfa.2021.126211_bib0240) 2019; 105
Li (10.1016/j.colsurfa.2021.126211_bib0060) 2012; 65
Saxena (10.1016/j.colsurfa.2021.126211_bib0005) 2018; 124
Dehghani (10.1016/j.colsurfa.2021.126211_bib0245) 2019; 130
Haldhar (10.1016/j.colsurfa.2021.126211_bib0160) 2018; 6
Guo (10.1016/j.colsurfa.2021.126211_bib0125) 2013; 1015
(10.1016/j.colsurfa.2021.126211_bib0135) 2016
Bahlakeh (10.1016/j.colsurfa.2021.126211_bib0190) 2019; 293
Ji (10.1016/j.colsurfa.2021.126211_bib0040) 2015; 90
Radojčić (10.1016/j.colsurfa.2021.126211_bib0075) 2008; 50
Rbaa (10.1016/j.colsurfa.2021.126211_bib0130) 2020; 754
Benhiba (10.1016/j.colsurfa.2021.126211_bib0185) 2020; 743
Hsissou (10.1016/j.colsurfa.2021.126211_bib0200) 2020; 574
Garai (10.1016/j.colsurfa.2021.126211_bib0010) 2012; 60
Deng (10.1016/j.colsurfa.2021.126211_bib0080) 2012; 55
References_xml – volume: 60
  start-page: 193
  year: 2012
  end-page: 204
  ident: bib0150
  article-title: A comprehensive study on crude methanolic extract of
  publication-title: Corros. Sci.
– volume: 45
  start-page: 131
  year: 2020
  end-page: 141
  ident: bib0155
  article-title: Surface adsorption and corrosion resistance performance of
  publication-title: Arab. J. Sci. Eng.
– volume: 312
  start-page: 113367
  year: 2020
  ident: bib0215
  article-title: Nitro substituent effect on the electronic behavior and inhibitory performance of two quinoxaline derivatives in relation to the corrosion of mild steel in 1 M HCl
  publication-title: J. Mol. Liq.
– volume: 219
  start-page: 417
  year: 2016
  end-page: 424
  ident: bib0085
  article-title: Natural products for materials protection: corrosion protection of aluminium in hydrochloric acid by
  publication-title: J. Mol. Liq.
– volume: 130
  start-page: 107339
  year: 2019
  ident: bib0245
  article-title: Green Eucalyptus leaf extract: a potent source of bio-active corrosion inhibitors for mild steel
  publication-title: Bioelectrochemistry
– volume: 124
  start-page: 156
  year: 2018
  end-page: 164
  ident: bib0005
  article-title: Investigation of corrosion inhibition effect and adsorption activities of
  publication-title: Bioelectrochemistry
– volume: 574
  start-page: 43
  year: 2020
  end-page: 60
  ident: bib0200
  article-title: Development and potential performance of prepolymer in corrosion inhibition for carbon steel in 1.0 M HCl: Outlooks from experimental and computational investigations
  publication-title: J. Colloid Interface Sci.
– volume: 133
  start-page: 0
  year: 2018
  end-page: 18
  ident: bib0115
  article-title: Corrosion resistance of mild steel in 0.5 M H
  publication-title: Eur. Phys. J. Plus
– volume: 131
  start-page: 160
  year: 2011
  end-page: 169
  ident: bib0090
  article-title: The impact of some factors on the inhibitory action of Radish leavess aqueous extract for mild steel corrosion in 1 M H
  publication-title: Mater. Chem. Phys.
– volume: 105
  start-page: 134
  year: 2019
  end-page: 149
  ident: bib0240
  article-title: Green production of bioactive components from herbal origins through one-pot oxidation/polymerization reactions and application as a corrosion inhibitor for mild steel in HCl solution
  publication-title: J. Taiwan Inst. Chem. E
– volume: 201
  start-page: 790
  year: 2014
  end-page: 803
  ident: bib0100
  article-title: Biomass extracts for materials protection: corrosion inhibition of mild steel in acidic media by
  publication-title: Chem. Eng. Commun.
– volume: 117
  start-page: 194
  year: 2015
  end-page: 199
  ident: bib0110
  article-title: Minor oxygenated cannabinoids from high potency
  publication-title: Phytochemistry
– volume: 87
  start-page: 51
  year: 2013
  end-page: 59
  ident: bib0105
  article-title: Analysis of Cannabinoids in laser-microdissected trichomes of medicinal
  publication-title: Phytochemistry
– volume: 55
  start-page: 407
  year: 2012
  end-page: 415
  ident: bib0080
  article-title: Inhibition by Ginkgo leaves extract of the corrosion of steel in HCl and H
  publication-title: Corros. Sci.
– volume: 22
  start-page: 1
  year: 2016
  end-page: 5
  ident: bib0120
  article-title: leaves extracts as a sustainable corrosion inhibitor of mild steel in sulfuric acid
  publication-title: South African J. Chem. Eng.
– volume: 313
  start-page: 113493
  year: 2020
  ident: bib0220
  article-title: Evaluation of Lavandula mairei extract as green inhibitor for mild steel corrosion in 1 M HCl solution. Experimental and theoretical approach
  publication-title: J. Mol. Liq.
– volume: 60
  start-page: 193
  year: 2012
  end-page: 204
  ident: bib0010
  article-title: A comprehensive study on crude methanolic extract of Artemisia pallens (Asteraceae) and its active component as effective corrosion inhibitors of mild steel in acid solution
  publication-title: Corros. Sci.
– volume: 18
  start-page: 957
  year: 2018
  end-page: 968
  ident: bib0035
  article-title: Investigation of corrosion inhibition effect and adsorption activities of
  publication-title: J. Fail. Anal. Preven.
– volume: 102
  start-page: 7338
  year: 1998
  end-page: 7364
  ident: bib0140
  article-title: Compass: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds
  publication-title: J. Phys. Chem. B
– volume: 4
  start-page: 4699
  year: 2016
  end-page: 4707
  ident: bib0020
  article-title: Investigation of phytochemical components and corrosion inhibition property of
  publication-title: J. Environ. Chem. Eng.
– volume: 255
  start-page: 185
  year: 2018
  end-page: 198
  ident: bib0225
  article-title: leaves extract as a green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution: experimental, molecular dynamics, Monte Carlo and quantum mechanics study
  publication-title: J. Mol. Liq.
– volume: 12
  start-page: 8793
  year: 2017
  end-page: 8805
  ident: bib0025
  article-title: Use of Butea monosperma extract as green corrosion inhibitor
  publication-title: Int. Jounal Electrochem. Sci.
– volume: 65
  start-page: 299
  year: 2012
  end-page: 308
  ident: bib0060
  article-title: Inhibition effect of
  publication-title: Corros. Sci.
– volume: 50
  start-page: 2310
  year: 2008
  end-page: 2317
  ident: bib0070
  article-title: Inhibitory action of
  publication-title: Corros. Sci.
– volume: 9
  start-page: 95
  year: 2018
  end-page: 105
  ident: bib0015
  article-title: Experimental and theoretical studies of
  publication-title: Sustain. Chem. Pharm.
– volume: 743
  start-page: 137181
  year: 2020
  ident: bib0185
  article-title: Tetrahydropyrimido-Triazepine derivatives as anti-corrosion additives for acid corrosion: chemical, electrochemical, surface and theoretical studies
  publication-title: Chem. Phys. Lett.
– volume: 97
  start-page: 301
  year: 2006
  end-page: 307
  ident: bib0205
  article-title: The effect of 1-(2-pyridylazo)-2-naphthol on the corrosion of cold rolled steel in acid media: Part 2: inhibitive action in 0.5M sulfuric acid
  publication-title: Mater. Chem. Phys.
– volume: 53
  start-page: 2385
  year: 2011
  end-page: 2392
  ident: bib0065
  article-title: Inhibitory action of aqueous coffee ground extracts on the corrosion of carbon steel in HCl solution
  publication-title: Corros. Sci.
– volume: 28
  start-page: 1436
  year: 2020
  end-page: 1458
  ident: bib0180
  article-title: Combined electronic/atomic level computational, surface (SEM/EDS), chemical and electrochemical studies of the mild steel surface by quinoxalines derivatives anti-corrosion properties in 1 mol. L
  publication-title: Chin. J. Chem. Eng.
– volume: 754
  start-page: 137771
  year: 2020
  ident: bib0130
  article-title: Synthesis and characterization of novel Cu (II) and Zn (II) complexes of 5-{[(2-Hydroxyethyl) sulfanyl] methyl}-8-hydroxyquinoline as effective acid corrosion inhibitor by experimental and computational testings
  publication-title: Chem. Phys. Lett.
– volume: 62
  start-page: 122
  year: 2012
  end-page: 135
  ident: bib0030
  article-title: Green approach to corrosion inhibition of 304 stainless steel in hydrochloric acid solution by the extract of
  publication-title: Corros. Sci.
– volume: 100
  start-page: 239
  year: 2019
  end-page: 261
  ident: bib0235
  article-title: Detailed macro-/micro-scale exploration of the excellent active corrosion inhibition of a novel environmentally friendly green inhibitor for carbon steel in acidic environments
  publication-title: J. Taiwan Inst. Chem. E
– volume: 84
  start-page: 52
  year: 2020
  end-page: 71
  ident: bib0230
  article-title: Experimental complemented with microscopic (electronic/atomic)-level modeling explorations of
  publication-title: J. Ind. Eng. Chem.
– volume: 2
  start-page: 1225
  year: 2018
  end-page: 1237
  ident: bib0170
  article-title: root extract as a green & sustainable corrosion inhibitor for mild steel in acidic environments: experimental and theoretical study
  publication-title: Mater. Chem. Front.
– volume: 210
  start-page: 660
  year: 2019
  end-page: 672
  ident: bib0250
  article-title: Persian Liquorice extract as a highly efficient sustainable corrosion inhibitor for mild steel in sodium chloride solution
  publication-title: J. Clean. Prod.
– volume: 25
  start-page: 112
  year: 2015
  end-page: 121
  ident: bib0165
  article-title: Electrochemical and quantum chemical study of Thiazolo-pyrimidine derivatives as corrosion inhibitors on mild steel in 1M H
  publication-title: J. Ind. Eng. Chem.
– volume: 50
  start-page: 1498
  year: 2008
  end-page: 1504
  ident: bib0075
  article-title: Natural honey and black radish juice as tin corrosion inhibitors
  publication-title: Corros. Sci.
– volume: 90
  start-page: 107
  year: 2015
  end-page: 117
  ident: bib0040
  article-title: peel extract as green corrosion inhibitor for mild steel in HCl solution
  publication-title: Corros. Sci.
– volume: 1015
  start-page: 21
  year: 2013
  end-page: 26
  ident: bib0125
  article-title: Synergistic effect between 2-oleyl-1- oleylamidoethyl imidazoline ammonium methylsulfate and halide ion by moleculardynamics simulation
  publication-title: Comput. Theor. Chem.
– volume: 49
  start-page: 402
  year: 2007
  end-page: 417
  ident: bib0045
  article-title: and their flavanoid monomers as alternative steel corrosion inhibitors in acidic medium
  publication-title: Corros. Sci.
– volume: 1063
  start-page: 50
  year: 2015
  end-page: 62
  ident: bib0175
  article-title: Molecular dynamics simulation of inhibition mechanism of 3,5-dibromo salicylaldehyde Schiff’s base
  publication-title: Comput. Theor. Chem.
– volume: 214
  start-page: 111
  year: 2016
  end-page: 116
  ident: bib0095
  article-title: Surface protection of steel in acid medium by
  publication-title: J. Mol. Liq.
– volume: 115
  start-page: 107858
  year: 2020
  ident: bib0210
  article-title: Trifunctional epoxy polymer as corrosion inhibition material for carbon steel in 1.0 M HCl: MD simulations, DFT and complexation computations
  publication-title: J. Inorg. Chem. Commun.
– year: 2016
  ident: bib0135
  article-title: Materials Studio, Revision 8.0
– volume: 6
  start-page: 5230
  year: 2018
  end-page: 5238
  ident: bib0160
  article-title: as sustainable and eco-friendly corrosion inhibitor for mild steel in 0.5 M sulphuric acid: experimental and theoretical investigations
  publication-title: J. Environ. Chem. Eng.
– volume: 64
  start-page: 253
  year: 2012
  end-page: 262
  ident: bib0050
  article-title: Inhibition by
  publication-title: Corros. Sci.
– volume: 72
  start-page: 2384
  year: 1980
  end-page: 2393
  ident: bib0145
  article-title: Molecular dynamics simulations at constant pressure and/or temperature
  publication-title: J. Chem. Phys.
– volume: 285
  start-page: 626
  year: 2019
  end-page: 639
  ident: bib0195
  article-title: Synthesis, experimental, quantum chemical and molecular dynamics study of carbon steel corrosion inhibition effect of two Schiffbases in HCl
  publication-title: J. Mol. Liq.
– volume: 284
  start-page: 682
  year: 2019
  end-page: 699
  ident: bib0255
  article-title: A detailed atomic level computational and electrochemical exploration of the
  publication-title: J. Mol. Liq.
– volume: 293
  start-page: 111559
  year: 2019
  ident: bib0190
  article-title: Highly effective mild steel corrosion inhibition in 1 M HCl solution by novel green aqueous Mustard seed extract: experimental, electronic-scale DFT and atomic-scale MC/MD explorations
  publication-title: J. Mol. Liq.
– volume: 51
  start-page: 1935
  year: 2009
  end-page: 1949
  ident: bib0055
  article-title: Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: a comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, alpha-d-Glucose and Tannic acid)
  publication-title: Corros. Sci.
– volume: 105
  start-page: 134
  year: 2019
  ident: 10.1016/j.colsurfa.2021.126211_bib0240
  article-title: Green production of bioactive components from herbal origins through one-pot oxidation/polymerization reactions and application as a corrosion inhibitor for mild steel in HCl solution
  publication-title: J. Taiwan Inst. Chem. E
  doi: 10.1016/j.jtice.2019.10.005
– volume: 22
  start-page: 1
  year: 2016
  ident: 10.1016/j.colsurfa.2021.126211_bib0120
  article-title: Citrus aurantium leaves extracts as a sustainable corrosion inhibitor of mild steel in sulfuric acid
  publication-title: South African J. Chem. Eng.
  doi: 10.1016/j.sajce.2016.07.002
– volume: 25
  start-page: 112
  year: 2015
  ident: 10.1016/j.colsurfa.2021.126211_bib0165
  article-title: Electrochemical and quantum chemical study of Thiazolo-pyrimidine derivatives as corrosion inhibitors on mild steel in 1M H2SO4
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2014.10.020
– volume: 115
  start-page: 107858
  year: 2020
  ident: 10.1016/j.colsurfa.2021.126211_bib0210
  article-title: Trifunctional epoxy polymer as corrosion inhibition material for carbon steel in 1.0 M HCl: MD simulations, DFT and complexation computations
  publication-title: J. Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2020.107858
– volume: 210
  start-page: 660
  year: 2019
  ident: 10.1016/j.colsurfa.2021.126211_bib0250
  article-title: Persian Liquorice extract as a highly efficient sustainable corrosion inhibitor for mild steel in sodium chloride solution
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.11.053
– volume: 312
  start-page: 113367
  year: 2020
  ident: 10.1016/j.colsurfa.2021.126211_bib0215
  article-title: Nitro substituent effect on the electronic behavior and inhibitory performance of two quinoxaline derivatives in relation to the corrosion of mild steel in 1 M HCl
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.113367
– volume: 313
  start-page: 113493
  year: 2020
  ident: 10.1016/j.colsurfa.2021.126211_bib0220
  article-title: Evaluation of Lavandula mairei extract as green inhibitor for mild steel corrosion in 1 M HCl solution. Experimental and theoretical approach
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.113493
– volume: 65
  start-page: 299
  year: 2012
  ident: 10.1016/j.colsurfa.2021.126211_bib0060
  article-title: Inhibition effect of Dendrocalamus brandisii leaves extract on aluminum in HCl, H3PO4 solutions
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2012.08.033
– volume: 84
  start-page: 52
  year: 2020
  ident: 10.1016/j.colsurfa.2021.126211_bib0230
  article-title: Experimental complemented with microscopic (electronic/atomic)-level modeling explorations of Laurus nobilis extract as green inhibitor for carbon steel in acidic solution
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2019.12.019
– volume: 117
  start-page: 194
  year: 2015
  ident: 10.1016/j.colsurfa.2021.126211_bib0110
  article-title: Minor oxygenated cannabinoids from high potency Cannabis sativa L
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2015.04.007
– volume: 574
  start-page: 43
  year: 2020
  ident: 10.1016/j.colsurfa.2021.126211_bib0200
  article-title: Development and potential performance of prepolymer in corrosion inhibition for carbon steel in 1.0 M HCl: Outlooks from experimental and computational investigations
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.04.022
– volume: 214
  start-page: 111
  year: 2016
  ident: 10.1016/j.colsurfa.2021.126211_bib0095
  article-title: Surface protection of steel in acid medium by Tabernaemontana divaricata extract: physicochemical evidence for adsorption of inhibitor
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2015.12.008
– volume: 45
  start-page: 131
  year: 2020
  ident: 10.1016/j.colsurfa.2021.126211_bib0155
  article-title: Surface adsorption and corrosion resistance performance of Acacia concinna pod extract: an efficient inhibitor for mild steel in acidic environment
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-019-04270-2
– volume: 743
  start-page: 137181
  year: 2020
  ident: 10.1016/j.colsurfa.2021.126211_bib0185
  article-title: Tetrahydropyrimido-Triazepine derivatives as anti-corrosion additives for acid corrosion: chemical, electrochemical, surface and theoretical studies
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2020.137181
– volume: 9
  start-page: 95
  year: 2018
  ident: 10.1016/j.colsurfa.2021.126211_bib0015
  article-title: Experimental and theoretical studies of Ficus religiosa as green corrosion inhibitor for mild steel in 0.5 M H2SO4 solution
  publication-title: Sustain. Chem. Pharm.
  doi: 10.1016/j.scp.2018.07.002
– volume: 50
  start-page: 1498
  year: 2008
  ident: 10.1016/j.colsurfa.2021.126211_bib0075
  article-title: Natural honey and black radish juice as tin corrosion inhibitors
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2008.01.013
– year: 2016
  ident: 10.1016/j.colsurfa.2021.126211_bib0135
– volume: 87
  start-page: 51
  year: 2013
  ident: 10.1016/j.colsurfa.2021.126211_bib0105
  article-title: Analysis of Cannabinoids in laser-microdissected trichomes of medicinal Cannabis sativa using LCMS and cryogenic NMR
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2012.11.001
– volume: 6
  start-page: 5230
  year: 2018
  ident: 10.1016/j.colsurfa.2021.126211_bib0160
  article-title: Armoracia rusticanaas sustainable and eco-friendly corrosion inhibitor for mild steel in 0.5 M sulphuric acid: experimental and theoretical investigations
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2018.08.025
– volume: 28
  start-page: 1436
  year: 2020
  ident: 10.1016/j.colsurfa.2021.126211_bib0180
  article-title: Combined electronic/atomic level computational, surface (SEM/EDS), chemical and electrochemical studies of the mild steel surface by quinoxalines derivatives anti-corrosion properties in 1 mol. L−1 HCl solution
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2020.03.002
– volume: 62
  start-page: 122
  year: 2012
  ident: 10.1016/j.colsurfa.2021.126211_bib0030
  article-title: Green approach to corrosion inhibition of 304 stainless steel in hydrochloric acid solution by the extract of Salvia officinalis leaves
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2012.05.003
– volume: 53
  start-page: 2385
  year: 2011
  ident: 10.1016/j.colsurfa.2021.126211_bib0065
  article-title: Inhibitory action of aqueous coffee ground extracts on the corrosion of carbon steel in HCl solution
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2011.03.021
– volume: 293
  start-page: 111559
  year: 2019
  ident: 10.1016/j.colsurfa.2021.126211_bib0190
  article-title: Highly effective mild steel corrosion inhibition in 1 M HCl solution by novel green aqueous Mustard seed extract: experimental, electronic-scale DFT and atomic-scale MC/MD explorations
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.111559
– volume: 55
  start-page: 407
  year: 2012
  ident: 10.1016/j.colsurfa.2021.126211_bib0080
  article-title: Inhibition by Ginkgo leaves extract of the corrosion of steel in HCl and H2SO4 solutions
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2011.11.005
– volume: 97
  start-page: 301
  year: 2006
  ident: 10.1016/j.colsurfa.2021.126211_bib0205
  article-title: The effect of 1-(2-pyridylazo)-2-naphthol on the corrosion of cold rolled steel in acid media: Part 2: inhibitive action in 0.5M sulfuric acid
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2005.08.014
– volume: 90
  start-page: 107
  year: 2015
  ident: 10.1016/j.colsurfa.2021.126211_bib0040
  article-title: Musa paradisica peel extract as green corrosion inhibitor for mild steel in HCl solution
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2014.10.002
– volume: 100
  start-page: 239
  year: 2019
  ident: 10.1016/j.colsurfa.2021.126211_bib0235
  article-title: Detailed macro-/micro-scale exploration of the excellent active corrosion inhibition of a novel environmentally friendly green inhibitor for carbon steel in acidic environments
  publication-title: J. Taiwan Inst. Chem. E
  doi: 10.1016/j.jtice.2019.04.002
– volume: 60
  start-page: 193
  year: 2012
  ident: 10.1016/j.colsurfa.2021.126211_bib0150
  article-title: A comprehensive study on crude methanolic extract of Artemisia pallens (Asteraceae) and its active component as effective corrosion inhibitors of mild steel in acid solution
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2012.03.036
– volume: 12
  start-page: 8793
  year: 2017
  ident: 10.1016/j.colsurfa.2021.126211_bib0025
  article-title: Use of Butea monosperma extract as green corrosion inhibitor
  publication-title: Int. Jounal Electrochem. Sci.
  doi: 10.20964/2017.09.63
– volume: 49
  start-page: 402
  year: 2007
  ident: 10.1016/j.colsurfa.2021.126211_bib0045
  article-title: Mangrove tannins and their flavanoid monomers as alternative steel corrosion inhibitors in acidic medium
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2006.04.013
– volume: 284
  start-page: 682
  year: 2019
  ident: 10.1016/j.colsurfa.2021.126211_bib0255
  article-title: A detailed atomic level computational and electrochemical exploration of the Juglans regiagreen fruit shell extract as a sustainable and highly efficient green corrosion inhibitor for mild steel in 3.5 wt% NaCl solution
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.04.045
– volume: 1015
  start-page: 21
  year: 2013
  ident: 10.1016/j.colsurfa.2021.126211_bib0125
  article-title: Synergistic effect between 2-oleyl-1- oleylamidoethyl imidazoline ammonium methylsulfate and halide ion by moleculardynamics simulation
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2013.04.001
– volume: 102
  start-page: 7338
  year: 1998
  ident: 10.1016/j.colsurfa.2021.126211_bib0140
  article-title: Compass: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp980939v
– volume: 51
  start-page: 1935
  year: 2009
  ident: 10.1016/j.colsurfa.2021.126211_bib0055
  article-title: Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: a comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, alpha-d-Glucose and Tannic acid)
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2009.05.024
– volume: 64
  start-page: 253
  year: 2012
  ident: 10.1016/j.colsurfa.2021.126211_bib0050
  article-title: Inhibition by Jasminum nudiflorumLindl. leaves extract of the corrosion of aluminium in HCl solution
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2012.07.017
– volume: 60
  start-page: 193
  year: 2012
  ident: 10.1016/j.colsurfa.2021.126211_bib0010
  article-title: A comprehensive study on crude methanolic extract of Artemisia pallens (Asteraceae) and its active component as effective corrosion inhibitors of mild steel in acid solution
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2012.03.036
– volume: 255
  start-page: 185
  year: 2018
  ident: 10.1016/j.colsurfa.2021.126211_bib0225
  article-title: Glycyrrhiza glabra leaves extract as a green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution: experimental, molecular dynamics, Monte Carlo and quantum mechanics study
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.01.144
– volume: 285
  start-page: 626
  year: 2019
  ident: 10.1016/j.colsurfa.2021.126211_bib0195
  article-title: Synthesis, experimental, quantum chemical and molecular dynamics study of carbon steel corrosion inhibition effect of two Schiffbases in HCl
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.04.137
– volume: 18
  start-page: 957
  year: 2018
  ident: 10.1016/j.colsurfa.2021.126211_bib0035
  article-title: Investigation of corrosion inhibition effect and adsorption activities of Achyranthes aspera extract for mild steel in 0.5 M H2SO4
  publication-title: J. Fail. Anal. Preven.
  doi: 10.1007/s11668-018-0491-8
– volume: 219
  start-page: 417
  year: 2016
  ident: 10.1016/j.colsurfa.2021.126211_bib0085
  article-title: Natural products for materials protection: corrosion protection of aluminium in hydrochloric acid byKola nitida extract
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.03.049
– volume: 50
  start-page: 2310
  year: 2008
  ident: 10.1016/j.colsurfa.2021.126211_bib0070
  article-title: Inhibitory action of Phyllanthus amarus extracts on the corrosion of mild steel in acidic media
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2008.05.009
– volume: 1063
  start-page: 50
  year: 2015
  ident: 10.1016/j.colsurfa.2021.126211_bib0175
  article-title: Molecular dynamics simulation of inhibition mechanism of 3,5-dibromo salicylaldehyde Schiff’s base
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2015.04.003
– volume: 201
  start-page: 790
  year: 2014
  ident: 10.1016/j.colsurfa.2021.126211_bib0100
  article-title: Biomass extracts for materials protection: corrosion inhibition of mild steel in acidic media by Terminalia chebula extracts
  publication-title: Chem. Eng. Commun.
  doi: 10.1080/00986445.2013.790816
– volume: 133
  start-page: 0
  year: 2018
  ident: 10.1016/j.colsurfa.2021.126211_bib0115
  article-title: Corrosion resistance of mild steel in 0.5 M H2SO4 solution by plant extract of Alkana tinctoria: experimental and theoretical studies
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2018-12165-0
– volume: 124
  start-page: 156
  year: 2018
  ident: 10.1016/j.colsurfa.2021.126211_bib0005
  article-title: Investigation of corrosion inhibition effect and adsorption activities of Cuscuta reflexa extract for mild steel in 0.5 M H2SO4
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2018.07.006
– volume: 72
  start-page: 2384
  year: 1980
  ident: 10.1016/j.colsurfa.2021.126211_bib0145
  article-title: Molecular dynamics simulations at constant pressure and/or temperature
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.439486
– volume: 131
  start-page: 160
  year: 2011
  ident: 10.1016/j.colsurfa.2021.126211_bib0090
  article-title: The impact of some factors on the inhibitory action of Radish leavess aqueous extract for mild steel corrosion in 1 M H2SO4 solution
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2011.08.001
– volume: 754
  start-page: 137771
  year: 2020
  ident: 10.1016/j.colsurfa.2021.126211_bib0130
  article-title: Synthesis and characterization of novel Cu (II) and Zn (II) complexes of 5-{[(2-Hydroxyethyl) sulfanyl] methyl}-8-hydroxyquinoline as effective acid corrosion inhibitor by experimental and computational testings
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2020.137771
– volume: 4
  start-page: 4699
  year: 2016
  ident: 10.1016/j.colsurfa.2021.126211_bib0020
  article-title: Investigation of phytochemical components and corrosion inhibition property of Ficus racemosa stem extract on mild steel in H2SO4 medium
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2016.10.022
– volume: 2
  start-page: 1225
  year: 2018
  ident: 10.1016/j.colsurfa.2021.126211_bib0170
  article-title: Valerianawallichii root extract as a green & sustainable corrosion inhibitor for mild steel in acidic environments: experimental and theoretical study
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C8QM00120K
– volume: 130
  start-page: 107339
  year: 2019
  ident: 10.1016/j.colsurfa.2021.126211_bib0245
  article-title: Green Eucalyptus leaf extract: a potent source of bio-active corrosion inhibitors for mild steel
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2019.107339
SSID ssj0004579
Score 2.5937612
Snippet [Display omitted] •Leaves extract of Cannabis sativa plant were used for the corrosion resistance.•The adsorption of inhibitor was shown by...
The leaves extract of the Cannabis sativaplant was used for the corrosion resistance of low carbon steel (LCS) in the acidic medium (0.5 M sulfuric acid)...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 126211
SubjectTerms adsorption
AFM
Cannabis sativa
carbon
corrosion
EIS
Low carbon steel
molecular dynamics
Polarization
SEM
sorption isotherms
steel
sulfuric acid
Theoretical studies
weight loss
Title Anticorrosive properties of a green and sustainable inhibitor from leaves extract of Cannabis sativa plant: Experimental and theoretical approach
URI https://dx.doi.org/10.1016/j.colsurfa.2021.126211
https://www.proquest.com/docview/2551962075
Volume 614
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwELWqcoAeELSgboHKSFzT3Th27HBbrVotIHqhlXqzxrFNU62yq-xuj_wDf8xMNoGAhHroMZHHiTyT50ky7w1jH_IYcxmETzIJRSJNcIkrC4xlBSE4H4xqGXJfL_P5tfx8o2722KznwlBZZYf9O0xv0bo7M-5Wc7yqqvG3SSG01gpfYdq8hxjlUmqK8rMf6UAxvNPbEzqh0QOW8B3OvVhvm0j6QyI9S0Uu0vR_G9Q_UN3uPxcv2PMuceTT3b29ZHuhPmRPZ32_tkN2MJAWPGI_pzUOXDZ4DcQzvqJv7g2Jp_Jl5MC_U7kNh9rz9R8GFa_q28rhI95wYp3wRYB7NED4JioVGc6gxpHVmlMN0D3w1QId85GfD9oEtJMO6JG8Vy1_xa4vzq9m86Rrv5CUmVSbBJz0JkoBWaZc9EqWUaWlCVoq4YwJKXhtHBTSIShIXyjQOlDrX8xwJgqK7DXbr5d1OGbcmYmPqowF4G4YTA6Y50QB0gtIMzcJI6b6Nbdlp01OLTIWti9Cu7O9ryz5yu58NWLj33arnTrHgxZF71L7V5xZ3EIetH3fx4BF39KfFajDcru2-F6GSCYw_Tp5xPxv2DM6auuC1Fu2v2m24R2mPBt32sb0KXsy_fRlfvkLXRAFog
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED6N7mHsAY0BYoOBkXgNbRw7dnirqk0d2_rCJu3NOic2ZKrSKm33P_aPd04TCEhoD7wmPifyXb47O3ffAXxOvU-F40WUCMwioZ2NbJ6RLUt0zhZOy6ZC7mqWTm_Et1t5uwOTrhYmpFW22L_F9Aat2yvDdjWHy7Icfh9lXCklaQvTxD3qGewGdio5gN3x-cV01iMNbyn3uIqCQK9Q-I6mn682tQ8URDz-EvOUx_G_fNRfaN24oLMDeNHGjmy8fb2XsOOqQ9ibdC3bDmG_xy74Ch7GFQ1c1PQMgjS2DMfudeBPZQvPkP0IGTcMq4KtfhdRsbL6WVr6ymsWCk_Y3OE9CRCCh2qqIDjBikaWKxbSgO6RLeekm6_stNcpoJm0VyHJOuLy13Bzdno9mUZtB4YoT4RcR2hFob3gmCTS-kKK3Ms4104Jya3WLsZCaYuZsIQLosgkKuVC918KckYSs-QNDKpF5d4Cs3pUeJn7DMkhOp0ihTqeoyg4xokduSOQ3ZqbvKUnD10y5qbLQ7szna5M0JXZ6uoIhr_klluCjiclsk6l5g9TM-RFnpT91NmAId2GnytYucVmZWhrRmDGKQI7_o_5P8Le9Prq0lyezy7ewfNwp0kTku9hsK437oQioLX90Fr4I0JZCFM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anticorrosive+properties+of+a+green+and+sustainable+inhibitor+from+leaves+extract+of+Cannabis+sativa+plant%3A+Experimental+and+theoretical+approach&rft.jtitle=Colloids+and+surfaces.+A%2C+Physicochemical+and+engineering+aspects&rft.au=Haldhar%2C+R.&rft.au=Prasad%2C+D.&rft.au=Mandal%2C+N.&rft.au=Benhiba%2C+F.&rft.date=2021-04-05&rft.pub=Elsevier+B.V&rft.issn=0927-7757&rft.volume=614&rft_id=info:doi/10.1016%2Fj.colsurfa.2021.126211&rft.externalDocID=S0927775721000807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7757&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7757&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7757&client=summon