Insight into the mechanism of modulated syntheses: in situ synchrotron diffraction studies on the formation of Zr-fumarate MOF

In this work, the formation of a Zr-based metal–organic framework (MOF), Zr-fumarate MOF (Zr- fum MOF), is studied in situ by energy-dispersive diffraction. The Zr- fum MOF can be synthesised in DMF as well as in water-based synthesis systems. In both cases, its formation requires modulation, i.e. a...

Full description

Saved in:
Bibliographic Details
Published inCrystEngComm Vol. 16; no. 39; pp. 9198 - 9207
Main Authors Zahn, Gesa, Zerner, Philip, Lippke, Jann, Kempf, Fabian L., Lilienthal, Sebastian, Schröder, Christian A., Schneider, Andreas M., Behrens, Peter
Format Journal Article
LanguageEnglish
Published 01.01.2014
Online AccessGet full text

Cover

Loading…
Abstract In this work, the formation of a Zr-based metal–organic framework (MOF), Zr-fumarate MOF (Zr- fum MOF), is studied in situ by energy-dispersive diffraction. The Zr- fum MOF can be synthesised in DMF as well as in water-based synthesis systems. In both cases, its formation requires modulation, i.e. a monocarboxylic acid which is used as the modulator has to be added to the synthesis mixture. In general, different mechanisms of modulation are possible, for example, deprotonation of the linker molecule (deprotonation modulation) or coordination modulation (wherein the molecules of the modulator compete with the linker molecules for the coordination sites at the inorganic building units). Independently of the specific mechanism, modulation often improves the reproducibility of the MOF synthesis and the crystallinity of the product and may be used to control crystal size and morphology. This study is the first to investigate the kinetics of modulated MOF syntheses with regard to coordination modulation. According to this concept, the addition of a modulator usually decelerates the reaction. Our kinetic investigations show that this is the case for the formation of Zr- fum MOF in the water-based synthesis with formic acid used as a modulator. On the contrary, the addition of formic acid to the DMF-based synthesis results in an accelerating effect. This unexpected effect can be attributed to a small amount of water present in formic acid. Correspondingly, the addition of water to the synthesis mixture also showed an accelerating effect. These investigations emphasise the subtle interplay of the different ingredients in a MOF synthesis. In the case of the Zr- fum MOF, both the modulator formic acid and the water content strongly affect the kinetics of crystallisation. Quantitative evaluation of the kinetic data using the Gualtieri equation provides additional insight into the mechanisms of coordination-modulated MOF formation reactions and excludes the idea of deprotonation modulation.
AbstractList In this work, the formation of a Zr-based metal–organic framework (MOF), Zr-fumarate MOF (Zr- fum MOF), is studied in situ by energy-dispersive diffraction. The Zr- fum MOF can be synthesised in DMF as well as in water-based synthesis systems. In both cases, its formation requires modulation, i.e. a monocarboxylic acid which is used as the modulator has to be added to the synthesis mixture. In general, different mechanisms of modulation are possible, for example, deprotonation of the linker molecule (deprotonation modulation) or coordination modulation (wherein the molecules of the modulator compete with the linker molecules for the coordination sites at the inorganic building units). Independently of the specific mechanism, modulation often improves the reproducibility of the MOF synthesis and the crystallinity of the product and may be used to control crystal size and morphology. This study is the first to investigate the kinetics of modulated MOF syntheses with regard to coordination modulation. According to this concept, the addition of a modulator usually decelerates the reaction. Our kinetic investigations show that this is the case for the formation of Zr- fum MOF in the water-based synthesis with formic acid used as a modulator. On the contrary, the addition of formic acid to the DMF-based synthesis results in an accelerating effect. This unexpected effect can be attributed to a small amount of water present in formic acid. Correspondingly, the addition of water to the synthesis mixture also showed an accelerating effect. These investigations emphasise the subtle interplay of the different ingredients in a MOF synthesis. In the case of the Zr- fum MOF, both the modulator formic acid and the water content strongly affect the kinetics of crystallisation. Quantitative evaluation of the kinetic data using the Gualtieri equation provides additional insight into the mechanisms of coordination-modulated MOF formation reactions and excludes the idea of deprotonation modulation.
Author Kempf, Fabian L.
Schröder, Christian A.
Behrens, Peter
Lippke, Jann
Lilienthal, Sebastian
Schneider, Andreas M.
Zahn, Gesa
Zerner, Philip
Author_xml – sequence: 1
  givenname: Gesa
  surname: Zahn
  fullname: Zahn, Gesa
  organization: Institut für Anorganische Chemie, Leibniz Universität Hannover, 30167 Hannover, Germany
– sequence: 2
  givenname: Philip
  surname: Zerner
  fullname: Zerner, Philip
  organization: Institut für Anorganische Chemie, Leibniz Universität Hannover, 30167 Hannover, Germany
– sequence: 3
  givenname: Jann
  surname: Lippke
  fullname: Lippke, Jann
  organization: Institut für Anorganische Chemie, Leibniz Universität Hannover, 30167 Hannover, Germany
– sequence: 4
  givenname: Fabian L.
  surname: Kempf
  fullname: Kempf, Fabian L.
  organization: Institut für Anorganische Chemie, Leibniz Universität Hannover, 30167 Hannover, Germany
– sequence: 5
  givenname: Sebastian
  surname: Lilienthal
  fullname: Lilienthal, Sebastian
  organization: Institut für Anorganische Chemie, Leibniz Universität Hannover, 30167 Hannover, Germany
– sequence: 6
  givenname: Christian A.
  surname: Schröder
  fullname: Schröder, Christian A.
  organization: Institut für Anorganische Chemie, Leibniz Universität Hannover, 30167 Hannover, Germany
– sequence: 7
  givenname: Andreas M.
  surname: Schneider
  fullname: Schneider, Andreas M.
  organization: Institut für Anorganische Chemie, Leibniz Universität Hannover, 30167 Hannover, Germany
– sequence: 8
  givenname: Peter
  surname: Behrens
  fullname: Behrens, Peter
  organization: Institut für Anorganische Chemie, Leibniz Universität Hannover, 30167 Hannover, Germany
BookMark eNpNkLFOwzAQhi1UJNrCwhN4RgrYseMkbChqS6WiLrCwRI59JkZNjGxn6MKz4wISTPfp_tOn079As9GNgNA1JbeUsPqu4c2KUFIXmzM0p1yIrCKMzf7xBVqE8E4I5ZSSOfrcjsG-9RHbMToce8ADqF6ONgzYGTw4PR1kBI3DcUxpgHCfTnGwcTqtVO9d9G7E2hrjpYo2cYiTthBwwpPQOD_I7yAJX31mpkH65MRP-_UlOjfyEODqdy7Ry3r13Dxmu_1m2zzsMsV4ETPZEV6R3IBgqixZYQrBjRZ5XoiKdB3ojud5XTIFpYCCy1JDSRnnojYEKiPZEt38eJV3IXgw7Ye36Y1jS0l7aq79a459AR-sZLQ
CitedBy_id crossref_primary_10_1039_C7CE00094D
crossref_primary_10_1039_C7TA02848B
crossref_primary_10_3390_nano11102665
crossref_primary_10_1021_acs_chemrev_7b00582
crossref_primary_10_1021_acssuschemeng_9b01022
crossref_primary_10_1016_j_micromeso_2014_10_034
crossref_primary_10_1021_acs_cgd_9b01348
crossref_primary_10_1016_j_cej_2024_151380
crossref_primary_10_1021_acs_cgd_3c00260
crossref_primary_10_1039_C8CE00670A
crossref_primary_10_1039_D4SC01433B
crossref_primary_10_1039_C5DT04632G
crossref_primary_10_1016_j_ccr_2021_214064
crossref_primary_10_1016_j_ijhydene_2015_06_109
crossref_primary_10_1021_acs_inorgchem_7b01790
crossref_primary_10_3390_catal13010205
crossref_primary_10_1016_j_ccr_2018_10_002
crossref_primary_10_1002_ange_202201017
crossref_primary_10_1002_asia_202300699
crossref_primary_10_1002_chem_201406119
crossref_primary_10_1016_j_ccr_2017_08_017
crossref_primary_10_1016_j_pecs_2020_100870
crossref_primary_10_1002_ange_201805355
crossref_primary_10_1002_ejic_201600394
crossref_primary_10_1007_s10934_017_0374_5
crossref_primary_10_1002_ange_202014184
crossref_primary_10_1021_jacs_8b05047
crossref_primary_10_1021_acs_inorgchem_9b01408
crossref_primary_10_1002_ejic_201800056
crossref_primary_10_1021_acsami_1c04920
crossref_primary_10_1002_anie_202303753
crossref_primary_10_1039_D3NR01994B
crossref_primary_10_1002_ejic_201600286
crossref_primary_10_1016_j_jcrysgro_2022_126911
crossref_primary_10_3390_molecules28010253
crossref_primary_10_1016_j_carbpol_2022_120516
crossref_primary_10_1016_j_micromeso_2017_10_028
crossref_primary_10_1021_acs_cgd_9b00565
crossref_primary_10_1016_j_jpba_2021_114049
crossref_primary_10_1021_acs_cgd_5b01509
crossref_primary_10_1016_j_chemosphere_2021_131279
crossref_primary_10_1016_j_jpowsour_2020_229444
crossref_primary_10_1039_C6CE00198J
crossref_primary_10_1002_ange_202303753
crossref_primary_10_1002_adma_201802497
crossref_primary_10_1021_acs_iecr_8b03516
crossref_primary_10_1039_C9RA09968A
crossref_primary_10_1080_24701556_2021_1956966
crossref_primary_10_1007_s11814_021_0966_2
crossref_primary_10_1021_acs_chemmater_5b03085
crossref_primary_10_1002_chem_202005085
crossref_primary_10_1021_cbe_3c00078
crossref_primary_10_1021_acs_langmuir_2c02070
crossref_primary_10_1002_chem_201801565
crossref_primary_10_1002_chem_202000993
crossref_primary_10_1016_j_cej_2021_131573
crossref_primary_10_1039_D0CE01223H
crossref_primary_10_3390_polym14183826
crossref_primary_10_1021_acsami_0c15901
crossref_primary_10_1002_anie_202014184
crossref_primary_10_1002_smtd_202201413
crossref_primary_10_1134_S0022476619050159
crossref_primary_10_1002_chem_202103102
crossref_primary_10_1016_j_memsci_2023_122171
crossref_primary_10_1016_j_jhazmat_2022_130025
crossref_primary_10_1039_D3TA03077F
crossref_primary_10_1016_j_micromeso_2018_08_027
crossref_primary_10_1039_D1CC06164J
crossref_primary_10_1021_acs_cgd_1c00968
crossref_primary_10_1002_anie_201805355
crossref_primary_10_1039_C8CC03233E
crossref_primary_10_1039_C7CE00481H
crossref_primary_10_1016_j_jlumin_2018_06_040
crossref_primary_10_1016_j_apsusc_2017_01_271
crossref_primary_10_1039_C9DT01572H
crossref_primary_10_1016_j_jhazmat_2024_134055
crossref_primary_10_1039_C8CE01264D
crossref_primary_10_1016_j_ccr_2022_214644
crossref_primary_10_1021_acsami_6b01299
crossref_primary_10_1063_5_0211427
crossref_primary_10_1039_D3CS00312D
crossref_primary_10_1016_j_micromeso_2020_110405
crossref_primary_10_1021_acs_inorgchem_0c00991
crossref_primary_10_1039_C5CE00729A
crossref_primary_10_1021_acs_jpcc_8b02484
crossref_primary_10_1021_acs_chemmater_1c02174
crossref_primary_10_1016_j_mex_2021_101246
crossref_primary_10_3390_nano13020352
crossref_primary_10_1002_anie_202201017
crossref_primary_10_1021_acs_iecr_1c01082
crossref_primary_10_1002_chem_201903178
crossref_primary_10_1021_acs_chemmater_2c00241
crossref_primary_10_1016_j_micromeso_2022_112163
crossref_primary_10_1039_C7DT01115F
crossref_primary_10_1021_acs_chemmater_3c00215
crossref_primary_10_1039_C8CE01722K
crossref_primary_10_1021_acs_cgd_0c00895
crossref_primary_10_1039_C5TA10401G
crossref_primary_10_1039_D1GC02824C
crossref_primary_10_1016_j_cej_2022_134510
crossref_primary_10_1016_j_seppur_2024_128043
crossref_primary_10_1021_acs_cgd_9b00916
crossref_primary_10_1021_acs_inorgchem_7b00325
crossref_primary_10_1021_acs_cgd_9b00759
crossref_primary_10_1021_acs_chemmater_7b03203
crossref_primary_10_1039_D2CC00846G
crossref_primary_10_1016_j_ccr_2017_04_010
crossref_primary_10_1039_D0SC01356K
crossref_primary_10_1002_adma_202304832
crossref_primary_10_1039_D0SC04892E
crossref_primary_10_1016_j_ijhydene_2016_12_140
crossref_primary_10_1021_acs_chemmater_9b02322
crossref_primary_10_1039_D1ME00080B
crossref_primary_10_1002_adma_202210613
crossref_primary_10_1016_j_poly_2018_07_026
crossref_primary_10_1021_jacs_6b00007
crossref_primary_10_1021_acs_inorgchem_6b01814
crossref_primary_10_1039_C7CS00187H
crossref_primary_10_1039_C7CE00867H
Cites_doi 10.1002/chem.201003708
10.1126/science.1067208
10.1002/adma.201002854
10.1126/science.1230444
10.1039/b007795j
10.1039/C2CE26436F
10.1039/C0CE00530D
10.1021/cm001234k
10.1002/ejic.201101151
10.1016/j.micromeso.2011.12.010
10.1063/1.1750872
10.1021/cr200256v
10.1002/ejic.200801084
10.1002/ange.200901177
10.1021/ie101312k
10.1039/b804680h
10.3390/s90301574
10.1039/c0cc05419d
10.1063/1.1750380
10.1002/chem.201003211
10.1021/ic402514n
10.1111/j.1151-2916.1972.tb11213.x
10.1039/C1CE06002C
10.1002/anie.200905627
10.1021/cm9018716
10.1063/1.1750631
10.1007/s002690100197
10.1021/cm101778g
10.1002/chem.201101015
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1039/C4CE01095G
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1466-8033
EndPage 9207
ExternalDocumentID 10_1039_C4CE01095G
GroupedDBID -JG
0-7
0R~
0UZ
1TJ
29F
4.4
5GY
6J9
705
70~
71~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACLDK
ACMRT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
AHGXI
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
E3Z
EBS
ECGLT
EE0
EEHRC
EF-
EJD
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~N
IDY
IDZ
J3G
J3H
J3I
KC5
L-8
M4U
N9A
NDZJH
O9-
OK1
P2P
R56
R7B
RAOCF
RCLXC
RCNCU
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
ID FETCH-LOGICAL-c345t-ab04802fe63c7735f564fd6225680bbedb422973ce76e54a7de7134469f0e8fa3
ISSN 1466-8033
IngestDate Fri Aug 23 02:41:34 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-ab04802fe63c7735f564fd6225680bbedb422973ce76e54a7de7134469f0e8fa3
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2014/ce/c4ce01095g
PageCount 10
ParticipantIDs crossref_primary_10_1039_C4CE01095G
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationTitle CrystEngComm
PublicationYear 2014
References Horcajada (C4CE01095G-(cit7)/*[position()=1]) 2012; 112
Ahnfeldt (C4CE01095G-(cit25)/*[position()=1]) 2011; 17
Avrami (C4CE01095G-(cit19)/*[position()=1]) 1941; 9
Ragon (C4CE01095G-(cit26)/*[position()=1]) 2014; 53
Gualtieri (C4CE01095G-(cit21)/*[position()=1]) 2001; 2
Meek (C4CE01095G-(cit2)/*[position()=1]) 2011; 23
Keskin (C4CE01095G-(cit6)/*[position()=1]) 2011; 50
Schaate (C4CE01095G-(cit15)/*[position()=1]) 2012
Cravillon (C4CE01095G-(cit22)/*[position()=1]) 2012; 14
Avrami (C4CE01095G-(cit17)/*[position()=1]) 1939; 7
Engelke (C4CE01095G-(cit30)/*[position()=1]) 2001; 13
Pienack (C4CE01095G-(cit31)/*[position()=1]) 2009
Walton (C4CE01095G-(cit16)/*[position()=1]) 2000
Finney (C4CE01095G-(cit27)/*[position()=1]) 2009; 21
Tsuruoka (C4CE01095G-(cit11)/*[position()=1]) 2009; 121
Schaate (C4CE01095G-(cit13)/*[position()=1]) 2011; 17
Eddaoudi (C4CE01095G-(cit1)/*[position()=1]) 2002; 295
Millange (C4CE01095G-(cit29)/*[position()=1]) 2011; 13
Achmann (C4CE01095G-(cit5)/*[position()=1]) 2009; 9
Avrami (C4CE01095G-(cit18)/*[position()=1]) 1940; 8
Reinsch (C4CE01095G-(cit24)/*[position()=1]) 2013; 15
Wißmann (C4CE01095G-(cit9)/*[position()=1]) 2012; 152
Schaate (C4CE01095G-(cit14)/*[position()=1]) 2011; 17
Hancock (C4CE01095G-(cit20)/*[position()=1]) 1972; 55
Millange (C4CE01095G-(cit23)/*[position()=1]) 2010; 49
Czaja (C4CE01095G-(cit4)/*[position()=1]) 2009; 38
Jiang (C4CE01095G-(cit3)/*[position()=1]) 2011; 47
Furukawa (C4CE01095G-(cit8)/*[position()=1]) 2013; 341
Pradell (C4CE01095G-(cit28)/*[position()=1]) 1998; 10
Wißmann (C4CE01095G-(cit10)/*[position()=1])
Diring (C4CE01095G-(cit12)/*[position()=1]) 2010; 22
References_xml – ident: C4CE01095G-(cit10)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  contributor:
    fullname: Wißmann
– volume: 17
  start-page: 6462
  year: 2011
  ident: C4CE01095G-(cit25)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201003708
  contributor:
    fullname: Ahnfeldt
– volume: 295
  start-page: 469
  year: 2002
  ident: C4CE01095G-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1067208
  contributor:
    fullname: Eddaoudi
– volume: 23
  start-page: 249
  year: 2011
  ident: C4CE01095G-(cit2)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201002854
  contributor:
    fullname: Meek
– volume: 341
  start-page: 974
  year: 2013
  ident: C4CE01095G-(cit8)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1230444
  contributor:
    fullname: Furukawa
– start-page: 2283
  year: 2000
  ident: C4CE01095G-(cit16)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b007795j
  contributor:
    fullname: Walton
– volume: 15
  start-page: 544
  year: 2013
  ident: C4CE01095G-(cit24)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C2CE26436F
  contributor:
    fullname: Reinsch
– volume: 13
  start-page: 103
  year: 2011
  ident: C4CE01095G-(cit29)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C0CE00530D
  contributor:
    fullname: Millange
– volume: 13
  start-page: 1383
  year: 2001
  ident: C4CE01095G-(cit30)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm001234k
  contributor:
    fullname: Engelke
– start-page: 790
  year: 2012
  ident: C4CE01095G-(cit15)/*[position()=1]
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201101151
  contributor:
    fullname: Schaate
– volume: 152
  start-page: 64
  year: 2012
  ident: C4CE01095G-(cit9)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2011.12.010
  contributor:
    fullname: Wißmann
– volume: 9
  start-page: 177
  year: 1941
  ident: C4CE01095G-(cit19)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1750872
  contributor:
    fullname: Avrami
– volume: 112
  start-page: 1232
  year: 2012
  ident: C4CE01095G-(cit7)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200256v
  contributor:
    fullname: Horcajada
– start-page: 937
  year: 2009
  ident: C4CE01095G-(cit31)/*[position()=1]
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.200801084
  contributor:
    fullname: Pienack
– volume: 121
  start-page: 4833
  year: 2009
  ident: C4CE01095G-(cit11)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/ange.200901177
  contributor:
    fullname: Tsuruoka
– volume: 50
  start-page: 1799
  year: 2011
  ident: C4CE01095G-(cit6)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie101312k
  contributor:
    fullname: Keskin
– volume: 38
  start-page: 1284
  year: 2009
  ident: C4CE01095G-(cit4)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b804680h
  contributor:
    fullname: Czaja
– volume: 9
  start-page: 1574
  year: 2009
  ident: C4CE01095G-(cit5)/*[position()=1]
  publication-title: Sensors
  doi: 10.3390/s90301574
  contributor:
    fullname: Achmann
– volume: 47
  start-page: 3351
  year: 2011
  ident: C4CE01095G-(cit3)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc05419d
  contributor:
    fullname: Jiang
– volume: 7
  start-page: 1103
  year: 1939
  ident: C4CE01095G-(cit17)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1750380
  contributor:
    fullname: Avrami
– volume: 10
  start-page: 3833
  year: 1998
  ident: C4CE01095G-(cit28)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: Pradell
– volume: 17
  start-page: 6643
  year: 2011
  ident: C4CE01095G-(cit13)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201003211
  contributor:
    fullname: Schaate
– volume: 53
  start-page: 2491
  year: 2014
  ident: C4CE01095G-(cit26)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic402514n
  contributor:
    fullname: Ragon
– volume: 55
  start-page: 74
  year: 1972
  ident: C4CE01095G-(cit20)/*[position()=1]
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1972.tb11213.x
  contributor:
    fullname: Hancock
– volume: 14
  start-page: 492
  year: 2012
  ident: C4CE01095G-(cit22)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C1CE06002C
  contributor:
    fullname: Cravillon
– volume: 49
  start-page: 763
  year: 2010
  ident: C4CE01095G-(cit23)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200905627
  contributor:
    fullname: Millange
– volume: 21
  start-page: 4692
  year: 2009
  ident: C4CE01095G-(cit27)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm9018716
  contributor:
    fullname: Finney
– volume: 8
  start-page: 212
  year: 1940
  ident: C4CE01095G-(cit18)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1750631
  contributor:
    fullname: Avrami
– volume: 2
  start-page: 719
  year: 2001
  ident: C4CE01095G-(cit21)/*[position()=1]
  publication-title: Phys. Chem. Miner.
  doi: 10.1007/s002690100197
  contributor:
    fullname: Gualtieri
– volume: 22
  start-page: 4531
  year: 2010
  ident: C4CE01095G-(cit12)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm101778g
  contributor:
    fullname: Diring
– volume: 17
  start-page: 9320
  year: 2011
  ident: C4CE01095G-(cit14)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201101015
  contributor:
    fullname: Schaate
SSID ssj0014110
Score 2.4788537
Snippet In this work, the formation of a Zr-based metal–organic framework (MOF), Zr-fumarate MOF (Zr- fum MOF), is studied in situ by energy-dispersive diffraction....
SourceID crossref
SourceType Aggregation Database
StartPage 9198
Title Insight into the mechanism of modulated syntheses: in situ synchrotron diffraction studies on the formation of Zr-fumarate MOF
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZcZ2mHok_0DQLtZsiVSIoKuwWG06RI2sUBgiwGJZGNh9CGJA_p0N_Rn1ueSVFskyHtIgiUdIB0H3ine3yH0AeZpSqr0zphSpCEMaITmVXCYrlmdUlVWlQQ7zj9yo_O2Jfz_Hw0-hVVLW27clr9uLWv5H-0atesXqFL9h80G4TaBXtu9WuPVsP2eCcdH5sW_q2B88F5kFcKGnlh7gWkzdc1zOayHmV7bezV1pW_rcykXXVbWKwumzWEwndjUho_Nbx1lYU-izB0N4LIiybRUJNtpU5Ov_1REjhrrttubr5Dx0mIRstL4wLvbdj9L1Tje2xcLCdUBK02G0_-Kc1QGqCuNjvayEMJ5OiTk2kcpshYFKZwOyvjwHzsWC-m6pa1fjvmEewc0ZHfXEXmBlZ7Qy2Im5d7wwikFDhUZ2w2h7xf_nkwdX16_y8LGOoSdxl5KpbDs_fQHilEno_R3sF8cXwSMlQsc0wX_Sv01LdUfByejpydyGtZPEIP_e8GPnDYeYxGyjxBDyISyqfop0cRBhRhq3IcUITXGgcU4YCiT_ZWDBjCEYZwhCHsMYTtKQgMGAKBEYawxdAzdHY4X8yOEj-VI6koy7tElkBDQLTitCoKmuucM11zaxf4flqWqi4ZgYFolSq4ypksagX9yowLnap9LelzNDZro14gbBe4pKkUMAVAaCJKXpFaF5SkpSaMv0Tv-8-33DjyleVNFb26012v0f0Blm_QuGu26q31J7vynVftb1hEePE
link.rule.ids 315,786,790,27955,27956
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+into+the+mechanism+of+modulated+syntheses%3A+in+situ+synchrotron+diffraction+studies+on+the+formation+of+Zr-fumarate+MOF&rft.jtitle=CrystEngComm&rft.au=Zahn%2C+Gesa&rft.au=Zerner%2C+Philip&rft.au=Lippke%2C+Jann&rft.au=Kempf%2C+Fabian+L.&rft.date=2014-01-01&rft.issn=1466-8033&rft.eissn=1466-8033&rft.volume=16&rft.issue=39&rft.spage=9198&rft.epage=9207&rft_id=info:doi/10.1039%2FC4CE01095G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C4CE01095G
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon