FB-EEGNet: A fusion neural network across multi-stimulus for SSVEP target detection
Steady-state visual evoked potential (SSVEP) is a prevalent paradigm of brain-computer interface (BCI). Recently, deep neural networks (DNNs) have been employed for SSVEP target recognition. However, current DNN models can not fully extract information from SSVEP harmonic components, and ignore the...
Saved in:
Published in | Journal of neuroscience methods Vol. 379; p. 109674 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Steady-state visual evoked potential (SSVEP) is a prevalent paradigm of brain-computer interface (BCI). Recently, deep neural networks (DNNs) have been employed for SSVEP target recognition. However, current DNN models can not fully extract information from SSVEP harmonic components, and ignore the influence of non-target stimuli.
To employ information of multiple sub-bands and non-target stimulus data, we propose a DNN model for SSVEP target detection, i.e., FB-EEGNet, which fuses features of multiple neural networks. Additionally, we design a multi-label for each sample and optimize the parameters of FB-EEGNet across multi-stimulus to incorporate the information from non-target stimuli.
Under the subject-specific condition, FB-EEGNet achieves the average classification accuracies (information transfer rate (ITR)) of 76.75 % (50.70 bits/min) and 89.14 % (70.45 bits/min) in a time widow of 0.7 s under the public 12-target dataset and our experimental 9-target dataset, respectively. Under the cross-subject condition, FB-EEGNet achieved mean accuracies (ITRs) of 81.72 % (67.99 bits/min) and 92.15 % (76.12 bits/min) on the public and experimental datasets in a time window of 1 s, respectively.
FB-EEGNet shows superior performance than CCNN, EEGNet, CCA and FBCCA both for subject-dependent and subject-independent SSVEP target recognition.
FB-EEGNet can effectively extract information from multiple sub-bands and cross-stimulus targets, providing a promising way for extracting deep features in SSVEP using neural networks.
•Fusing features from multiple sub-bands in deep neural network improves the SSVEP recognition performance.•Multi-label encoding can handle the influence of non-target stimuli, and enhance SSVEP frequency detection performance.•Two-stage DNN training strategy is employed to extract non-linear information under a small dataset. |
---|---|
AbstractList | Steady-state visual evoked potential (SSVEP) is a prevalent paradigm of brain-computer interface (BCI). Recently, deep neural networks (DNNs) have been employed for SSVEP target recognition. However, current DNN models can not fully extract information from SSVEP harmonic components, and ignore the influence of non-target stimuli.BACKGROUNDSteady-state visual evoked potential (SSVEP) is a prevalent paradigm of brain-computer interface (BCI). Recently, deep neural networks (DNNs) have been employed for SSVEP target recognition. However, current DNN models can not fully extract information from SSVEP harmonic components, and ignore the influence of non-target stimuli.To employ information of multiple sub-bands and non-target stimulus data, we propose a DNN model for SSVEP target detection, i.e., FB-EEGNet, which fuses features of multiple neural networks. Additionally, we design a multi-label for each sample and optimize the parameters of FB-EEGNet across multi-stimulus to incorporate the information from non-target stimuli.NEW METHODTo employ information of multiple sub-bands and non-target stimulus data, we propose a DNN model for SSVEP target detection, i.e., FB-EEGNet, which fuses features of multiple neural networks. Additionally, we design a multi-label for each sample and optimize the parameters of FB-EEGNet across multi-stimulus to incorporate the information from non-target stimuli.Under the subject-specific condition, FB-EEGNet achieves the average classification accuracies (information transfer rate (ITR)) of 76.75 % (50.70 bits/min) and 89.14 % (70.45 bits/min) in a time widow of 0.7 s under the public 12-target dataset and our experimental 9-target dataset, respectively. Under the cross-subject condition, FB-EEGNet achieved mean accuracies (ITRs) of 81.72 % (67.99 bits/min) and 92.15 % (76.12 bits/min) on the public and experimental datasets in a time window of 1 s, respectively.RESULTSUnder the subject-specific condition, FB-EEGNet achieves the average classification accuracies (information transfer rate (ITR)) of 76.75 % (50.70 bits/min) and 89.14 % (70.45 bits/min) in a time widow of 0.7 s under the public 12-target dataset and our experimental 9-target dataset, respectively. Under the cross-subject condition, FB-EEGNet achieved mean accuracies (ITRs) of 81.72 % (67.99 bits/min) and 92.15 % (76.12 bits/min) on the public and experimental datasets in a time window of 1 s, respectively.FB-EEGNet shows superior performance than CCNN, EEGNet, CCA and FBCCA both for subject-dependent and subject-independent SSVEP target recognition.COMPARISON WITH EXISTING METHODSFB-EEGNet shows superior performance than CCNN, EEGNet, CCA and FBCCA both for subject-dependent and subject-independent SSVEP target recognition.FB-EEGNet can effectively extract information from multiple sub-bands and cross-stimulus targets, providing a promising way for extracting deep features in SSVEP using neural networks.CONCLUSIONFB-EEGNet can effectively extract information from multiple sub-bands and cross-stimulus targets, providing a promising way for extracting deep features in SSVEP using neural networks. Steady-state visual evoked potential (SSVEP) is a prevalent paradigm of brain-computer interface (BCI). Recently, deep neural networks (DNNs) have been employed for SSVEP target recognition. However, current DNN models can not fully extract information from SSVEP harmonic components, and ignore the influence of non-target stimuli. To employ information of multiple sub-bands and non-target stimulus data, we propose a DNN model for SSVEP target detection, i.e., FB-EEGNet, which fuses features of multiple neural networks. Additionally, we design a multi-label for each sample and optimize the parameters of FB-EEGNet across multi-stimulus to incorporate the information from non-target stimuli. Under the subject-specific condition, FB-EEGNet achieves the average classification accuracies (information transfer rate (ITR)) of 76.75 % (50.70 bits/min) and 89.14 % (70.45 bits/min) in a time widow of 0.7 s under the public 12-target dataset and our experimental 9-target dataset, respectively. Under the cross-subject condition, FB-EEGNet achieved mean accuracies (ITRs) of 81.72 % (67.99 bits/min) and 92.15 % (76.12 bits/min) on the public and experimental datasets in a time window of 1 s, respectively. FB-EEGNet shows superior performance than CCNN, EEGNet, CCA and FBCCA both for subject-dependent and subject-independent SSVEP target recognition. FB-EEGNet can effectively extract information from multiple sub-bands and cross-stimulus targets, providing a promising way for extracting deep features in SSVEP using neural networks. •Fusing features from multiple sub-bands in deep neural network improves the SSVEP recognition performance.•Multi-label encoding can handle the influence of non-target stimuli, and enhance SSVEP frequency detection performance.•Two-stage DNN training strategy is employed to extract non-linear information under a small dataset. |
ArticleNumber | 109674 |
Author | Yao, Huiming Yu, Hong Liu, Ke Tang, Xianlun Deng, Xin |
Author_xml | – sequence: 1 givenname: Huiming surname: Yao fullname: Yao, Huiming organization: College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 2 givenname: Ke surname: Liu fullname: Liu, Ke email: liuke@cqupt.edu.cn organization: College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 3 givenname: Xin surname: Deng fullname: Deng, Xin organization: College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 4 givenname: Xianlun surname: Tang fullname: Tang, Xianlun organization: College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 5 givenname: Hong surname: Yu fullname: Yu, Hong organization: College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China |
BookMark | eNqFkMFOGzEURS0UJELoLyAvu5lge2zPuOqiFCWAhAApbdWd5fE8U6eTGbA9IP6-DqEbNlk96-meq-dzjCb90ANCp5TMKaHybD1f9zBuIP2ZM8JYXipZ8QM0pXXFClnVvydomoOiIKwiR-g4xjUhhCsip2i1_F4sFpe3kL7gc-zG6Ice57pgujzSyxD-YmPDECPejF3yRUw-P8aI3RDwavVrcY-TCQ-QcAsJbMr8CTp0povw6X3O0M_l4sfFVXFzd3l9cX5T2JKLVCjXmLotJRctaxrBaSlqZ2peq5KyxhnBjLRK1Y0rKZjSCd4SaEGpprLCSVLO0Odd72MYnkaISW98tNB1podhjJpJRYmgXPAc_bqLvn0lgNPWJ7M9NgXjO02J3rrUa_3fpd661DuXGZcf8MfgNya87ge_7UDIHp49BB2th95C60OWpdvB76v4B22DlQw |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_109097 crossref_primary_10_1080_27706710_2023_2181102 crossref_primary_10_3390_app132413350 crossref_primary_10_1088_2057_1976_ad2e36 crossref_primary_10_1016_j_bspc_2023_105931 crossref_primary_10_1016_j_bspc_2024_107404 crossref_primary_10_3390_bioengineering11060613 crossref_primary_10_1038_s41598_024_84534_6 crossref_primary_10_1007_s42452_024_05816_2 crossref_primary_10_3390_electronics12122743 crossref_primary_10_1016_j_neunet_2023_04_045 crossref_primary_10_1080_27706710_2024_2418650 crossref_primary_10_1016_j_neunet_2024_106847 crossref_primary_10_3389_fnins_2023_1160040 crossref_primary_10_3390_brainsci13050780 crossref_primary_10_1016_j_jneumeth_2023_109806 crossref_primary_10_1016_j_medntd_2023_100213 crossref_primary_10_3390_brainsci13030483 |
Cites_doi | 10.20965/jrm.2020.p0738 10.1088/1741-2560/12/4/046008 10.1038/s41598-019-53286-z 10.1016/j.neucom.2021.03.091 10.1088/1741-2552/aae5d8 10.1016/j.bspc.2021.103243 10.1016/j.dsp.2021.103101 10.3389/fnsys.2021.578875 10.1088/1741-2552/ab2373 10.1371/journal.pone.0140703 10.1167/15.6.4 10.1016/j.cub.2018.11.052 10.1371/journal.pone.0218771 10.1109/TBME.2021.3110440 10.1109/TNSRE.2020.3038718 10.1080/2326263X.2014.944469 10.3390/s21165308 10.1016/S1388-2457(99)00194-7 10.1007/s00521-019-04567-1 10.1088/1741-2552/ab6a67 10.1109/TNSRE.2021.3132162 10.1142/S0129065714500130 10.1088/1741-2552/aba162 10.1109/TBME.2006.886577 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.jneumeth.2022.109674 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
ExternalDocumentID | 10_1016_j_jneumeth_2022_109674 S0165027022002011 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- RIG SEW SNS SSH WUQ X7M ZGI 7X8 |
ID | FETCH-LOGICAL-c345t-9fba8d3645d2bb541358fa8489312bfa52a6c998bf31ea3f54d0ede99b7c5f603 |
IEDL.DBID | .~1 |
ISSN | 0165-0270 1872-678X |
IngestDate | Fri Jul 11 00:30:15 EDT 2025 Tue Jul 01 02:57:16 EDT 2025 Thu Apr 24 23:06:24 EDT 2025 Fri Feb 23 02:40:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Brain-computer interface SSVEP Learning across multi-stimulus Feature fusion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-9fba8d3645d2bb541358fa8489312bfa52a6c998bf31ea3f54d0ede99b7c5f603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2691051454 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2691051454 crossref_citationtrail_10_1016_j_jneumeth_2022_109674 crossref_primary_10_1016_j_jneumeth_2022_109674 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2022_109674 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 2022-09-00 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of neuroscience methods |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chen, Wang, Gao, Jung, Gao (bib6) 2015; 12 Zheng, Song, Liu, Song, Yue (bib33) 2020; 32 Na, Hu, Sun, Wang, Zhang, Han, Yin, Zhang, Chen, Zheng (bib16) 2021; 116 Saha, Mamun, Ahmed, Mostafa, Naik, Darvishi, Khandoker, Baumert (bib24) 2021; 15 Nakanishi, Wang, Chen, Wang, Gao, Jung (bib18) 2017; 65 Zhang, Zhou, Jin, Wang, Cichocki (bib30) 2014; 24 Norcia, Appelbaum, Ales, Cottereau, Rossion (bib22) 2015; 15 Chen, Chen, Gao, Gao (bib5) 2014; 1 Mane, Chouhan, Guan (bib15) 2020; 17 Nguyen, Liang, Lee, Chang, Muggleton, Yeh, Huang, Juan (bib19) 2019; 9 Wang, Liu, Qi, Deng, Li (bib25) 2020 Nakanishi, Wang, Wang, Jung (bib17) 2015; 10 NikAznan, Atapour-Abarghouei, Bonner, Connolly, AlMoubayed, Breckon (bib20) 2019 Chiuzbaian, Jakobsen, Puthusserypady (bib7) 2019 Li, Xiang, Kesavadas (bib13) 2020; 28 Ravi, Beni, Manuel, Jiang (bib23) 2020; 17 Zhao, Liu, Ma, Liu, Chen, Xie, Ai (bib32) 2022; 72 Waytowich, Lawhern, Garcia, Cummings, Faller, Sajda, Vettel (bib27) 2018; 15 Biasiucci, Franceschiello, Murray (bib1) 2019; 29 Chang, Huang (bib4) 2022; 71 Bock, Weiß (bib2) 2019 Wu, Yang, Zhu, Liu, Guo, Jiang, Li (bib29) 2021; 8 Ding, Shan, Fang, Wang, Sun, Li (bib8) 2021; 29 Guney, Oblokulov, Ozkan (bib9) 2022 Zhao, Zhang, Wang, Alturki (bib31) 2021 laCruz-Guevara, Rodrigo, Alfonso-Morales, Caicedo-Bravo (bib12) 2021; 21 Burkitt, Silberstein, Cadusch, Wood (bib3) 2000; 111 Niu, Zhong, Yu (bib21) 2021; 452 Wong, Wan, Wang, Wang, Nan, Lao, Mak, Vai, Rosa (bib28) 2020; 17 Wang, Hersche, Tömekce, Kaya, Magno, Benini (bib26) 2020 Ibanez-Soria, Soria-Frisch, Garcia-Ojalvo, Ruffini (bib10) 2019; 14 Ishizuka, Kobayashi, Saito (bib11) 2020; 32 Lin, Zhang, Wu, Gao (bib14) 2006; 53 laCruz-Guevara (10.1016/j.jneumeth.2022.109674_bib12) 2021; 21 Nakanishi (10.1016/j.jneumeth.2022.109674_bib17) 2015; 10 Nguyen (10.1016/j.jneumeth.2022.109674_bib19) 2019; 9 NikAznan (10.1016/j.jneumeth.2022.109674_bib20) 2019 Mane (10.1016/j.jneumeth.2022.109674_bib15) 2020; 17 Wang (10.1016/j.jneumeth.2022.109674_bib26) 2020 Wu (10.1016/j.jneumeth.2022.109674_bib29) 2021; 8 Ishizuka (10.1016/j.jneumeth.2022.109674_bib11) 2020; 32 Lin (10.1016/j.jneumeth.2022.109674_bib14) 2006; 53 Niu (10.1016/j.jneumeth.2022.109674_bib21) 2021; 452 Norcia (10.1016/j.jneumeth.2022.109674_bib22) 2015; 15 Chang (10.1016/j.jneumeth.2022.109674_bib4) 2022; 71 Ding (10.1016/j.jneumeth.2022.109674_bib8) 2021; 29 Zhao (10.1016/j.jneumeth.2022.109674_bib31) 2021 Ravi (10.1016/j.jneumeth.2022.109674_bib23) 2020; 17 Ibanez-Soria (10.1016/j.jneumeth.2022.109674_bib10) 2019; 14 Chiuzbaian (10.1016/j.jneumeth.2022.109674_bib7) 2019 Li (10.1016/j.jneumeth.2022.109674_bib13) 2020; 28 Zhang (10.1016/j.jneumeth.2022.109674_bib30) 2014; 24 Burkitt (10.1016/j.jneumeth.2022.109674_bib3) 2000; 111 Zhao (10.1016/j.jneumeth.2022.109674_bib32) 2022; 72 Guney (10.1016/j.jneumeth.2022.109674_bib9) 2022 Nakanishi (10.1016/j.jneumeth.2022.109674_bib18) 2017; 65 Bock (10.1016/j.jneumeth.2022.109674_bib2) 2019 Saha (10.1016/j.jneumeth.2022.109674_bib24) 2021; 15 Biasiucci (10.1016/j.jneumeth.2022.109674_bib1) 2019; 29 Waytowich (10.1016/j.jneumeth.2022.109674_bib27) 2018; 15 Chen (10.1016/j.jneumeth.2022.109674_bib6) 2015; 12 Chen (10.1016/j.jneumeth.2022.109674_bib5) 2014; 1 Na (10.1016/j.jneumeth.2022.109674_bib16) 2021; 116 Wang (10.1016/j.jneumeth.2022.109674_bib25) 2020 Zheng (10.1016/j.jneumeth.2022.109674_bib33) 2020; 32 Wong (10.1016/j.jneumeth.2022.109674_bib28) 2020; 17 |
References_xml | – volume: 8 year: 2021 ident: bib29 article-title: Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human-machine interfaces publication-title: Adv. Sci. – start-page: 1 year: 2021 end-page: 13 ident: bib31 article-title: An improved deep learning mechanism for EEG recognition in sports health informatics publication-title: Neural Comput. Appl. – volume: 12 year: 2015 ident: bib6 article-title: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface publication-title: J. Neural Eng. – volume: 53 start-page: 2610 year: 2006 end-page: 2614 ident: bib14 article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs publication-title: IEEE Trans. Biomed. Eng. – volume: 71 year: 2022 ident: bib4 article-title: Novel method of multi-frequency flicker to stimulate SSVEP and frequency recognition publication-title: Biomed. Signal Process. Control – volume: 15 year: 2015 ident: bib22 article-title: The steady-state visual evoked potential in vision research: a review publication-title: J. Vis. – volume: 14 year: 2019 ident: bib10 article-title: Characterization of the non-stationary nature of steady-state visual evoked potentials using echo state networks publication-title: PloS One – volume: 28 start-page: 2681 year: 2020 end-page: 2690 ident: bib13 article-title: Convolutional correlation analysis for enhancing the performance of SSVEP-based brain-computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 15 start-page: 4 year: 2021 ident: bib24 article-title: Progress in brain computer interface: challenges and potentials publication-title: Front. Syst. Neurosci. – start-page: 33 year: 2020 end-page: 40 ident: bib25 article-title: EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network publication-title: Int. Conf. Cogn. Syst. Signal Process. – start-page: 1 year: 2019 end-page: 5 ident: bib7 article-title: Mind controlled drone: an innovative multiclass SSVEP based brain computer interface publication-title: 2019 7th Int. Winter Conf. Brain Comput. Interface (BCI) – volume: 452 start-page: 48 year: 2021 end-page: 62 ident: bib21 article-title: A review on the attention mechanism of deep learning publication-title: Neurocomputing – volume: 17 year: 2020 ident: bib23 article-title: Comparing user-dependent and user-independent training of CNN for SSVEP BCI publication-title: J. Neural Eng. – year: 2022 ident: bib9 article-title: A deep neural network for ssvep-based brain-computer interfaces publication-title: IEEE Trans. Biomed. Eng. – volume: 10 year: 2015 ident: bib17 article-title: A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials publication-title: PloS One – volume: 17 year: 2020 ident: bib15 article-title: BCI for stroke rehabilitation: motor and beyond publication-title: J. Neural Eng. – volume: 111 start-page: 246 year: 2000 end-page: 258 ident: bib3 article-title: Steady-state visual evoked potentials and travelling waves publication-title: Clin. Neurophysiol. – volume: 21 start-page: 5308 year: 2021 ident: bib12 article-title: Solving the ssvep paradigm using the nonlinear canonical correlation analysis approach publication-title: Sensors – start-page: 1 year: 2019 end-page: 8 ident: bib20 article-title: Simulating brain signals: Creating synthetic EEG data via neural-based generative models for improved ssvep classification publication-title: 2019 Int. Jt. Conf. Neural Netw. (IJCNN) – volume: 17 year: 2020 ident: bib28 article-title: Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs publication-title: J. Neural Eng. – start-page: 1 year: 2019 end-page: 8 ident: bib2 article-title: A proof of local convergence for the Adam optimizer publication-title: 2019 Int. Jt. Conf. Neural Netw. (IJCNN) – volume: 65 start-page: 104 year: 2017 end-page: 112 ident: bib18 article-title: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis – volume: 29 start-page: R80 year: 2019 end-page: R85 ident: bib1 article-title: Electroencephalography publication-title: Curr. Biol. – volume: 15 year: 2018 ident: bib27 article-title: Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials publication-title: J. Neural Eng. – volume: 116 year: 2021 ident: bib16 article-title: An embedded lightweight SSVEP-BCI electric wheelchair with hybrid stimulator publication-title: Digit. Signal Process. – volume: 9 start-page: 1 year: 2019 end-page: 13 ident: bib19 article-title: Unraveling nonlinear electrophysiologic processes in the human visual system with full dimension spectral analysis publication-title: Sci. Rep. – volume: 1 start-page: 181 year: 2014 end-page: 191 ident: bib5 article-title: A high-itr SSVEP-based BCI speller publication-title: Brain Comput. Interfaces – volume: 32 start-page: 1869 year: 2020 end-page: 1877 ident: bib33 article-title: Research on motion pattern recognition of exoskeleton robot based on multimodal machine learning model publication-title: Neural Comput. Appl. – volume: 72 year: 2022 ident: bib32 article-title: Deep CNN model based on serial-parallel structure optimization for four-class motor imagery EEG classification, Biomedical publication-title: Signal Process. Control – volume: 29 start-page: 2615 year: 2021 end-page: 2624 ident: bib8 article-title: Filter bank convolutional neural network for short time-window steady-state visual evoked potential classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – start-page: 1 year: 2020 end-page: 6 ident: bib26 article-title: An accurate EEGNet-based motor-imagery brain-computer interface for low-power edge computing publication-title: 2020 IEEE Int. Symp. . Med. Meas. Appl. (MeMeA) – volume: 24 year: 2014 ident: bib30 article-title: Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis publication-title: Int. J. Neural Syst. – volume: 32 start-page: 738 year: 2020 end-page: 744 ident: bib11 article-title: High accuracy and short delay 1ch-SSVEP quadcopter-BMI using deep learning publication-title: J. Robot. Mechatron. – volume: 32 start-page: 738 issue: 4 year: 2020 ident: 10.1016/j.jneumeth.2022.109674_bib11 article-title: High accuracy and short delay 1ch-SSVEP quadcopter-BMI using deep learning publication-title: J. Robot. Mechatron. doi: 10.20965/jrm.2020.p0738 – volume: 12 issue: 4 year: 2015 ident: 10.1016/j.jneumeth.2022.109674_bib6 article-title: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/4/046008 – start-page: 33 year: 2020 ident: 10.1016/j.jneumeth.2022.109674_bib25 article-title: EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network publication-title: Int. Conf. Cogn. Syst. Signal Process. – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.jneumeth.2022.109674_bib19 article-title: Unraveling nonlinear electrophysiologic processes in the human visual system with full dimension spectral analysis publication-title: Sci. Rep. doi: 10.1038/s41598-019-53286-z – volume: 452 start-page: 48 year: 2021 ident: 10.1016/j.jneumeth.2022.109674_bib21 article-title: A review on the attention mechanism of deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.091 – volume: 15 issue: 6 year: 2018 ident: 10.1016/j.jneumeth.2022.109674_bib27 article-title: Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aae5d8 – start-page: 1 year: 2019 ident: 10.1016/j.jneumeth.2022.109674_bib7 article-title: Mind controlled drone: an innovative multiclass SSVEP based brain computer interface publication-title: 2019 7th Int. Winter Conf. Brain Comput. Interface (BCI) – volume: 65 start-page: 104 issue: 1 year: 2017 ident: 10.1016/j.jneumeth.2022.109674_bib18 article-title: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis – volume: 71 year: 2022 ident: 10.1016/j.jneumeth.2022.109674_bib4 article-title: Novel method of multi-frequency flicker to stimulate SSVEP and frequency recognition publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103243 – volume: 116 year: 2021 ident: 10.1016/j.jneumeth.2022.109674_bib16 article-title: An embedded lightweight SSVEP-BCI electric wheelchair with hybrid stimulator publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2021.103101 – volume: 15 start-page: 4 year: 2021 ident: 10.1016/j.jneumeth.2022.109674_bib24 article-title: Progress in brain computer interface: challenges and potentials publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2021.578875 – volume: 17 issue: 1 year: 2020 ident: 10.1016/j.jneumeth.2022.109674_bib28 article-title: Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab2373 – volume: 10 issue: 10 year: 2015 ident: 10.1016/j.jneumeth.2022.109674_bib17 article-title: A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials publication-title: PloS One doi: 10.1371/journal.pone.0140703 – volume: 15 issue: 6 year: 2015 ident: 10.1016/j.jneumeth.2022.109674_bib22 article-title: The steady-state visual evoked potential in vision research: a review publication-title: J. Vis. doi: 10.1167/15.6.4 – volume: 29 start-page: R80 issue: 3 year: 2019 ident: 10.1016/j.jneumeth.2022.109674_bib1 article-title: Electroencephalography publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.11.052 – start-page: 1 year: 2021 ident: 10.1016/j.jneumeth.2022.109674_bib31 article-title: An improved deep learning mechanism for EEG recognition in sports health informatics publication-title: Neural Comput. Appl. – start-page: 1 year: 2019 ident: 10.1016/j.jneumeth.2022.109674_bib2 article-title: A proof of local convergence for the Adam optimizer publication-title: 2019 Int. Jt. Conf. Neural Netw. (IJCNN) – volume: 14 issue: 7 year: 2019 ident: 10.1016/j.jneumeth.2022.109674_bib10 article-title: Characterization of the non-stationary nature of steady-state visual evoked potentials using echo state networks publication-title: PloS One doi: 10.1371/journal.pone.0218771 – year: 2022 ident: 10.1016/j.jneumeth.2022.109674_bib9 article-title: A deep neural network for ssvep-based brain-computer interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2021.3110440 – volume: 28 start-page: 2681 issue: 12 year: 2020 ident: 10.1016/j.jneumeth.2022.109674_bib13 article-title: Convolutional correlation analysis for enhancing the performance of SSVEP-based brain-computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.3038718 – volume: 1 start-page: 181 issue: 3–4 year: 2014 ident: 10.1016/j.jneumeth.2022.109674_bib5 article-title: A high-itr SSVEP-based BCI speller publication-title: Brain Comput. Interfaces doi: 10.1080/2326263X.2014.944469 – volume: 21 start-page: 5308 issue: 16 year: 2021 ident: 10.1016/j.jneumeth.2022.109674_bib12 article-title: Solving the ssvep paradigm using the nonlinear canonical correlation analysis approach publication-title: Sensors doi: 10.3390/s21165308 – volume: 111 start-page: 246 issue: 2 year: 2000 ident: 10.1016/j.jneumeth.2022.109674_bib3 article-title: Steady-state visual evoked potentials and travelling waves publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(99)00194-7 – volume: 32 start-page: 1869 issue: 7 year: 2020 ident: 10.1016/j.jneumeth.2022.109674_bib33 article-title: Research on motion pattern recognition of exoskeleton robot based on multimodal machine learning model publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04567-1 – volume: 17 issue: 2 year: 2020 ident: 10.1016/j.jneumeth.2022.109674_bib23 article-title: Comparing user-dependent and user-independent training of CNN for SSVEP BCI publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab6a67 – volume: 29 start-page: 2615 year: 2021 ident: 10.1016/j.jneumeth.2022.109674_bib8 article-title: Filter bank convolutional neural network for short time-window steady-state visual evoked potential classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3132162 – start-page: 1 year: 2020 ident: 10.1016/j.jneumeth.2022.109674_bib26 article-title: An accurate EEGNet-based motor-imagery brain-computer interface for low-power edge computing publication-title: 2020 IEEE Int. Symp. . Med. Meas. Appl. (MeMeA) – volume: 24 issue: 04 year: 2014 ident: 10.1016/j.jneumeth.2022.109674_bib30 article-title: Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065714500130 – volume: 17 issue: 4 year: 2020 ident: 10.1016/j.jneumeth.2022.109674_bib15 article-title: BCI for stroke rehabilitation: motor and beyond publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aba162 – start-page: 1 year: 2019 ident: 10.1016/j.jneumeth.2022.109674_bib20 article-title: Simulating brain signals: Creating synthetic EEG data via neural-based generative models for improved ssvep classification publication-title: 2019 Int. Jt. Conf. Neural Netw. (IJCNN) – volume: 53 start-page: 2610 issue: 12 year: 2006 ident: 10.1016/j.jneumeth.2022.109674_bib14 article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.886577 – volume: 8 issue: 2 year: 2021 ident: 10.1016/j.jneumeth.2022.109674_bib29 article-title: Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human-machine interfaces publication-title: Adv. Sci. – volume: 72 year: 2022 ident: 10.1016/j.jneumeth.2022.109674_bib32 article-title: Deep CNN model based on serial-parallel structure optimization for four-class motor imagery EEG classification, Biomedical publication-title: Signal Process. Control |
SSID | ssj0004906 |
Score | 2.4702122 |
Snippet | Steady-state visual evoked potential (SSVEP) is a prevalent paradigm of brain-computer interface (BCI). Recently, deep neural networks (DNNs) have been... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109674 |
SubjectTerms | Brain-computer interface Feature fusion Learning across multi-stimulus SSVEP |
Title | FB-EEGNet: A fusion neural network across multi-stimulus for SSVEP target detection |
URI | https://dx.doi.org/10.1016/j.jneumeth.2022.109674 https://www.proquest.com/docview/2691051454 |
Volume | 379 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqIiEuCFIQ5REZCfXm7taxvTG3ECWEVo2QllS9WfauLTWCTUR2D1z47cx4d0uLVOXAbR-2ZY3teXi-mSHkg5VOlVIXzHstmBCBM50VnlktveKgb8iY1OdyqRYrcX4trw_ItI-FQVhlx_tbnh65dfcl6aiZbG9ukhwDcVIMp0KcQRrje4XIcJef_v4L8xA61tfExuivTO9ECa9P15VvsFIz2ImcY2YllYmHBNQ_rDrKn_kz8rRTHOmkndtzcuCrATmaVGA0__hFT2iEcsY78gF5fNl5zI9IPv_EZrPPS19_pBMaGrwco5jEEsaqWgg4tXEmNGILGRx5eGh2FLRZmudXs6-0RYvT0tcRt1W9IKv57Nt0wbpCCqwYCVkzHZwdl-hwLLlzEuSWHAc7xrwzZ9wFK7lVBdhdLozOvB0FKcrUl15rlxUyqHT0khxWm8q_IhQMECGl9_AjhVbBpplSpRU8c2lwBT8msqeeKbos41js4rvp4WRr01PdINVNS_Vjktz227Z5Nvb20P3imHs7xoAw2Nv3fb-aBo4T-khs5TfNznAF-hMokVK8_o_x35An-NZi0d6Sw_pn49-B8lK7YdydQ_Jo8uVisfwDkB_umA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6hRWp7QRRaldKHK1W9uRu8trPmtkW7XQq7qrRQcbPsxJZY0YAgOfDvO-MkfUkVh96i-CFrbM_D880MwHunvC6VKXgIRnIpo-AmLwJ3RgUtUN9QKanPYqnn5_LLhbrYgKM-FoZglR3vb3l64tbdn2FHzeHN5eVwRYE4GYVTEc4go_jeTcpOpQawOTk-mS9_hUeaVGKT-pPLMvstUHj9cV2Fhoo1o6koBCVX0rn8l4z6i1snETTbhq1Od2STdnlPYSNUO7A7qdBu_n7PPrCE5kzP5DvwaNE5zXdhNfvEp9PPy1AfsgmLDb2PMcpjiXNVLQqcubQSluCFHG89fjR3DBVatlp9m35lLWCclaFO0K3qGZzPpmdHc97VUuDFSKqam-jduCSfYym8Vyi61Di6MaWeORA-OiWcLtD08nF0ENwoKllmoQzG-LxQUWej5zCorqvwAhjaIFKpELAhw17RZbnWpZMi91n0hdgD1VPPFl2icap3cWV7RNna9lS3RHXbUn0Phj_H3bSpNh4cYfrNsX8cGovy4MGx7_rdtHijyE3iqnDd3FmhUYVCPVLJl_8x_1t4PD9bnNrT4-XJPjyhlhaa9goG9W0TXqMuU_s33Vn9Ab838Uk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FB-EEGNet%3A+A+fusion+neural+network+across+multi-stimulus+for+SSVEP+target+detection&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Yao%2C+Huiming&rft.au=Liu%2C+Ke&rft.au=Deng%2C+Xin&rft.au=Tang%2C+Xianlun&rft.date=2022-09-01&rft.issn=1872-678X&rft.eissn=1872-678X&rft.volume=379&rft.spage=109674&rft_id=info:doi/10.1016%2Fj.jneumeth.2022.109674&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |