MORE SPIKELETS1 Is Required for Spikelet Fate in the Inflorescence of Brachypodium

Grasses produce florets on a structure called a spikelet, and variation in the number and arrangement of both branches and spikelets contributes to the great diversity of grass inflorescence architecture. In Brachypodium (Brachypodium distachyori), the inflorescence is an unbranched spike with a ter...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 161; no. 3; pp. 1291 - 1302
Main Authors Derbyshire, Paul, Byrne, Mary E.
Format Journal Article
LanguageEnglish
Published Rockville, MD American Society of Plant Biologists 01.03.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Grasses produce florets on a structure called a spikelet, and variation in the number and arrangement of both branches and spikelets contributes to the great diversity of grass inflorescence architecture. In Brachypodium (Brachypodium distachyori), the inflorescence is an unbranched spike with a terminal spikelet and a limited number of lateral spikelets. Spikelets are indeterminate and give rise to a variable number of florets. Here, we provide a detailed description of the stages of inflorescence development in Brachypodium. To gain insight into the genetic regulation of Brachypodium inflorescence development, we generated fast neutron mutant populations and screened for phenotypic mutants. Among the mutants identified, the more spikelets1 (mos1) mutant had an increased number of axillary meristems produced from inflorescence meristem compared with the wild type. These axillary meristems developed as branches with production of higher order spikelets. Using a candidate gene approach, mos1 was found to have a genomic rearrangement disrupting the expression of an ethylene response factor class of APETALA2 transcription factor related to the spikelet meristem identity genes branched silklessl (bdl) in maize (Zea mays) and FRIZZY PANICLE (FZP) in rice (Oryza sativa). We propose MOS1 likely corresponds to the Brachypodium bd1 and FZP ortholog and that the function of this gene in determining spikelet meristem fate is conserved with distantly related grass species. However, MOS1 also appears to be involved in the timing of initiation of the terminal spikelet. As such, MOS1 may regulate the transition to terminal spikelet development in other closely related and agriculturally important species, particularly wheat (Triticum aestivum).
AbstractList Abstract Grasses produce florets on a structure called a spikelet, and variation in the number and arrangement of both branches and spikelets contributes to the great diversity of grass inflorescence architecture. In Brachypodium (Brachypodium distachyon), the inflorescence is an unbranched spike with a terminal spikelet and a limited number of lateral spikelets. Spikelets are indeterminate and give rise to a variable number of florets. Here, we provide a detailed description of the stages of inflorescence development in Brachypodium. To gain insight into the genetic regulation of Brachypodium inflorescence development, we generated fast neutron mutant populations and screened for phenotypic mutants. Among the mutants identified, the more spikelets1 (mos1) mutant had an increased number of axillary meristems produced from inflorescence meristem compared with the wild type. These axillary meristems developed as branches with production of higher order spikelets. Using a candidate gene approach, mos1 was found to have a genomic rearrangement disrupting the expression of an ethylene response factor class of APETALA2 transcription factor related to the spikelet meristem identity genes branched silkless1 (bd1) in maize (Zea mays) and FRIZZY PANICLE (FZP) in rice (Oryza sativa). We propose MOS1 likely corresponds to the Brachypodium bd1 and FZP ortholog and that the function of this gene in determining spikelet meristem fate is conserved with distantly related grass species. However, MOS1 also appears to be involved in the timing of initiation of the terminal spikelet. As such, MOS1 may regulate the transition to terminal spikelet development in other closely related and agriculturally important species, particularly wheat (Triticum aestivum).
Grasses produce florets on a structure called a spikelet, and variation in the number and arrangement of both branches and spikelets contributes to the great diversity of grass inflorescence architecture. In Brachypodium (Brachypodium distachyori), the inflorescence is an unbranched spike with a terminal spikelet and a limited number of lateral spikelets. Spikelets are indeterminate and give rise to a variable number of florets. Here, we provide a detailed description of the stages of inflorescence development in Brachypodium. To gain insight into the genetic regulation of Brachypodium inflorescence development, we generated fast neutron mutant populations and screened for phenotypic mutants. Among the mutants identified, the more spikelets1 (mos1) mutant had an increased number of axillary meristems produced from inflorescence meristem compared with the wild type. These axillary meristems developed as branches with production of higher order spikelets. Using a candidate gene approach, mos1 was found to have a genomic rearrangement disrupting the expression of an ethylene response factor class of APETALA2 transcription factor related to the spikelet meristem identity genes branched silklessl (bdl) in maize (Zea mays) and FRIZZY PANICLE (FZP) in rice (Oryza sativa). We propose MOS1 likely corresponds to the Brachypodium bd1 and FZP ortholog and that the function of this gene in determining spikelet meristem fate is conserved with distantly related grass species. However, MOS1 also appears to be involved in the timing of initiation of the terminal spikelet. As such, MOS1 may regulate the transition to terminal spikelet development in other closely related and agriculturally important species, particularly wheat (Triticum aestivum).
Grasses produce florets on a structure called a spikelet, and variation in the number and arrangement of both branches and spikelets contributes to the great diversity of grass inflorescence architecture. In Brachypodium (Brachypodium distachyon), the inflorescence is an unbranched spike with a terminal spikelet and a limited number of lateral spikelets. Spikelets are indeterminate and give rise to a variable number of florets. Here, we provide a detailed description of the stages of inflorescence development in Brachypodium. To gain insight into the genetic regulation of Brachypodium inflorescence development, we generated fast neutron mutant populations and screened for phenotypic mutants. Among the mutants identified, the more spikelets1 (mos1) mutant had an increased number of axillary meristems produced from inflorescence meristem compared with the wild type. These axillary meristems developed as branches with production of higher order spikelets. Using a candidate gene approach, mos1 was found to have a genomic rearrangement disrupting the expression of an ethylene response factor class of APETALA2 transcription factor related to the spikelet meristem identity genes branched silkless1 (bd1) in maize (Zea mays) and FRIZZY PANICLE (FZP) in rice (Oryza sativa). We propose MOS1 likely corresponds to the Brachypodium bd1 and FZP ortholog and that the function of this gene in determining spikelet meristem fate is conserved with distantly related grass species. However, MOS1 also appears to be involved in the timing of initiation of the terminal spikelet. As such, MOS1 may regulate the transition to terminal spikelet development in other closely related and agriculturally important species, particularly wheat (Triticum aestivum).
Author Byrne, Mary E.
Derbyshire, Paul
Author_xml – sequence: 1
  givenname: Paul
  surname: Derbyshire
  fullname: Derbyshire, Paul
– sequence: 2
  givenname: Mary E.
  surname: Byrne
  fullname: Byrne, Mary E.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27135761$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23355632$$D View this record in MEDLINE/PubMed
BookMark eNpF0EtPwkAUBeCJwchDly41s3FZnDsP2i6VgBIxGMB1M525DUVo60xZ8O-tKeLq3OR-OYvTJ52iLJCQW2BDACYfq6pJPuTAhWQXpAdK8IArGXVIj7HmZlEUd0nf-y1jDATIK9LlQig1ErxHlu-L5YSuPmZvk_lkvQI683SJ34fcoaVZ6eiqyr9whzWd6hppXtB6g3RWZLvSoTdYGKRlRp-dNptjVdr8sL8ml5neebw55YB8Tifr8WswX7zMxk_zwAip6iBObSSMNSrWTIqYcQCbRZqjTrW0IecaYzBMMLCxAslC5CK2oUoZKsTQiAEJ2l7jSu8dZknl8r12xwRY8rtNUlVN8qTdpvH3ra8O6R7tWf-N0YCHE9De6F3mdGFy_-9CECocQePuWrf1denOfwmxFEqG4gc_cnWe
CODEN PPHYA5
CitedBy_id crossref_primary_10_21769_BioProtoc_3026
crossref_primary_10_1534_genetics_115_176628
crossref_primary_10_1016_j_tplants_2021_12_002
crossref_primary_10_1111_jse_12251
crossref_primary_10_1111_nph_17388
crossref_primary_10_1186_s12864_019_6027_0
crossref_primary_10_7554_eLife_31804
crossref_primary_10_1093_plphys_kiab054
crossref_primary_10_1007_s42994_020_00026_x
crossref_primary_10_1371_journal_pcbi_1003447
crossref_primary_10_1016_j_cj_2021_08_008
crossref_primary_10_1111_tpj_15737
crossref_primary_10_7717_peerj_12880
crossref_primary_10_3390_ijms20112743
crossref_primary_10_1016_j_molp_2015_04_009
crossref_primary_10_1016_j_tplants_2017_09_016
crossref_primary_10_1101_cshperspect_a034652
crossref_primary_10_1093_jxb_eraa416
crossref_primary_10_1093_jxb_eru271
crossref_primary_10_1093_plphys_kiab456
crossref_primary_10_1111_nph_14538
crossref_primary_10_1111_tpj_14062
crossref_primary_10_1186_s12870_017_1191_3
crossref_primary_10_1146_annurev_arplant_050213_040104
crossref_primary_10_1111_pbi_13535
crossref_primary_10_1093_plcell_koab015
crossref_primary_10_1111_nph_14980
crossref_primary_10_18699_VJ18_420
crossref_primary_10_1104_pp_114_250043
crossref_primary_10_1093_plcell_koac080
crossref_primary_10_1080_19420889_2022_2095125
crossref_primary_10_1016_j_semcdb_2017_10_004
crossref_primary_10_1093_jxb_erx208
crossref_primary_10_1007_s11103_024_01467_4
crossref_primary_10_1111_tpj_14758
crossref_primary_10_1038_srep12211
crossref_primary_10_3389_fmicb_2020_575578
crossref_primary_10_3390_genes10090686
crossref_primary_10_1111_tpj_12411
crossref_primary_10_1007_s00122_020_03743_5
crossref_primary_10_1016_j_ygeno_2023_110583
crossref_primary_10_3390_plants10071408
crossref_primary_10_1242_jeb_246899
crossref_primary_10_1093_plphys_kiac257
crossref_primary_10_3389_fpls_2018_01309
crossref_primary_10_1111_jipb_12771
crossref_primary_10_1016_j_pbi_2021_102168
crossref_primary_10_1371_journal_pone_0170618
Cites_doi 10.1038/nature04725
10.1046/j.1365-313X.1995.8040505.x
10.1038/nature03148
10.1105/tpc.105.039032
10.1038/nature08747
10.1016/j.tplants.2011.11.003
10.1139/g94-014
10.1104/pp.107.098558
10.1104/pp.125.3.1198
10.1093/pcp/pcp006
10.1111/j.1601-5223.2005.01915.x
10.1104/pp.010196
10.1242/dev.120.2.405
10.1093/oxfordjournals.jhered.a104527
10.1038/nature11543
10.1038/379066a0
10.1105/tpc.108.065425
10.1007/BF02860824
10.1093/oxfordjournals.jhered.a104191
10.1073/pnas.1932414100
10.3732/ajb.89.2.203
10.1046/j.1365-313x.1998.00300.x
10.1242/dev.00564
10.1007/s00122-002-1104-0
10.1007/s00122-011-1598-4
10.1007/BF00208313
10.1146/annurev.arplant.59.032607.092902
10.1105/tpc.11.9.1651
10.1093/bioinformatics/btr088
10.1126/science.1076920
10.1104/pp.111.179531
10.1242/dev.128.15.2881
10.1016/S0065-2296(06)44011-8
10.1385/0-89603-391-0:315
10.1266/jjg.66.41
10.1093/jxb/erm015
10.1146/annurev.ge.22.120188.002033
10.1186/1471-2229-3-6
10.1016/j.pbi.2006.11.009
10.1007/s00122-006-0285-3
10.1038/nature07723
10.1038/nature01518
10.1006/dbio.2000.9988
10.2307/3869249
10.1093/pcp/pci504
10.1038/nature02081
10.1038/nature03892
ContentType Journal Article
Copyright 2013 American Society of Plant Biologists
2014 INIST-CNRS
Copyright_xml – notice: 2013 American Society of Plant Biologists
– notice: 2014 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1104/pp.112.212340
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1532-2548
EndPage 1302
ExternalDocumentID 10_1104_pp_112_212340
23355632
27135761
41943547
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
123
29O
2AX
2WC
2~F
4.4
5VS
5WD
85S
8R4
8R5
AAHKG
AAPXW
AAVAP
AAXTN
ABBHK
ABJNI
ABPLY
ABPPZ
ABPTD
ABTLG
ABXSQ
ABXZS
ACBTR
ACGOD
ACNCT
ACPRK
ACUFI
ADBBV
ADIPN
ADIYS
ADULT
ADVEK
ADYHW
ADZLD
AEEJZ
AENEX
AESBF
AEUPB
AFAZZ
AFFZL
AFGWE
AFRAH
AGUYK
AHMBA
AICQM
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALXQX
AQVQM
BAWUL
BCRHZ
BTFSW
BYORX
CBGCD
CS3
CWIXF
DATOO
DFEDG
DIK
DOOOF
DU5
DWIUU
E3Z
EBS
ECGQY
EJD
F5P
FLUFQ
FOEOM
ISR
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KOP
KQ8
KSI
KSN
MV1
NOMLY
OBOKY
OJZSN
OK1
OWPYF
P2P
Q2X
RHF
RHI
ROX
RPB
RPM
RWL
RXW
SA0
TAE
TN5
TR2
VQA
W8F
WH7
WOQ
XSW
YBU
YKV
YNT
YSK
YZZ
ZCA
ZCN
~02
~KM
08R
3V.
53G
7X2
7X7
88A
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8G5
AAPBV
AAWDT
AAYJJ
ABFLS
ABPTK
ABUWG
ACFRR
ACUTJ
AFDAS
AFFDN
AFKRA
AIDAL
AIDBO
ANFBD
AQDSO
AS~
ATCPS
AZQEC
BBAFP
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
D1J
DWQXO
F20
FYUFA
GNUQQ
GTFYD
GUQSH
H13
HCIFZ
HTVGU
IQODW
LK8
M0K
M0L
M1P
M2O
M2P
M2Q
M7P
MVM
P0-
PQEST
PQQKQ
PQUKI
PROAC
PSQYO
QZG
S0X
TCN
UKHRP
UKR
WHG
XOL
Y6R
ZCG
0R~
AAHBH
AARHZ
AAUAY
ABMNT
ABXVV
ACIPB
ACZBC
ADACV
ADQBN
AFYAG
AGMDO
AHXOZ
ALIPV
ATGXG
BEYMZ
CCPQU
CGR
CUY
CVF
ECM
EIF
HMCUK
IPSME
NPM
UBC
AASNB
AAYXX
CITATION
ID FETCH-LOGICAL-c345t-9bd83cdc59a04390211df8a2eaba4d722ae91c0301d951407e239d75b0e5ee7c3
ISSN 0032-0889
1532-2548
IngestDate Fri Aug 23 02:59:35 EDT 2024
Tue Oct 15 23:47:27 EDT 2024
Fri Nov 25 13:52:50 EST 2022
Fri Feb 02 08:15:59 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Monocotyledones
Spikelets
Plant physiology
Gramineae
Inflorescence
Angiospermae
Spermatophyta
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-9bd83cdc59a04390211df8a2eaba4d722ae91c0301d951407e239d75b0e5ee7c3
PMID 23355632
PageCount 12
ParticipantIDs crossref_primary_10_1104_pp_112_212340
pubmed_primary_23355632
pascalfrancis_primary_27135761
jstor_primary_41943547
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Rockville, MD
PublicationPlace_xml – name: Rockville, MD
– name: United States
PublicationTitle Plant physiology (Bethesda)
PublicationTitleAlternate Plant Physiol
PublicationYear 2013
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
References 17337752 - J Exp Bot. 2007;58(5):909-16
11532912 - Development. 2001 Aug;128(15):2881-91
12647059 - Theor Appl Genet. 2003 Mar;106(5):846-57
17449648 - Plant Physiol. 2007 Jun;144(2):1000-11
21597976 - Theor Appl Genet. 2011 Aug;123(3):455-64
12324609 - Plant Cell. 1991 Jul;3(7):677-684
15577912 - Nature. 2004 Dec 2;432(7017):630-5
19346465 - Plant Cell. 2009 Apr;21(4):1095-108
20148030 - Nature. 2010 Feb 11;463(7282):763-8
11743099 - Plant Physiol. 2001 Dec;127(4):1539-55
11237465 - Dev Biol. 2001 Mar 15;231(2):364-73
16399802 - Plant Cell. 2006 Mar;18(3):574-85
13130077 - Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11765-70
8904808 - Planta. 1996;200(2):229-37
22197176 - Trends Plant Sci. 2012 Feb;17(2):91-101
16791686 - Theor Appl Genet. 2006 Jul;113(2):186-95
10488233 - Plant Cell. 1999 Sep;11(9):1651-64
17140843 - Curr Opin Plant Biol. 2007 Feb;10(1):26-31
21335321 - Bioinformatics. 2011 Apr 15;27(8):1164-5
3071254 - Annu Rev Genet. 1988;22:353-85
8181731 - Genome. 1994 Feb;37(1):112-20
16970618 - Hereditas. 2005 Feb;142(2005):92-7
23075845 - Nature. 2012 Nov 29;491(7426):711-6
8538741 - Nature. 1996 Jan 4;379(6560):66-9
14628043 - Nature. 2003 Nov 20;426(6964):255-60
21669728 - Am J Bot. 2002 Feb;89(2):203-10
19189423 - Nature. 2009 Jan 29;457(7229):551-6
7866030 - Plant Cell. 1994 Dec;6(12):1877-87
12835399 - Development. 2003 Aug;130(16):3841-50
16041362 - Nature. 2005 Aug 25;436(7054):1119-26
15659432 - Plant Cell Physiol. 2005 Jan;46(1):69-78
16688177 - Nature. 2006 May 11;441(7090):227-30
12424380 - Science. 2002 Nov 8;298(5596):1238-41
19153156 - Plant Cell Physiol. 2009 Mar;50(3):652-7
18444901 - Annu Rev Plant Biol. 2008;59:253-79
11244101 - Plant Physiol. 2001 Mar;125(3):1198-205
14503923 - BMC Plant Biol. 2003 Sep 23;3:6
12687001 - Nature. 2003 Apr 10;422(6932):618-21
21771916 - Plant Physiol. 2011 Sep;157(1):3-13
Sheridan (2021041916140214200_b41) 1988; 22
Wang (2021041916140214200_b49) 2008; 59
Malcomber (2021041916140214200_b29) 2006; 44
Ritter (2021041916140214200_b38) 2002; 89
Türkan (2021041916140214200_b44) 1991; 66
Paterson (2021041916140214200_b35) 2009; 457
Bonnett (2021041916140214200_b5) 1936; 53
Bommert (2021041916140214200_b3) 2005; 46
Long (2021041916140214200_b27) 1998
Vogel (2021041916140214200_b46) 2010; 463
Jackson (2021041916140214200_b17) 1994; 120
Chuck (2021041916140214200_b9) 2002; 298
Yi (2021041916140214200_b50) 2005; 142
Okada (2021041916140214200_b34) 1991; 3
Zhu (2021041916140214200_b51) 2003; 3
Przemeck (2021041916140214200_b36) 1996; 200
McSteen (2021041916140214200_b32) 2007; 144
Sentoku (2021041916140214200_b40) 1999; 11
Colombo (2021041916140214200_b10) 1998; 16
Vogel (2021041916140214200_b47) 2006; 113
Sreenivasulu (2021041916140214200_b43) 2012; 17
Skirpan (2021041916140214200_b42) 2009; 50
Kellogg (2021041916140214200_b19) 2001; 125
Bortiri (2021041916140214200_b7) 2007; 58
Brkljacic (2021041916140214200_b8) 2011; 157
Satoh-Nagasawa (2021041916140214200_b39) 2006; 441
Bonnett (2021041916140214200_b4) 1935; 51
Long (2021041916140214200_b28) 1996; 379
Reinhardt (2021041916140214200_b37) 2003; 426
Babb (2021041916140214200_b1) 2003; 106
Jones (2021041916140214200_b18) 1938; 29
Komatsu (2021041916140214200_b23) 2003; 130
Darriba (2021041916140214200_b11) 2011; 27
Mayer (2021041916140214200_b30) 2012; 491
Komatsu (2021041916140214200_b25) 2003; 100
Li (2021041916140214200_b26) 2003; 422
Kerstetter (2021041916140214200_b21) 1994; 6
Gallavotti (2021041916140214200_b13) 2004; 432
Bortiri (2021041916140214200_b6) 2006; 18
Grundbacher (2021041916140214200_b14) 1963; 29
Van Overbeek (2021041916140214200_b45) 1936; 27
Bennett (2021041916140214200_b2) 1995; 8
Hsiao (2021041916140214200_b15) 1994; 37
Oikawa (2021041916140214200_b33) 2009; 21
Komatsu (2021041916140214200_b24) 2001; 231
Vollbrecht (2021041916140214200_b48) 2005; 436
Kirby (2021041916140214200_b22) 1981
Draper (2021041916140214200_b12) 2001; 127
McSteen (2021041916140214200_b31) 2001; 128
Huo (2021041916140214200_b16) 2011; 123
Kellogg (2021041916140214200_b20) 2007; 10
References_xml – volume: 441
  start-page: 227
  year: 2006
  ident: 2021041916140214200_b39
  article-title: A trehalose metabolic enzyme controls inflorescence architecture in maize
  publication-title: Nature
  doi: 10.1038/nature04725
  contributor:
    fullname: Satoh-Nagasawa
– volume: 8
  start-page: 505
  year: 1995
  ident: 2021041916140214200_b2
  article-title: Morphogenesis in pinoid mutants of Arabidopsis thaliana.
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1995.8040505.x
  contributor:
    fullname: Bennett
– volume: 51
  start-page: 451
  year: 1935
  ident: 2021041916140214200_b4
  article-title: The development of the barley spike
  publication-title: J Agric Res
  contributor:
    fullname: Bonnett
– volume: 432
  start-page: 630
  year: 2004
  ident: 2021041916140214200_b13
  article-title: The role of barren stalk1 in the architecture of maize
  publication-title: Nature
  doi: 10.1038/nature03148
  contributor:
    fullname: Gallavotti
– volume: 18
  start-page: 574
  year: 2006
  ident: 2021041916140214200_b6
  article-title: ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.039032
  contributor:
    fullname: Bortiri
– volume: 463
  start-page: 763
  year: 2010
  ident: 2021041916140214200_b46
  article-title: Genome sequencing and analysis of the model grass Brachypodium distachyon.
  publication-title: Nature
  doi: 10.1038/nature08747
  contributor:
    fullname: Vogel
– volume: 17
  start-page: 91
  year: 2012
  ident: 2021041916140214200_b43
  article-title: A genetic playground for enhancing grain number in cereals
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2011.11.003
  contributor:
    fullname: Sreenivasulu
– volume: 37
  start-page: 112
  year: 1994
  ident: 2021041916140214200_b15
  article-title: Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots
  publication-title: Genome
  doi: 10.1139/g94-014
  contributor:
    fullname: Hsiao
– volume: 144
  start-page: 1000
  year: 2007
  ident: 2021041916140214200_b32
  article-title: barren inflorescence2 Encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize
  publication-title: Plant Physiol
  doi: 10.1104/pp.107.098558
  contributor:
    fullname: McSteen
– volume: 125
  start-page: 1198
  year: 2001
  ident: 2021041916140214200_b19
  article-title: Evolutionary history of the grasses
  publication-title: Plant Physiol
  doi: 10.1104/pp.125.3.1198
  contributor:
    fullname: Kellogg
– volume: 50
  start-page: 652
  year: 2009
  ident: 2021041916140214200_b42
  article-title: BARREN INFLORESCENCE2 interaction with ZmPIN1a suggests a role in auxin transport during maize inflorescence development
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcp006
  contributor:
    fullname: Skirpan
– volume: 142
  start-page: 92
  year: 2005
  ident: 2021041916140214200_b50
  article-title: Morphological and molecular characterization of a new frizzy panicle mutant, “fzp-9(t)”, in rice (Oryza sativa L.)
  publication-title: Hereditas
  doi: 10.1111/j.1601-5223.2005.01915.x
  contributor:
    fullname: Yi
– volume: 127
  start-page: 1539
  year: 2001
  ident: 2021041916140214200_b12
  article-title: Brachypodium distachyon. A new model system for functional genomics in grasses
  publication-title: Plant Physiol
  doi: 10.1104/pp.010196
  contributor:
    fullname: Draper
– volume: 120
  start-page: 405
  year: 1994
  ident: 2021041916140214200_b17
  article-title: Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot
  publication-title: Development
  doi: 10.1242/dev.120.2.405
  contributor:
    fullname: Jackson
– volume: 29
  start-page: 315
  year: 1938
  ident: 2021041916140214200_b18
  article-title: A “lazy” mutation in rice
  publication-title: J Hered
  doi: 10.1093/oxfordjournals.jhered.a104527
  contributor:
    fullname: Jones
– volume: 491
  start-page: 711
  year: 2012
  ident: 2021041916140214200_b30
  article-title: A physical, genetic and functional sequence assembly of the barley genome
  publication-title: Nature
  doi: 10.1038/nature11543
  contributor:
    fullname: Mayer
– volume: 379
  start-page: 66
  year: 1996
  ident: 2021041916140214200_b28
  article-title: A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis.
  publication-title: Nature
  doi: 10.1038/379066a0
  contributor:
    fullname: Long
– volume: 21
  start-page: 1095
  year: 2009
  ident: 2021041916140214200_b33
  article-title: Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.065425
  contributor:
    fullname: Oikawa
– volume: 29
  start-page: 366
  year: 1963
  ident: 2021041916140214200_b14
  article-title: The physiological function of the cereal awn
  publication-title: Bot Rev
  doi: 10.1007/BF02860824
  contributor:
    fullname: Grundbacher
– volume: 27
  start-page: 93
  year: 1936
  ident: 2021041916140214200_b45
  article-title: “Lazy,” an a-geotropic form of maize
  publication-title: J Hered
  doi: 10.1093/oxfordjournals.jhered.a104191
  contributor:
    fullname: Van Overbeek
– volume-title: Cereal development guide.
  year: 1981
  ident: 2021041916140214200_b22
  contributor:
    fullname: Kirby
– volume: 100
  start-page: 11765
  year: 2003
  ident: 2021041916140214200_b25
  article-title: LAX and SPA: major regulators of shoot branching in rice
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1932414100
  contributor:
    fullname: Komatsu
– volume: 89
  start-page: 203
  year: 2002
  ident: 2021041916140214200_b38
  article-title: The maize mutant barren stalk1 is defective in axillary meristem development
  publication-title: Am J Bot
  doi: 10.3732/ajb.89.2.203
  contributor:
    fullname: Ritter
– volume: 16
  start-page: 355
  year: 1998
  ident: 2021041916140214200_b10
  article-title: BRANCHED SILKLESS mediates the transition from spikelet to floral meristem during Zea mays ear development
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.1998.00300.x
  contributor:
    fullname: Colombo
– volume: 6
  start-page: 1877
  year: 1994
  ident: 2021041916140214200_b21
  article-title: Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes
  publication-title: Plant Cell
  contributor:
    fullname: Kerstetter
– volume: 130
  start-page: 3841
  year: 2003
  ident: 2021041916140214200_b23
  article-title: FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets
  publication-title: Development
  doi: 10.1242/dev.00564
  contributor:
    fullname: Komatsu
– volume: 106
  start-page: 846
  year: 2003
  ident: 2021041916140214200_b1
  article-title: Genetic and morphological characterization of the barley uniculm2 (cul2) mutant
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-002-1104-0
  contributor:
    fullname: Babb
– volume: 123
  start-page: 455
  year: 2011
  ident: 2021041916140214200_b16
  article-title: Comparison of a high-density genetic linkage map to genome features in the model grass Brachypodium distachyon.
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-011-1598-4
  contributor:
    fullname: Huo
– volume: 53
  start-page: 445
  year: 1936
  ident: 2021041916140214200_b5
  article-title: The development of the wheat spike
  publication-title: J Agric Res
  contributor:
    fullname: Bonnett
– volume: 200
  start-page: 229
  year: 1996
  ident: 2021041916140214200_b36
  article-title: Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization
  publication-title: Planta
  doi: 10.1007/BF00208313
  contributor:
    fullname: Przemeck
– volume: 59
  start-page: 253
  year: 2008
  ident: 2021041916140214200_b49
  article-title: Molecular basis of plant architecture
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.59.032607.092902
  contributor:
    fullname: Wang
– volume: 11
  start-page: 1651
  year: 1999
  ident: 2021041916140214200_b40
  article-title: Regional expression of the rice KN1-type homeobox gene family during embryo, shoot, and flower development
  publication-title: Plant Cell
  doi: 10.1105/tpc.11.9.1651
  contributor:
    fullname: Sentoku
– volume: 27
  start-page: 1164
  year: 2011
  ident: 2021041916140214200_b11
  article-title: ProtTest 3: fast selection of best-fit models of protein evolution
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr088
  contributor:
    fullname: Darriba
– volume: 298
  start-page: 1238
  year: 2002
  ident: 2021041916140214200_b9
  article-title: The control of spikelet meristem identity by the branched silkless1 gene in maize
  publication-title: Science
  doi: 10.1126/science.1076920
  contributor:
    fullname: Chuck
– volume: 157
  start-page: 3
  year: 2011
  ident: 2021041916140214200_b8
  article-title: Brachypodium as a model for the grasses: today and the future
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.179531
  contributor:
    fullname: Brkljacic
– volume: 128
  start-page: 2881
  year: 2001
  ident: 2021041916140214200_b31
  article-title: barren inflorescence2 regulates axillary meristem development in the maize inflorescence
  publication-title: Development
  doi: 10.1242/dev.128.15.2881
  contributor:
    fullname: McSteen
– volume: 44
  start-page: 425
  year: 2006
  ident: 2021041916140214200_b29
  article-title: Developmental gene evolution and the origin of grass inflorescence diversity
  publication-title: Adv Bot Res
  doi: 10.1016/S0065-2296(06)44011-8
  contributor:
    fullname: Malcomber
– start-page: 315
  volume-title: Arabidopsis Protocols
  year: 1998
  ident: 2021041916140214200_b27
  article-title: Transposon tagging with Ac/Ds in Arabidopsis
  doi: 10.1385/0-89603-391-0:315
  contributor:
    fullname: Long
– volume: 66
  start-page: 41
  year: 1991
  ident: 2021041916140214200_b44
  article-title: Survey of endogenous gibberellins in a barley mutant showing abnormal response to gravity
  publication-title: Jpn J Genet
  doi: 10.1266/jjg.66.41
  contributor:
    fullname: Türkan
– volume: 58
  start-page: 909
  year: 2007
  ident: 2021041916140214200_b7
  article-title: Flowering and determinacy in maize
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erm015
  contributor:
    fullname: Bortiri
– volume: 22
  start-page: 353
  year: 1988
  ident: 2021041916140214200_b41
  article-title: Maize developmental genetics: genes of morphogenesis
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.ge.22.120188.002033
  contributor:
    fullname: Sheridan
– volume: 3
  start-page: 6
  year: 2003
  ident: 2021041916140214200_b51
  article-title: Ds tagging of BRANCHED FLORETLESS 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L)
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-3-6
  contributor:
    fullname: Zhu
– volume: 10
  start-page: 26
  year: 2007
  ident: 2021041916140214200_b20
  article-title: Floral displays: genetic control of grass inflorescences
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2006.11.009
  contributor:
    fullname: Kellogg
– volume: 113
  start-page: 186
  year: 2006
  ident: 2021041916140214200_b47
  article-title: EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon.
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-006-0285-3
  contributor:
    fullname: Vogel
– volume: 457
  start-page: 551
  year: 2009
  ident: 2021041916140214200_b35
  article-title: The Sorghum bicolor genome and the diversification of grasses
  publication-title: Nature
  doi: 10.1038/nature07723
  contributor:
    fullname: Paterson
– volume: 422
  start-page: 618
  year: 2003
  ident: 2021041916140214200_b26
  article-title: Control of tillering in rice
  publication-title: Nature
  doi: 10.1038/nature01518
  contributor:
    fullname: Li
– volume: 231
  start-page: 364
  year: 2001
  ident: 2021041916140214200_b24
  article-title: The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development
  publication-title: Dev Biol
  doi: 10.1006/dbio.2000.9988
  contributor:
    fullname: Komatsu
– volume: 3
  start-page: 677
  year: 1991
  ident: 2021041916140214200_b34
  article-title: Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation
  publication-title: Plant Cell
  doi: 10.2307/3869249
  contributor:
    fullname: Okada
– volume: 46
  start-page: 69
  year: 2005
  ident: 2021041916140214200_b3
  article-title: Genetics and evolution of inflorescence and flower development in grasses
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pci504
  contributor:
    fullname: Bommert
– volume: 426
  start-page: 255
  year: 2003
  ident: 2021041916140214200_b37
  article-title: Regulation of phyllotaxis by polar auxin transport
  publication-title: Nature
  doi: 10.1038/nature02081
  contributor:
    fullname: Reinhardt
– volume: 436
  start-page: 1119
  year: 2005
  ident: 2021041916140214200_b48
  article-title: Architecture of floral branch systems in maize and related grasses
  publication-title: Nature
  doi: 10.1038/nature03892
  contributor:
    fullname: Vollbrecht
SSID ssj0001314
Score 2.3721037
Snippet Grasses produce florets on a structure called a spikelet, and variation in the number and arrangement of both branches and spikelets contributes to the great...
Abstract Grasses produce florets on a structure called a spikelet, and variation in the number and arrangement of both branches and spikelets contributes to...
SourceID crossref
pubmed
pascalfrancis
jstor
SourceType Aggregation Database
Index Database
Publisher
StartPage 1291
SubjectTerms Amino Acid Sequence
Barley
Base Sequence
Biological and medical sciences
Brachypodium - growth & development
Brachypodium - ultrastructure
Chromosomes, Plant - metabolism
Corn
Developmental biology
Florets
Fundamental and applied biological sciences. Psychology
Gene Rearrangement - genetics
Genes
GENES, DEVELOPMENT, AND EVOLUTION
Genes, Plant - genetics
Inflorescence - growth & development
Inflorescence - ultrastructure
Inflorescences
Meristems
Molecular Sequence Data
Mutagenesis - genetics
Mutation - genetics
Plant physiology and development
Plant Proteins - chemistry
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
Reproduction
Rice
Spikelets
Transcription Factors - metabolism
Title MORE SPIKELETS1 Is Required for Spikelet Fate in the Inflorescence of Brachypodium
URI https://www.jstor.org/stable/41943547
https://www.ncbi.nlm.nih.gov/pubmed/23355632
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5B4cAF8SqER7UHxCVysPcRx0cCrmpKADWp1FvkfUSNkByrcQ_pr2dm13bsqkjAxUkcy7J2Pu9-M_vNDCHvpUoi3LUNmDI2EMpMAmyrHYhxqBMZc6Mt5g7Pvo9PzsXXC3mxF2S67JJKjfTNnXkl_2NVOAd2xSzZf7Bse1M4Ad_BvnAEC8Pxr2w8-3GWDuc_s9P0W7qYR8MMkz5Q2gssEuWD83L9C5aVangMjLJRNGbFCnx0V8VJu4DB9CrXl7tyY9Z1WYaaq2I_o8qHPnyhJiCjU8wP3pq8E0D4Yrsx7q7ScLqr46UzlOalo26EAbs98J5ao9k6anSkKM5zT-DbZQIcu3HFkLMAtVN-gWlmVRaAJzrpTbu-CHuNL96ZRIGCRJ0FGbdW757sQ4EdiktMgxrhEuwLP92qny2iBCihiO-TBwwmI7eVn522q3XEff335rHbOqziY-_OPd7ipauoo8238CqtfA-UW56JYyiLJ-Rx7VrQTx4nT8k9WzwjD6cboP-75-QMwUL3YKHZljZgoQAW2oCFIljouqBgadoDC92saBcsL8j5cbr4fBLUDTUCzYWsggReRa6NlkmOGdFA7yKzmuTM5ioXJmYst0mk0Uk2QLzB1beMJyaWKrTS2ljzQ3JQbAr7ilCNRYFg_uaRsWISyhx-KGuVDJU23MQD8qEZrmXp66Ysnb8ZimVZwidb-nEdkEM3mO1Vjb0G5Kg3uu0FDLtKxuNoQF764d7_wznWu2Ov_3TPN-TRHuBvyUF1dW3fAams1JFDxW-dZnHW
link.rule.ids 315,783,787,27936,27937
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MORE+SPIKELETS1+Is+Required+for+Spikelet+Fate+in+the+Inflorescence+of+Brachypodium&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Derbyshire%2C+Paul&rft.au=Byrne%2C+Mary+E.&rft.date=2013-03-01&rft.pub=American+Society+of+Plant+Biologists&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=161&rft.issue=3&rft.spage=1291&rft.epage=1302&rft_id=info:doi/10.1104%2Fpp.112.212340&rft.externalDocID=41943547
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon