Temporal and spatial satellite data augmentation for deep learning-based rainfall nowcasting
The significance of improving rainfall prediction methods has escalated due to climate change-induced flash floods and severe flooding. In this study, rainfall nowcasting has been studied utilizing NASA Giovanni satellite-derived precipitation products and the convolutional long short-term memory (C...
Saved in:
Published in | Journal of hydroinformatics Vol. 26; no. 3; pp. 589 - 607 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IWA Publishing
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1464-7141 1465-1734 |
DOI | 10.2166/hydro.2024.235 |
Cover
Loading…
Abstract | The significance of improving rainfall prediction methods has escalated due to climate change-induced flash floods and severe flooding. In this study, rainfall nowcasting has been studied utilizing NASA Giovanni satellite-derived precipitation products and the convolutional long short-term memory (ConvLSTM) approach. The goal of the study is to assess the impact of data augmentation on flood nowcasting. Due to data requirements of deep learning-based prediction methods, data augmentation is performed using eight different interpolation techniques. Spatial, temporal, and spatio-temporal interpolated rainfall data are used to conduct a comparative analysis of the results obtained through nowcasting rainfall. This research examines two catastrophic floods that transpired in Türkiye Marmara Region in 2009 and the Central Black Sea Region in 2021, which are selected as the focal case studies. The Marmara and Black Sea regions are prone to frequent flooding, which, due to the dense population, has devastating consequences. Furthermore, these regions exhibit distinct topographical characteristics and precipitation patterns, and the frontal systems that impact them are also dissimilar. The nowcast results for the two regions exhibit a significant difference. Although data augmentation significantly reduced the error values by 59% for one region, it did not yield the same effectiveness for the other region. |
---|---|
AbstractList | The significance of improving rainfall prediction methods has escalated due to climate change-induced flash floods and severe flooding. In this study, rainfall nowcasting has been studied utilizing NASA Giovanni satellite-derived precipitation products and the convolutional long short-term memory (ConvLSTM) approach. The goal of the study is to assess the impact of data augmentation on flood nowcasting. Due to data requirements of deep learning-based prediction methods, data augmentation is performed using eight different interpolation techniques. Spatial, temporal, and spatio-temporal interpolated rainfall data are used to conduct a comparative analysis of the results obtained through nowcasting rainfall. This research examines two catastrophic floods that transpired in Türkiye Marmara Region in 2009 and the Central Black Sea Region in 2021, which are selected as the focal case studies. The Marmara and Black Sea regions are prone to frequent flooding, which, due to the dense population, has devastating consequences. Furthermore, these regions exhibit distinct topographical characteristics and precipitation patterns, and the frontal systems that impact them are also dissimilar. The nowcast results for the two regions exhibit a significant difference. Although data augmentation significantly reduced the error values by 59% for one region, it did not yield the same effectiveness for the other region. HIGHLIGHTS A ConvLSTM model was created for rainfall nowcasting.; Satellite data augmentation was conducted by employing eight distinct interpolation approaches.; The investigation examined two flood case studies and their nowcast outcomes using original and augmented data.; Although the use of augmented data reduced nowcast error by 59% in one flood event, its impact on the nowcast result in the other event was found to be negligible.; The significance of improving rainfall prediction methods has escalated due to climate change-induced flash floods and severe flooding. In this study, rainfall nowcasting has been studied utilizing NASA Giovanni satellite-derived precipitation products and the convolutional long short-term memory (ConvLSTM) approach. The goal of the study is to assess the impact of data augmentation on flood nowcasting. Due to data requirements of deep learning-based prediction methods, data augmentation is performed using eight different interpolation techniques. Spatial, temporal, and spatio-temporal interpolated rainfall data are used to conduct a comparative analysis of the results obtained through nowcasting rainfall. This research examines two catastrophic floods that transpired in Türkiye Marmara Region in 2009 and the Central Black Sea Region in 2021, which are selected as the focal case studies. The Marmara and Black Sea regions are prone to frequent flooding, which, due to the dense population, has devastating consequences. Furthermore, these regions exhibit distinct topographical characteristics and precipitation patterns, and the frontal systems that impact them are also dissimilar. The nowcast results for the two regions exhibit a significant difference. Although data augmentation significantly reduced the error values by 59% for one region, it did not yield the same effectiveness for the other region. |
Author | Demir, Ibrahim Baydaroğlu, Özlem |
Author_xml | – sequence: 1 givenname: Özlem orcidid: 0000-0003-2184-5785 surname: Baydaroğlu fullname: Baydaroğlu, Özlem – sequence: 2 givenname: Ibrahim orcidid: 0000-0002-0461-1242 surname: Demir fullname: Demir, Ibrahim |
BookMark | eNp1UMlKBDEUDKLguFw95wd6zNbbUQaXAcGL3oTwOnkZe-hJmiQi_r1xRi-Cp1dUUcWrOiPHPngk5IqzpeBNc_32aWNYCibUUsj6iCy4auqKt1Id77GqWq74KTlLacuY4LLjC_L6jLs5RJgoeEvTDHksOEHGaRozUgsZKLxvduhz0YKnLkRqEWc6IUQ_-k01QEJLI4zewTRRHz4MpFyUC3JSmISXP_ecvNzdPq8eqsen-_Xq5rEyUtW56oxjQjRt7_quNk44o6Qc-NB3UoiOqXKswVoZKa2TPXCm2GBcjQaF6riS52R9yLUBtnqO4w7ipw4w6j0R4kZDzKOZUNtBOmxQYg-tkn3TKdNL1XTCclkz15QsdcgyMaQU0WkzHprn0nDSnOnvtfV-bf29ti5rF9vyj-33jX8MX11lhg4 |
CitedBy_id | crossref_primary_10_1088_2515_7620_ad85c4 crossref_primary_10_1007_s00704_024_05046_x crossref_primary_10_3390_w17050676 crossref_primary_10_1080_02626667_2024_2394169 crossref_primary_10_3389_fcpxs_2024_1508091 crossref_primary_10_1016_j_scitotenv_2024_178185 |
Cites_doi | 10.1016/j.solener.2019.06.041 10.1016/j.envsoft.2021.105148 10.3390/w12030899 10.1016/j.ijdrr.2022.102955 10.1016/j.jhydrol.2022.128197 10.1016/j.envsoft.2015.01.011 10.1175/JHM-D-14-0163.1 10.1016/j.apenergy.2016.11.111 10.1016/j.scitotenv.2022.154420 10.1038/s41467-019-08403-x 10.1080/19942060.2021.2009374 10.1016/j.envsoft.2024.106001 10.31223/X5S979 10.17148/IJARCCE.2016.5107 10.1371/journal.pone.0230114 10.2166/hydro.2023.196 10.5194/hess-24-3643-2020 10.1061/(ASCE)WR.1943-5452.0000992 10.1007/s00704-018-2403-y 10.31223/X5937W 10.1016/j.jhydrol.2013.11.008 10.1016/j.jhydrol.2022.128463 10.3390/w10101389 10.3390/w14040660 10.1007/s42044-020-00065-z 10.3390/rs11131584 10.1080/15715124.2024.2304546 10.1109/ACCESS.2021.3065939 10.1016/j.scitotenv.2022.154165 10.1016/j.scitotenv.2023.161757 10.1007/s00704-020-03489-6 10.3390/rs12172821 10.1016/j.ecoenv.2007.10.019 10.1162/neco.1997.9.8.1735 10.1007/978-3-030-76437-1_24 10.1007/978-981-15-4018-9_25 10.5194/hess-13-1413-2009 10.1175/1520-0434(1999)014<0168:PPOPUT>2.0.CO;2 10.1109/TMI.1983.4307610 10.1016/j.rse.2018.10.006 10.1007/s42979-020-00442-2 10.1007/s11269-015-1046-3 10.1007/s00521-021-06877-9 10.1029/2022MS003120 10.1007/s11069-020-04015-7 10.1029/2022WR032789 10.1016/j.jhydrol.2022.127535 10.5194/hess-23-2647-2019 10.5194/hess-9-381-2005 10.1016/j.cageo.2021.105010 10.3390/bdcc5040057 10.5194/essd-11-1931-2019 10.1007/s00704-022-04029-0 10.1016/j.procs.2019.02.036 10.1175/JHM-D-21-0171.1 10.1007/s00704-017-2232-4 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.2166/hydro.2024.235 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1465-1734 |
EndPage | 607 |
ExternalDocumentID | oai_doaj_org_article_db3fe6e3e9a7439684c934682d1350f6 10_2166_hydro_2024_235 |
GroupedDBID | 0R~ 4.4 5GY 7XC 8CJ 8FE 8FH AAJMC AAJVE AAYXX ABFYC ABLGR ACGFO AECGI AENEX AEUYN AFKRA AFRAH AJXRC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI BKSAR CCPQU CITATION CS3 D1J DU5 EBS GEUZO GROUPED_DOAJ HCIFZ HFPTO HZ~ L7B O9- OK1 P2P PATMY PCBAR PHGZM PHGZT PYCSY R0Z RHI ~02 H13 PUEGO |
ID | FETCH-LOGICAL-c345t-8cf022679f985cf2fc433b1b98322804832dce54c33df39a1040bcf5ece248143 |
IEDL.DBID | DOA |
ISSN | 1464-7141 |
IngestDate | Wed Aug 27 01:02:12 EDT 2025 Tue Jul 01 04:10:36 EDT 2025 Thu Apr 24 23:06:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-8cf022679f985cf2fc433b1b98322804832dce54c33df39a1040bcf5ece248143 |
ORCID | 0000-0003-2184-5785 0000-0002-0461-1242 |
OpenAccessLink | https://doaj.org/article/db3fe6e3e9a7439684c934682d1350f6 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_db3fe6e3e9a7439684c934682d1350f6 crossref_citationtrail_10_2166_hydro_2024_235 crossref_primary_10_2166_hydro_2024_235 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hydroinformatics |
PublicationYear | 2024 |
Publisher | IWA Publishing |
Publisher_xml | – name: IWA Publishing |
References | Eslami (key-10.2166/hydro.2024.235-27) 2019; 32 Boonyuen (key-10.2166/hydro.2024.235-12) 2018 key-10.2166/hydro.2024.235-40 Yesilkoy (key-10.2166/hydro.2024.235-73) 2020; 2 key-10.2166/hydro.2024.235-41 Li (key-10.2166/hydro.2024.235-46) 2018 Harrison (key-10.2166/hydro.2024.235-33) 1999; 125 key-10.2166/hydro.2024.235-44 key-10.2166/hydro.2024.235-45 Sa (key-10.2166/hydro.2024.235-58) 2014 key-10.2166/hydro.2024.235-42 key-10.2166/hydro.2024.235-43 key-10.2166/hydro.2024.235-48 key-10.2166/hydro.2024.235-49 key-10.2166/hydro.2024.235-47 Akbari Asanjan (key-10.2166/hydro.2024.235-2) 2018; 123 key-10.2166/hydro.2024.235-28 key-10.2166/hydro.2024.235-29 Shah (key-10.2166/hydro.2024.235-61) 2023 Baydaroğlu (key-10.2166/hydro.2024.235-10) 2024 Hernández (key-10.2166/hydro.2024.235-34) 2016 key-10.2166/hydro.2024.235-70 key-10.2166/hydro.2024.235-1 key-10.2166/hydro.2024.235-30 key-10.2166/hydro.2024.235-74 key-10.2166/hydro.2024.235-7 key-10.2166/hydro.2024.235-6 key-10.2166/hydro.2024.235-78 key-10.2166/hydro.2024.235-31 key-10.2166/hydro.2024.235-75 key-10.2166/hydro.2024.235-8 key-10.2166/hydro.2024.235-32 key-10.2166/hydro.2024.235-76 key-10.2166/hydro.2024.235-3 key-10.2166/hydro.2024.235-37 key-10.2166/hydro.2024.235-38 key-10.2166/hydro.2024.235-5 key-10.2166/hydro.2024.235-35 key-10.2166/hydro.2024.235-79 key-10.2166/hydro.2024.235-4 key-10.2166/hydro.2024.235-36 key-10.2166/hydro.2024.235-19 Beck (key-10.2166/hydro.2024.235-11) 2010 key-10.2166/hydro.2024.235-17 key-10.2166/hydro.2024.235-18 Weesakul (key-10.2166/hydro.2024.235-71) 2005; 10 Burrough (key-10.2166/hydro.2024.235-14) 2015 key-10.2166/hydro.2024.235-63 key-10.2166/hydro.2024.235-60 Zahmatkesh (key-10.2166/hydro.2024.235-77) 2019; 44 key-10.2166/hydro.2024.235-22 key-10.2166/hydro.2024.235-66 key-10.2166/hydro.2024.235-23 key-10.2166/hydro.2024.235-67 key-10.2166/hydro.2024.235-20 key-10.2166/hydro.2024.235-64 key-10.2166/hydro.2024.235-21 key-10.2166/hydro.2024.235-65 Shi (key-10.2166/hydro.2024.235-62) 2015; 28 Weesakul (key-10.2166/hydro.2024.235-72) 2018; 45 key-10.2166/hydro.2024.235-24 key-10.2166/hydro.2024.235-25 key-10.2166/hydro.2024.235-69 Jones (key-10.2166/hydro.2024.235-39) 1998 Oza (key-10.2166/hydro.2024.235-52) 2020 Zhao (key-10.2166/hydro.2024.235-80) 2018 Downtown (key-10.2166/hydro.2024.235-26) 1988; 117 Baydaroğlu (key-10.2166/hydro.2024.235-9) 2023; 42 key-10.2166/hydro.2024.235-51 key-10.2166/hydro.2024.235-50 Timothy (key-10.2166/hydro.2024.235-68) 2016; 3 key-10.2166/hydro.2024.235-55 key-10.2166/hydro.2024.235-56 key-10.2166/hydro.2024.235-53 key-10.2166/hydro.2024.235-54 key-10.2166/hydro.2024.235-15 key-10.2166/hydro.2024.235-59 key-10.2166/hydro.2024.235-16 key-10.2166/hydro.2024.235-13 key-10.2166/hydro.2024.235-57 |
References_xml | – ident: key-10.2166/hydro.2024.235-66 doi: 10.1016/j.solener.2019.06.041 – ident: key-10.2166/hydro.2024.235-16 doi: 10.1016/j.envsoft.2021.105148 – ident: key-10.2166/hydro.2024.235-40 doi: 10.3390/w12030899 – ident: key-10.2166/hydro.2024.235-3 doi: 10.1016/j.ijdrr.2022.102955 – ident: key-10.2166/hydro.2024.235-4 doi: 10.1016/j.jhydrol.2022.128197 – ident: key-10.2166/hydro.2024.235-57 doi: 10.1016/j.envsoft.2015.01.011 – ident: key-10.2166/hydro.2024.235-21 doi: 10.1175/JHM-D-14-0163.1 – ident: key-10.2166/hydro.2024.235-69 doi: 10.1016/j.apenergy.2016.11.111 – ident: key-10.2166/hydro.2024.235-44 doi: 10.1016/j.scitotenv.2022.154420 – ident: key-10.2166/hydro.2024.235-67 doi: 10.1038/s41467-019-08403-x – ident: key-10.2166/hydro.2024.235-17 doi: 10.1080/19942060.2021.2009374 – ident: key-10.2166/hydro.2024.235-64 doi: 10.1016/j.envsoft.2024.106001 – year: 2024 ident: key-10.2166/hydro.2024.235-10 article-title: Coping with Information Extraction from In-Situ Data Acquired in Natural Streams doi: 10.31223/X5S979 – volume: 117 start-page: 279 year: 1988 ident: key-10.2166/hydro.2024.235-26 article-title: The impact of analysis differences on medium range forecast publication-title: Meteorological Magazine – ident: key-10.2166/hydro.2024.235-55 doi: 10.17148/IJARCCE.2016.5107 – ident: key-10.2166/hydro.2024.235-41 doi: 10.1371/journal.pone.0230114 – ident: key-10.2166/hydro.2024.235-63 doi: 10.2166/hydro.2023.196 – ident: key-10.2166/hydro.2024.235-70 doi: 10.5194/hess-24-3643-2020 – ident: key-10.2166/hydro.2024.235-30 doi: 10.1061/(ASCE)WR.1943-5452.0000992 – ident: key-10.2166/hydro.2024.235-29 doi: 10.1007/s00704-018-2403-y – start-page: 1 year: 2018 ident: key-10.2166/hydro.2024.235-12 article-title: Daily rainfall forecast model from satellite image using convolution neural network – ident: key-10.2166/hydro.2024.235-20 – ident: key-10.2166/hydro.2024.235-75 doi: 10.31223/X5937W – ident: key-10.2166/hydro.2024.235-8 doi: 10.1016/j.jhydrol.2013.11.008 – ident: key-10.2166/hydro.2024.235-1 doi: 10.1016/j.jhydrol.2022.128463 – volume: 45 start-page: 203 issue: 3 year: 2018 ident: key-10.2166/hydro.2024.235-72 article-title: Deep learning neural network: A machine learning approach for monthly rainfall forecast, case study in eastern region of Thailand publication-title: Engineering and Applied Science Research – ident: key-10.2166/hydro.2024.235-47 doi: 10.3390/w10101389 – volume: 3 start-page: 437 issue: 2 year: 2016 ident: key-10.2166/hydro.2024.235-68 article-title: Incorporating Nesterov momentum into Adam publication-title: Natural Hazards – ident: key-10.2166/hydro.2024.235-65 doi: 10.3390/w14040660 – ident: key-10.2166/hydro.2024.235-28 doi: 10.1007/s42044-020-00065-z – ident: key-10.2166/hydro.2024.235-15 doi: 10.3390/rs11131584 – ident: key-10.2166/hydro.2024.235-38 doi: 10.1080/15715124.2024.2304546 – ident: key-10.2166/hydro.2024.235-50 doi: 10.1109/ACCESS.2021.3065939 – ident: key-10.2166/hydro.2024.235-76 doi: 10.1016/j.scitotenv.2022.154165 – start-page: 31 volume-title: Proceedings of the Institution of Civil Engineers-Engineering Sustainability year: 2010 ident: key-10.2166/hydro.2024.235-11 article-title: Re-engineering cities as forces for good in the environment – ident: key-10.2166/hydro.2024.235-45 doi: 10.1016/j.scitotenv.2023.161757 – ident: key-10.2166/hydro.2024.235-42 doi: 10.1007/s00704-020-03489-6 – ident: key-10.2166/hydro.2024.235-48 doi: 10.3390/rs12172821 – volume: 42 start-page: 90 issue: 2 year: 2023 ident: key-10.2166/hydro.2024.235-9 article-title: A comprehensive review of ontologies in the hydrology towards guiding next generation artificial intelligence applications publication-title: Journal of Environmental Informatics – volume-title: Principles of Geographical Information Systems year: 2015 ident: key-10.2166/hydro.2024.235-14 – ident: key-10.2166/hydro.2024.235-7 doi: 10.1016/j.ecoenv.2007.10.019 – ident: key-10.2166/hydro.2024.235-35 doi: 10.1162/neco.1997.9.8.1735 – ident: key-10.2166/hydro.2024.235-43 doi: 10.1007/978-3-030-76437-1_24 – ident: key-10.2166/hydro.2024.235-23 – volume: 32 start-page: 1 year: 2019 ident: key-10.2166/hydro.2024.235-27 article-title: A real-time hourly ozone prediction system using deep convolutional neural network publication-title: Neural Computing and Applications – volume-title: A User's Guide for SCRIP: A Spherical Coordinate Remapping and Interpolation Package year: 1998 ident: key-10.2166/hydro.2024.235-39 – year: 2020 ident: key-10.2166/hydro.2024.235-52 article-title: Extreme weather prediction using 2-phase deep learning pipeline doi: 10.1007/978-981-15-4018-9_25 – ident: key-10.2166/hydro.2024.235-37 doi: 10.5194/hess-13-1413-2009 – ident: key-10.2166/hydro.2024.235-13 doi: 10.1175/1520-0434(1999)014<0168:PPOPUT>2.0.CO;2 – ident: key-10.2166/hydro.2024.235-54 doi: 10.1109/TMI.1983.4307610 – start-page: 308 year: 2014 ident: key-10.2166/hydro.2024.235-58 article-title: Improved bilinear interpolation method for image fast processing – ident: key-10.2166/hydro.2024.235-78 doi: 10.1016/j.rse.2018.10.006 – ident: key-10.2166/hydro.2024.235-22 doi: 10.1007/s42979-020-00442-2 – start-page: 304 year: 2018 ident: key-10.2166/hydro.2024.235-46 article-title: A method of rainfall runoff forecasting based on deep convolution neural networks – ident: key-10.2166/hydro.2024.235-24 doi: 10.1007/s11269-015-1046-3 – ident: key-10.2166/hydro.2024.235-51 – volume: 10 start-page: 18 year: 2005 ident: key-10.2166/hydro.2024.235-71 article-title: Rainfall forecast for agricultural water allocation planning in Thailand publication-title: Science & Technology Asia – volume: 123 start-page: 12 issue: 22 year: 2018 ident: key-10.2166/hydro.2024.235-2 article-title: Short-term precipitation forecast based on the PERSIANN system and LSTM recurrent neural networks publication-title: Journal of Geophysical Research: Atmospheres – start-page: 1 year: 2023 ident: key-10.2166/hydro.2024.235-61 article-title: A comparative study of spatial interpolation methods for CMIP6 monthly historical and future hydro-climatic datasets for Indian Region – volume: 2 start-page: 65 year: 2020 ident: key-10.2166/hydro.2024.235-73 article-title: Prediction of commonly used drought indices using support vector regression powered by chaotic approach publication-title: Italian Journal of Agrometeorology – ident: key-10.2166/hydro.2024.235-18 doi: 10.1007/s00521-021-06877-9 – ident: key-10.2166/hydro.2024.235-32 doi: 10.1029/2022MS003120 – ident: key-10.2166/hydro.2024.235-31 doi: 10.1007/s11069-020-04015-7 – ident: key-10.2166/hydro.2024.235-5 doi: 10.1029/2022WR032789 – ident: key-10.2166/hydro.2024.235-19 doi: 10.1016/j.jhydrol.2022.127535 – volume: 125 start-page: 2487 year: 1999 ident: key-10.2166/hydro.2024.235-33 article-title: Analysis and model dependencies in medium- range ensembles: Two transplant case studies publication-title: Quarterly Journal of the Royal Meteorological Society – ident: key-10.2166/hydro.2024.235-36 doi: 10.5194/hess-23-2647-2019 – ident: key-10.2166/hydro.2024.235-53 doi: 10.5194/hess-9-381-2005 – ident: key-10.2166/hydro.2024.235-60 doi: 10.1016/j.cageo.2021.105010 – volume: 28 start-page: 802 year: 2015 ident: key-10.2166/hydro.2024.235-62 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: Advances in Neural Information Processing Systems – start-page: 032087 volume-title: IOP Conference Series: Materials Science and Engineering year: 2018 ident: key-10.2166/hydro.2024.235-80 article-title: Analysis of climate drought vulnerability in Qinghai-Tibet Plateau – ident: key-10.2166/hydro.2024.235-59 doi: 10.3390/bdcc5040057 – ident: key-10.2166/hydro.2024.235-79 – ident: key-10.2166/hydro.2024.235-56 doi: 10.5194/essd-11-1931-2019 – start-page: 151 year: 2016 ident: key-10.2166/hydro.2024.235-34 article-title: Rainfall prediction: A deep learning approach – ident: key-10.2166/hydro.2024.235-74 doi: 10.1007/s00704-022-04029-0 – ident: key-10.2166/hydro.2024.235-6 doi: 10.1016/j.procs.2019.02.036 – ident: key-10.2166/hydro.2024.235-49 doi: 10.1175/JHM-D-21-0171.1 – ident: key-10.2166/hydro.2024.235-25 doi: 10.1007/s00704-017-2232-4 – volume: 44 start-page: 1 year: 2019 ident: key-10.2166/hydro.2024.235-77 article-title: An overview of river flood forecasting procedures in Canadian watersheds publication-title: Canadian Water Resources Journal/Revue Canadienne des Ressources Hydriques |
SSID | ssj0021381 |
Score | 2.3827116 |
Snippet | The significance of improving rainfall prediction methods has escalated due to climate change-induced flash floods and severe flooding. In this study, rainfall... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 589 |
SubjectTerms | data augmentation deep learning flood interpolation nowcasting rainfall |
Title | Temporal and spatial satellite data augmentation for deep learning-based rainfall nowcasting |
URI | https://doaj.org/article/db3fe6e3e9a7439684c934682d1350f6 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kF72IT6wv9iB4im2yj26OKpYi6KmFHoSwz_ZQ09IH0n_vzCatvYgXTwlhCcs3m3wzMPN9hNwZ37HOGviQIMI4ksMS3QkicUKZXGnjdbRve3uXvQF_HYrhjtUX9oRV8sAVcC1nWPDSM59rzJ2l4jZnXKrMpUy0QxTbBs7bFFN1qZWyaE8KvwHsNuRpJdeYpVK2xms3x6m_jD9k0eTth452VPsjvXSPyGGdF9LHaj_HZM-XJ2S_tigfr0_JR78SkZpQqP3pAhuh4X6ho6Lm0lNs9aR6Nfqsh4lKCukodd7PaO0MMUqQshxFU4igJxNaTr-sXmDf8xkZdF_6z72ktkZILONimSgbgHxlJw-5EjZkwQLMJgV4GerbcLg46wW3jLnAcg1FV9vYILz1GVeQI52TRjkt_QWhDKKofLAuWMtFLhRwmu9wI4WTwpi0SZINQoWtdcPRvmJSQP2AiBYR0QIRLQDRJrnfrp9Vihm_rnxCwLerUOk6PoD4F3X8i7_if_kfL7kiB7ipqrfsmjSW85W_gWRjaW7jufoGPpbSTw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+and+spatial+satellite+data+augmentation+for+deep+learning-based+rainfall+nowcasting&rft.jtitle=Journal+of+hydroinformatics&rft.au=%C3%96zlem+Baydaro%C4%9Flu&rft.au=Ibrahim+Demir&rft.date=2024-03-01&rft.pub=IWA+Publishing&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=26&rft.issue=3&rft.spage=589&rft.epage=607&rft_id=info:doi/10.2166%2Fhydro.2024.235&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_db3fe6e3e9a7439684c934682d1350f6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon |