FB-EEGNet: A fusion neural network across multi-stimulus for SSVEP target detection

Steady-state visual evoked potential (SSVEP) is a prevalent paradigm of brain-computer interface (BCI). Recently, deep neural networks (DNNs) have been employed for SSVEP target recognition. However, current DNN models can not fully extract information from SSVEP harmonic components, and ignore the...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 379; p. 109674
Main Authors Yao, Huiming, Liu, Ke, Deng, Xin, Tang, Xianlun, Yu, Hong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Steady-state visual evoked potential (SSVEP) is a prevalent paradigm of brain-computer interface (BCI). Recently, deep neural networks (DNNs) have been employed for SSVEP target recognition. However, current DNN models can not fully extract information from SSVEP harmonic components, and ignore the influence of non-target stimuli. To employ information of multiple sub-bands and non-target stimulus data, we propose a DNN model for SSVEP target detection, i.e., FB-EEGNet, which fuses features of multiple neural networks. Additionally, we design a multi-label for each sample and optimize the parameters of FB-EEGNet across multi-stimulus to incorporate the information from non-target stimuli. Under the subject-specific condition, FB-EEGNet achieves the average classification accuracies (information transfer rate (ITR)) of 76.75 % (50.70 bits/min) and 89.14 % (70.45 bits/min) in a time widow of 0.7 s under the public 12-target dataset and our experimental 9-target dataset, respectively. Under the cross-subject condition, FB-EEGNet achieved mean accuracies (ITRs) of 81.72 % (67.99 bits/min) and 92.15 % (76.12 bits/min) on the public and experimental datasets in a time window of 1 s, respectively. FB-EEGNet shows superior performance than CCNN, EEGNet, CCA and FBCCA both for subject-dependent and subject-independent SSVEP target recognition. FB-EEGNet can effectively extract information from multiple sub-bands and cross-stimulus targets, providing a promising way for extracting deep features in SSVEP using neural networks. •Fusing features from multiple sub-bands in deep neural network improves the SSVEP recognition performance.•Multi-label encoding can handle the influence of non-target stimuli, and enhance SSVEP frequency detection performance.•Two-stage DNN training strategy is employed to extract non-linear information under a small dataset.
AbstractList Steady-state visual evoked potential (SSVEP) is a prevalent paradigm of brain-computer interface (BCI). Recently, deep neural networks (DNNs) have been employed for SSVEP target recognition. However, current DNN models can not fully extract information from SSVEP harmonic components, and ignore the influence of non-target stimuli.BACKGROUNDSteady-state visual evoked potential (SSVEP) is a prevalent paradigm of brain-computer interface (BCI). Recently, deep neural networks (DNNs) have been employed for SSVEP target recognition. However, current DNN models can not fully extract information from SSVEP harmonic components, and ignore the influence of non-target stimuli.To employ information of multiple sub-bands and non-target stimulus data, we propose a DNN model for SSVEP target detection, i.e., FB-EEGNet, which fuses features of multiple neural networks. Additionally, we design a multi-label for each sample and optimize the parameters of FB-EEGNet across multi-stimulus to incorporate the information from non-target stimuli.NEW METHODTo employ information of multiple sub-bands and non-target stimulus data, we propose a DNN model for SSVEP target detection, i.e., FB-EEGNet, which fuses features of multiple neural networks. Additionally, we design a multi-label for each sample and optimize the parameters of FB-EEGNet across multi-stimulus to incorporate the information from non-target stimuli.Under the subject-specific condition, FB-EEGNet achieves the average classification accuracies (information transfer rate (ITR)) of 76.75 % (50.70 bits/min) and 89.14 % (70.45 bits/min) in a time widow of 0.7 s under the public 12-target dataset and our experimental 9-target dataset, respectively. Under the cross-subject condition, FB-EEGNet achieved mean accuracies (ITRs) of 81.72 % (67.99 bits/min) and 92.15 % (76.12 bits/min) on the public and experimental datasets in a time window of 1 s, respectively.RESULTSUnder the subject-specific condition, FB-EEGNet achieves the average classification accuracies (information transfer rate (ITR)) of 76.75 % (50.70 bits/min) and 89.14 % (70.45 bits/min) in a time widow of 0.7 s under the public 12-target dataset and our experimental 9-target dataset, respectively. Under the cross-subject condition, FB-EEGNet achieved mean accuracies (ITRs) of 81.72 % (67.99 bits/min) and 92.15 % (76.12 bits/min) on the public and experimental datasets in a time window of 1 s, respectively.FB-EEGNet shows superior performance than CCNN, EEGNet, CCA and FBCCA both for subject-dependent and subject-independent SSVEP target recognition.COMPARISON WITH EXISTING METHODSFB-EEGNet shows superior performance than CCNN, EEGNet, CCA and FBCCA both for subject-dependent and subject-independent SSVEP target recognition.FB-EEGNet can effectively extract information from multiple sub-bands and cross-stimulus targets, providing a promising way for extracting deep features in SSVEP using neural networks.CONCLUSIONFB-EEGNet can effectively extract information from multiple sub-bands and cross-stimulus targets, providing a promising way for extracting deep features in SSVEP using neural networks.
Steady-state visual evoked potential (SSVEP) is a prevalent paradigm of brain-computer interface (BCI). Recently, deep neural networks (DNNs) have been employed for SSVEP target recognition. However, current DNN models can not fully extract information from SSVEP harmonic components, and ignore the influence of non-target stimuli. To employ information of multiple sub-bands and non-target stimulus data, we propose a DNN model for SSVEP target detection, i.e., FB-EEGNet, which fuses features of multiple neural networks. Additionally, we design a multi-label for each sample and optimize the parameters of FB-EEGNet across multi-stimulus to incorporate the information from non-target stimuli. Under the subject-specific condition, FB-EEGNet achieves the average classification accuracies (information transfer rate (ITR)) of 76.75 % (50.70 bits/min) and 89.14 % (70.45 bits/min) in a time widow of 0.7 s under the public 12-target dataset and our experimental 9-target dataset, respectively. Under the cross-subject condition, FB-EEGNet achieved mean accuracies (ITRs) of 81.72 % (67.99 bits/min) and 92.15 % (76.12 bits/min) on the public and experimental datasets in a time window of 1 s, respectively. FB-EEGNet shows superior performance than CCNN, EEGNet, CCA and FBCCA both for subject-dependent and subject-independent SSVEP target recognition. FB-EEGNet can effectively extract information from multiple sub-bands and cross-stimulus targets, providing a promising way for extracting deep features in SSVEP using neural networks. •Fusing features from multiple sub-bands in deep neural network improves the SSVEP recognition performance.•Multi-label encoding can handle the influence of non-target stimuli, and enhance SSVEP frequency detection performance.•Two-stage DNN training strategy is employed to extract non-linear information under a small dataset.
ArticleNumber 109674
Author Yao, Huiming
Yu, Hong
Liu, Ke
Tang, Xianlun
Deng, Xin
Author_xml – sequence: 1
  givenname: Huiming
  surname: Yao
  fullname: Yao, Huiming
  organization: College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
– sequence: 2
  givenname: Ke
  surname: Liu
  fullname: Liu, Ke
  email: liuke@cqupt.edu.cn
  organization: College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
– sequence: 3
  givenname: Xin
  surname: Deng
  fullname: Deng, Xin
  organization: College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
– sequence: 4
  givenname: Xianlun
  surname: Tang
  fullname: Tang, Xianlun
  organization: College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
– sequence: 5
  givenname: Hong
  surname: Yu
  fullname: Yu, Hong
  organization: College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
BookMark eNqFkMFOGzEURS0UJELoLyAvu5lge2zPuOqiFCWAhAApbdWd5fE8U6eTGbA9IP6-DqEbNlk96-meq-dzjCb90ANCp5TMKaHybD1f9zBuIP2ZM8JYXipZ8QM0pXXFClnVvydomoOiIKwiR-g4xjUhhCsip2i1_F4sFpe3kL7gc-zG6Ice57pgujzSyxD-YmPDECPejF3yRUw-P8aI3RDwavVrcY-TCQ-QcAsJbMr8CTp0povw6X3O0M_l4sfFVXFzd3l9cX5T2JKLVCjXmLotJRctaxrBaSlqZ2peq5KyxhnBjLRK1Y0rKZjSCd4SaEGpprLCSVLO0Odd72MYnkaISW98tNB1podhjJpJRYmgXPAc_bqLvn0lgNPWJ7M9NgXjO02J3rrUa_3fpd661DuXGZcf8MfgNya87ge_7UDIHp49BB2th95C60OWpdvB76v4B22DlQw
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_109097
crossref_primary_10_1080_27706710_2023_2181102
crossref_primary_10_3390_app132413350
crossref_primary_10_1088_2057_1976_ad2e36
crossref_primary_10_1016_j_bspc_2023_105931
crossref_primary_10_1016_j_bspc_2024_107404
crossref_primary_10_3390_bioengineering11060613
crossref_primary_10_1038_s41598_024_84534_6
crossref_primary_10_1007_s42452_024_05816_2
crossref_primary_10_3390_electronics12122743
crossref_primary_10_1016_j_neunet_2023_04_045
crossref_primary_10_1080_27706710_2024_2418650
crossref_primary_10_1016_j_neunet_2024_106847
crossref_primary_10_3389_fnins_2023_1160040
crossref_primary_10_3390_brainsci13050780
crossref_primary_10_1016_j_jneumeth_2023_109806
crossref_primary_10_1016_j_medntd_2023_100213
crossref_primary_10_3390_brainsci13030483
Cites_doi 10.20965/jrm.2020.p0738
10.1088/1741-2560/12/4/046008
10.1038/s41598-019-53286-z
10.1016/j.neucom.2021.03.091
10.1088/1741-2552/aae5d8
10.1016/j.bspc.2021.103243
10.1016/j.dsp.2021.103101
10.3389/fnsys.2021.578875
10.1088/1741-2552/ab2373
10.1371/journal.pone.0140703
10.1167/15.6.4
10.1016/j.cub.2018.11.052
10.1371/journal.pone.0218771
10.1109/TBME.2021.3110440
10.1109/TNSRE.2020.3038718
10.1080/2326263X.2014.944469
10.3390/s21165308
10.1016/S1388-2457(99)00194-7
10.1007/s00521-019-04567-1
10.1088/1741-2552/ab6a67
10.1109/TNSRE.2021.3132162
10.1142/S0129065714500130
10.1088/1741-2552/aba162
10.1109/TBME.2006.886577
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.jneumeth.2022.109674
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
ExternalDocumentID 10_1016_j_jneumeth_2022_109674
S0165027022002011
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
RIG
SEW
SNS
SSH
WUQ
X7M
ZGI
7X8
ID FETCH-LOGICAL-c345t-9fba8d3645d2bb541358fa8489312bfa52a6c998bf31ea3f54d0ede99b7c5f603
IEDL.DBID .~1
ISSN 0165-0270
1872-678X
IngestDate Fri Jul 11 00:30:15 EDT 2025
Tue Jul 01 02:57:16 EDT 2025
Thu Apr 24 23:06:24 EDT 2025
Fri Feb 23 02:40:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Brain-computer interface
SSVEP
Learning across multi-stimulus
Feature fusion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-9fba8d3645d2bb541358fa8489312bfa52a6c998bf31ea3f54d0ede99b7c5f603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2691051454
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2691051454
crossref_citationtrail_10_1016_j_jneumeth_2022_109674
crossref_primary_10_1016_j_jneumeth_2022_109674
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2022_109674
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of neuroscience methods
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, Wang, Gao, Jung, Gao (bib6) 2015; 12
Zheng, Song, Liu, Song, Yue (bib33) 2020; 32
Na, Hu, Sun, Wang, Zhang, Han, Yin, Zhang, Chen, Zheng (bib16) 2021; 116
Saha, Mamun, Ahmed, Mostafa, Naik, Darvishi, Khandoker, Baumert (bib24) 2021; 15
Nakanishi, Wang, Chen, Wang, Gao, Jung (bib18) 2017; 65
Zhang, Zhou, Jin, Wang, Cichocki (bib30) 2014; 24
Norcia, Appelbaum, Ales, Cottereau, Rossion (bib22) 2015; 15
Chen, Chen, Gao, Gao (bib5) 2014; 1
Mane, Chouhan, Guan (bib15) 2020; 17
Nguyen, Liang, Lee, Chang, Muggleton, Yeh, Huang, Juan (bib19) 2019; 9
Wang, Liu, Qi, Deng, Li (bib25) 2020
Nakanishi, Wang, Wang, Jung (bib17) 2015; 10
NikAznan, Atapour-Abarghouei, Bonner, Connolly, AlMoubayed, Breckon (bib20) 2019
Chiuzbaian, Jakobsen, Puthusserypady (bib7) 2019
Li, Xiang, Kesavadas (bib13) 2020; 28
Ravi, Beni, Manuel, Jiang (bib23) 2020; 17
Zhao, Liu, Ma, Liu, Chen, Xie, Ai (bib32) 2022; 72
Waytowich, Lawhern, Garcia, Cummings, Faller, Sajda, Vettel (bib27) 2018; 15
Biasiucci, Franceschiello, Murray (bib1) 2019; 29
Chang, Huang (bib4) 2022; 71
Bock, Weiß (bib2) 2019
Wu, Yang, Zhu, Liu, Guo, Jiang, Li (bib29) 2021; 8
Ding, Shan, Fang, Wang, Sun, Li (bib8) 2021; 29
Guney, Oblokulov, Ozkan (bib9) 2022
Zhao, Zhang, Wang, Alturki (bib31) 2021
laCruz-Guevara, Rodrigo, Alfonso-Morales, Caicedo-Bravo (bib12) 2021; 21
Burkitt, Silberstein, Cadusch, Wood (bib3) 2000; 111
Niu, Zhong, Yu (bib21) 2021; 452
Wong, Wan, Wang, Wang, Nan, Lao, Mak, Vai, Rosa (bib28) 2020; 17
Wang, Hersche, Tömekce, Kaya, Magno, Benini (bib26) 2020
Ibanez-Soria, Soria-Frisch, Garcia-Ojalvo, Ruffini (bib10) 2019; 14
Ishizuka, Kobayashi, Saito (bib11) 2020; 32
Lin, Zhang, Wu, Gao (bib14) 2006; 53
laCruz-Guevara (10.1016/j.jneumeth.2022.109674_bib12) 2021; 21
Nakanishi (10.1016/j.jneumeth.2022.109674_bib17) 2015; 10
Nguyen (10.1016/j.jneumeth.2022.109674_bib19) 2019; 9
NikAznan (10.1016/j.jneumeth.2022.109674_bib20) 2019
Mane (10.1016/j.jneumeth.2022.109674_bib15) 2020; 17
Wang (10.1016/j.jneumeth.2022.109674_bib26) 2020
Wu (10.1016/j.jneumeth.2022.109674_bib29) 2021; 8
Ishizuka (10.1016/j.jneumeth.2022.109674_bib11) 2020; 32
Lin (10.1016/j.jneumeth.2022.109674_bib14) 2006; 53
Niu (10.1016/j.jneumeth.2022.109674_bib21) 2021; 452
Norcia (10.1016/j.jneumeth.2022.109674_bib22) 2015; 15
Chang (10.1016/j.jneumeth.2022.109674_bib4) 2022; 71
Ding (10.1016/j.jneumeth.2022.109674_bib8) 2021; 29
Zhao (10.1016/j.jneumeth.2022.109674_bib31) 2021
Ravi (10.1016/j.jneumeth.2022.109674_bib23) 2020; 17
Ibanez-Soria (10.1016/j.jneumeth.2022.109674_bib10) 2019; 14
Chiuzbaian (10.1016/j.jneumeth.2022.109674_bib7) 2019
Li (10.1016/j.jneumeth.2022.109674_bib13) 2020; 28
Zhang (10.1016/j.jneumeth.2022.109674_bib30) 2014; 24
Burkitt (10.1016/j.jneumeth.2022.109674_bib3) 2000; 111
Zhao (10.1016/j.jneumeth.2022.109674_bib32) 2022; 72
Guney (10.1016/j.jneumeth.2022.109674_bib9) 2022
Nakanishi (10.1016/j.jneumeth.2022.109674_bib18) 2017; 65
Bock (10.1016/j.jneumeth.2022.109674_bib2) 2019
Saha (10.1016/j.jneumeth.2022.109674_bib24) 2021; 15
Biasiucci (10.1016/j.jneumeth.2022.109674_bib1) 2019; 29
Waytowich (10.1016/j.jneumeth.2022.109674_bib27) 2018; 15
Chen (10.1016/j.jneumeth.2022.109674_bib6) 2015; 12
Chen (10.1016/j.jneumeth.2022.109674_bib5) 2014; 1
Na (10.1016/j.jneumeth.2022.109674_bib16) 2021; 116
Wang (10.1016/j.jneumeth.2022.109674_bib25) 2020
Zheng (10.1016/j.jneumeth.2022.109674_bib33) 2020; 32
Wong (10.1016/j.jneumeth.2022.109674_bib28) 2020; 17
References_xml – volume: 8
  year: 2021
  ident: bib29
  article-title: Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human-machine interfaces
  publication-title: Adv. Sci.
– start-page: 1
  year: 2021
  end-page: 13
  ident: bib31
  article-title: An improved deep learning mechanism for EEG recognition in sports health informatics
  publication-title: Neural Comput. Appl.
– volume: 12
  year: 2015
  ident: bib6
  article-title: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface
  publication-title: J. Neural Eng.
– volume: 53
  start-page: 2610
  year: 2006
  end-page: 2614
  ident: bib14
  article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 71
  year: 2022
  ident: bib4
  article-title: Novel method of multi-frequency flicker to stimulate SSVEP and frequency recognition
  publication-title: Biomed. Signal Process. Control
– volume: 15
  year: 2015
  ident: bib22
  article-title: The steady-state visual evoked potential in vision research: a review
  publication-title: J. Vis.
– volume: 14
  year: 2019
  ident: bib10
  article-title: Characterization of the non-stationary nature of steady-state visual evoked potentials using echo state networks
  publication-title: PloS One
– volume: 28
  start-page: 2681
  year: 2020
  end-page: 2690
  ident: bib13
  article-title: Convolutional correlation analysis for enhancing the performance of SSVEP-based brain-computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 15
  start-page: 4
  year: 2021
  ident: bib24
  article-title: Progress in brain computer interface: challenges and potentials
  publication-title: Front. Syst. Neurosci.
– start-page: 33
  year: 2020
  end-page: 40
  ident: bib25
  article-title: EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network
  publication-title: Int. Conf. Cogn. Syst. Signal Process.
– start-page: 1
  year: 2019
  end-page: 5
  ident: bib7
  article-title: Mind controlled drone: an innovative multiclass SSVEP based brain computer interface
  publication-title: 2019 7th Int. Winter Conf. Brain Comput. Interface (BCI)
– volume: 452
  start-page: 48
  year: 2021
  end-page: 62
  ident: bib21
  article-title: A review on the attention mechanism of deep learning
  publication-title: Neurocomputing
– volume: 17
  year: 2020
  ident: bib23
  article-title: Comparing user-dependent and user-independent training of CNN for SSVEP BCI
  publication-title: J. Neural Eng.
– year: 2022
  ident: bib9
  article-title: A deep neural network for ssvep-based brain-computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 10
  year: 2015
  ident: bib17
  article-title: A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials
  publication-title: PloS One
– volume: 17
  year: 2020
  ident: bib15
  article-title: BCI for stroke rehabilitation: motor and beyond
  publication-title: J. Neural Eng.
– volume: 111
  start-page: 246
  year: 2000
  end-page: 258
  ident: bib3
  article-title: Steady-state visual evoked potentials and travelling waves
  publication-title: Clin. Neurophysiol.
– volume: 21
  start-page: 5308
  year: 2021
  ident: bib12
  article-title: Solving the ssvep paradigm using the nonlinear canonical correlation analysis approach
  publication-title: Sensors
– start-page: 1
  year: 2019
  end-page: 8
  ident: bib20
  article-title: Simulating brain signals: Creating synthetic EEG data via neural-based generative models for improved ssvep classification
  publication-title: 2019 Int. Jt. Conf. Neural Netw. (IJCNN)
– volume: 17
  year: 2020
  ident: bib28
  article-title: Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs
  publication-title: J. Neural Eng.
– start-page: 1
  year: 2019
  end-page: 8
  ident: bib2
  article-title: A proof of local convergence for the Adam optimizer
  publication-title: 2019 Int. Jt. Conf. Neural Netw. (IJCNN)
– volume: 65
  start-page: 104
  year: 2017
  end-page: 112
  ident: bib18
  article-title: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis
– volume: 29
  start-page: R80
  year: 2019
  end-page: R85
  ident: bib1
  article-title: Electroencephalography
  publication-title: Curr. Biol.
– volume: 15
  year: 2018
  ident: bib27
  article-title: Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials
  publication-title: J. Neural Eng.
– volume: 116
  year: 2021
  ident: bib16
  article-title: An embedded lightweight SSVEP-BCI electric wheelchair with hybrid stimulator
  publication-title: Digit. Signal Process.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib19
  article-title: Unraveling nonlinear electrophysiologic processes in the human visual system with full dimension spectral analysis
  publication-title: Sci. Rep.
– volume: 1
  start-page: 181
  year: 2014
  end-page: 191
  ident: bib5
  article-title: A high-itr SSVEP-based BCI speller
  publication-title: Brain Comput. Interfaces
– volume: 32
  start-page: 1869
  year: 2020
  end-page: 1877
  ident: bib33
  article-title: Research on motion pattern recognition of exoskeleton robot based on multimodal machine learning model
  publication-title: Neural Comput. Appl.
– volume: 72
  year: 2022
  ident: bib32
  article-title: Deep CNN model based on serial-parallel structure optimization for four-class motor imagery EEG classification, Biomedical
  publication-title: Signal Process. Control
– volume: 29
  start-page: 2615
  year: 2021
  end-page: 2624
  ident: bib8
  article-title: Filter bank convolutional neural network for short time-window steady-state visual evoked potential classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 1
  year: 2020
  end-page: 6
  ident: bib26
  article-title: An accurate EEGNet-based motor-imagery brain-computer interface for low-power edge computing
  publication-title: 2020 IEEE Int. Symp. . Med. Meas. Appl. (MeMeA)
– volume: 24
  year: 2014
  ident: bib30
  article-title: Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis
  publication-title: Int. J. Neural Syst.
– volume: 32
  start-page: 738
  year: 2020
  end-page: 744
  ident: bib11
  article-title: High accuracy and short delay 1ch-SSVEP quadcopter-BMI using deep learning
  publication-title: J. Robot. Mechatron.
– volume: 32
  start-page: 738
  issue: 4
  year: 2020
  ident: 10.1016/j.jneumeth.2022.109674_bib11
  article-title: High accuracy and short delay 1ch-SSVEP quadcopter-BMI using deep learning
  publication-title: J. Robot. Mechatron.
  doi: 10.20965/jrm.2020.p0738
– volume: 12
  issue: 4
  year: 2015
  ident: 10.1016/j.jneumeth.2022.109674_bib6
  article-title: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/4/046008
– start-page: 33
  year: 2020
  ident: 10.1016/j.jneumeth.2022.109674_bib25
  article-title: EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network
  publication-title: Int. Conf. Cogn. Syst. Signal Process.
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.jneumeth.2022.109674_bib19
  article-title: Unraveling nonlinear electrophysiologic processes in the human visual system with full dimension spectral analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-53286-z
– volume: 452
  start-page: 48
  year: 2021
  ident: 10.1016/j.jneumeth.2022.109674_bib21
  article-title: A review on the attention mechanism of deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
– volume: 15
  issue: 6
  year: 2018
  ident: 10.1016/j.jneumeth.2022.109674_bib27
  article-title: Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aae5d8
– start-page: 1
  year: 2019
  ident: 10.1016/j.jneumeth.2022.109674_bib7
  article-title: Mind controlled drone: an innovative multiclass SSVEP based brain computer interface
  publication-title: 2019 7th Int. Winter Conf. Brain Comput. Interface (BCI)
– volume: 65
  start-page: 104
  issue: 1
  year: 2017
  ident: 10.1016/j.jneumeth.2022.109674_bib18
  article-title: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis
– volume: 71
  year: 2022
  ident: 10.1016/j.jneumeth.2022.109674_bib4
  article-title: Novel method of multi-frequency flicker to stimulate SSVEP and frequency recognition
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103243
– volume: 116
  year: 2021
  ident: 10.1016/j.jneumeth.2022.109674_bib16
  article-title: An embedded lightweight SSVEP-BCI electric wheelchair with hybrid stimulator
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2021.103101
– volume: 15
  start-page: 4
  year: 2021
  ident: 10.1016/j.jneumeth.2022.109674_bib24
  article-title: Progress in brain computer interface: challenges and potentials
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2021.578875
– volume: 17
  issue: 1
  year: 2020
  ident: 10.1016/j.jneumeth.2022.109674_bib28
  article-title: Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab2373
– volume: 10
  issue: 10
  year: 2015
  ident: 10.1016/j.jneumeth.2022.109674_bib17
  article-title: A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials
  publication-title: PloS One
  doi: 10.1371/journal.pone.0140703
– volume: 15
  issue: 6
  year: 2015
  ident: 10.1016/j.jneumeth.2022.109674_bib22
  article-title: The steady-state visual evoked potential in vision research: a review
  publication-title: J. Vis.
  doi: 10.1167/15.6.4
– volume: 29
  start-page: R80
  issue: 3
  year: 2019
  ident: 10.1016/j.jneumeth.2022.109674_bib1
  article-title: Electroencephalography
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.11.052
– start-page: 1
  year: 2021
  ident: 10.1016/j.jneumeth.2022.109674_bib31
  article-title: An improved deep learning mechanism for EEG recognition in sports health informatics
  publication-title: Neural Comput. Appl.
– start-page: 1
  year: 2019
  ident: 10.1016/j.jneumeth.2022.109674_bib2
  article-title: A proof of local convergence for the Adam optimizer
  publication-title: 2019 Int. Jt. Conf. Neural Netw. (IJCNN)
– volume: 14
  issue: 7
  year: 2019
  ident: 10.1016/j.jneumeth.2022.109674_bib10
  article-title: Characterization of the non-stationary nature of steady-state visual evoked potentials using echo state networks
  publication-title: PloS One
  doi: 10.1371/journal.pone.0218771
– year: 2022
  ident: 10.1016/j.jneumeth.2022.109674_bib9
  article-title: A deep neural network for ssvep-based brain-computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2021.3110440
– volume: 28
  start-page: 2681
  issue: 12
  year: 2020
  ident: 10.1016/j.jneumeth.2022.109674_bib13
  article-title: Convolutional correlation analysis for enhancing the performance of SSVEP-based brain-computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.3038718
– volume: 1
  start-page: 181
  issue: 3–4
  year: 2014
  ident: 10.1016/j.jneumeth.2022.109674_bib5
  article-title: A high-itr SSVEP-based BCI speller
  publication-title: Brain Comput. Interfaces
  doi: 10.1080/2326263X.2014.944469
– volume: 21
  start-page: 5308
  issue: 16
  year: 2021
  ident: 10.1016/j.jneumeth.2022.109674_bib12
  article-title: Solving the ssvep paradigm using the nonlinear canonical correlation analysis approach
  publication-title: Sensors
  doi: 10.3390/s21165308
– volume: 111
  start-page: 246
  issue: 2
  year: 2000
  ident: 10.1016/j.jneumeth.2022.109674_bib3
  article-title: Steady-state visual evoked potentials and travelling waves
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(99)00194-7
– volume: 32
  start-page: 1869
  issue: 7
  year: 2020
  ident: 10.1016/j.jneumeth.2022.109674_bib33
  article-title: Research on motion pattern recognition of exoskeleton robot based on multimodal machine learning model
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04567-1
– volume: 17
  issue: 2
  year: 2020
  ident: 10.1016/j.jneumeth.2022.109674_bib23
  article-title: Comparing user-dependent and user-independent training of CNN for SSVEP BCI
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab6a67
– volume: 29
  start-page: 2615
  year: 2021
  ident: 10.1016/j.jneumeth.2022.109674_bib8
  article-title: Filter bank convolutional neural network for short time-window steady-state visual evoked potential classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3132162
– start-page: 1
  year: 2020
  ident: 10.1016/j.jneumeth.2022.109674_bib26
  article-title: An accurate EEGNet-based motor-imagery brain-computer interface for low-power edge computing
  publication-title: 2020 IEEE Int. Symp. . Med. Meas. Appl. (MeMeA)
– volume: 24
  issue: 04
  year: 2014
  ident: 10.1016/j.jneumeth.2022.109674_bib30
  article-title: Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065714500130
– volume: 17
  issue: 4
  year: 2020
  ident: 10.1016/j.jneumeth.2022.109674_bib15
  article-title: BCI for stroke rehabilitation: motor and beyond
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aba162
– start-page: 1
  year: 2019
  ident: 10.1016/j.jneumeth.2022.109674_bib20
  article-title: Simulating brain signals: Creating synthetic EEG data via neural-based generative models for improved ssvep classification
  publication-title: 2019 Int. Jt. Conf. Neural Netw. (IJCNN)
– volume: 53
  start-page: 2610
  issue: 12
  year: 2006
  ident: 10.1016/j.jneumeth.2022.109674_bib14
  article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.886577
– volume: 8
  issue: 2
  year: 2021
  ident: 10.1016/j.jneumeth.2022.109674_bib29
  article-title: Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human-machine interfaces
  publication-title: Adv. Sci.
– volume: 72
  year: 2022
  ident: 10.1016/j.jneumeth.2022.109674_bib32
  article-title: Deep CNN model based on serial-parallel structure optimization for four-class motor imagery EEG classification, Biomedical
  publication-title: Signal Process. Control
SSID ssj0004906
Score 2.4702122
Snippet Steady-state visual evoked potential (SSVEP) is a prevalent paradigm of brain-computer interface (BCI). Recently, deep neural networks (DNNs) have been...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109674
SubjectTerms Brain-computer interface
Feature fusion
Learning across multi-stimulus
SSVEP
Title FB-EEGNet: A fusion neural network across multi-stimulus for SSVEP target detection
URI https://dx.doi.org/10.1016/j.jneumeth.2022.109674
https://www.proquest.com/docview/2691051454
Volume 379
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqIiEuCFIQ5REZCfXm7taxvTG3ECWEVo2QllS9WfauLTWCTUR2D1z47cx4d0uLVOXAbR-2ZY3teXi-mSHkg5VOlVIXzHstmBCBM50VnlktveKgb8iY1OdyqRYrcX4trw_ItI-FQVhlx_tbnh65dfcl6aiZbG9ukhwDcVIMp0KcQRrje4XIcJef_v4L8xA61tfExuivTO9ECa9P15VvsFIz2ImcY2YllYmHBNQ_rDrKn_kz8rRTHOmkndtzcuCrATmaVGA0__hFT2iEcsY78gF5fNl5zI9IPv_EZrPPS19_pBMaGrwco5jEEsaqWgg4tXEmNGILGRx5eGh2FLRZmudXs6-0RYvT0tcRt1W9IKv57Nt0wbpCCqwYCVkzHZwdl-hwLLlzEuSWHAc7xrwzZ9wFK7lVBdhdLozOvB0FKcrUl15rlxUyqHT0khxWm8q_IhQMECGl9_AjhVbBpplSpRU8c2lwBT8msqeeKbos41js4rvp4WRr01PdINVNS_Vjktz227Z5Nvb20P3imHs7xoAw2Nv3fb-aBo4T-khs5TfNznAF-hMokVK8_o_x35An-NZi0d6Sw_pn49-B8lK7YdydQ_Jo8uVisfwDkB_umA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6hRWp7QRRaldKHK1W9uRu8trPmtkW7XQq7qrRQcbPsxJZY0YAgOfDvO-MkfUkVh96i-CFrbM_D880MwHunvC6VKXgIRnIpo-AmLwJ3RgUtUN9QKanPYqnn5_LLhbrYgKM-FoZglR3vb3l64tbdn2FHzeHN5eVwRYE4GYVTEc4go_jeTcpOpQawOTk-mS9_hUeaVGKT-pPLMvstUHj9cV2Fhoo1o6koBCVX0rn8l4z6i1snETTbhq1Od2STdnlPYSNUO7A7qdBu_n7PPrCE5kzP5DvwaNE5zXdhNfvEp9PPy1AfsgmLDb2PMcpjiXNVLQqcubQSluCFHG89fjR3DBVatlp9m35lLWCclaFO0K3qGZzPpmdHc97VUuDFSKqam-jduCSfYym8Vyi61Di6MaWeORA-OiWcLtD08nF0ENwoKllmoQzG-LxQUWej5zCorqvwAhjaIFKpELAhw17RZbnWpZMi91n0hdgD1VPPFl2icap3cWV7RNna9lS3RHXbUn0Phj_H3bSpNh4cYfrNsX8cGovy4MGx7_rdtHijyE3iqnDd3FmhUYVCPVLJl_8x_1t4PD9bnNrT4-XJPjyhlhaa9goG9W0TXqMuU_s33Vn9Ab838Uk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FB-EEGNet%3A+A+fusion+neural+network+across+multi-stimulus+for+SSVEP+target+detection&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Yao%2C+Huiming&rft.au=Liu%2C+Ke&rft.au=Deng%2C+Xin&rft.au=Tang%2C+Xianlun&rft.date=2022-09-01&rft.issn=1872-678X&rft.eissn=1872-678X&rft.volume=379&rft.spage=109674&rft_id=info:doi/10.1016%2Fj.jneumeth.2022.109674&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon