Temporal and spatial satellite data augmentation for deep learning-based rainfall nowcasting

The significance of improving rainfall prediction methods has escalated due to climate change-induced flash floods and severe flooding. In this study, rainfall nowcasting has been studied utilizing NASA Giovanni satellite-derived precipitation products and the convolutional long short-term memory (C...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydroinformatics Vol. 26; no. 3; pp. 589 - 607
Main Authors Baydaroğlu, Özlem, Demir, Ibrahim
Format Journal Article
LanguageEnglish
Published IWA Publishing 01.03.2024
Subjects
Online AccessGet full text
ISSN1464-7141
1465-1734
DOI10.2166/hydro.2024.235

Cover

Loading…
Abstract The significance of improving rainfall prediction methods has escalated due to climate change-induced flash floods and severe flooding. In this study, rainfall nowcasting has been studied utilizing NASA Giovanni satellite-derived precipitation products and the convolutional long short-term memory (ConvLSTM) approach. The goal of the study is to assess the impact of data augmentation on flood nowcasting. Due to data requirements of deep learning-based prediction methods, data augmentation is performed using eight different interpolation techniques. Spatial, temporal, and spatio-temporal interpolated rainfall data are used to conduct a comparative analysis of the results obtained through nowcasting rainfall. This research examines two catastrophic floods that transpired in Türkiye Marmara Region in 2009 and the Central Black Sea Region in 2021, which are selected as the focal case studies. The Marmara and Black Sea regions are prone to frequent flooding, which, due to the dense population, has devastating consequences. Furthermore, these regions exhibit distinct topographical characteristics and precipitation patterns, and the frontal systems that impact them are also dissimilar. The nowcast results for the two regions exhibit a significant difference. Although data augmentation significantly reduced the error values by 59% for one region, it did not yield the same effectiveness for the other region.
AbstractList The significance of improving rainfall prediction methods has escalated due to climate change-induced flash floods and severe flooding. In this study, rainfall nowcasting has been studied utilizing NASA Giovanni satellite-derived precipitation products and the convolutional long short-term memory (ConvLSTM) approach. The goal of the study is to assess the impact of data augmentation on flood nowcasting. Due to data requirements of deep learning-based prediction methods, data augmentation is performed using eight different interpolation techniques. Spatial, temporal, and spatio-temporal interpolated rainfall data are used to conduct a comparative analysis of the results obtained through nowcasting rainfall. This research examines two catastrophic floods that transpired in Türkiye Marmara Region in 2009 and the Central Black Sea Region in 2021, which are selected as the focal case studies. The Marmara and Black Sea regions are prone to frequent flooding, which, due to the dense population, has devastating consequences. Furthermore, these regions exhibit distinct topographical characteristics and precipitation patterns, and the frontal systems that impact them are also dissimilar. The nowcast results for the two regions exhibit a significant difference. Although data augmentation significantly reduced the error values by 59% for one region, it did not yield the same effectiveness for the other region. HIGHLIGHTS A ConvLSTM model was created for rainfall nowcasting.; Satellite data augmentation was conducted by employing eight distinct interpolation approaches.; The investigation examined two flood case studies and their nowcast outcomes using original and augmented data.; Although the use of augmented data reduced nowcast error by 59% in one flood event, its impact on the nowcast result in the other event was found to be negligible.;
The significance of improving rainfall prediction methods has escalated due to climate change-induced flash floods and severe flooding. In this study, rainfall nowcasting has been studied utilizing NASA Giovanni satellite-derived precipitation products and the convolutional long short-term memory (ConvLSTM) approach. The goal of the study is to assess the impact of data augmentation on flood nowcasting. Due to data requirements of deep learning-based prediction methods, data augmentation is performed using eight different interpolation techniques. Spatial, temporal, and spatio-temporal interpolated rainfall data are used to conduct a comparative analysis of the results obtained through nowcasting rainfall. This research examines two catastrophic floods that transpired in Türkiye Marmara Region in 2009 and the Central Black Sea Region in 2021, which are selected as the focal case studies. The Marmara and Black Sea regions are prone to frequent flooding, which, due to the dense population, has devastating consequences. Furthermore, these regions exhibit distinct topographical characteristics and precipitation patterns, and the frontal systems that impact them are also dissimilar. The nowcast results for the two regions exhibit a significant difference. Although data augmentation significantly reduced the error values by 59% for one region, it did not yield the same effectiveness for the other region.
Author Demir, Ibrahim
Baydaroğlu, Özlem
Author_xml – sequence: 1
  givenname: Özlem
  orcidid: 0000-0003-2184-5785
  surname: Baydaroğlu
  fullname: Baydaroğlu, Özlem
– sequence: 2
  givenname: Ibrahim
  orcidid: 0000-0002-0461-1242
  surname: Demir
  fullname: Demir, Ibrahim
BookMark eNp1UMlKBDEUDKLguFw95wd6zNbbUQaXAcGL3oTwOnkZe-hJmiQi_r1xRi-Cp1dUUcWrOiPHPngk5IqzpeBNc_32aWNYCibUUsj6iCy4auqKt1Id77GqWq74KTlLacuY4LLjC_L6jLs5RJgoeEvTDHksOEHGaRozUgsZKLxvduhz0YKnLkRqEWc6IUQ_-k01QEJLI4zewTRRHz4MpFyUC3JSmISXP_ecvNzdPq8eqsen-_Xq5rEyUtW56oxjQjRt7_quNk44o6Qc-NB3UoiOqXKswVoZKa2TPXCm2GBcjQaF6riS52R9yLUBtnqO4w7ipw4w6j0R4kZDzKOZUNtBOmxQYg-tkn3TKdNL1XTCclkz15QsdcgyMaQU0WkzHprn0nDSnOnvtfV-bf29ti5rF9vyj-33jX8MX11lhg4
CitedBy_id crossref_primary_10_1088_2515_7620_ad85c4
crossref_primary_10_1007_s00704_024_05046_x
crossref_primary_10_3390_w17050676
crossref_primary_10_1080_02626667_2024_2394169
crossref_primary_10_3389_fcpxs_2024_1508091
crossref_primary_10_1016_j_scitotenv_2024_178185
Cites_doi 10.1016/j.solener.2019.06.041
10.1016/j.envsoft.2021.105148
10.3390/w12030899
10.1016/j.ijdrr.2022.102955
10.1016/j.jhydrol.2022.128197
10.1016/j.envsoft.2015.01.011
10.1175/JHM-D-14-0163.1
10.1016/j.apenergy.2016.11.111
10.1016/j.scitotenv.2022.154420
10.1038/s41467-019-08403-x
10.1080/19942060.2021.2009374
10.1016/j.envsoft.2024.106001
10.31223/X5S979
10.17148/IJARCCE.2016.5107
10.1371/journal.pone.0230114
10.2166/hydro.2023.196
10.5194/hess-24-3643-2020
10.1061/(ASCE)WR.1943-5452.0000992
10.1007/s00704-018-2403-y
10.31223/X5937W
10.1016/j.jhydrol.2013.11.008
10.1016/j.jhydrol.2022.128463
10.3390/w10101389
10.3390/w14040660
10.1007/s42044-020-00065-z
10.3390/rs11131584
10.1080/15715124.2024.2304546
10.1109/ACCESS.2021.3065939
10.1016/j.scitotenv.2022.154165
10.1016/j.scitotenv.2023.161757
10.1007/s00704-020-03489-6
10.3390/rs12172821
10.1016/j.ecoenv.2007.10.019
10.1162/neco.1997.9.8.1735
10.1007/978-3-030-76437-1_24
10.1007/978-981-15-4018-9_25
10.5194/hess-13-1413-2009
10.1175/1520-0434(1999)014<0168:PPOPUT>2.0.CO;2
10.1109/TMI.1983.4307610
10.1016/j.rse.2018.10.006
10.1007/s42979-020-00442-2
10.1007/s11269-015-1046-3
10.1007/s00521-021-06877-9
10.1029/2022MS003120
10.1007/s11069-020-04015-7
10.1029/2022WR032789
10.1016/j.jhydrol.2022.127535
10.5194/hess-23-2647-2019
10.5194/hess-9-381-2005
10.1016/j.cageo.2021.105010
10.3390/bdcc5040057
10.5194/essd-11-1931-2019
10.1007/s00704-022-04029-0
10.1016/j.procs.2019.02.036
10.1175/JHM-D-21-0171.1
10.1007/s00704-017-2232-4
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.2166/hydro.2024.235
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1465-1734
EndPage 607
ExternalDocumentID oai_doaj_org_article_db3fe6e3e9a7439684c934682d1350f6
10_2166_hydro_2024_235
GroupedDBID 0R~
4.4
5GY
7XC
8CJ
8FE
8FH
AAJMC
AAJVE
AAYXX
ABFYC
ABLGR
ACGFO
AECGI
AENEX
AEUYN
AFKRA
AFRAH
AJXRC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
BKSAR
CCPQU
CITATION
CS3
D1J
DU5
EBS
GEUZO
GROUPED_DOAJ
HCIFZ
HFPTO
HZ~
L7B
O9-
OK1
P2P
PATMY
PCBAR
PHGZM
PHGZT
PYCSY
R0Z
RHI
~02
H13
PUEGO
ID FETCH-LOGICAL-c345t-8cf022679f985cf2fc433b1b98322804832dce54c33df39a1040bcf5ece248143
IEDL.DBID DOA
ISSN 1464-7141
IngestDate Wed Aug 27 01:02:12 EDT 2025
Tue Jul 01 04:10:36 EDT 2025
Thu Apr 24 23:06:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-8cf022679f985cf2fc433b1b98322804832dce54c33df39a1040bcf5ece248143
ORCID 0000-0003-2184-5785
0000-0002-0461-1242
OpenAccessLink https://doaj.org/article/db3fe6e3e9a7439684c934682d1350f6
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_db3fe6e3e9a7439684c934682d1350f6
crossref_citationtrail_10_2166_hydro_2024_235
crossref_primary_10_2166_hydro_2024_235
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of hydroinformatics
PublicationYear 2024
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References Eslami (key-10.2166/hydro.2024.235-27) 2019; 32
Boonyuen (key-10.2166/hydro.2024.235-12) 2018
key-10.2166/hydro.2024.235-40
Yesilkoy (key-10.2166/hydro.2024.235-73) 2020; 2
key-10.2166/hydro.2024.235-41
Li (key-10.2166/hydro.2024.235-46) 2018
Harrison (key-10.2166/hydro.2024.235-33) 1999; 125
key-10.2166/hydro.2024.235-44
key-10.2166/hydro.2024.235-45
Sa (key-10.2166/hydro.2024.235-58) 2014
key-10.2166/hydro.2024.235-42
key-10.2166/hydro.2024.235-43
key-10.2166/hydro.2024.235-48
key-10.2166/hydro.2024.235-49
key-10.2166/hydro.2024.235-47
Akbari Asanjan (key-10.2166/hydro.2024.235-2) 2018; 123
key-10.2166/hydro.2024.235-28
key-10.2166/hydro.2024.235-29
Shah (key-10.2166/hydro.2024.235-61) 2023
Baydaroğlu (key-10.2166/hydro.2024.235-10) 2024
Hernández (key-10.2166/hydro.2024.235-34) 2016
key-10.2166/hydro.2024.235-70
key-10.2166/hydro.2024.235-1
key-10.2166/hydro.2024.235-30
key-10.2166/hydro.2024.235-74
key-10.2166/hydro.2024.235-7
key-10.2166/hydro.2024.235-6
key-10.2166/hydro.2024.235-78
key-10.2166/hydro.2024.235-31
key-10.2166/hydro.2024.235-75
key-10.2166/hydro.2024.235-8
key-10.2166/hydro.2024.235-32
key-10.2166/hydro.2024.235-76
key-10.2166/hydro.2024.235-3
key-10.2166/hydro.2024.235-37
key-10.2166/hydro.2024.235-38
key-10.2166/hydro.2024.235-5
key-10.2166/hydro.2024.235-35
key-10.2166/hydro.2024.235-79
key-10.2166/hydro.2024.235-4
key-10.2166/hydro.2024.235-36
key-10.2166/hydro.2024.235-19
Beck (key-10.2166/hydro.2024.235-11) 2010
key-10.2166/hydro.2024.235-17
key-10.2166/hydro.2024.235-18
Weesakul (key-10.2166/hydro.2024.235-71) 2005; 10
Burrough (key-10.2166/hydro.2024.235-14) 2015
key-10.2166/hydro.2024.235-63
key-10.2166/hydro.2024.235-60
Zahmatkesh (key-10.2166/hydro.2024.235-77) 2019; 44
key-10.2166/hydro.2024.235-22
key-10.2166/hydro.2024.235-66
key-10.2166/hydro.2024.235-23
key-10.2166/hydro.2024.235-67
key-10.2166/hydro.2024.235-20
key-10.2166/hydro.2024.235-64
key-10.2166/hydro.2024.235-21
key-10.2166/hydro.2024.235-65
Shi (key-10.2166/hydro.2024.235-62) 2015; 28
Weesakul (key-10.2166/hydro.2024.235-72) 2018; 45
key-10.2166/hydro.2024.235-24
key-10.2166/hydro.2024.235-25
key-10.2166/hydro.2024.235-69
Jones (key-10.2166/hydro.2024.235-39) 1998
Oza (key-10.2166/hydro.2024.235-52) 2020
Zhao (key-10.2166/hydro.2024.235-80) 2018
Downtown (key-10.2166/hydro.2024.235-26) 1988; 117
Baydaroğlu (key-10.2166/hydro.2024.235-9) 2023; 42
key-10.2166/hydro.2024.235-51
key-10.2166/hydro.2024.235-50
Timothy (key-10.2166/hydro.2024.235-68) 2016; 3
key-10.2166/hydro.2024.235-55
key-10.2166/hydro.2024.235-56
key-10.2166/hydro.2024.235-53
key-10.2166/hydro.2024.235-54
key-10.2166/hydro.2024.235-15
key-10.2166/hydro.2024.235-59
key-10.2166/hydro.2024.235-16
key-10.2166/hydro.2024.235-13
key-10.2166/hydro.2024.235-57
References_xml – ident: key-10.2166/hydro.2024.235-66
  doi: 10.1016/j.solener.2019.06.041
– ident: key-10.2166/hydro.2024.235-16
  doi: 10.1016/j.envsoft.2021.105148
– ident: key-10.2166/hydro.2024.235-40
  doi: 10.3390/w12030899
– ident: key-10.2166/hydro.2024.235-3
  doi: 10.1016/j.ijdrr.2022.102955
– ident: key-10.2166/hydro.2024.235-4
  doi: 10.1016/j.jhydrol.2022.128197
– ident: key-10.2166/hydro.2024.235-57
  doi: 10.1016/j.envsoft.2015.01.011
– ident: key-10.2166/hydro.2024.235-21
  doi: 10.1175/JHM-D-14-0163.1
– ident: key-10.2166/hydro.2024.235-69
  doi: 10.1016/j.apenergy.2016.11.111
– ident: key-10.2166/hydro.2024.235-44
  doi: 10.1016/j.scitotenv.2022.154420
– ident: key-10.2166/hydro.2024.235-67
  doi: 10.1038/s41467-019-08403-x
– ident: key-10.2166/hydro.2024.235-17
  doi: 10.1080/19942060.2021.2009374
– ident: key-10.2166/hydro.2024.235-64
  doi: 10.1016/j.envsoft.2024.106001
– year: 2024
  ident: key-10.2166/hydro.2024.235-10
  article-title: Coping with Information Extraction from In-Situ Data Acquired in Natural Streams
  doi: 10.31223/X5S979
– volume: 117
  start-page: 279
  year: 1988
  ident: key-10.2166/hydro.2024.235-26
  article-title: The impact of analysis differences on medium range forecast
  publication-title: Meteorological Magazine
– ident: key-10.2166/hydro.2024.235-55
  doi: 10.17148/IJARCCE.2016.5107
– ident: key-10.2166/hydro.2024.235-41
  doi: 10.1371/journal.pone.0230114
– ident: key-10.2166/hydro.2024.235-63
  doi: 10.2166/hydro.2023.196
– ident: key-10.2166/hydro.2024.235-70
  doi: 10.5194/hess-24-3643-2020
– ident: key-10.2166/hydro.2024.235-30
  doi: 10.1061/(ASCE)WR.1943-5452.0000992
– ident: key-10.2166/hydro.2024.235-29
  doi: 10.1007/s00704-018-2403-y
– start-page: 1
  year: 2018
  ident: key-10.2166/hydro.2024.235-12
  article-title: Daily rainfall forecast model from satellite image using convolution neural network
– ident: key-10.2166/hydro.2024.235-20
– ident: key-10.2166/hydro.2024.235-75
  doi: 10.31223/X5937W
– ident: key-10.2166/hydro.2024.235-8
  doi: 10.1016/j.jhydrol.2013.11.008
– ident: key-10.2166/hydro.2024.235-1
  doi: 10.1016/j.jhydrol.2022.128463
– volume: 45
  start-page: 203
  issue: 3
  year: 2018
  ident: key-10.2166/hydro.2024.235-72
  article-title: Deep learning neural network: A machine learning approach for monthly rainfall forecast, case study in eastern region of Thailand
  publication-title: Engineering and Applied Science Research
– ident: key-10.2166/hydro.2024.235-47
  doi: 10.3390/w10101389
– volume: 3
  start-page: 437
  issue: 2
  year: 2016
  ident: key-10.2166/hydro.2024.235-68
  article-title: Incorporating Nesterov momentum into Adam
  publication-title: Natural Hazards
– ident: key-10.2166/hydro.2024.235-65
  doi: 10.3390/w14040660
– ident: key-10.2166/hydro.2024.235-28
  doi: 10.1007/s42044-020-00065-z
– ident: key-10.2166/hydro.2024.235-15
  doi: 10.3390/rs11131584
– ident: key-10.2166/hydro.2024.235-38
  doi: 10.1080/15715124.2024.2304546
– ident: key-10.2166/hydro.2024.235-50
  doi: 10.1109/ACCESS.2021.3065939
– ident: key-10.2166/hydro.2024.235-76
  doi: 10.1016/j.scitotenv.2022.154165
– start-page: 31
  volume-title: Proceedings of the Institution of Civil Engineers-Engineering Sustainability
  year: 2010
  ident: key-10.2166/hydro.2024.235-11
  article-title: Re-engineering cities as forces for good in the environment
– ident: key-10.2166/hydro.2024.235-45
  doi: 10.1016/j.scitotenv.2023.161757
– ident: key-10.2166/hydro.2024.235-42
  doi: 10.1007/s00704-020-03489-6
– ident: key-10.2166/hydro.2024.235-48
  doi: 10.3390/rs12172821
– volume: 42
  start-page: 90
  issue: 2
  year: 2023
  ident: key-10.2166/hydro.2024.235-9
  article-title: A comprehensive review of ontologies in the hydrology towards guiding next generation artificial intelligence applications
  publication-title: Journal of Environmental Informatics
– volume-title: Principles of Geographical Information Systems
  year: 2015
  ident: key-10.2166/hydro.2024.235-14
– ident: key-10.2166/hydro.2024.235-7
  doi: 10.1016/j.ecoenv.2007.10.019
– ident: key-10.2166/hydro.2024.235-35
  doi: 10.1162/neco.1997.9.8.1735
– ident: key-10.2166/hydro.2024.235-43
  doi: 10.1007/978-3-030-76437-1_24
– ident: key-10.2166/hydro.2024.235-23
– volume: 32
  start-page: 1
  year: 2019
  ident: key-10.2166/hydro.2024.235-27
  article-title: A real-time hourly ozone prediction system using deep convolutional neural network
  publication-title: Neural Computing and Applications
– volume-title: A User's Guide for SCRIP: A Spherical Coordinate Remapping and Interpolation Package
  year: 1998
  ident: key-10.2166/hydro.2024.235-39
– year: 2020
  ident: key-10.2166/hydro.2024.235-52
  article-title: Extreme weather prediction using 2-phase deep learning pipeline
  doi: 10.1007/978-981-15-4018-9_25
– ident: key-10.2166/hydro.2024.235-37
  doi: 10.5194/hess-13-1413-2009
– ident: key-10.2166/hydro.2024.235-13
  doi: 10.1175/1520-0434(1999)014<0168:PPOPUT>2.0.CO;2
– ident: key-10.2166/hydro.2024.235-54
  doi: 10.1109/TMI.1983.4307610
– start-page: 308
  year: 2014
  ident: key-10.2166/hydro.2024.235-58
  article-title: Improved bilinear interpolation method for image fast processing
– ident: key-10.2166/hydro.2024.235-78
  doi: 10.1016/j.rse.2018.10.006
– ident: key-10.2166/hydro.2024.235-22
  doi: 10.1007/s42979-020-00442-2
– start-page: 304
  year: 2018
  ident: key-10.2166/hydro.2024.235-46
  article-title: A method of rainfall runoff forecasting based on deep convolution neural networks
– ident: key-10.2166/hydro.2024.235-24
  doi: 10.1007/s11269-015-1046-3
– ident: key-10.2166/hydro.2024.235-51
– volume: 10
  start-page: 18
  year: 2005
  ident: key-10.2166/hydro.2024.235-71
  article-title: Rainfall forecast for agricultural water allocation planning in Thailand
  publication-title: Science & Technology Asia
– volume: 123
  start-page: 12
  issue: 22
  year: 2018
  ident: key-10.2166/hydro.2024.235-2
  article-title: Short-term precipitation forecast based on the PERSIANN system and LSTM recurrent neural networks
  publication-title: Journal of Geophysical Research: Atmospheres
– start-page: 1
  year: 2023
  ident: key-10.2166/hydro.2024.235-61
  article-title: A comparative study of spatial interpolation methods for CMIP6 monthly historical and future hydro-climatic datasets for Indian Region
– volume: 2
  start-page: 65
  year: 2020
  ident: key-10.2166/hydro.2024.235-73
  article-title: Prediction of commonly used drought indices using support vector regression powered by chaotic approach
  publication-title: Italian Journal of Agrometeorology
– ident: key-10.2166/hydro.2024.235-18
  doi: 10.1007/s00521-021-06877-9
– ident: key-10.2166/hydro.2024.235-32
  doi: 10.1029/2022MS003120
– ident: key-10.2166/hydro.2024.235-31
  doi: 10.1007/s11069-020-04015-7
– ident: key-10.2166/hydro.2024.235-5
  doi: 10.1029/2022WR032789
– ident: key-10.2166/hydro.2024.235-19
  doi: 10.1016/j.jhydrol.2022.127535
– volume: 125
  start-page: 2487
  year: 1999
  ident: key-10.2166/hydro.2024.235-33
  article-title: Analysis and model dependencies in medium- range ensembles: Two transplant case studies
  publication-title: Quarterly Journal of the Royal Meteorological Society
– ident: key-10.2166/hydro.2024.235-36
  doi: 10.5194/hess-23-2647-2019
– ident: key-10.2166/hydro.2024.235-53
  doi: 10.5194/hess-9-381-2005
– ident: key-10.2166/hydro.2024.235-60
  doi: 10.1016/j.cageo.2021.105010
– volume: 28
  start-page: 802
  year: 2015
  ident: key-10.2166/hydro.2024.235-62
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Advances in Neural Information Processing Systems
– start-page: 032087
  volume-title: IOP Conference Series: Materials Science and Engineering
  year: 2018
  ident: key-10.2166/hydro.2024.235-80
  article-title: Analysis of climate drought vulnerability in Qinghai-Tibet Plateau
– ident: key-10.2166/hydro.2024.235-59
  doi: 10.3390/bdcc5040057
– ident: key-10.2166/hydro.2024.235-79
– ident: key-10.2166/hydro.2024.235-56
  doi: 10.5194/essd-11-1931-2019
– start-page: 151
  year: 2016
  ident: key-10.2166/hydro.2024.235-34
  article-title: Rainfall prediction: A deep learning approach
– ident: key-10.2166/hydro.2024.235-74
  doi: 10.1007/s00704-022-04029-0
– ident: key-10.2166/hydro.2024.235-6
  doi: 10.1016/j.procs.2019.02.036
– ident: key-10.2166/hydro.2024.235-49
  doi: 10.1175/JHM-D-21-0171.1
– ident: key-10.2166/hydro.2024.235-25
  doi: 10.1007/s00704-017-2232-4
– volume: 44
  start-page: 1
  year: 2019
  ident: key-10.2166/hydro.2024.235-77
  article-title: An overview of river flood forecasting procedures in Canadian watersheds
  publication-title: Canadian Water Resources Journal/Revue Canadienne des Ressources Hydriques
SSID ssj0021381
Score 2.3827116
Snippet The significance of improving rainfall prediction methods has escalated due to climate change-induced flash floods and severe flooding. In this study, rainfall...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 589
SubjectTerms data augmentation
deep learning
flood
interpolation
nowcasting
rainfall
Title Temporal and spatial satellite data augmentation for deep learning-based rainfall nowcasting
URI https://doaj.org/article/db3fe6e3e9a7439684c934682d1350f6
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kF72IT6wv9iB4im2yj26OKpYi6KmFHoSwz_ZQ09IH0n_vzCatvYgXTwlhCcs3m3wzMPN9hNwZ37HOGviQIMI4ksMS3QkicUKZXGnjdbRve3uXvQF_HYrhjtUX9oRV8sAVcC1nWPDSM59rzJ2l4jZnXKrMpUy0QxTbBs7bFFN1qZWyaE8KvwHsNuRpJdeYpVK2xms3x6m_jD9k0eTth452VPsjvXSPyGGdF9LHaj_HZM-XJ2S_tigfr0_JR78SkZpQqP3pAhuh4X6ho6Lm0lNs9aR6Nfqsh4lKCukodd7PaO0MMUqQshxFU4igJxNaTr-sXmDf8xkZdF_6z72ktkZILONimSgbgHxlJw-5EjZkwQLMJgV4GerbcLg46wW3jLnAcg1FV9vYILz1GVeQI52TRjkt_QWhDKKofLAuWMtFLhRwmu9wI4WTwpi0SZINQoWtdcPRvmJSQP2AiBYR0QIRLQDRJrnfrp9Vihm_rnxCwLerUOk6PoD4F3X8i7_if_kfL7kiB7ipqrfsmjSW85W_gWRjaW7jufoGPpbSTw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+and+spatial+satellite+data+augmentation+for+deep+learning-based+rainfall+nowcasting&rft.jtitle=Journal+of+hydroinformatics&rft.au=%C3%96zlem+Baydaro%C4%9Flu&rft.au=Ibrahim+Demir&rft.date=2024-03-01&rft.pub=IWA+Publishing&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=26&rft.issue=3&rft.spage=589&rft.epage=607&rft_id=info:doi/10.2166%2Fhydro.2024.235&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_db3fe6e3e9a7439684c934682d1350f6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon