Anticorrosive properties of a green and sustainable inhibitor from leaves extract of Cannabis sativa plant: Experimental and theoretical approach
[Display omitted] •Leaves extract of Cannabis sativa plant were used for the corrosion resistance.•The adsorption of inhibitor was shown by UV–vis.•Hypothetical investigations (computational) showed a very valuable report.•MD simulations agree with the experimental results. The leaves extract of the...
Saved in:
Published in | Colloids and surfaces. A, Physicochemical and engineering aspects Vol. 614; p. 126211 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Leaves extract of Cannabis sativa plant were used for the corrosion resistance.•The adsorption of inhibitor was shown by UV–vis.•Hypothetical investigations (computational) showed a very valuable report.•MD simulations agree with the experimental results.
The leaves extract of the Cannabis sativaplant was used for the corrosion resistance of low carbon steel (LCS) in the acidic medium (0.5 M sulfuric acid) utilizing the weight-loss method, Tafel and EIS. The state of mixed inhibitor adsorption on the LCS surface is shown by potentiodynamic polarization. C. sativaachieved anextraordinary inhibition efficiency of 97.31 % at 200 mg/L of inhibitor concentration. SEM and AFM were used to know about the thin layer which was formed on the surface of LCS for its protection from corrosion and the adsorption of inhibitor were shown by UV–vis. spectroscopic technique. FT-IR technique confirmed the existence of functional groups and the heteroatoms exhibit in the inhibitor. Adsorbanceby the inhibitory molecules on the LCS surface followed the Langmuir adsorption isotherm. Hypothetical investigations (computational) showed a very valuable report. All acquired outcomes ensure that C. sativaleaves extract can procedure an effectualpreventing layer and restrict the corrosion procedure. The results of the molecular dynamics (MD) simulations agree with the appointed inhibition efficiencies of the experimentally. |
---|---|
AbstractList | [Display omitted]
•Leaves extract of Cannabis sativa plant were used for the corrosion resistance.•The adsorption of inhibitor was shown by UV–vis.•Hypothetical investigations (computational) showed a very valuable report.•MD simulations agree with the experimental results.
The leaves extract of the Cannabis sativaplant was used for the corrosion resistance of low carbon steel (LCS) in the acidic medium (0.5 M sulfuric acid) utilizing the weight-loss method, Tafel and EIS. The state of mixed inhibitor adsorption on the LCS surface is shown by potentiodynamic polarization. C. sativaachieved anextraordinary inhibition efficiency of 97.31 % at 200 mg/L of inhibitor concentration. SEM and AFM were used to know about the thin layer which was formed on the surface of LCS for its protection from corrosion and the adsorption of inhibitor were shown by UV–vis. spectroscopic technique. FT-IR technique confirmed the existence of functional groups and the heteroatoms exhibit in the inhibitor. Adsorbanceby the inhibitory molecules on the LCS surface followed the Langmuir adsorption isotherm. Hypothetical investigations (computational) showed a very valuable report. All acquired outcomes ensure that C. sativaleaves extract can procedure an effectualpreventing layer and restrict the corrosion procedure. The results of the molecular dynamics (MD) simulations agree with the appointed inhibition efficiencies of the experimentally. The leaves extract of the Cannabis sativaplant was used for the corrosion resistance of low carbon steel (LCS) in the acidic medium (0.5 M sulfuric acid) utilizing the weight-loss method, Tafel and EIS. The state of mixed inhibitor adsorption on the LCS surface is shown by potentiodynamic polarization. C. sativaachieved anextraordinary inhibition efficiency of 97.31 % at 200 mg/L of inhibitor concentration. SEM and AFM were used to know about the thin layer which was formed on the surface of LCS for its protection from corrosion and the adsorption of inhibitor were shown by UV–vis. spectroscopic technique. FT-IR technique confirmed the existence of functional groups and the heteroatoms exhibit in the inhibitor. Adsorbanceby the inhibitory molecules on the LCS surface followed the Langmuir adsorption isotherm. Hypothetical investigations (computational) showed a very valuable report. All acquired outcomes ensure that C. sativaleaves extract can procedure an effectualpreventing layer and restrict the corrosion procedure. The results of the molecular dynamics (MD) simulations agree with the appointed inhibition efficiencies of the experimentally. |
ArticleNumber | 126211 |
Author | Bahadur, I. Benhiba, F. Prasad, D. Haldhar, R. Mandal, N. Dagdag, O. |
Author_xml | – sequence: 1 givenname: R. surname: Haldhar fullname: Haldhar, R. organization: Department of Chemistry, Lovely Professional University, Phagwara, 144411, India – sequence: 2 givenname: D. surname: Prasad fullname: Prasad, D. email: dwarika.maithani@gmail.com organization: Department of Chemistry, Shri Guru Ram Rai University, Dehradun, 248001, India – sequence: 3 givenname: N. surname: Mandal fullname: Mandal, N. organization: Department of Chemistry, Kumaun University, Nainital, 263001, India – sequence: 4 givenname: F. surname: Benhiba fullname: Benhiba, F. organization: Laboratory of Separation Processes (LSP), Faculty of Sciences, IbnTofail University, Kenitra, Morocco – sequence: 5 givenname: I. surname: Bahadur fullname: Bahadur, I. email: bahadur.indra@nwu.ac.za organization: Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, South Africa – sequence: 6 givenname: O. surname: Dagdag fullname: Dagdag, O. organization: Department of Process Engineering, Sidi Mohammed Ben Abdallah University, Fes, 30050, Morocco |
BookMark | eNqFkE1vEzEQhn0oUj_oX0A-ckmwvfZ6t-JAFZUPqRIXOFuz3lky0cZebCcqP4N_jEPKhUtPlqX3eWfmuWYXIQZk7I0Uaylk-2639nHOhzTBWgkl11K1SsoLdiV6ZVfWGnvJrnPeCSG0sf0V-30fCvmYUsx0RL6kuGAqhJnHiQP_kRADhzDyfMgFKMAwI6ewpYFKTHxKcc9nhGMF8Kkk8OUEbiDUJGWeodAR-DJDKHf84amW0x5DgflvadliTFgXOP2XOhz89jV7NcGc8fb5vWHfPz5823xePX799GVz_7jyjTZlBYMeu0kraBozTKPRfjLSd2i1UUPXoYTRdgP0emiU0mNvwFqsjnRvW2Ggb27Y23NvHfvzgLm4PWWPc10V4yE7ZYzsWyWsqdH2HPVVU044uaWeAemXk8KdvLud--fdnby7s_cKvv8P9FSqkhiqKppfxj-ccawejoTJZU8YPI6U0Bc3Rnqp4g8SZqtO |
CitedBy_id | crossref_primary_10_3390_ijms26020548 crossref_primary_10_1007_s42250_023_00782_5 crossref_primary_10_1016_j_molliq_2023_123754 crossref_primary_10_1080_01694243_2022_2055347 crossref_primary_10_1007_s11814_022_1246_5 crossref_primary_10_1016_j_colsurfa_2022_128745 crossref_primary_10_1016_j_molliq_2023_121976 crossref_primary_10_1021_acsomega_3c06824 crossref_primary_10_1016_j_jmrt_2024_02_174 crossref_primary_10_1016_j_molliq_2021_116184 crossref_primary_10_1016_j_corsci_2022_110199 crossref_primary_10_1016_j_molstruc_2022_133508 crossref_primary_10_1038_s41598_022_24793_3 crossref_primary_10_1016_j_inoche_2023_111722 crossref_primary_10_1016_j_mtcomm_2022_105265 crossref_primary_10_1016_j_mtcomm_2023_106673 crossref_primary_10_1016_j_colsurfa_2024_135555 crossref_primary_10_1021_acsomega_1c04500 crossref_primary_10_3390_molecules28041581 crossref_primary_10_1016_j_colsurfa_2024_135911 crossref_primary_10_1016_j_molliq_2022_119522 crossref_primary_10_1016_j_susmat_2025_e01305 crossref_primary_10_1016_j_ijoes_2024_100768 crossref_primary_10_1016_j_arabjc_2022_103948 crossref_primary_10_1016_j_colsurfa_2023_132727 crossref_primary_10_1016_j_colsurfa_2021_127120 crossref_primary_10_1002_cbdv_202403132 crossref_primary_10_1016_j_mseb_2023_116287 crossref_primary_10_1007_s40735_021_00571_y crossref_primary_10_3390_coatings13050860 crossref_primary_10_1016_j_jics_2023_100916 crossref_primary_10_1016_j_molliq_2023_122652 crossref_primary_10_1038_s41598_023_41975_9 crossref_primary_10_1016_j_colsurfa_2025_136399 crossref_primary_10_1039_D4NJ04038D crossref_primary_10_3390_lubricants10030043 crossref_primary_10_1080_17518253_2021_1985173 crossref_primary_10_1007_s40735_022_00630_y crossref_primary_10_1016_j_scitotenv_2023_161871 crossref_primary_10_1021_acs_iecr_1c01946 crossref_primary_10_1016_j_molliq_2022_119839 crossref_primary_10_1016_j_molliq_2022_118867 crossref_primary_10_1002_open_202400273 crossref_primary_10_37394_232015_2021_17_59 crossref_primary_10_1016_j_indcrop_2022_115640 crossref_primary_10_1016_j_ijbiomac_2024_130769 crossref_primary_10_1016_j_colsurfa_2022_130885 crossref_primary_10_1016_j_inoche_2024_112030 crossref_primary_10_1016_j_molliq_2022_119790 crossref_primary_10_1016_j_jece_2022_108891 crossref_primary_10_1038_s41598_023_45283_0 crossref_primary_10_1016_j_jtice_2021_09_026 crossref_primary_10_1016_j_molliq_2023_123332 crossref_primary_10_1016_j_jiec_2023_02_013 crossref_primary_10_1016_j_ijoes_2023_100345 crossref_primary_10_1007_s40735_023_00814_0 crossref_primary_10_1016_j_colsurfa_2025_136349 crossref_primary_10_1016_j_molliq_2022_119988 crossref_primary_10_1039_D1RA04976C crossref_primary_10_1016_j_molliq_2021_118218 crossref_primary_10_1016_j_molliq_2021_117886 crossref_primary_10_1016_j_jics_2024_101172 crossref_primary_10_1016_j_molliq_2023_121268 crossref_primary_10_1016_j_colsurfa_2022_128892 crossref_primary_10_1016_j_jtice_2023_104712 crossref_primary_10_1007_s11356_024_35159_9 crossref_primary_10_1016_j_scp_2023_101170 crossref_primary_10_1016_j_molliq_2022_119384 crossref_primary_10_4028_p_8fp2dg crossref_primary_10_1016_j_molliq_2023_122715 crossref_primary_10_3390_su13105569 crossref_primary_10_1016_j_corcom_2022_05_004 crossref_primary_10_1016_j_jtice_2023_105044 crossref_primary_10_3390_met11071062 crossref_primary_10_1016_j_jtice_2023_105047 crossref_primary_10_1016_j_conbuildmat_2024_136832 crossref_primary_10_1016_j_jiec_2024_06_013 crossref_primary_10_1016_j_jiec_2024_04_019 crossref_primary_10_3389_fmats_2022_879525 crossref_primary_10_1016_j_inoche_2022_109963 crossref_primary_10_1007_s13369_023_07693_0 crossref_primary_10_1016_j_molstruc_2023_136466 crossref_primary_10_1016_j_colsurfa_2024_133207 crossref_primary_10_1016_j_jelechem_2024_118699 crossref_primary_10_1016_j_mseb_2023_116779 |
Cites_doi | 10.1016/j.jtice.2019.10.005 10.1016/j.sajce.2016.07.002 10.1016/j.jiec.2014.10.020 10.1016/j.inoche.2020.107858 10.1016/j.jclepro.2018.11.053 10.1016/j.molliq.2020.113367 10.1016/j.molliq.2020.113493 10.1016/j.corsci.2012.08.033 10.1016/j.jiec.2019.12.019 10.1016/j.phytochem.2015.04.007 10.1016/j.jcis.2020.04.022 10.1016/j.molliq.2015.12.008 10.1007/s13369-019-04270-2 10.1016/j.cplett.2020.137181 10.1016/j.scp.2018.07.002 10.1016/j.corsci.2008.01.013 10.1016/j.phytochem.2012.11.001 10.1016/j.jece.2018.08.025 10.1016/j.cjche.2020.03.002 10.1016/j.corsci.2012.05.003 10.1016/j.corsci.2011.03.021 10.1016/j.molliq.2019.111559 10.1016/j.corsci.2011.11.005 10.1016/j.matchemphys.2005.08.014 10.1016/j.corsci.2014.10.002 10.1016/j.jtice.2019.04.002 10.1016/j.corsci.2012.03.036 10.20964/2017.09.63 10.1016/j.corsci.2006.04.013 10.1016/j.molliq.2019.04.045 10.1016/j.comptc.2013.04.001 10.1021/jp980939v 10.1016/j.corsci.2009.05.024 10.1016/j.corsci.2012.07.017 10.1016/j.molliq.2018.01.144 10.1016/j.molliq.2019.04.137 10.1007/s11668-018-0491-8 10.1016/j.molliq.2016.03.049 10.1016/j.corsci.2008.05.009 10.1016/j.comptc.2015.04.003 10.1080/00986445.2013.790816 10.1140/epjp/i2018-12165-0 10.1016/j.bioelechem.2018.07.006 10.1063/1.439486 10.1016/j.matchemphys.2011.08.001 10.1016/j.cplett.2020.137771 10.1016/j.jece.2016.10.022 10.1039/C8QM00120K 10.1016/j.bioelechem.2019.107339 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.colsurfa.2021.126211 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
ExternalDocumentID | 10_1016_j_colsurfa_2021_126211 S0927775721000807 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATTM AAXKI AAXUO ABMAC ABNEU ABNUV ABXRA ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEIPS AEKER AEZYN AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV CS3 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCE SDF SDG SDP SES SPC SPD SSG SSH SSK SSM SSQ SSZ T5K WH7 ~02 ~G- 29F AAQXK AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AFXIZ AGCQF AGQPQ AGRNS AI. AIIUN ASPBG AVWKF AZFZN BBWZM CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- RIG SCB SEW VH1 WUQ 7S9 L.6 |
ID | FETCH-LOGICAL-c345t-ab4d8f42a335bfd54cf51c8e7452b88e1ad78ba94b3224d95a77e101497605a93 |
IEDL.DBID | .~1 |
ISSN | 0927-7757 |
IngestDate | Fri Jul 11 10:54:26 EDT 2025 Tue Jul 01 02:41:59 EDT 2025 Thu Apr 24 22:58:17 EDT 2025 Sun Apr 06 06:58:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | AFM Polarization SEM Low carbon steel Theoretical studies EIS |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-ab4d8f42a335bfd54cf51c8e7452b88e1ad78ba94b3224d95a77e101497605a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2551962075 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2551962075 crossref_primary_10_1016_j_colsurfa_2021_126211 crossref_citationtrail_10_1016_j_colsurfa_2021_126211 elsevier_sciencedirect_doi_10_1016_j_colsurfa_2021_126211 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-05 |
PublicationDateYYYYMMDD | 2021-04-05 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Colloids and surfaces. A, Physicochemical and engineering aspects |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Li, Deng (bib0060) 2012; 65 Garai, Garai, Jaisankar, Singh, Elango (bib0150) 2012; 60 Okafor, Ikpi, Uwah, Ebenso, Ekpe, Umoren (bib0070) 2008; 50 Rbaa, Benhiba, Galai, Abousalem, Ouakki, Chin-HungLai, Jama, Warad, EbnTouhami, Zarrouk (bib0130) 2020; 754 Rahim, Rocca, Steinmetz, Kassim, Adnan, Sani Ibrahim (bib0045) 2007; 49 Dehghani, Bahlakeh, Ramezanzadeh, Ramezanzadeh (bib0235) 2019; 100 Saxena, Prasad, Haldhar (bib0005) 2018; 124 Soltani, Tavakkoli, Khayatkashani, Jalali, Mosavizade (bib0030) 2012; 62 Bagga, Gadi, Yadav, Kumar, Chopra, Singh (bib0020) 2016; 4 Bahlakeh, Dehghani, Ramezanzadeh, Ramezanzadeh (bib0190) 2019; 293 Guo, Duan, He, Sun, Fan, Hu (bib0125) 2013; 1015 (bib0135) 2016 Torres (bib0065) 2011; 53 Ostovari, Hoseinieh, Peikari, Shadizadeh, Hashemi (bib0055) 2009; 51 Ahmed (bib0110) 2015; 117 Saxena, Prasad, Haldhar (bib0035) 2018; 18 Noor (bib0090) 2011; 131 Haldhar, Prasad, Bhardwaj (bib0155) 2020; 45 Keramatinia, Ramezanzadeh, Mahdavian (bib0240) 2019; 105 Njoku, Ukaga, Ikenna, Oguzie, Oguzie, Ibisi (bib0085) 2016; 219 Haldhar, Prasad, Saxena (bib0160) 2018; 6 Sun (bib0140) 1998; 102 Happyana (bib0105) 2013; 87 Tang, Li, Li, Mu, Liu (bib0205) 2006; 97 Oguzie, Chidiebere, Oguzie, Adindu, Momoh-Yahaya (bib0100) 2014; 201 Haldhar, Prasad, Saxena, Kumar (bib0015) 2018; 9 Haddadi, Alibakhshi, Bahlakeh, Ramezanzadeh, Mahdavian (bib0255) 2019; 284 Benhiba, Hsissou, Benzekri, Belghiti, Lamhamdi, Bellaouchou, Guenbour, Boukhris, Oudda, Warad, Zarrouk (bib0215) 2020; 312 Deng, Li (bib0080) 2012; 55 Alibakhshi, Ramezanzadeh, Bahlakeh, Ramezanzadeh, Mahdavian, Motamedi (bib0225) 2018; 255 Andersen (bib0145) 1980; 72 Shahabi, Hamidi, Ghasemi, Norouzi, Shakeri (bib0195) 2019; 285 Haldhar, Prasad, Saxena, Kaur (bib0115) 2018; 133 Ji, Anjum, Sundaram, Prakash (bib0040) 2015; 90 Hassan, Khadom, Kurshed (bib0120) 2016; 22 Deng, Li (bib0050) 2012; 64 Benhiba, Benzekri, Guenbour, Tabyaoui, Bellaouchou, Boukhris, Oudda, Warad, Zarrouk (bib0180) 2020; 28 Xie, Liu, Han, Li, Liu, Chen (bib0175) 2015; 1063 Hsissou, Benhiba, Abbout, Dagdag, Benkhaya Avni Berisha, Erramli, Elharfi (bib0210) 2020; 115 Radojčić, Berković, Kovač, Vorkapić-Furač (bib0075) 2008; 50 Hejazi (bib0165) 2015; 25 Dehghani, Bahlakeh, Ramezanzadeh (bib0245) 2019; 130 Hsissou, Benhiba, Dagdag, El Bouchti, Nouneh, Assouag, Briche, Zarrouk, Elharfi (bib0200) 2020; 574 Dehghani, Bahlaked, Ramezanzadeh, Ramezanzadeh (bib0230) 2020; 84 Garai, Garai, Jaisankar, Singh, Elango (bib0010) 2012; 60 Alibakhshi, Ramezanzadeh, Haddadi, Bahlakeh, Ramezanzadeh, Mahdavian (bib0250) 2019; 210 Saxena, Prasad, Haldhar (bib0025) 2017; 12 Berrissoul, Ouarhach, Benhiba, Romane, Zarrouk, Guenbour, Dikici, Dafali (bib0220) 2020; 313 Haldhar, Prasad, Saxena, Singh (bib0170) 2018; 2 Benhiba, Serrar, Hsissou, Guenbour, Bellaouchou, Tabyaoui, Boukhris, Oudda, Warad, Zarrouk (bib0185) 2020; 743 Rose, Kim, Rajagopal, Arumugam, Devarayan (bib0095) 2016; 214 Benhiba (10.1016/j.colsurfa.2021.126211_bib0180) 2020; 28 Haddadi (10.1016/j.colsurfa.2021.126211_bib0255) 2019; 284 Andersen (10.1016/j.colsurfa.2021.126211_bib0145) 1980; 72 Soltani (10.1016/j.colsurfa.2021.126211_bib0030) 2012; 62 Rahim (10.1016/j.colsurfa.2021.126211_bib0045) 2007; 49 Torres (10.1016/j.colsurfa.2021.126211_bib0065) 2011; 53 Bagga (10.1016/j.colsurfa.2021.126211_bib0020) 2016; 4 Deng (10.1016/j.colsurfa.2021.126211_bib0050) 2012; 64 Alibakhshi (10.1016/j.colsurfa.2021.126211_bib0225) 2018; 255 Haldhar (10.1016/j.colsurfa.2021.126211_bib0015) 2018; 9 Njoku (10.1016/j.colsurfa.2021.126211_bib0085) 2016; 219 Ostovari (10.1016/j.colsurfa.2021.126211_bib0055) 2009; 51 Oguzie (10.1016/j.colsurfa.2021.126211_bib0100) 2014; 201 Shahabi (10.1016/j.colsurfa.2021.126211_bib0195) 2019; 285 Saxena (10.1016/j.colsurfa.2021.126211_bib0035) 2018; 18 Alibakhshi (10.1016/j.colsurfa.2021.126211_bib0250) 2019; 210 Hejazi (10.1016/j.colsurfa.2021.126211_bib0165) 2015; 25 Hassan (10.1016/j.colsurfa.2021.126211_bib0120) 2016; 22 Okafor (10.1016/j.colsurfa.2021.126211_bib0070) 2008; 50 Saxena (10.1016/j.colsurfa.2021.126211_bib0025) 2017; 12 Ahmed (10.1016/j.colsurfa.2021.126211_bib0110) 2015; 117 Berrissoul (10.1016/j.colsurfa.2021.126211_bib0220) 2020; 313 Sun (10.1016/j.colsurfa.2021.126211_bib0140) 1998; 102 Dehghani (10.1016/j.colsurfa.2021.126211_bib0235) 2019; 100 Hsissou (10.1016/j.colsurfa.2021.126211_bib0210) 2020; 115 Garai (10.1016/j.colsurfa.2021.126211_bib0150) 2012; 60 Benhiba (10.1016/j.colsurfa.2021.126211_bib0215) 2020; 312 Xie (10.1016/j.colsurfa.2021.126211_bib0175) 2015; 1063 Rose (10.1016/j.colsurfa.2021.126211_bib0095) 2016; 214 Dehghani (10.1016/j.colsurfa.2021.126211_bib0230) 2020; 84 Noor (10.1016/j.colsurfa.2021.126211_bib0090) 2011; 131 Haldhar (10.1016/j.colsurfa.2021.126211_bib0170) 2018; 2 Happyana (10.1016/j.colsurfa.2021.126211_bib0105) 2013; 87 Haldhar (10.1016/j.colsurfa.2021.126211_bib0155) 2020; 45 Haldhar (10.1016/j.colsurfa.2021.126211_bib0115) 2018; 133 Tang (10.1016/j.colsurfa.2021.126211_bib0205) 2006; 97 Keramatinia (10.1016/j.colsurfa.2021.126211_bib0240) 2019; 105 Li (10.1016/j.colsurfa.2021.126211_bib0060) 2012; 65 Saxena (10.1016/j.colsurfa.2021.126211_bib0005) 2018; 124 Dehghani (10.1016/j.colsurfa.2021.126211_bib0245) 2019; 130 Haldhar (10.1016/j.colsurfa.2021.126211_bib0160) 2018; 6 Guo (10.1016/j.colsurfa.2021.126211_bib0125) 2013; 1015 (10.1016/j.colsurfa.2021.126211_bib0135) 2016 Bahlakeh (10.1016/j.colsurfa.2021.126211_bib0190) 2019; 293 Ji (10.1016/j.colsurfa.2021.126211_bib0040) 2015; 90 Radojčić (10.1016/j.colsurfa.2021.126211_bib0075) 2008; 50 Rbaa (10.1016/j.colsurfa.2021.126211_bib0130) 2020; 754 Benhiba (10.1016/j.colsurfa.2021.126211_bib0185) 2020; 743 Hsissou (10.1016/j.colsurfa.2021.126211_bib0200) 2020; 574 Garai (10.1016/j.colsurfa.2021.126211_bib0010) 2012; 60 Deng (10.1016/j.colsurfa.2021.126211_bib0080) 2012; 55 |
References_xml | – volume: 60 start-page: 193 year: 2012 end-page: 204 ident: bib0150 article-title: A comprehensive study on crude methanolic extract of publication-title: Corros. Sci. – volume: 45 start-page: 131 year: 2020 end-page: 141 ident: bib0155 article-title: Surface adsorption and corrosion resistance performance of publication-title: Arab. J. Sci. Eng. – volume: 312 start-page: 113367 year: 2020 ident: bib0215 article-title: Nitro substituent effect on the electronic behavior and inhibitory performance of two quinoxaline derivatives in relation to the corrosion of mild steel in 1 M HCl publication-title: J. Mol. Liq. – volume: 219 start-page: 417 year: 2016 end-page: 424 ident: bib0085 article-title: Natural products for materials protection: corrosion protection of aluminium in hydrochloric acid by publication-title: J. Mol. Liq. – volume: 130 start-page: 107339 year: 2019 ident: bib0245 article-title: Green Eucalyptus leaf extract: a potent source of bio-active corrosion inhibitors for mild steel publication-title: Bioelectrochemistry – volume: 124 start-page: 156 year: 2018 end-page: 164 ident: bib0005 article-title: Investigation of corrosion inhibition effect and adsorption activities of publication-title: Bioelectrochemistry – volume: 574 start-page: 43 year: 2020 end-page: 60 ident: bib0200 article-title: Development and potential performance of prepolymer in corrosion inhibition for carbon steel in 1.0 M HCl: Outlooks from experimental and computational investigations publication-title: J. Colloid Interface Sci. – volume: 133 start-page: 0 year: 2018 end-page: 18 ident: bib0115 article-title: Corrosion resistance of mild steel in 0.5 M H publication-title: Eur. Phys. J. Plus – volume: 131 start-page: 160 year: 2011 end-page: 169 ident: bib0090 article-title: The impact of some factors on the inhibitory action of Radish leavess aqueous extract for mild steel corrosion in 1 M H publication-title: Mater. Chem. Phys. – volume: 105 start-page: 134 year: 2019 end-page: 149 ident: bib0240 article-title: Green production of bioactive components from herbal origins through one-pot oxidation/polymerization reactions and application as a corrosion inhibitor for mild steel in HCl solution publication-title: J. Taiwan Inst. Chem. E – volume: 201 start-page: 790 year: 2014 end-page: 803 ident: bib0100 article-title: Biomass extracts for materials protection: corrosion inhibition of mild steel in acidic media by publication-title: Chem. Eng. Commun. – volume: 117 start-page: 194 year: 2015 end-page: 199 ident: bib0110 article-title: Minor oxygenated cannabinoids from high potency publication-title: Phytochemistry – volume: 87 start-page: 51 year: 2013 end-page: 59 ident: bib0105 article-title: Analysis of Cannabinoids in laser-microdissected trichomes of medicinal publication-title: Phytochemistry – volume: 55 start-page: 407 year: 2012 end-page: 415 ident: bib0080 article-title: Inhibition by Ginkgo leaves extract of the corrosion of steel in HCl and H publication-title: Corros. Sci. – volume: 22 start-page: 1 year: 2016 end-page: 5 ident: bib0120 article-title: leaves extracts as a sustainable corrosion inhibitor of mild steel in sulfuric acid publication-title: South African J. Chem. Eng. – volume: 313 start-page: 113493 year: 2020 ident: bib0220 article-title: Evaluation of Lavandula mairei extract as green inhibitor for mild steel corrosion in 1 M HCl solution. Experimental and theoretical approach publication-title: J. Mol. Liq. – volume: 60 start-page: 193 year: 2012 end-page: 204 ident: bib0010 article-title: A comprehensive study on crude methanolic extract of Artemisia pallens (Asteraceae) and its active component as effective corrosion inhibitors of mild steel in acid solution publication-title: Corros. Sci. – volume: 18 start-page: 957 year: 2018 end-page: 968 ident: bib0035 article-title: Investigation of corrosion inhibition effect and adsorption activities of publication-title: J. Fail. Anal. Preven. – volume: 102 start-page: 7338 year: 1998 end-page: 7364 ident: bib0140 article-title: Compass: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds publication-title: J. Phys. Chem. B – volume: 4 start-page: 4699 year: 2016 end-page: 4707 ident: bib0020 article-title: Investigation of phytochemical components and corrosion inhibition property of publication-title: J. Environ. Chem. Eng. – volume: 255 start-page: 185 year: 2018 end-page: 198 ident: bib0225 article-title: leaves extract as a green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution: experimental, molecular dynamics, Monte Carlo and quantum mechanics study publication-title: J. Mol. Liq. – volume: 12 start-page: 8793 year: 2017 end-page: 8805 ident: bib0025 article-title: Use of Butea monosperma extract as green corrosion inhibitor publication-title: Int. Jounal Electrochem. Sci. – volume: 65 start-page: 299 year: 2012 end-page: 308 ident: bib0060 article-title: Inhibition effect of publication-title: Corros. Sci. – volume: 50 start-page: 2310 year: 2008 end-page: 2317 ident: bib0070 article-title: Inhibitory action of publication-title: Corros. Sci. – volume: 9 start-page: 95 year: 2018 end-page: 105 ident: bib0015 article-title: Experimental and theoretical studies of publication-title: Sustain. Chem. Pharm. – volume: 743 start-page: 137181 year: 2020 ident: bib0185 article-title: Tetrahydropyrimido-Triazepine derivatives as anti-corrosion additives for acid corrosion: chemical, electrochemical, surface and theoretical studies publication-title: Chem. Phys. Lett. – volume: 97 start-page: 301 year: 2006 end-page: 307 ident: bib0205 article-title: The effect of 1-(2-pyridylazo)-2-naphthol on the corrosion of cold rolled steel in acid media: Part 2: inhibitive action in 0.5M sulfuric acid publication-title: Mater. Chem. Phys. – volume: 53 start-page: 2385 year: 2011 end-page: 2392 ident: bib0065 article-title: Inhibitory action of aqueous coffee ground extracts on the corrosion of carbon steel in HCl solution publication-title: Corros. Sci. – volume: 28 start-page: 1436 year: 2020 end-page: 1458 ident: bib0180 article-title: Combined electronic/atomic level computational, surface (SEM/EDS), chemical and electrochemical studies of the mild steel surface by quinoxalines derivatives anti-corrosion properties in 1 mol. L publication-title: Chin. J. Chem. Eng. – volume: 754 start-page: 137771 year: 2020 ident: bib0130 article-title: Synthesis and characterization of novel Cu (II) and Zn (II) complexes of 5-{[(2-Hydroxyethyl) sulfanyl] methyl}-8-hydroxyquinoline as effective acid corrosion inhibitor by experimental and computational testings publication-title: Chem. Phys. Lett. – volume: 62 start-page: 122 year: 2012 end-page: 135 ident: bib0030 article-title: Green approach to corrosion inhibition of 304 stainless steel in hydrochloric acid solution by the extract of publication-title: Corros. Sci. – volume: 100 start-page: 239 year: 2019 end-page: 261 ident: bib0235 article-title: Detailed macro-/micro-scale exploration of the excellent active corrosion inhibition of a novel environmentally friendly green inhibitor for carbon steel in acidic environments publication-title: J. Taiwan Inst. Chem. E – volume: 84 start-page: 52 year: 2020 end-page: 71 ident: bib0230 article-title: Experimental complemented with microscopic (electronic/atomic)-level modeling explorations of publication-title: J. Ind. Eng. Chem. – volume: 2 start-page: 1225 year: 2018 end-page: 1237 ident: bib0170 article-title: root extract as a green & sustainable corrosion inhibitor for mild steel in acidic environments: experimental and theoretical study publication-title: Mater. Chem. Front. – volume: 210 start-page: 660 year: 2019 end-page: 672 ident: bib0250 article-title: Persian Liquorice extract as a highly efficient sustainable corrosion inhibitor for mild steel in sodium chloride solution publication-title: J. Clean. Prod. – volume: 25 start-page: 112 year: 2015 end-page: 121 ident: bib0165 article-title: Electrochemical and quantum chemical study of Thiazolo-pyrimidine derivatives as corrosion inhibitors on mild steel in 1M H publication-title: J. Ind. Eng. Chem. – volume: 50 start-page: 1498 year: 2008 end-page: 1504 ident: bib0075 article-title: Natural honey and black radish juice as tin corrosion inhibitors publication-title: Corros. Sci. – volume: 90 start-page: 107 year: 2015 end-page: 117 ident: bib0040 article-title: peel extract as green corrosion inhibitor for mild steel in HCl solution publication-title: Corros. Sci. – volume: 1015 start-page: 21 year: 2013 end-page: 26 ident: bib0125 article-title: Synergistic effect between 2-oleyl-1- oleylamidoethyl imidazoline ammonium methylsulfate and halide ion by moleculardynamics simulation publication-title: Comput. Theor. Chem. – volume: 49 start-page: 402 year: 2007 end-page: 417 ident: bib0045 article-title: and their flavanoid monomers as alternative steel corrosion inhibitors in acidic medium publication-title: Corros. Sci. – volume: 1063 start-page: 50 year: 2015 end-page: 62 ident: bib0175 article-title: Molecular dynamics simulation of inhibition mechanism of 3,5-dibromo salicylaldehyde Schiff’s base publication-title: Comput. Theor. Chem. – volume: 214 start-page: 111 year: 2016 end-page: 116 ident: bib0095 article-title: Surface protection of steel in acid medium by publication-title: J. Mol. Liq. – volume: 115 start-page: 107858 year: 2020 ident: bib0210 article-title: Trifunctional epoxy polymer as corrosion inhibition material for carbon steel in 1.0 M HCl: MD simulations, DFT and complexation computations publication-title: J. Inorg. Chem. Commun. – year: 2016 ident: bib0135 article-title: Materials Studio, Revision 8.0 – volume: 6 start-page: 5230 year: 2018 end-page: 5238 ident: bib0160 article-title: as sustainable and eco-friendly corrosion inhibitor for mild steel in 0.5 M sulphuric acid: experimental and theoretical investigations publication-title: J. Environ. Chem. Eng. – volume: 64 start-page: 253 year: 2012 end-page: 262 ident: bib0050 article-title: Inhibition by publication-title: Corros. Sci. – volume: 72 start-page: 2384 year: 1980 end-page: 2393 ident: bib0145 article-title: Molecular dynamics simulations at constant pressure and/or temperature publication-title: J. Chem. Phys. – volume: 285 start-page: 626 year: 2019 end-page: 639 ident: bib0195 article-title: Synthesis, experimental, quantum chemical and molecular dynamics study of carbon steel corrosion inhibition effect of two Schiffbases in HCl publication-title: J. Mol. Liq. – volume: 284 start-page: 682 year: 2019 end-page: 699 ident: bib0255 article-title: A detailed atomic level computational and electrochemical exploration of the publication-title: J. Mol. Liq. – volume: 293 start-page: 111559 year: 2019 ident: bib0190 article-title: Highly effective mild steel corrosion inhibition in 1 M HCl solution by novel green aqueous Mustard seed extract: experimental, electronic-scale DFT and atomic-scale MC/MD explorations publication-title: J. Mol. Liq. – volume: 51 start-page: 1935 year: 2009 end-page: 1949 ident: bib0055 article-title: Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: a comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, alpha-d-Glucose and Tannic acid) publication-title: Corros. Sci. – volume: 105 start-page: 134 year: 2019 ident: 10.1016/j.colsurfa.2021.126211_bib0240 article-title: Green production of bioactive components from herbal origins through one-pot oxidation/polymerization reactions and application as a corrosion inhibitor for mild steel in HCl solution publication-title: J. Taiwan Inst. Chem. E doi: 10.1016/j.jtice.2019.10.005 – volume: 22 start-page: 1 year: 2016 ident: 10.1016/j.colsurfa.2021.126211_bib0120 article-title: Citrus aurantium leaves extracts as a sustainable corrosion inhibitor of mild steel in sulfuric acid publication-title: South African J. Chem. Eng. doi: 10.1016/j.sajce.2016.07.002 – volume: 25 start-page: 112 year: 2015 ident: 10.1016/j.colsurfa.2021.126211_bib0165 article-title: Electrochemical and quantum chemical study of Thiazolo-pyrimidine derivatives as corrosion inhibitors on mild steel in 1M H2SO4 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2014.10.020 – volume: 115 start-page: 107858 year: 2020 ident: 10.1016/j.colsurfa.2021.126211_bib0210 article-title: Trifunctional epoxy polymer as corrosion inhibition material for carbon steel in 1.0 M HCl: MD simulations, DFT and complexation computations publication-title: J. Inorg. Chem. Commun. doi: 10.1016/j.inoche.2020.107858 – volume: 210 start-page: 660 year: 2019 ident: 10.1016/j.colsurfa.2021.126211_bib0250 article-title: Persian Liquorice extract as a highly efficient sustainable corrosion inhibitor for mild steel in sodium chloride solution publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.11.053 – volume: 312 start-page: 113367 year: 2020 ident: 10.1016/j.colsurfa.2021.126211_bib0215 article-title: Nitro substituent effect on the electronic behavior and inhibitory performance of two quinoxaline derivatives in relation to the corrosion of mild steel in 1 M HCl publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.113367 – volume: 313 start-page: 113493 year: 2020 ident: 10.1016/j.colsurfa.2021.126211_bib0220 article-title: Evaluation of Lavandula mairei extract as green inhibitor for mild steel corrosion in 1 M HCl solution. Experimental and theoretical approach publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.113493 – volume: 65 start-page: 299 year: 2012 ident: 10.1016/j.colsurfa.2021.126211_bib0060 article-title: Inhibition effect of Dendrocalamus brandisii leaves extract on aluminum in HCl, H3PO4 solutions publication-title: Corros. Sci. doi: 10.1016/j.corsci.2012.08.033 – volume: 84 start-page: 52 year: 2020 ident: 10.1016/j.colsurfa.2021.126211_bib0230 article-title: Experimental complemented with microscopic (electronic/atomic)-level modeling explorations of Laurus nobilis extract as green inhibitor for carbon steel in acidic solution publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2019.12.019 – volume: 117 start-page: 194 year: 2015 ident: 10.1016/j.colsurfa.2021.126211_bib0110 article-title: Minor oxygenated cannabinoids from high potency Cannabis sativa L publication-title: Phytochemistry doi: 10.1016/j.phytochem.2015.04.007 – volume: 574 start-page: 43 year: 2020 ident: 10.1016/j.colsurfa.2021.126211_bib0200 article-title: Development and potential performance of prepolymer in corrosion inhibition for carbon steel in 1.0 M HCl: Outlooks from experimental and computational investigations publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.04.022 – volume: 214 start-page: 111 year: 2016 ident: 10.1016/j.colsurfa.2021.126211_bib0095 article-title: Surface protection of steel in acid medium by Tabernaemontana divaricata extract: physicochemical evidence for adsorption of inhibitor publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2015.12.008 – volume: 45 start-page: 131 year: 2020 ident: 10.1016/j.colsurfa.2021.126211_bib0155 article-title: Surface adsorption and corrosion resistance performance of Acacia concinna pod extract: an efficient inhibitor for mild steel in acidic environment publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-019-04270-2 – volume: 743 start-page: 137181 year: 2020 ident: 10.1016/j.colsurfa.2021.126211_bib0185 article-title: Tetrahydropyrimido-Triazepine derivatives as anti-corrosion additives for acid corrosion: chemical, electrochemical, surface and theoretical studies publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2020.137181 – volume: 9 start-page: 95 year: 2018 ident: 10.1016/j.colsurfa.2021.126211_bib0015 article-title: Experimental and theoretical studies of Ficus religiosa as green corrosion inhibitor for mild steel in 0.5 M H2SO4 solution publication-title: Sustain. Chem. Pharm. doi: 10.1016/j.scp.2018.07.002 – volume: 50 start-page: 1498 year: 2008 ident: 10.1016/j.colsurfa.2021.126211_bib0075 article-title: Natural honey and black radish juice as tin corrosion inhibitors publication-title: Corros. Sci. doi: 10.1016/j.corsci.2008.01.013 – year: 2016 ident: 10.1016/j.colsurfa.2021.126211_bib0135 – volume: 87 start-page: 51 year: 2013 ident: 10.1016/j.colsurfa.2021.126211_bib0105 article-title: Analysis of Cannabinoids in laser-microdissected trichomes of medicinal Cannabis sativa using LCMS and cryogenic NMR publication-title: Phytochemistry doi: 10.1016/j.phytochem.2012.11.001 – volume: 6 start-page: 5230 year: 2018 ident: 10.1016/j.colsurfa.2021.126211_bib0160 article-title: Armoracia rusticanaas sustainable and eco-friendly corrosion inhibitor for mild steel in 0.5 M sulphuric acid: experimental and theoretical investigations publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2018.08.025 – volume: 28 start-page: 1436 year: 2020 ident: 10.1016/j.colsurfa.2021.126211_bib0180 article-title: Combined electronic/atomic level computational, surface (SEM/EDS), chemical and electrochemical studies of the mild steel surface by quinoxalines derivatives anti-corrosion properties in 1 mol. L−1 HCl solution publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2020.03.002 – volume: 62 start-page: 122 year: 2012 ident: 10.1016/j.colsurfa.2021.126211_bib0030 article-title: Green approach to corrosion inhibition of 304 stainless steel in hydrochloric acid solution by the extract of Salvia officinalis leaves publication-title: Corros. Sci. doi: 10.1016/j.corsci.2012.05.003 – volume: 53 start-page: 2385 year: 2011 ident: 10.1016/j.colsurfa.2021.126211_bib0065 article-title: Inhibitory action of aqueous coffee ground extracts on the corrosion of carbon steel in HCl solution publication-title: Corros. Sci. doi: 10.1016/j.corsci.2011.03.021 – volume: 293 start-page: 111559 year: 2019 ident: 10.1016/j.colsurfa.2021.126211_bib0190 article-title: Highly effective mild steel corrosion inhibition in 1 M HCl solution by novel green aqueous Mustard seed extract: experimental, electronic-scale DFT and atomic-scale MC/MD explorations publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.111559 – volume: 55 start-page: 407 year: 2012 ident: 10.1016/j.colsurfa.2021.126211_bib0080 article-title: Inhibition by Ginkgo leaves extract of the corrosion of steel in HCl and H2SO4 solutions publication-title: Corros. Sci. doi: 10.1016/j.corsci.2011.11.005 – volume: 97 start-page: 301 year: 2006 ident: 10.1016/j.colsurfa.2021.126211_bib0205 article-title: The effect of 1-(2-pyridylazo)-2-naphthol on the corrosion of cold rolled steel in acid media: Part 2: inhibitive action in 0.5M sulfuric acid publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2005.08.014 – volume: 90 start-page: 107 year: 2015 ident: 10.1016/j.colsurfa.2021.126211_bib0040 article-title: Musa paradisica peel extract as green corrosion inhibitor for mild steel in HCl solution publication-title: Corros. Sci. doi: 10.1016/j.corsci.2014.10.002 – volume: 100 start-page: 239 year: 2019 ident: 10.1016/j.colsurfa.2021.126211_bib0235 article-title: Detailed macro-/micro-scale exploration of the excellent active corrosion inhibition of a novel environmentally friendly green inhibitor for carbon steel in acidic environments publication-title: J. Taiwan Inst. Chem. E doi: 10.1016/j.jtice.2019.04.002 – volume: 60 start-page: 193 year: 2012 ident: 10.1016/j.colsurfa.2021.126211_bib0150 article-title: A comprehensive study on crude methanolic extract of Artemisia pallens (Asteraceae) and its active component as effective corrosion inhibitors of mild steel in acid solution publication-title: Corros. Sci. doi: 10.1016/j.corsci.2012.03.036 – volume: 12 start-page: 8793 year: 2017 ident: 10.1016/j.colsurfa.2021.126211_bib0025 article-title: Use of Butea monosperma extract as green corrosion inhibitor publication-title: Int. Jounal Electrochem. Sci. doi: 10.20964/2017.09.63 – volume: 49 start-page: 402 year: 2007 ident: 10.1016/j.colsurfa.2021.126211_bib0045 article-title: Mangrove tannins and their flavanoid monomers as alternative steel corrosion inhibitors in acidic medium publication-title: Corros. Sci. doi: 10.1016/j.corsci.2006.04.013 – volume: 284 start-page: 682 year: 2019 ident: 10.1016/j.colsurfa.2021.126211_bib0255 article-title: A detailed atomic level computational and electrochemical exploration of the Juglans regiagreen fruit shell extract as a sustainable and highly efficient green corrosion inhibitor for mild steel in 3.5 wt% NaCl solution publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.04.045 – volume: 1015 start-page: 21 year: 2013 ident: 10.1016/j.colsurfa.2021.126211_bib0125 article-title: Synergistic effect between 2-oleyl-1- oleylamidoethyl imidazoline ammonium methylsulfate and halide ion by moleculardynamics simulation publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2013.04.001 – volume: 102 start-page: 7338 year: 1998 ident: 10.1016/j.colsurfa.2021.126211_bib0140 article-title: Compass: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds publication-title: J. Phys. Chem. B doi: 10.1021/jp980939v – volume: 51 start-page: 1935 year: 2009 ident: 10.1016/j.colsurfa.2021.126211_bib0055 article-title: Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: a comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, alpha-d-Glucose and Tannic acid) publication-title: Corros. Sci. doi: 10.1016/j.corsci.2009.05.024 – volume: 64 start-page: 253 year: 2012 ident: 10.1016/j.colsurfa.2021.126211_bib0050 article-title: Inhibition by Jasminum nudiflorumLindl. leaves extract of the corrosion of aluminium in HCl solution publication-title: Corros. Sci. doi: 10.1016/j.corsci.2012.07.017 – volume: 60 start-page: 193 year: 2012 ident: 10.1016/j.colsurfa.2021.126211_bib0010 article-title: A comprehensive study on crude methanolic extract of Artemisia pallens (Asteraceae) and its active component as effective corrosion inhibitors of mild steel in acid solution publication-title: Corros. Sci. doi: 10.1016/j.corsci.2012.03.036 – volume: 255 start-page: 185 year: 2018 ident: 10.1016/j.colsurfa.2021.126211_bib0225 article-title: Glycyrrhiza glabra leaves extract as a green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution: experimental, molecular dynamics, Monte Carlo and quantum mechanics study publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.01.144 – volume: 285 start-page: 626 year: 2019 ident: 10.1016/j.colsurfa.2021.126211_bib0195 article-title: Synthesis, experimental, quantum chemical and molecular dynamics study of carbon steel corrosion inhibition effect of two Schiffbases in HCl publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.04.137 – volume: 18 start-page: 957 year: 2018 ident: 10.1016/j.colsurfa.2021.126211_bib0035 article-title: Investigation of corrosion inhibition effect and adsorption activities of Achyranthes aspera extract for mild steel in 0.5 M H2SO4 publication-title: J. Fail. Anal. Preven. doi: 10.1007/s11668-018-0491-8 – volume: 219 start-page: 417 year: 2016 ident: 10.1016/j.colsurfa.2021.126211_bib0085 article-title: Natural products for materials protection: corrosion protection of aluminium in hydrochloric acid byKola nitida extract publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.03.049 – volume: 50 start-page: 2310 year: 2008 ident: 10.1016/j.colsurfa.2021.126211_bib0070 article-title: Inhibitory action of Phyllanthus amarus extracts on the corrosion of mild steel in acidic media publication-title: Corros. Sci. doi: 10.1016/j.corsci.2008.05.009 – volume: 1063 start-page: 50 year: 2015 ident: 10.1016/j.colsurfa.2021.126211_bib0175 article-title: Molecular dynamics simulation of inhibition mechanism of 3,5-dibromo salicylaldehyde Schiff’s base publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2015.04.003 – volume: 201 start-page: 790 year: 2014 ident: 10.1016/j.colsurfa.2021.126211_bib0100 article-title: Biomass extracts for materials protection: corrosion inhibition of mild steel in acidic media by Terminalia chebula extracts publication-title: Chem. Eng. Commun. doi: 10.1080/00986445.2013.790816 – volume: 133 start-page: 0 year: 2018 ident: 10.1016/j.colsurfa.2021.126211_bib0115 article-title: Corrosion resistance of mild steel in 0.5 M H2SO4 solution by plant extract of Alkana tinctoria: experimental and theoretical studies publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2018-12165-0 – volume: 124 start-page: 156 year: 2018 ident: 10.1016/j.colsurfa.2021.126211_bib0005 article-title: Investigation of corrosion inhibition effect and adsorption activities of Cuscuta reflexa extract for mild steel in 0.5 M H2SO4 publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2018.07.006 – volume: 72 start-page: 2384 year: 1980 ident: 10.1016/j.colsurfa.2021.126211_bib0145 article-title: Molecular dynamics simulations at constant pressure and/or temperature publication-title: J. Chem. Phys. doi: 10.1063/1.439486 – volume: 131 start-page: 160 year: 2011 ident: 10.1016/j.colsurfa.2021.126211_bib0090 article-title: The impact of some factors on the inhibitory action of Radish leavess aqueous extract for mild steel corrosion in 1 M H2SO4 solution publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2011.08.001 – volume: 754 start-page: 137771 year: 2020 ident: 10.1016/j.colsurfa.2021.126211_bib0130 article-title: Synthesis and characterization of novel Cu (II) and Zn (II) complexes of 5-{[(2-Hydroxyethyl) sulfanyl] methyl}-8-hydroxyquinoline as effective acid corrosion inhibitor by experimental and computational testings publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2020.137771 – volume: 4 start-page: 4699 year: 2016 ident: 10.1016/j.colsurfa.2021.126211_bib0020 article-title: Investigation of phytochemical components and corrosion inhibition property of Ficus racemosa stem extract on mild steel in H2SO4 medium publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2016.10.022 – volume: 2 start-page: 1225 year: 2018 ident: 10.1016/j.colsurfa.2021.126211_bib0170 article-title: Valerianawallichii root extract as a green & sustainable corrosion inhibitor for mild steel in acidic environments: experimental and theoretical study publication-title: Mater. Chem. Front. doi: 10.1039/C8QM00120K – volume: 130 start-page: 107339 year: 2019 ident: 10.1016/j.colsurfa.2021.126211_bib0245 article-title: Green Eucalyptus leaf extract: a potent source of bio-active corrosion inhibitors for mild steel publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2019.107339 |
SSID | ssj0004579 |
Score | 2.5937612 |
Snippet | [Display omitted]
•Leaves extract of Cannabis sativa plant were used for the corrosion resistance.•The adsorption of inhibitor was shown by... The leaves extract of the Cannabis sativaplant was used for the corrosion resistance of low carbon steel (LCS) in the acidic medium (0.5 M sulfuric acid)... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 126211 |
SubjectTerms | adsorption AFM Cannabis sativa carbon corrosion EIS Low carbon steel molecular dynamics Polarization SEM sorption isotherms steel sulfuric acid Theoretical studies weight loss |
Title | Anticorrosive properties of a green and sustainable inhibitor from leaves extract of Cannabis sativa plant: Experimental and theoretical approach |
URI | https://dx.doi.org/10.1016/j.colsurfa.2021.126211 https://www.proquest.com/docview/2551962075 |
Volume | 614 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwELWqcoAeELSgboHKSFzT3Th27HBbrVotIHqhlXqzxrFNU62yq-xuj_wDf8xMNoGAhHroMZHHiTyT50ky7w1jH_IYcxmETzIJRSJNcIkrC4xlBSE4H4xqGXJfL_P5tfx8o2722KznwlBZZYf9O0xv0bo7M-5Wc7yqqvG3SSG01gpfYdq8hxjlUmqK8rMf6UAxvNPbEzqh0QOW8B3OvVhvm0j6QyI9S0Uu0vR_G9Q_UN3uPxcv2PMuceTT3b29ZHuhPmRPZ32_tkN2MJAWPGI_pzUOXDZ4DcQzvqJv7g2Jp_Jl5MC_U7kNh9rz9R8GFa_q28rhI95wYp3wRYB7NED4JioVGc6gxpHVmlMN0D3w1QId85GfD9oEtJMO6JG8Vy1_xa4vzq9m86Rrv5CUmVSbBJz0JkoBWaZc9EqWUaWlCVoq4YwJKXhtHBTSIShIXyjQOlDrX8xwJgqK7DXbr5d1OGbcmYmPqowF4G4YTA6Y50QB0gtIMzcJI6b6Nbdlp01OLTIWti9Cu7O9ryz5yu58NWLj33arnTrHgxZF71L7V5xZ3EIetH3fx4BF39KfFajDcru2-F6GSCYw_Tp5xPxv2DM6auuC1Fu2v2m24R2mPBt32sb0KXsy_fRlfvkLXRAFog |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED6N7mHsAY0BYoOBkXgNbRw7dnirqk0d2_rCJu3NOic2ZKrSKm33P_aPd04TCEhoD7wmPifyXb47O3ffAXxOvU-F40WUCMwioZ2NbJ6RLUt0zhZOy6ZC7mqWTm_Et1t5uwOTrhYmpFW22L_F9Aat2yvDdjWHy7Icfh9lXCklaQvTxD3qGewGdio5gN3x-cV01iMNbyn3uIqCQK9Q-I6mn682tQ8URDz-EvOUx_G_fNRfaN24oLMDeNHGjmy8fb2XsOOqQ9ibdC3bDmG_xy74Ch7GFQ1c1PQMgjS2DMfudeBPZQvPkP0IGTcMq4KtfhdRsbL6WVr6ymsWCk_Y3OE9CRCCh2qqIDjBikaWKxbSgO6RLeekm6_stNcpoJm0VyHJOuLy13Bzdno9mUZtB4YoT4RcR2hFob3gmCTS-kKK3Ms4104Jya3WLsZCaYuZsIQLosgkKuVC918KckYSs-QNDKpF5d4Cs3pUeJn7DMkhOp0ihTqeoyg4xokduSOQ3ZqbvKUnD10y5qbLQ7szna5M0JXZ6uoIhr_klluCjiclsk6l5g9TM-RFnpT91NmAId2GnytYucVmZWhrRmDGKQI7_o_5P8Le9Prq0lyezy7ewfNwp0kTku9hsK437oQioLX90Fr4I0JZCFM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anticorrosive+properties+of+a+green+and+sustainable+inhibitor+from+leaves+extract+of+Cannabis+sativa+plant%3A+Experimental+and+theoretical+approach&rft.jtitle=Colloids+and+surfaces.+A%2C+Physicochemical+and+engineering+aspects&rft.au=Haldhar%2C+R.&rft.au=Prasad%2C+D.&rft.au=Mandal%2C+N.&rft.au=Benhiba%2C+F.&rft.date=2021-04-05&rft.pub=Elsevier+B.V&rft.issn=0927-7757&rft.volume=614&rft_id=info:doi/10.1016%2Fj.colsurfa.2021.126211&rft.externalDocID=S0927775721000807 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7757&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7757&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7757&client=summon |