Challenges and opportunities in the removal of sulphate ions in contaminated mine water: A review

[Display omitted] •Mining activities greatly increase acid mine drainage and sulphate ions in water.•Water pollution threat due to AMD needs to be addressed in a sustainable manner.•Sulphates removal using conventional methods is not up to the expected level.•Recent developments show high sulphate r...

Full description

Saved in:
Bibliographic Details
Published inMinerals engineering Vol. 117; pp. 74 - 90
Main Authors Fernando, W. Ashane M., Ilankoon, I.M.S.K., Syed, Tauqir H., Yellishetty, Mohan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2018
Subjects
Online AccessGet full text
ISSN0892-6875
1872-9444
DOI10.1016/j.mineng.2017.12.004

Cover

Loading…
Abstract [Display omitted] •Mining activities greatly increase acid mine drainage and sulphate ions in water.•Water pollution threat due to AMD needs to be addressed in a sustainable manner.•Sulphates removal using conventional methods is not up to the expected level.•Recent developments show high sulphate removals compared to conventional methods.•Large scale treatment tests need to be performed to validate novel lab findings. Metal sulphates are one of the major contributors to acid mine drainage (AMD) or acid rock drainage (ARD). AMD occurs by the oxidation of metal sulphides. Sulphides produce sulphates and eventually acidify the medium by converting to sulphuric acid. As AMD contaminates the water sources downstream, the set limit of sulphates for human consumption gets compromised. Stringent standards are imposed on, to comply with limitations set by the regulatory bodies. World Health Organization (WHO) emphasises on a 250 mg/L sulphate concentration in water for human consumption. Therefore, curing AMD of sulphates has become one of the prominent issues in water research. Unregulated disposal of such drainage may cause the increase in salinity and increase in the pH, which can be detrimental to the utility of the water downstream. Corrosion, scaling and health implications are definite results of AMD. Numerous approaches are available to treat sulphates from AMD. Suitability of a specific method depends on the level of removal expected, environmental legislations, available resources, space required, economy and volume of the contaminated water. Several approaches which have demonstrated promising results in the laboratory scale, but their viability at the industrial scale is yet to be established. This paper reviews the remediation methods which are currently in practice. It discusses the approaches in two main topics, both conventional and recent developments. While the conventional methods include lime, limestone and wetlands, the recent developments include filtration, electrocoagulation, adsorption, ion exchange and precipitation with the introduction of a certain level of novelty throughout the last few years. It is well established that lime and limestone treatment of AMD are well suited for pre-treatment processes whereas the rest of the methods can be selected upon the site specific requirements. Even though the novel methods show their potential to reduce sulphate ions greatly, these need to be tested at industrial scale in order to identify the overall effectiveness.
AbstractList [Display omitted] •Mining activities greatly increase acid mine drainage and sulphate ions in water.•Water pollution threat due to AMD needs to be addressed in a sustainable manner.•Sulphates removal using conventional methods is not up to the expected level.•Recent developments show high sulphate removals compared to conventional methods.•Large scale treatment tests need to be performed to validate novel lab findings. Metal sulphates are one of the major contributors to acid mine drainage (AMD) or acid rock drainage (ARD). AMD occurs by the oxidation of metal sulphides. Sulphides produce sulphates and eventually acidify the medium by converting to sulphuric acid. As AMD contaminates the water sources downstream, the set limit of sulphates for human consumption gets compromised. Stringent standards are imposed on, to comply with limitations set by the regulatory bodies. World Health Organization (WHO) emphasises on a 250 mg/L sulphate concentration in water for human consumption. Therefore, curing AMD of sulphates has become one of the prominent issues in water research. Unregulated disposal of such drainage may cause the increase in salinity and increase in the pH, which can be detrimental to the utility of the water downstream. Corrosion, scaling and health implications are definite results of AMD. Numerous approaches are available to treat sulphates from AMD. Suitability of a specific method depends on the level of removal expected, environmental legislations, available resources, space required, economy and volume of the contaminated water. Several approaches which have demonstrated promising results in the laboratory scale, but their viability at the industrial scale is yet to be established. This paper reviews the remediation methods which are currently in practice. It discusses the approaches in two main topics, both conventional and recent developments. While the conventional methods include lime, limestone and wetlands, the recent developments include filtration, electrocoagulation, adsorption, ion exchange and precipitation with the introduction of a certain level of novelty throughout the last few years. It is well established that lime and limestone treatment of AMD are well suited for pre-treatment processes whereas the rest of the methods can be selected upon the site specific requirements. Even though the novel methods show their potential to reduce sulphate ions greatly, these need to be tested at industrial scale in order to identify the overall effectiveness.
Author Syed, Tauqir H.
Fernando, W. Ashane M.
Ilankoon, I.M.S.K.
Yellishetty, Mohan
Author_xml – sequence: 1
  givenname: W. Ashane M.
  surname: Fernando
  fullname: Fernando, W. Ashane M.
  organization: Discipline of Chemical Engineering, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
– sequence: 2
  givenname: I.M.S.K.
  surname: Ilankoon
  fullname: Ilankoon, I.M.S.K.
  email: saman.ilankoon@monash.edu
  organization: Discipline of Chemical Engineering, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
– sequence: 3
  givenname: Tauqir H.
  surname: Syed
  fullname: Syed, Tauqir H.
  organization: Discipline of Chemical Engineering, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
– sequence: 4
  givenname: Mohan
  surname: Yellishetty
  fullname: Yellishetty, Mohan
  organization: Department of Civil Engineering, Monash University, 23 College Walk, Clayton 3800, Victoria, Australia
BookMark eNqFkM9OAjEQxhuDiYC-gYe-wK5tt9AuBxNC_JeQeNFzU9qplCwt6RaIb28RTx70NJOZ_Ga-7xuhQYgBELqlpKaETu829dYHCB81I1TUlNWE8As0pFKwquWcD9CQyJZVUykmV2jU9xtCyETIdoj0Yq27rrDQYx0sjrtdTHkffPZl4gPOa8AJtvGgOxwd7vfdbq0zYB_D997EkHV5X2YWn2TgY2nTDM8LdvBwvEaXTnc93PzUMXp_fHhbPFfL16eXxXxZmYZPciUFXRFuCdeWSWm1s8IRARwMF1a2UjeErKxz0lm7ko0rToVg2nEGtm0cbcZodr5rUuz7BE4Zn3UuOnPSvlOUqFNYaqPOYalTWIoyVcIqMP8F75Lf6vT5H3Z_xqAYK2aT6o2HYMD6BCYrG_3fB74A-OyKlQ
CitedBy_id crossref_primary_10_1016_j_coelec_2020_100679
crossref_primary_10_1007_s10450_018_9988_4
crossref_primary_10_1016_j_gete_2024_100633
crossref_primary_10_1016_j_jclepro_2021_128717
crossref_primary_10_1007_s10668_023_02973_z
crossref_primary_10_1007_s40831_021_00423_6
crossref_primary_10_1039_D4NJ01044B
crossref_primary_10_1016_j_marpolbul_2023_114618
crossref_primary_10_1016_j_enmm_2024_100945
crossref_primary_10_1016_j_gsd_2024_101151
crossref_primary_10_1088_1757_899X_1168_1_012027
crossref_primary_10_1007_s00603_024_04330_6
crossref_primary_10_1080_15226514_2022_2135680
crossref_primary_10_3390_buildings8010009
crossref_primary_10_1016_j_jenvman_2018_08_095
crossref_primary_10_3390_w15193453
crossref_primary_10_1016_j_indcrop_2022_115913
crossref_primary_10_1016_j_jenvman_2018_10_066
crossref_primary_10_1016_j_sajce_2022_08_011
crossref_primary_10_1016_j_seppur_2024_128542
crossref_primary_10_1016_j_jclepro_2023_138599
crossref_primary_10_1016_j_cej_2019_123971
crossref_primary_10_1016_j_chemosphere_2021_131064
crossref_primary_10_1016_j_mineng_2018_06_006
crossref_primary_10_1016_j_mineng_2021_106997
crossref_primary_10_1016_j_pce_2021_103023
crossref_primary_10_1016_j_scp_2020_100361
crossref_primary_10_1021_acsestengg_1c00244
crossref_primary_10_1007_s11356_021_16475_w
crossref_primary_10_1016_j_jhazmat_2020_122719
crossref_primary_10_1016_j_scitotenv_2023_166920
crossref_primary_10_1002_cey2_489
crossref_primary_10_1016_j_scitotenv_2020_138459
crossref_primary_10_1007_s10064_022_02667_2
crossref_primary_10_1016_j_cscee_2020_100061
crossref_primary_10_3390_su14042148
crossref_primary_10_3390_su152316534
crossref_primary_10_1016_j_chemosphere_2024_143729
crossref_primary_10_1016_j_mineng_2018_08_007
crossref_primary_10_1155_2022_8723962
crossref_primary_10_1186_s44314_024_00014_1
crossref_primary_10_1016_j_gexplo_2019_06_009
crossref_primary_10_3390_membranes15010017
crossref_primary_10_3390_recycling9060105
crossref_primary_10_1007_s10230_022_00898_z
crossref_primary_10_3390_w16202884
crossref_primary_10_1016_j_conbuildmat_2024_135727
crossref_primary_10_1016_j_desal_2023_116615
crossref_primary_10_1016_j_mineng_2021_107083
crossref_primary_10_15446_ing_investig_v41n3_90349
crossref_primary_10_1016_j_jhydrol_2021_126804
crossref_primary_10_3390_app11041596
crossref_primary_10_1016_j_chemosphere_2024_141452
crossref_primary_10_1016_j_jclepro_2020_123813
crossref_primary_10_1016_j_physa_2019_123306
crossref_primary_10_1016_j_envpol_2025_125957
crossref_primary_10_1016_j_lfs_2023_122311
crossref_primary_10_1016_j_jece_2023_110300
crossref_primary_10_1016_j_jwpe_2021_102266
crossref_primary_10_1016_S1003_6326_22_65954_5
crossref_primary_10_1016_j_gsd_2021_100660
crossref_primary_10_1016_j_mineng_2019_105865
crossref_primary_10_3390_w13111508
crossref_primary_10_1016_j_mineng_2024_109106
crossref_primary_10_1088_1742_6596_2706_1_012091
crossref_primary_10_3390_met8060408
crossref_primary_10_1007_s40726_020_00150_8
crossref_primary_10_3390_ijerph192114434
crossref_primary_10_61108_ijsshr_v1i1_26
crossref_primary_10_1007_s11356_019_05147_5
crossref_primary_10_3390_separations10040262
crossref_primary_10_1016_j_mineng_2018_04_005
crossref_primary_10_1016_j_desal_2024_117314
crossref_primary_10_1038_s41598_021_96899_z
crossref_primary_10_1111_cote_12399
crossref_primary_10_1016_j_chemosphere_2023_138662
crossref_primary_10_1016_j_ese_2020_100024
crossref_primary_10_1021_acssensors_1c00876
crossref_primary_10_1007_s10653_023_01520_z
crossref_primary_10_1016_j_jece_2019_103082
crossref_primary_10_1016_j_mineng_2020_106204
crossref_primary_10_1016_j_scitotenv_2019_135092
crossref_primary_10_1080_19397038_2020_1822950
crossref_primary_10_1016_j_jece_2023_109365
crossref_primary_10_1016_j_mineng_2022_107777
crossref_primary_10_1002_wer_1178
crossref_primary_10_1016_j_gsd_2024_101199
crossref_primary_10_1016_j_jhazmat_2024_134221
crossref_primary_10_1016_j_jhazmat_2021_126318
crossref_primary_10_1016_j_mineng_2020_106687
crossref_primary_10_1016_j_jece_2023_110115
crossref_primary_10_1007_s10750_023_05167_w
crossref_primary_10_1016_j_jece_2024_114833
crossref_primary_10_1016_S1003_6326_21_65720_5
crossref_primary_10_1016_j_envadv_2023_100421
crossref_primary_10_2139_ssrn_3928366
crossref_primary_10_1016_j_jwpe_2019_100929
crossref_primary_10_1007_s12046_024_02611_y
crossref_primary_10_1016_j_jenvman_2021_113542
crossref_primary_10_3390_ma13112524
crossref_primary_10_1016_j_jenvman_2024_123002
crossref_primary_10_1007_s00449_024_03024_1
crossref_primary_10_1016_j_desal_2024_117960
crossref_primary_10_1016_j_apgeochem_2019_01_014
crossref_primary_10_1016_j_cis_2025_103440
crossref_primary_10_1016_j_mineng_2020_106337
crossref_primary_10_3390_ma15031076
crossref_primary_10_3390_ijerph192315535
crossref_primary_10_1016_j_seppur_2021_119762
crossref_primary_10_1016_j_sciaf_2023_e01825
crossref_primary_10_3390_su16020554
crossref_primary_10_3390_w14213422
crossref_primary_10_3390_min10050451
crossref_primary_10_1016_j_jwpe_2022_103033
crossref_primary_10_1016_j_seppur_2023_125000
crossref_primary_10_1021_acs_energyfuels_4c03012
crossref_primary_10_1016_j_chemosphere_2022_134941
crossref_primary_10_1016_j_watres_2020_115962
crossref_primary_10_3390_molecules25010111
crossref_primary_10_1016_j_ijbiomac_2024_129275
crossref_primary_10_1016_j_memsci_2019_03_081
crossref_primary_10_1016_j_mineng_2019_02_010
crossref_primary_10_1016_j_apgeochem_2020_104766
crossref_primary_10_3390_w13213047
crossref_primary_10_3390_w14142231
crossref_primary_10_1007_s10661_022_10698_1
crossref_primary_10_1016_j_powtec_2021_06_028
crossref_primary_10_1016_j_resourpol_2020_101724
crossref_primary_10_1016_j_scitotenv_2024_176877
crossref_primary_10_1080_03067319_2020_1728261
crossref_primary_10_1016_j_memsci_2025_124013
crossref_primary_10_1016_j_mineng_2018_05_013
crossref_primary_10_1038_s41598_020_60780_2
crossref_primary_10_1016_j_jhazmat_2021_125849
crossref_primary_10_1016_j_jenvman_2020_111266
crossref_primary_10_1144_geochem2018_070
crossref_primary_10_1016_j_seppur_2024_127594
crossref_primary_10_1016_j_scitotenv_2024_170806
crossref_primary_10_1016_j_ejrh_2025_102281
crossref_primary_10_3390_pr6100186
crossref_primary_10_1016_j_scitotenv_2020_136541
crossref_primary_10_1016_j_apcatb_2019_04_060
crossref_primary_10_1016_j_jece_2018_102815
crossref_primary_10_1016_j_envpol_2021_117740
crossref_primary_10_1016_j_jwpe_2023_104164
crossref_primary_10_1016_j_dwt_2024_100730
crossref_primary_10_3390_polym12071502
crossref_primary_10_1016_j_hydromet_2020_105342
crossref_primary_10_1016_j_jwpe_2021_102062
crossref_primary_10_1016_j_desal_2024_118174
crossref_primary_10_1007_s11270_022_05838_9
crossref_primary_10_1080_10426507_2022_2134372
crossref_primary_10_1089_ees_2024_0119
crossref_primary_10_1007_s13369_020_04451_4
crossref_primary_10_1016_j_chemosphere_2019_125303
crossref_primary_10_1088_1755_1315_1222_1_012046
crossref_primary_10_1007_s13762_022_04243_3
crossref_primary_10_5004_dwt_2020_26153
crossref_primary_10_1016_j_watres_2020_116432
crossref_primary_10_3390_ijms21197130
crossref_primary_10_20964_2019_07_60
crossref_primary_10_1007_s11356_019_05759_x
crossref_primary_10_1016_j_jclepro_2019_119720
Cites_doi 10.1016/j.biotechadv.2003.08.010
10.1146/annurev.arplant.56.032604.144214
10.1046/j.1462-2920.2001.00160.x
10.1007/s10230-016-0427-z
10.1016/j.minpro.2016.01.012
10.1007/s002540050204
10.1144/1470-9236/05-037
10.1016/j.jhazmat.2012.03.066
10.1016/S0065-2911(08)60018-1
10.1080/10934520600754425
10.1016/j.mineng.2005.07.009
10.1016/j.desal.2007.03.008
10.1016/j.carbpol.2011.03.016
10.1016/j.jhazmat.2014.07.071
10.1016/j.ecoleng.2008.12.030
10.1007/BF00766705
10.1016/j.jcis.2004.06.067
10.1016/j.jhazmat.2003.12.009
10.2495/WM160341
10.1016/S1452-3981(23)07751-9
10.1016/0960-8524(93)90038-D
10.1186/1475-2859-4-13
10.1016/j.jhazmat.2007.10.031
10.1016/j.pecs.2009.11.003
10.1016/0012-8252(96)00016-5
10.23939/chcht08.02.197
10.4314/wsa.v38i1.4
10.1023/A:1023227616422
10.1007/s10230-007-0017-1
10.1016/j.apgeochem.2008.03.005
10.1016/S0043-1354(97)00401-6
10.1016/S0960-8524(02)00201-8
10.1111/j.1744-7909.2007.00389.x
10.1021/la00073a013
10.1016/j.ecoleng.2010.12.012
10.1016/j.desal.2005.06.017
10.1016/0022-0728(89)87016-0
10.1080/10408360091174259
10.1023/A:1012083519667
10.1016/0008-6223(95)00128-X
10.1007/BF00478175
10.1016/S0011-9164(01)00356-3
10.1111/j.1745-6592.1997.tb01269.x
10.1016/0011-9164(90)85021-2
10.1021/es0525758
10.1016/j.jhazmat.2011.04.082
10.2134/jeq1994.00472425002300060030x
10.2166/wst.1994.0203
10.1016/j.jiec.2013.07.007
10.1016/j.mineng.2005.08.006
10.1016/j.jenvman.2010.11.011
10.1007/s10230-017-0451-7
10.1016/S0925-4005(03)00075-3
10.2166/wst.1992.0414
10.1016/j.enggeo.2005.09.026
10.2134/jeq2004.0483
10.1016/j.scitotenv.2004.09.002
10.1016/j.seppur.2008.05.010
10.1016/S0376-7388(98)00079-9
10.1016/S0892-6875(00)00045-5
10.1201/b11002-11
10.1180/MSS.9.7
10.1016/j.watres.2003.12.033
10.1016/0043-1354(94)90047-7
10.1007/s10230-008-0037-5
10.1016/S0008-6223(97)00096-1
10.1002/bit.260400508
10.1007/978-1-4020-4999-4_5
10.1021/ma102492c
10.1128/MMBR.21.3.195-213.1957
10.1016/j.mineng.2011.07.009
10.1002/elsc.200420048
10.1080/07900620802150475
10.1016/S0923-2508(03)00114-1
10.2134/jeq1997.00472425002600040013x
10.1007/s10230-004-0062-y
10.2166/wst.2007.510
10.1016/j.carbon.2014.02.036
10.1016/j.mineng.2017.06.002
10.1016/j.hydromet.2006.03.051
10.1016/j.jhazmat.2006.07.049
10.1016/j.jclepro.2004.09.006
10.1007/s10482-010-9422-8
10.1016/S0304-3770(99)00039-X
10.1016/0016-2361(94)90236-4
10.1016/j.mineng.2009.12.004
10.1016/j.jenvman.2007.07.031
10.1016/S0883-2927(01)00084-1
10.1080/10643389509388477
10.1016/j.scitotenv.2006.05.004
10.1016/j.watres.2005.09.017
10.1016/j.jhazmat.2015.11.041
10.1016/S0927-7757(02)00285-6
10.1016/j.jpowsour.2005.10.013
10.1111/j.1574-6976.1997.tb00340.x
10.1007/s10230-007-0145-7
10.1016/j.cej.2014.07.091
10.2134/jeq2003.1212
10.1016/S0892-6875(01)00216-3
10.1099/00221287-142-4-775
10.1046/j.1365-2672.1998.00337.x
10.1016/j.chemosphere.2011.04.022
10.1007/s10230-011-0142-8
10.1016/S0015-1882(01)80376-1
10.1016/j.envint.2003.11.002
10.1016/S0009-2509(00)00392-4
10.1016/j.jhazmat.2010.07.024
10.1016/j.ecoleng.2004.07.005
10.1201/b19249-43
10.1016/j.ecoleng.2005.12.004
10.1016/j.carbon.2014.07.033
10.2134/jeq2006.0066
10.1016/0892-6875(95)00129-8
10.1016/S0043-1354(03)00166-0
10.1016/j.jhazmat.2004.08.009
10.1016/j.jece.2013.08.008
10.1016/S0043-1354(00)00286-4
10.1111/1574-6941.12028
10.1016/S0379-6779(97)80658-3
10.1016/j.biortech.2012.10.070
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mineng.2017.12.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-9444
EndPage 90
ExternalDocumentID 10_1016_j_mineng_2017_12_004
S0892687517302984
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SSG
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c345t-871b04d04ad288dafd7f07e4ec47d898a300bdff8fddb83f017772af42ed93f13
IEDL.DBID .~1
ISSN 0892-6875
IngestDate Thu Apr 24 23:01:51 EDT 2025
Tue Jul 01 01:13:23 EDT 2025
Fri Feb 23 02:35:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Water treatment
Sulphate ions
Acid mine drainage
Sustainability
Water contamination
Mine water
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-871b04d04ad288dafd7f07e4ec47d898a300bdff8fddb83f017772af42ed93f13
PageCount 17
ParticipantIDs crossref_citationtrail_10_1016_j_mineng_2017_12_004
crossref_primary_10_1016_j_mineng_2017_12_004
elsevier_sciencedirect_doi_10_1016_j_mineng_2017_12_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Minerals engineering
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Falayi, Ntuli (b0180) 2014; 20
Golab, Peterson, Indraratna (b0250) 2006; 39
Maree, J.P., de Beer, M., Strydom, W.F., Christie, A.D.M., 1998. Limestone neutralisation of acidic effluent, including metal and partial sulphate removal. In: Proceedings of IMWA Symposium, Johannesburg, pp. 449–460.
Silva, Lima, Leão (b0600) 2012; 221
Gomelya, Trus, Shabliy (b0255) 2014; 8
Giloteaux, Duran, Casiot, Bruneel, Elbaz-Poulichet, Goñi-Urriza (b0240) 2013; 83
Mollah, Morkovsky, Gomes, Kesmez, Parga, Cocke (b0470) 2004; 114
Van Der Zee, Bisschops, Blanchard, Bouwman, Lettinga, Field (b0690) 2003; 37
Mudd, G.M., 2009. Historical trends in base metal mining: backcasting to understand the sustainability of mining. In: Proceedings of the 48th Annual Conference of Metallurgists, Canadian Metallurgical Society, Sudbury, Ontario, Canada, August 2009.
Sircar, Golden, Rao (b0605) 1996; 34
Bosecker (b0110) 1997; 20
Taketani, Yoshiura, Dias, Andreote, Tsai (b0640) 2010; 97
Amaral Filho, Azevedo, Etchepare, Rubio (b0035) 2016; 149
Gibert, de Pablo, Cortina, Ayora (b0230) 2002; 1
Friedrich (b0200) 1997; 39
Oncel, Muhcu, Demirbas, Kobya (b0530) 2013; 1
Hong, Cannon, Hou, Byrne, Nieto-Delgado (b0310) 2014; 73
Spears, Tarazona, Lee (b0625) 1994; 73
Van der Bruggen, Mänttäri, Nyström (b0685) 2008; 63
Bai, Kang, Quan, Han, Sun, Feng (b0055) 2013; 128
Benner, Blowes, Ptacek, Mayer (b0085) 2002; 17
Backer (b0050) 2000; 37
Blodau (b0095) 2006; 369
Lindsay, Ptacek, Blowes, Gould (b0390) 2008; 23
Johnson (b0330) 2006; 83
Madzivire, Petrik, Gitari, Ojumu, Balfour (b0420) 2010; 23
(Accessed: 01.06.2017).
Aubé, B., Zinck, J., Eng, M., 2003. Lime treatment of acid mine drainage in Canada. In: Brazil-Canada Seminar on Mine Rehabilitation. Brazil-Canada Seminar on Mine Rehabilitation, Florianópolis, Brazil, December 2003, pp. 1–12.
Altun, Yilmaz, Yildirim (b0030) 2010; 5
Johnson, Younger (b0345) 2006; 85
Ziemkiewicz, Skousen, Brant, Sterner, Lovett (b0765) 1997; 26
Kun, L.E., 1972. A report on the reduction of the sulphate content of acid mine drainage by precipitation with barium carbonate. Anglo American Research Laboratories, Project D/3/W/1.
National Geographic Society, 2017. Fresh water crisis.
Preuß, Riedel, Koch, Thűrmer, Domańska (b0555) 2012; 3
Guimarães, Leão (b0265) 2014; 280
Zhang, Wang, Matyjaszewski (b0760) 2011; 44
Rautenbach, Gröschl (b0570) 1990; 77
Vidlář, J., Schejbal, C., Fečko, P., 2002. Ecologically advantageous method of sulphate mine water cleaning. In: Transactions of the Technical University of Ostrava, pp. 1–8.
Maree, Hlabela, Nengovhela, Geldenhuys, Mbhele, Nevhulaudzi, Waanders (b0445) 2004; 23
Fu, Wang (b0205) 2011; 92
Khorasanipour, Moore, Naseh (b0365) 2011; 30
Wang, Chen, Lin (b0720) 1989; 273
Vile, Wieder (b0705) 1993; 69
Akcil, Koldas (b0015) 2006; 14
Hedin, Nairn (b0285) 1993
Tan, Ahmad, Hameed (b0645) 2008; 154
(Accessed: 02.05.2017).
McCarthy (b0455) 2011; 107
Nebel, S., 2005. Acid Mine Drainage: Causes, Effects, and Mitigation Techniques.
Norris, Clark, Owen, Waterhouse (b0520) 1996; 142
Weis, Weis (b0730) 2004; 30
Foucher, Battaglia-Brunet, Ignatiadis, Morin (b0195) 2001; 56
Terry, Banuelos (b0670) 1999
Mitsch, Wise (b0465) 1998; 32
Madzivire, Gitari, Kumar Vadapalli, Ojumu, Petrik (b0415) 2011; 24
Benner, Blowes, Ptacek (b0080) 1997; 17
Bologo, Maree, Carlsson (b0100) 2012; 38
Rapantova, N., Grmela, A., Vojtek, D., Halir, J., Michalek, B., 2007. Ground water flow modelling applications in mining hydrogeology. In: Cidu, R., Frau, F. (Eds.), Proceedings of IMWA Symposium May 2007: Water in Mining Environments, Cagliari, Italy, pp. 349–353.
Tanninen, Mänttäri, Nyström (b0660) 2006; 189
Dvorak, Hedin, Edenborn, McIntire (b0155) 1992; 40
Skousen, Sexstone, Ziemkiewicz (b0610) 2000; 41
Wiessner, Kappelmeyer, Kuschk, Kästner (b0740) 2005; 39
Muthulakshmi, Kalpana, Pitchumani, Renganathan (b0495) 2006; 158
Gibert, Rötting, Cortina, de Pablo, Ayora, Carrera, Bolzicco (b0235) 2011; 191
(Accessed: 10.05.2017).
Evangelou (b0170) 1995
Salt, Blaylock, Kumar, Dushenkov, Ensley, Chet, Raskin (b0590) 1995; 13
Peeters, Boom, Mulder, Strathmann (b0540) 1998; 145
Marsh, Reinoso (b0450) 2006
Kuyucak, N., 1999. Acid mine drainage prevention and control options. In: Proceedings of the Congress of the International Mine Water Association, Sevilla Spain, September 13–17 1999, pp. 599–606.
Namasivayam, Sangeetha (b0500) 2008; 219
Stottmeister, Wießner, Kuschk, Kappelmeyer, Kästner, Bederski, Muller, Moormann (b0630) 2003; 22
Horne, A.J., Fleming-Singer, M., 2005. Phytoremediation using constructed treatment wetlands: an overview. In: Fingerman, M., Nagabhushanam (Eds.), Bioremediation of Aquatic and Terrestrial Ecosystems, pp. 329–378.
Robertson, A.M., Rohrs, R.G., 1995. Sulphate removal of acid mine drainage water after lime treatment. In: Proceedings of Sudbury 95, Conference on Mining and the Environment, Sudbury, Ontario, May-June 1995, pp. 575–586.
Akinwekomi, Maree, Wolkersdorfer (b0020) 2017; 2
Ntuli, Falayi, Thwanane (b0525) 2016; 202
Ciardelli, Ranieri (b0130) 2001; 35
Tiwary (b0675) 2001; 132
Alphenaar, Visser, Lettinga (b0025) 1993; 43
Lopez, O., Sanguinetti, D., Bratty, M., Kratochvil, D., 2009. Green technologies for sulphate and metal removal in mining and metallurgical effluents. In: Enviromine Santiago, Chile
Hou, Byrne, Cannon, Chaplin, Hong, Nieto-Delgado (b0320) 2014; 79
Murugananthan, Raju, Prabhakar (b0490) 2004; 109
Kadlec, Wallace (b0355) 2008
Deng, Weidhaas, Lin (b0145) 2016; 305
(Accessed: 05.06.2017).
Lizama, Fletcher, Sun (b0395) 2011; 84
Tanner, Headley (b0655) 2011; 37
Gray (b0260) 1996; 27
Maree, du Plessis, van der Walt (b0440) 1992; 26
Malhotra, Chaubey (b0430) 2003; 91
Vidyalakshmi, Paranthaman, Bhakyaraj (b0700) 2009; 5
Bartzas, Komnitsas (b0075) 2010; 183
Otte, M.L., Jacob, D.L., 2006. Constructed wetlands for phytoremediation: rhizofiltration, phytostabilisation and phytoextraction. In: Mackova, M., Dowling, D., Macek., T. (Eds.), Phytoremediation Rhizoremediation, pp. 57–67.
Eriksson (b0165) 1988; 7
Sheoran, Sheoran (b0595) 2006; 19
Johnson, Hallberg (b0340) 2005; 338
Kosolapov, Kuschk, Vainshtein, Vatsourina, Wießner, Kästner, Müller (b0370) 2004; 4
Ahmaruzzaman (b0010) 2010; 36
Miller, W.S., Castagna, C.J., Pieper, A.W., 2009. Understanding ion-exchange resins for water treatment systems. GE Water Process Technology
Nielsen, Finster, Welsh, Donelly, Herbert, de Wit, Lomstein (b0515) 2001; 3
Rakotonimaro, Neculita, Bussière, Zagury (b0560) 2017; 111
Iakovleva, Mäkilä, Salonen, Sitarz, Sillanpää (b0325) 2015; 259
Feng, Aldrich, Tan (b0190) 2000; 13
Neculita, Zagury, Bussière (b0510) 2007; 36
Dias, Alvim-Ferraz, Almeida, Rivera-Utrilla, Sánchez-Polo (b0150) 2007; 85
Willow, Cohen (b0745) 2003; 32
Gitari, Petrik, Etchebers, Key, Iwuoha, Okujeni (b0245) 2006; 41
Rawlings (b0575) 2005; 4
Headley, T.R., Tanner, C.C., 2008. Floating treatment wetlands: an innovative option for stormwater quality applications. In: 11th International Conference on Wetland Systems for Water Pollution Control, Indore, India, November 2008, pp. 1101–1106.
Bowell, R.J., 2004. A review of sulfate removal options for mine waters. In: Proceedings of Mine Water, pp. 75–88.
Hedin, Watzlaf, Nairn (b0290) 1994; 23
Visser, Modise, Krieg, Keizer (b0715) 2001; 140
(Accessed: 13.06.2017).
Del Ángel, Carreño, Nava, Martínez, Ortiz (b0140) 2014; 9
Swanepoel, H., 2011. Sulphate removal from industrial effluents through barium sulphate precipitation. MSc Thesis, The Potchefstroom Campus of the North-West University, South Africa.
Gagnon, Chazarenc, Comeau, Brisson (b0210) 2007; 56
Agboola, Mokrani, Sadiku, Kolesnikov, Olukunle, Maree (b0005) 2017; 36
Pilon-Smits (b0545) 2005; 56
Gazea, Adam, Kontopoulos (b0220) 1996; 9
Wise Uranium Project, 2017. Chronology of Major Tailings Dam Failures.
Mudd (b0480) 2008; 27
US EPA, 2017. Secondary Drinking Water Standards: Guidance for Nuisance Chemicals.
Bologo, V., Maree, J.P., Louw, W.J., 2017. Treatment of mine water for sulphate and metal removal using magnesium hydroxide and barium hydroxide.
Hlabela, Maree, Bruinsma (b0300) 2007; 26
Johnson, Hallberg (b0335) 2003; 154
Sohn, Kang, Ahn, Woo, Yang (b0620) 2006; 40
Lloyd, Klessa, Parry, Buck, Brown (b0400) 2004; 38
Barr (b0070) 2001; 38
Hameed, Din, Ahmad (b0270) 2007; 141
Balintova, M., Demcak, S., Holub, M., 2015. Sulphate removal from mine water–precipitation and bacterial sulphate reduction. In: Ali, M.A., Platko, P. (Eds.), Proceedings of the International Conference on Engineering Sciences and Technologies, Tatranská Štrba, High Tatras Mountains, Slovak Republic, May 2015, pp. 239–244.
Garrido, Linares-Solano, Martin-Martinez, Molina-Sabio, Rodriguez-Reinoso, Torregrosa (b0215) 1987; 3
Evangelou, Zhang (b0175) 1995; 25
Hlabela, P.S., 2009. The integrated barium carbonate process for sulphate removal from acid mine water. PhD Thesis, The Potchefstroom campus of North-West University, South Africa.
Ardejani, F.D., Karami, G.H., Assadi, A.B., Dehghan, R.A., 2008. Hydrogeochemical investigations of the Shour River and groundwater affected by acid mine drainage in Sarcheshmeh porphyry copper mine. In: 10th International Mine Water Association Congress, Karlovy Vary, Czech Republic, June 2008, pp. 235–238.
Banks, Younger, Arnesen, Iversen, Banks (b0065) 1997; 32
Cao, Dang, Zhou, Yi, Wu, Zhu, Lu (b0120) 2011; 85
Eger (b0160) 1994; 29
Hammack, Edenborn, Dvorak (b0275) 1994; 28
Whitmire, Hamilton (b0735) 2005; 34
Yang, Chen, Zhao, Gu (b0755) 2007; 49
Motaung, Maree, De Beer, Bologo, Theron, Baloyi (b0475) 2008; 24
(Accessed: 04.12.2017).
Vishniac, Santer (b0710) 1957; 21
Webb, McGinness, Lappin-Scott (b0725) 1998; 84
Cha, Cha, Lee (b0125) 1999; 34
Potgieter-Vermaak, Potgieter, Monama, Van Grieken (b0550) 2006; 19
MacDiarmid (b0410) 1997; 84
Collins, Vaun McArthur, Sharitz (b0135) 2004; 23
Rubio, Souza, Smith (b0585) 2002; 15
Keith, C.N., Vaughan, D.J., 2000. Mechanisms and rates of sulphide oxidation in relation to the problems of acid rock (mine) drainage. In: Cotter-Howells, J.D., Campbell, L.S., Valsami-Jones, E., Batchelder, M., (Eds.), Environmental Mineralogy: Microbial Interactions, Anthropogenic
Bosecker (10.1016/j.mineng.2017.12.004_b0110) 1997; 20
Garrido (10.1016/j.mineng.2017.12.004_b0215) 1987; 3
Benner (10.1016/j.mineng.2017.12.004_b0080) 1997; 17
Iakovleva (10.1016/j.mineng.2017.12.004_b0325) 2015; 259
Amaral Filho (10.1016/j.mineng.2017.12.004_b0035) 2016; 149
Visser (10.1016/j.mineng.2017.12.004_b0715) 2001; 140
Peeters (10.1016/j.mineng.2017.12.004_b0540) 1998; 145
Hedin (10.1016/j.mineng.2017.12.004_b0290) 1994; 23
Maine (10.1016/j.mineng.2017.12.004_b0425) 2006; 26
10.1016/j.mineng.2017.12.004_b0635
10.1016/j.mineng.2017.12.004_b0115
10.1016/j.mineng.2017.12.004_b0750
Hammack (10.1016/j.mineng.2017.12.004_b0275) 1994; 28
Motaung (10.1016/j.mineng.2017.12.004_b0475) 2008; 24
Mollah (10.1016/j.mineng.2017.12.004_b0470) 2004; 114
10.1016/j.mineng.2017.12.004_b0580
10.1016/j.mineng.2017.12.004_b0060
Zhang (10.1016/j.mineng.2017.12.004_b0760) 2011; 44
Tanner (10.1016/j.mineng.2017.12.004_b0655) 2011; 37
Vile (10.1016/j.mineng.2017.12.004_b0705) 1993; 69
Faulwetter (10.1016/j.mineng.2017.12.004_b0185) 2009; 35
Rakotonimaro (10.1016/j.mineng.2017.12.004_b0560) 2017; 111
Ahmaruzzaman (10.1016/j.mineng.2017.12.004_b0010) 2010; 36
10.1016/j.mineng.2017.12.004_b0505
10.1016/j.mineng.2017.12.004_b0105
Bartzas (10.1016/j.mineng.2017.12.004_b0075) 2010; 183
Falayi (10.1016/j.mineng.2017.12.004_b0180) 2014; 20
Willow (10.1016/j.mineng.2017.12.004_b0745) 2003; 32
Hedin (10.1016/j.mineng.2017.12.004_b0285) 1993
Cha (10.1016/j.mineng.2017.12.004_b0125) 1999; 34
Feng (10.1016/j.mineng.2017.12.004_b0190) 2000; 13
Maree (10.1016/j.mineng.2017.12.004_b0445) 2004; 23
Lindsay (10.1016/j.mineng.2017.12.004_b0390) 2008; 23
10.1016/j.mineng.2017.12.004_b0460
Webb (10.1016/j.mineng.2017.12.004_b0725) 1998; 84
Malhotra (10.1016/j.mineng.2017.12.004_b0430) 2003; 91
Neculita (10.1016/j.mineng.2017.12.004_b0510) 2007; 36
Blodau (10.1016/j.mineng.2017.12.004_b0095) 2006; 369
Kadirvelu (10.1016/j.mineng.2017.12.004_b0350) 2003; 87
Guimarães (10.1016/j.mineng.2017.12.004_b0265) 2014; 280
Gitari (10.1016/j.mineng.2017.12.004_b0245) 2006; 41
Gibert (10.1016/j.mineng.2017.12.004_b0230) 2002; 1
Muthulakshmi (10.1016/j.mineng.2017.12.004_b0495) 2006; 158
Barr (10.1016/j.mineng.2017.12.004_b0070) 2001; 38
Vishniac (10.1016/j.mineng.2017.12.004_b0710) 1957; 21
Alphenaar (10.1016/j.mineng.2017.12.004_b0025) 1993; 43
Eriksson (10.1016/j.mineng.2017.12.004_b0165) 1988; 7
10.1016/j.mineng.2017.12.004_b0535
Mitsch (10.1016/j.mineng.2017.12.004_b0465) 1998; 32
Biniak (10.1016/j.mineng.2017.12.004_b0090) 1997; 35
Yang (10.1016/j.mineng.2017.12.004_b0755) 2007; 49
10.1016/j.mineng.2017.12.004_b0375
Nielsen (10.1016/j.mineng.2017.12.004_b0515) 2001; 3
Golab (10.1016/j.mineng.2017.12.004_b0250) 2006; 39
10.1016/j.mineng.2017.12.004_b0360
Holt (10.1016/j.mineng.2017.12.004_b0305) 2002; 211
Van Der Zee (10.1016/j.mineng.2017.12.004_b0690) 2003; 37
Johnson (10.1016/j.mineng.2017.12.004_b0345) 2006; 85
Spears (10.1016/j.mineng.2017.12.004_b0625) 1994; 73
Terrados (10.1016/j.mineng.2017.12.004_b0665) 1999; 65
Evangelou (10.1016/j.mineng.2017.12.004_b0170) 1995
Potgieter-Vermaak (10.1016/j.mineng.2017.12.004_b0550) 2006; 19
Tanninen (10.1016/j.mineng.2017.12.004_b0660) 2006; 189
Dias (10.1016/j.mineng.2017.12.004_b0150) 2007; 85
Banks (10.1016/j.mineng.2017.12.004_b0065) 1997; 32
10.1016/j.mineng.2017.12.004_b0405
Backer (10.1016/j.mineng.2017.12.004_b0050) 2000; 37
Collins (10.1016/j.mineng.2017.12.004_b0135) 2004; 23
Maree (10.1016/j.mineng.2017.12.004_b0440) 1992; 26
Hou (10.1016/j.mineng.2017.12.004_b0320) 2014; 79
Gray (10.1016/j.mineng.2017.12.004_b0260) 1996; 27
10.1016/j.mineng.2017.12.004_b0485
Johnson (10.1016/j.mineng.2017.12.004_b0335) 2003; 154
Cao (10.1016/j.mineng.2017.12.004_b0120) 2011; 85
Agboola (10.1016/j.mineng.2017.12.004_b0005) 2017; 36
Lizama (10.1016/j.mineng.2017.12.004_b0395) 2011; 84
Marsh (10.1016/j.mineng.2017.12.004_b0450) 2006
Kadlec (10.1016/j.mineng.2017.12.004_b0355) 2008
Evangelou (10.1016/j.mineng.2017.12.004_b0175) 1995; 25
Gagnon (10.1016/j.mineng.2017.12.004_b0210) 2007; 56
Giloteaux (10.1016/j.mineng.2017.12.004_b0240) 2013; 83
Ziemkiewicz (10.1016/j.mineng.2017.12.004_b0765) 1997; 26
Eger (10.1016/j.mineng.2017.12.004_b0160) 1994; 29
Geldenhuys (10.1016/j.mineng.2017.12.004_b0225) 2003; 2003
Del Ángel (10.1016/j.mineng.2017.12.004_b0140) 2014; 9
Gazea (10.1016/j.mineng.2017.12.004_b0220) 1996; 9
Akcil (10.1016/j.mineng.2017.12.004_b0015) 2006; 14
10.1016/j.mineng.2017.12.004_b0435
10.1016/j.mineng.2017.12.004_b0315
Tan (10.1016/j.mineng.2017.12.004_b0645) 2008; 154
Hameed (10.1016/j.mineng.2017.12.004_b0270) 2007; 141
Salt (10.1016/j.mineng.2017.12.004_b0590) 1995; 13
Dvorak (10.1016/j.mineng.2017.12.004_b0155) 1992; 40
10.1016/j.mineng.2017.12.004_b9000
Preuß (10.1016/j.mineng.2017.12.004_b0555) 2012; 3
Bologo (10.1016/j.mineng.2017.12.004_b0100) 2012; 38
Madzivire (10.1016/j.mineng.2017.12.004_b0415) 2011; 24
10.1016/j.mineng.2017.12.004_b0380
Akinwekomi (10.1016/j.mineng.2017.12.004_b0020) 2017; 2
Benner (10.1016/j.mineng.2017.12.004_b0085) 2002; 17
Sohn (10.1016/j.mineng.2017.12.004_b0620) 2006; 40
Pilon-Smits (10.1016/j.mineng.2017.12.004_b0545) 2005; 56
Ntuli (10.1016/j.mineng.2017.12.004_b0525) 2016; 202
Vidyalakshmi (10.1016/j.mineng.2017.12.004_b0700) 2009; 5
Kosolapov (10.1016/j.mineng.2017.12.004_b0370) 2004; 4
Altun (10.1016/j.mineng.2017.12.004_b0030) 2010; 5
Mudd (10.1016/j.mineng.2017.12.004_b0480) 2008; 27
Foucher (10.1016/j.mineng.2017.12.004_b0195) 2001; 56
Weis (10.1016/j.mineng.2017.12.004_b0730) 2004; 30
Wang (10.1016/j.mineng.2017.12.004_b0720) 1989; 273
Terry (10.1016/j.mineng.2017.12.004_b0670) 1999
Gomelya (10.1016/j.mineng.2017.12.004_b0255) 2014; 8
Rubio (10.1016/j.mineng.2017.12.004_b0585) 2002; 15
Taketani (10.1016/j.mineng.2017.12.004_b0640) 2010; 97
Norris (10.1016/j.mineng.2017.12.004_b0520) 1996; 142
McCarthy (10.1016/j.mineng.2017.12.004_b0455) 2011; 107
Sircar (10.1016/j.mineng.2017.12.004_b0605) 1996; 34
Namasivayam (10.1016/j.mineng.2017.12.004_b0500) 2008; 219
Silva (10.1016/j.mineng.2017.12.004_b0600) 2012; 221
Wiessner (10.1016/j.mineng.2017.12.004_b0740) 2005; 39
Whitmire (10.1016/j.mineng.2017.12.004_b0735) 2005; 34
Rautenbach (10.1016/j.mineng.2017.12.004_b0570) 1990; 77
Deng (10.1016/j.mineng.2017.12.004_b0145) 2016; 305
Stottmeister (10.1016/j.mineng.2017.12.004_b0630) 2003; 22
Johnson (10.1016/j.mineng.2017.12.004_b0340) 2005; 338
Khorasanipour (10.1016/j.mineng.2017.12.004_b0365) 2011; 30
Sheoran (10.1016/j.mineng.2017.12.004_b0595) 2006; 19
10.1016/j.mineng.2017.12.004_b0615
Madzivire (10.1016/j.mineng.2017.12.004_b0420) 2010; 23
Rawlings (10.1016/j.mineng.2017.12.004_b0575) 2005; 4
Van der Bruggen (10.1016/j.mineng.2017.12.004_b0685) 2008; 63
Ciardelli (10.1016/j.mineng.2017.12.004_b0130) 2001; 35
Ledin (10.1016/j.mineng.2017.12.004_b0385) 1996; 41
Skousen (10.1016/j.mineng.2017.12.004_b0610) 2000; 41
10.1016/j.mineng.2017.12.004_b0695
Lloyd (10.1016/j.mineng.2017.12.004_b0400) 2004; 38
Tiwary (10.1016/j.mineng.2017.12.004_b0675) 2001; 132
10.1016/j.mineng.2017.12.004_b0295
10.1016/j.mineng.2017.12.004_b0040
Hong (10.1016/j.mineng.2017.12.004_b0310) 2014; 73
Johnson (10.1016/j.mineng.2017.12.004_b0330) 2006; 83
10.1016/j.mineng.2017.12.004_b0280
Tancredi (10.1016/j.mineng.2017.12.004_b0650) 2004; 279
Murugananthan (10.1016/j.mineng.2017.12.004_b0490) 2004; 109
Friedrich (10.1016/j.mineng.2017.12.004_b0200) 1997; 39
Hlabela (10.1016/j.mineng.2017.12.004_b0300) 2007; 26
MacDiarmid (10.1016/j.mineng.2017.12.004_b0410) 1997; 84
Bai (10.1016/j.mineng.2017.12.004_b0055) 2013; 128
Fu (10.1016/j.mineng.2017.12.004_b0205) 2011; 92
Oncel (10.1016/j.mineng.2017.12.004_b0530) 2013; 1
Gibert (10.1016/j.mineng.2017.12.004_b0235) 2011; 191
10.1016/j.mineng.2017.12.004_b0565
10.1016/j.mineng.2017.12.004_b0045
10.1016/j.mineng.2017.12.004_b0680
References_xml – volume: 20
  start-page: 591
  year: 1997
  end-page: 604
  ident: b0110
  article-title: Bioleaching: metal solubilization by microorganisms
  publication-title: FEMS Microbiol. Rev.
– volume: 30
  start-page: 216
  year: 2011
  end-page: 230
  ident: b0365
  article-title: Lime treatment of mine drainage at the Sarcheshmeh porphyry copper mine Iran
  publication-title: Mine Water Environ.
– volume: 3
  start-page: 76
  year: 1987
  end-page: 81
  ident: b0215
  article-title: Use of nitrogen vs. carbon dioxide in the characterization of activated carbons
  publication-title: Langmuir
– volume: 28
  start-page: 2321
  year: 1994
  end-page: 2329
  ident: b0275
  article-title: Treatment of water from an open-pit copper mine using biogenic sulfide and limestone: a feasibility study
  publication-title: Water Res.
– volume: 221
  start-page: 45
  year: 2012
  end-page: 55
  ident: b0600
  article-title: Mine water treatment with limestone for sulfate removal
  publication-title: J. Hazard. Mater.
– reference: > (Accessed: 02.05.2017).
– reference: > (Accessed: 13.06.2017).
– reference: Rapantova, N., Grmela, A., Vojtek, D., Halir, J., Michalek, B., 2007. Ground water flow modelling applications in mining hydrogeology. In: Cidu, R., Frau, F. (Eds.), Proceedings of IMWA Symposium May 2007: Water in Mining Environments, Cagliari, Italy, pp. 349–353.
– reference: Vidlář, J., Schejbal, C., Fečko, P., 2002. Ecologically advantageous method of sulphate mine water cleaning. In: Transactions of the Technical University of Ostrava, pp. 1–8. <
– volume: 17
  start-page: 301
  year: 2002
  end-page: 320
  ident: b0085
  article-title: Rates of sulfate reduction and metal sulfide precipitation in a permeable reactive barrier
  publication-title: Appl. Geochem.
– volume: 41
  start-page: 1729
  year: 2006
  end-page: 1747
  ident: b0245
  article-title: Treatment of acid mine drainage with fly ash: removal of major contaminants and trace elements
  publication-title: J. Environ. Sci. Health. Part A, Toxic/Hazard. Substances Environ. Eng.
– volume: 158
  start-page: 1533
  year: 2006
  end-page: 1537
  ident: b0495
  article-title: Electrochemical deposition of polypyrrole for symmetric supercapacitors
  publication-title: J. Power Sources
– reference: Ardejani, F.D., Karami, G.H., Assadi, A.B., Dehghan, R.A., 2008. Hydrogeochemical investigations of the Shour River and groundwater affected by acid mine drainage in Sarcheshmeh porphyry copper mine. In: 10th International Mine Water Association Congress, Karlovy Vary, Czech Republic, June 2008, pp. 235–238.
– volume: 24
  start-page: 1467
  year: 2011
  end-page: 1477
  ident: b0415
  article-title: Fate of sulphate removed during the treatment of circumneutral mine water and acid mine drainage with coal fly ash: modelling and experimental approach
  publication-title: Miner. Eng.
– volume: 154
  start-page: 337
  year: 2008
  end-page: 346
  ident: b0645
  article-title: Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies
  publication-title: J. Hazard. Mater.
– volume: 23
  start-page: 107
  year: 2004
  end-page: 115
  ident: b0135
  article-title: Plant effects on microbial assemblages and remediation of acidic coal pile runoff in mesocosm treatment wetlands
  publication-title: Ecol. Eng.
– volume: 26
  start-page: 345
  year: 1992
  end-page: 355
  ident: b0440
  article-title: Treatment of acidic effluents with limestone instead of lime
  publication-title: Water Sci. Technol.
– start-page: 187
  year: 1993
  end-page: 195
  ident: b0285
  article-title: Contaminant removal capabilities of wetlands constructed to treat coal mine drainage. Constructed Wetlands for Water Quality Improvements
– volume: 92
  start-page: 407
  year: 2011
  end-page: 418
  ident: b0205
  article-title: Removal of heavy metal ions from wastewaters: a review
  publication-title: J. Environ. Manage.
– volume: 84
  start-page: 1032
  year: 2011
  end-page: 1043
  ident: b0395
  article-title: Removal processes for arsenic in constructed wetlands
  publication-title: Chemosphere
– volume: 24
  start-page: 433
  year: 2008
  end-page: 450
  ident: b0475
  article-title: Recovery of drinking water and by-products from gold mine effluents
  publication-title: Int. J. Water Resour. Dev.
– volume: 73
  start-page: 51
  year: 2014
  end-page: 60
  ident: b0310
  article-title: Sulfate removal from acid mine drainage using polypyrrole-grafted granular activated carbon
  publication-title: Carbon
– volume: 97
  start-page: 401
  year: 2010
  end-page: 411
  ident: b0640
  article-title: Diversity and identification of methanogenic archaea and sulphate-reducing bacteria in sediments from a pristine tropical mangrove
  publication-title: Antonie Van Leeuwenhoek
– volume: 19
  start-page: 105
  year: 2006
  end-page: 116
  ident: b0595
  article-title: Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review
  publication-title: Miner. Eng.
– volume: 145
  start-page: 199
  year: 1998
  end-page: 209
  ident: b0540
  article-title: Retention measurements of nanofiltration membranes with electrolyte solutions
  publication-title: J. Membr. Sci.
– volume: 279
  start-page: 357
  year: 2004
  end-page: 363
  ident: b0650
  article-title: Phenol adsorption onto powdered and granular activated carbon, prepared from Eucalyptus wood
  publication-title: J. Colloid Interface Sci.
– volume: 34
  start-page: 2062
  year: 2005
  end-page: 2071
  ident: b0735
  article-title: Rapid removal of nitrate and sulfate in freshwater wetland sediments
  publication-title: J. Environ. Qual.
– volume: 14
  start-page: 1139
  year: 2006
  end-page: 1145
  ident: b0015
  article-title: Acid mine drainage (AMD): causes, treatment and case studies
  publication-title: J. Cleaner Prod.
– volume: 20
  start-page: 1285
  year: 2014
  end-page: 1292
  ident: b0180
  article-title: Removal of heavy metals and neutralisation of acid mine drainage with un-activated attapulgite
  publication-title: J. Indust. Eng. Chem.
– year: 1995
  ident: b0170
  article-title: Pyrite Oxidation and its Control
– volume: 56
  start-page: 1639
  year: 2001
  end-page: 1645
  ident: b0195
  article-title: Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recovery
  publication-title: Chem. Eng. Sci.
– volume: 183
  start-page: 301
  year: 2010
  end-page: 308
  ident: b0075
  article-title: Solid phase studies and geochemical modelling of low-cost permeable reactive barriers
  publication-title: J. Hazard. Mater.
– volume: 191
  start-page: 287
  year: 2011
  end-page: 295
  ident: b0235
  article-title: In-situ remediation of acid mine drainage using a permeable reactive barrier in Aznalcollar (Sw Spain)
  publication-title: J. Hazard. Mater.
– volume: 37
  start-page: 389
  year: 2000
  end-page: 400
  ident: b0050
  article-title: Assessing the acute gastrointestinal effects of ingesting naturally occurring, high levels of sulfate in drinking water
  publication-title: Crit. Rev. Clin. Lab. Sci.
– volume: 63
  start-page: 251
  year: 2008
  end-page: 263
  ident: b0685
  article-title: Drawbacks of applying nanofiltration and how to avoid them: A review
  publication-title: Sep. Purif. Technol.
– reference: Smit, J.P., 1999. The treatment of polluted mine water. In: Proceedings of the Congress of the International Mine Water Association, Sevilla Spain, September 13–17 1999, pp. 467–471.
– volume: 44
  start-page: 683
  year: 2011
  end-page: 685
  ident: b0760
  article-title: ATRP of methyl acrylate with metallic zinc, magnesium, and iron as reducing agents and supplemental activators
  publication-title: Macromolecules
– volume: 21
  start-page: 195
  year: 1957
  end-page: 213
  ident: b0710
  article-title: The thiobacilli
  publication-title: Bacteriol. Rev.
– reference: Wise Uranium Project, 2017. Chronology of Major Tailings Dam Failures. <
– reference: National Geographic Society, 2017. Fresh water crisis. <
– volume: 39
  start-page: 4643
  year: 2005
  end-page: 4650
  ident: b0740
  article-title: Sulphate reduction and the removal of carbon and ammonia in a laboratory-scale constructed wetland
  publication-title: Water Res.
– reference: Keith, C.N., Vaughan, D.J., 2000. Mechanisms and rates of sulphide oxidation in relation to the problems of acid rock (mine) drainage. In: Cotter-Howells, J.D., Campbell, L.S., Valsami-Jones, E., Batchelder, M., (Eds.), Environmental Mineralogy: Microbial Interactions, Anthropogenic Influences, Contaminated Land and Waste Management, pp. 117–139.
– reference: Bowell, R.J., 2004. A review of sulfate removal options for mine waters. In: Proceedings of Mine Water, pp. 75–88.
– volume: 1
  start-page: 327
  year: 2002
  end-page: 333
  ident: b0230
  article-title: Treatment of acid mine drainage by sulphate-reducing bacteria using permeable reactive barriers: a review from laboratory to full-scale experiments
  publication-title: Rev. Environ. Sci. Biotechnol.
– volume: 2
  start-page: 264
  year: 2017
  end-page: 272
  ident: b0020
  article-title: Using calcium carbonate/hydroxide and barium carbonate to remove sulphate from mine water
  publication-title: Mine Water Environ.
– volume: 77
  start-page: 73
  year: 1990
  end-page: 84
  ident: b0570
  article-title: Separation potential of nanofiltration membranes
  publication-title: Desalination
– volume: 32
  start-page: 1888
  year: 1998
  end-page: 1900
  ident: b0465
  article-title: Water quality, fate of metals, and predictive model validation of a constructed wetland treating acid mine drainage
  publication-title: Water Res.
– volume: 19
  start-page: 454
  year: 2006
  end-page: 462
  ident: b0550
  article-title: Comparison of limestone, dolomite and fly ash as pre-treatment agents for acid mine drainage
  publication-title: Miner. Eng.
– volume: 3
  start-page: 127
  year: 2012
  end-page: 132
  ident: b0555
  article-title: Nanofiltration as an effective tool of reducing sulphate concentration in mine water
  publication-title: Arch. Civ. Eng. Environ.
– volume: 85
  start-page: 571
  year: 2011
  end-page: 577
  ident: b0120
  article-title: Removal of sulphate from aqueous solution using modified rice straw: preparation, characterization and adsorption performance
  publication-title: Carbohydrate Polym.
– volume: 40
  start-page: 5514
  year: 2006
  end-page: 5519
  ident: b0620
  article-title: Fe (0) nanoparticles for nitrate reduction: Stability, reactivity, and transformation
  publication-title: Environ. Sci. Technol.
– volume: 38
  start-page: 18
  year: 2001
  end-page: 20
  ident: b0070
  article-title: Sulphate removal by nanofiltration
  publication-title: Filtr. Sep.
– volume: 5
  start-page: 3206
  year: 2010
  end-page: 3212
  ident: b0030
  article-title: A short review on the surficial impacts of underground mining
  publication-title: Sci. Res. Essays
– volume: 73
  start-page: 1051
  year: 1994
  end-page: 1055
  ident: b0625
  article-title: Pyrite in UK coals: its environmental significance
  publication-title: Fuel
– volume: 69
  start-page: 425
  year: 1993
  end-page: 441
  ident: b0705
  article-title: Alkalinity generation by Fe (III) reduction versus sulfate reduction in wetlands constructed for acid mine drainage treatment
  publication-title: Water Air Soil Pollut.
– volume: 32
  start-page: 157
  year: 1997
  end-page: 174
  ident: b0065
  article-title: Mine-water chemistry: the good, the bad and the ugly
  publication-title: Environ. Geol.
– volume: 273
  start-page: 231
  year: 1989
  end-page: 242
  ident: b0720
  article-title: Use of different electropolymerization conditions for controlling the size-exclusion selectivity at polyaniline, polypyrrole and polyphenol films
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
– volume: 37
  start-page: 3098
  year: 2003
  end-page: 3109
  ident: b0690
  article-title: The contribution of biotic and abiotic processes during azo dye reduction in anaerobic sludge
  publication-title: Water Res.
– volume: 7
  start-page: 58
  year: 1988
  end-page: 62
  ident: b0165
  article-title: Nanofiltration extends the range of membrane filtration
  publication-title: Environ. Prog. Sustain. Energy
– volume: 83
  start-page: 724
  year: 2013
  end-page: 737
  ident: b0240
  article-title: Three-year survey of sulfate-reducing bacteria community structure in Carnoules acid mine drainage (France), highly contaminated by arsenic
  publication-title: FEMS Microbiol. Ecol.
– year: 2006
  ident: b0450
  article-title: Activated Carbon
– volume: 40
  start-page: 609
  year: 1992
  end-page: 616
  ident: b0155
  article-title: Treatment of metal-contaminated water using bacterial sulfate reduction: results from pilot-scale reactors
  publication-title: Biotechnol. Bioeng.
– reference: Miller, W.S., Castagna, C.J., Pieper, A.W., 2009. Understanding ion-exchange resins for water treatment systems. GE Water Process Technology, <
– volume: 259
  start-page: 364
  year: 2015
  end-page: 371
  ident: b0325
  article-title: Industrial products and wastes as adsorbents for sulphate and chloride removal from synthetic alkaline solution and mine process water
  publication-title: Chem. Eng. J.
– volume: 149
  start-page: 1
  year: 2016
  end-page: 8
  ident: b0035
  article-title: Removal of sulfate ions by dissolved air flotation (DAF) following precipitation and flocculation
  publication-title: Int. J. Miner. Process.
– reference: > (Accessed: 10.05.2017).
– volume: 17
  start-page: 99
  year: 1997
  end-page: 107
  ident: b0080
  article-title: A full-scale porous reactive wall for prevention of acid mine drainage
  publication-title: Groundwater Monit. Rem.
– reference: Hlabela, P.S., 2009. The integrated barium carbonate process for sulphate removal from acid mine water. PhD Thesis, The Potchefstroom campus of North-West University, South Africa.
– reference: (Accessed: 01.06.2017).
– year: 1999
  ident: b0670
  article-title: Phytoremediation of Contaminated Soil and Water
– volume: 79
  start-page: 46
  year: 2014
  end-page: 57
  ident: b0320
  article-title: Electrochemical regeneration of polypyrrole-tailored activated carbons that have removed sulfate
  publication-title: Carbon
– volume: 305
  start-page: 200
  year: 2016
  end-page: 208
  ident: b0145
  article-title: Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage
  publication-title: J. Hazard. Mater.
– volume: 56
  start-page: 249
  year: 2007
  end-page: 254
  ident: b0210
  article-title: Influence of macrophyte species on microbial density and activity in constructed wetlands
  publication-title: Water Sci. Technol.
– volume: 8
  start-page: 197
  year: 2014
  end-page: 203
  ident: b0255
  article-title: Application of aluminium coagulants for the removal of sulphate from mine water
  publication-title: Chem. Chem. Technol.
– volume: 4
  start-page: 13
  year: 2005
  ident: b0575
  article-title: Characteristics and adaptability of iron-and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates
  publication-title: Microbial Cell Factories
– volume: 29
  start-page: 249
  year: 1994
  end-page: 256
  ident: b0160
  article-title: Wetland treatment for trace metal removal from mine drainage: the importance of aerobic and anaerobic processes
  publication-title: Water Sci. Technol.
– reference: Balintova, M., Demcak, S., Holub, M., 2015. Sulphate removal from mine water–precipitation and bacterial sulphate reduction. In: Ali, M.A., Platko, P. (Eds.), Proceedings of the International Conference on Engineering Sciences and Technologies, Tatranská Štrba, High Tatras Mountains, Slovak Republic, May 2015, pp. 239–244.
– volume: 15
  start-page: 139
  year: 2002
  end-page: 155
  ident: b0585
  article-title: Overview of flotation as a wastewater treatment technique
  publication-title: Miner. Eng.
– volume: 84
  start-page: 240
  year: 1998
  end-page: 248
  ident: b0725
  article-title: Metal removal by sulphate-reducing bacteria from natural and constructed wetlands
  publication-title: J. Appl. Microbiol.
– volume: 35
  start-page: 987
  year: 2009
  end-page: 1004
  ident: b0185
  article-title: Microbial processes influencing performance of treatment wetlands: a review
  publication-title: Ecol. Eng.
– volume: 109
  start-page: 37
  year: 2004
  end-page: 44
  ident: b0490
  article-title: Removal of sulfide, sulfate and sulfite ions by electro coagulation
  publication-title: J. Hazard. Mater.
– volume: 26
  start-page: 14
  year: 2007
  end-page: 22
  ident: b0300
  article-title: Barium carbonate process for sulphate and metal removal from mine water
  publication-title: Mine Water Environ.
– volume: 43
  start-page: 249
  year: 1993
  end-page: 258
  ident: b0025
  article-title: The effect of liquid upward velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a high sulphate content
  publication-title: Bioresource Technol.
– volume: 2003
  start-page: 345
  year: 2003
  end-page: 354
  ident: b0225
  article-title: An integrated limestone/lime process for partial sulphate removal
  publication-title: J. South Afr. Inst. Min. Metall.
– volume: 49
  start-page: 437
  year: 2007
  end-page: 446
  ident: b0755
  article-title: Contaminant removal of domestic wastewater by constructed wetlands: effects of plant species
  publication-title: J. Integr. Plant Biol.
– volume: 280
  start-page: 209
  year: 2014
  end-page: 215
  ident: b0265
  article-title: Batch and fixed-bed assessment of sulphate removal by the weak base ion exchange resin Amberlyst A21
  publication-title: J. Hazard. Mater.
– volume: 41
  start-page: 67
  year: 1996
  end-page: 108
  ident: b0385
  article-title: The environmental impact of mine wastes-Roles of microorganisms and their significance in treatment of mine wastes
  publication-title: Earth Sci. Rev.
– volume: 1
  start-page: 989
  year: 2013
  end-page: 995
  ident: b0530
  article-title: A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater
  publication-title: J. Environ. Chem. Eng.
– volume: 25
  start-page: 141
  year: 1995
  end-page: 199
  ident: b0175
  article-title: A review: pyrite oxidation mechanisms and acid mine drainage prevention
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 154
  start-page: 466
  year: 2003
  end-page: 473
  ident: b0335
  article-title: The microbiology of acidic mine waters
  publication-title: Res. Microbiol.
– volume: 38
  start-page: 1822
  year: 2004
  end-page: 1830
  ident: b0400
  article-title: Stimulation of microbial sulphate reduction in a constructed wetland: microbiological and geochemical analysis
  publication-title: Water Res.
– volume: 39
  start-page: 209
  year: 2006
  end-page: 223
  ident: b0250
  article-title: Selection of potential reactive materials for a permeable reactive barrier for remediating acidic groundwater in acid sulphate soil terrains
  publication-title: Q. J. Eng. Geol. Hydrogeol.
– volume: 27
  start-page: 358
  year: 1996
  end-page: 361
  ident: b0260
  article-title: Field assessment of acid mine drainage contamination in surface and ground water
  publication-title: Environ. Geol.
– volume: 37
  start-page: 474
  year: 2011
  end-page: 486
  ident: b0655
  article-title: Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants
  publication-title: Ecol. Eng.
– year: 2008
  ident: b0355
  article-title: Treatment Wetlands
– volume: 26
  start-page: 1017
  year: 1997
  end-page: 1024
  ident: b0765
  article-title: Acid mine drainage treatment with armored limestone in open limestone channels
  publication-title: J. Environ. Qual.
– volume: 41
  start-page: 131
  year: 2000
  end-page: 168
  ident: b0610
  article-title: Acid mine drainage control and treatment
  publication-title: Agronomy Monograph, Reclamation Drastically Disturbed Lands
– reference: Kun, L.E., 1972. A report on the reduction of the sulphate content of acid mine drainage by precipitation with barium carbonate. Anglo American Research Laboratories, Project D/3/W/1.
– reference: Aubé, B., Zinck, J., Eng, M., 2003. Lime treatment of acid mine drainage in Canada. In: Brazil-Canada Seminar on Mine Rehabilitation. Brazil-Canada Seminar on Mine Rehabilitation, Florianópolis, Brazil, December 2003, pp. 1–12.
– volume: 85
  start-page: 53
  year: 2006
  end-page: 61
  ident: b0345
  article-title: The co-treatment of sewage and mine waters in aerobic wetlands
  publication-title: Eng. Geol.
– reference: Nebel, S., 2005. Acid Mine Drainage: Causes, Effects, and Mitigation Techniques. <
– volume: 111
  start-page: 79
  year: 2017
  end-page: 89
  ident: b0560
  article-title: Comparative column testing of three reactive mixtures for the bio-chemical treatment of iron-rich acid mine drainage
  publication-title: Miner. Eng.
– volume: 189
  start-page: 92
  year: 2006
  end-page: 96
  ident: b0660
  article-title: Nanofiltration of concentrated acidic copper sulphate solutions
  publication-title: Desalination
– volume: 5
  start-page: 270
  year: 2009
  end-page: 278
  ident: b0700
  article-title: Sulphur oxidizing bacteria and pulse nutrition – a review
  publication-title: World J. Agric. Sci.
– volume: 338
  start-page: 3
  year: 2005
  end-page: 14
  ident: b0340
  article-title: Acid mine drainage remediation options: a review
  publication-title: Sci. Total Environ.
– volume: 39
  start-page: 235
  year: 1997
  end-page: 289
  ident: b0200
  article-title: Physiology and genetics of sulfur-oxidizing bacteria
  publication-title: Adv. Microbial Physiol.
– reference: Headley, T.R., Tanner, C.C., 2008. Floating treatment wetlands: an innovative option for stormwater quality applications. In: 11th International Conference on Wetland Systems for Water Pollution Control, Indore, India, November 2008, pp. 1101–1106.
– volume: 140
  start-page: 79
  year: 2001
  end-page: 86
  ident: b0715
  article-title: The removal of acid sulphate pollution by nanofiltration
  publication-title: Desalination
– volume: 9
  start-page: 710
  year: 2014
  end-page: 719
  ident: b0140
  article-title: Removal of arsenic and sulfates from an abandoned mine drainage by electrocoagulation. Influence of hydrodynamic and current density
  publication-title: Int. J. Electrochem. Sci.
– volume: 202
  start-page: 383
  year: 2016
  end-page: 390
  ident: b0525
  article-title: Removal of sulphates from acid mine drainage using desilicated fly ash slag
  publication-title: WIT Trans. Ecol. Environ.
– volume: 369
  start-page: 307
  year: 2006
  end-page: 332
  ident: b0095
  article-title: A review of acidity generation and consumption in acidic coal mine lakes and their watersheds
  publication-title: Sci. Total Environ.
– reference: Robertson, A.M., Rohrs, R.G., 1995. Sulphate removal of acid mine drainage water after lime treatment. In: Proceedings of Sudbury 95, Conference on Mining and the Environment, Sudbury, Ontario, May-June 1995, pp. 575–586.
– volume: 36
  start-page: 1
  year: 2007
  end-page: 16
  ident: b0510
  article-title: Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria
  publication-title: J. Environ. Qual.
– volume: 132
  start-page: 185
  year: 2001
  end-page: 199
  ident: b0675
  article-title: Environmental impact of coal mining on water regime and its management
  publication-title: Water Air Soil Pollut.
– volume: 23
  start-page: 195
  year: 2004
  end-page: 203
  ident: b0445
  article-title: Treatment of mine water for sulphate and metal removal using barium sulphide
  publication-title: Mine Water Environ.
– volume: 219
  start-page: 1
  year: 2008
  end-page: 13
  ident: b0500
  article-title: Application of coconut coir pith for the removal of sulfate and other anions from water
  publication-title: Desalination
– volume: 35
  start-page: 567
  year: 2001
  end-page: 572
  ident: b0130
  article-title: The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation
  publication-title: Water Res.
– reference: > (Accessed: 04.12.2017).
– volume: 87
  start-page: 129
  year: 2003
  end-page: 132
  ident: b0350
  article-title: Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions
  publication-title: Bioresource Technol.
– reference: Lopez, O., Sanguinetti, D., Bratty, M., Kratochvil, D., 2009. Green technologies for sulphate and metal removal in mining and metallurgical effluents. In: Enviromine Santiago, Chile, <
– volume: 23
  start-page: 252
  year: 2010
  end-page: 257
  ident: b0420
  article-title: Application of coal fly ash to circumneutral mine waters for the removal of sulphates as gypsum and ettringite
  publication-title: Miner. Eng.
– volume: 13
  start-page: 468
  year: 1995
  end-page: 474
  ident: b0590
  article-title: Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants
  publication-title: Biotechnology
– volume: 13
  start-page: 623
  year: 2000
  end-page: 642
  ident: b0190
  article-title: Treatment of acid mine water by use of heavy metal precipitation and ion exchange
  publication-title: Miner. Eng.
– volume: 65
  start-page: 175
  year: 1999
  end-page: 197
  ident: b0665
  article-title: Are seagrass growth and survival constrained by the reducing conditions of the sediment?
  publication-title: Aquat. Bot.
– volume: 83
  start-page: 153
  year: 2006
  end-page: 166
  ident: b0330
  article-title: Biohydrometallurgy and the environment: intimate and important interplay
  publication-title: Hydrometallurgy
– volume: 84
  start-page: 27
  year: 1997
  end-page: 34
  ident: b0410
  article-title: Polyaniline and polypyrrole: where are we headed?
  publication-title: Synth. Met.
– volume: 91
  start-page: 117
  year: 2003
  end-page: 127
  ident: b0430
  article-title: Biosensors for clinical diagnostics industry
  publication-title: Sens. Actuators, B
– volume: 23
  start-page: 1338
  year: 1994
  end-page: 1345
  ident: b0290
  article-title: Passive treatment of acid mine drainage with limestone
  publication-title: J. Environ. Qual.
– volume: 27
  start-page: 136
  year: 2008
  end-page: 144
  ident: b0480
  article-title: Sustainability reporting and water resources: a preliminary assessment of embodied water and sustainable mining
  publication-title: Mine Water Environ.
– reference: Otte, M.L., Jacob, D.L., 2006. Constructed wetlands for phytoremediation: rhizofiltration, phytostabilisation and phytoextraction. In: Mackova, M., Dowling, D., Macek., T. (Eds.), Phytoremediation Rhizoremediation, pp. 57–67.
– volume: 35
  start-page: 1799
  year: 1997
  end-page: 1810
  ident: b0090
  article-title: The characterization of activated carbons with oxygen and nitrogen surface groups
  publication-title: Carbon
– volume: 32
  start-page: 1212
  year: 2003
  end-page: 1221
  ident: b0745
  article-title: pH, dissolved oxygen, and adsorption effects on metal removal in anaerobic bioreactors
  publication-title: J. Environ. Qual.
– reference: Kuyucak, N., 1999. Acid mine drainage prevention and control options. In: Proceedings of the Congress of the International Mine Water Association, Sevilla Spain, September 13–17 1999, pp. 599–606.
– reference: Bologo, V., Maree, J.P., Louw, W.J., 2017. Treatment of mine water for sulphate and metal removal using magnesium hydroxide and barium hydroxide. <
– volume: 141
  start-page: 819
  year: 2007
  end-page: 825
  ident: b0270
  article-title: Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies
  publication-title: J. Hazard. Mater.
– volume: 56
  start-page: 15
  year: 2005
  end-page: 39
  ident: b0545
  article-title: Phytoremediation
  publication-title: Ann. Rev.Plant Biol.
– volume: 85
  start-page: 833
  year: 2007
  end-page: 846
  ident: b0150
  article-title: Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review
  publication-title: J. Environ. Manage.
– volume: 114
  start-page: 199
  year: 2004
  end-page: 210
  ident: b0470
  article-title: Fundamentals, present and future perspectives of electrocoagulation
  publication-title: J. Hazard. Mater.
– volume: 34
  start-page: 1
  year: 1996
  end-page: 12
  ident: b0605
  article-title: Activated carbon for gas separation and storage
  publication-title: Carbon
– volume: 211
  start-page: 233
  year: 2002
  end-page: 248
  ident: b0305
  article-title: A quantitative comparison between chemical dosing and electrocoagulation
  publication-title: Colloids Surf., A
– reference: Horne, A.J., Fleming-Singer, M., 2005. Phytoremediation using constructed treatment wetlands: an overview. In: Fingerman, M., Nagabhushanam (Eds.), Bioremediation of Aquatic and Terrestrial Ecosystems, pp. 329–378.
– volume: 22
  start-page: 93
  year: 2003
  end-page: 117
  ident: b0630
  article-title: Effects of plants and microorganisms in constructed wetlands for wastewater treatment
  publication-title: Biotechnol. Adv.
– volume: 26
  start-page: 341
  year: 2006
  end-page: 347
  ident: b0425
  article-title: Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry
  publication-title: Ecol. Eng.
– volume: 128
  start-page: 818
  year: 2013
  end-page: 822
  ident: b0055
  article-title: Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs
  publication-title: Bioresource Technol.
– volume: 4
  start-page: 403
  year: 2004
  end-page: 411
  ident: b0370
  article-title: Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands
  publication-title: Eng. Life Sci.
– reference: > (Accessed: 05.06.2017).
– volume: 142
  start-page: 775
  year: 1996
  end-page: 783
  ident: b0520
  article-title: Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria
  publication-title: Microbiology
– volume: 36
  start-page: 327
  year: 2010
  end-page: 363
  ident: b0010
  article-title: A review on the utilization of fly ash
  publication-title: Progr. Energy Combust. Sci.
– reference: Mudd, G.M., 2009. Historical trends in base metal mining: backcasting to understand the sustainability of mining. In: Proceedings of the 48th Annual Conference of Metallurgists, Canadian Metallurgical Society, Sudbury, Ontario, Canada, August 2009.
– reference: Maree, J.P., de Beer, M., Strydom, W.F., Christie, A.D.M., 1998. Limestone neutralisation of acidic effluent, including metal and partial sulphate removal. In: Proceedings of IMWA Symposium, Johannesburg, pp. 449–460.
– reference: US EPA, 2017. Secondary Drinking Water Standards: Guidance for Nuisance Chemicals. <
– volume: 36
  start-page: 401
  year: 2017
  end-page: 408
  ident: b0005
  article-title: Characterization of two nanofiltration membranes for the separation of ions from acid mine water
  publication-title: Mine Water Environ.
– volume: 23
  start-page: 2214
  year: 2008
  end-page: 2225
  ident: b0390
  article-title: Zero-valent iron and organic carbon mixtures for remediation of acid mine drainage: batch experiments
  publication-title: Appl. Geochem.
– volume: 30
  start-page: 685
  year: 2004
  end-page: 700
  ident: b0730
  article-title: Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration
  publication-title: Environ. Int.
– volume: 9
  start-page: 23
  year: 1996
  end-page: 42
  ident: b0220
  article-title: A review of passive systems for the treatment of acid mine drainage
  publication-title: Miner. Eng.
– volume: 3
  start-page: 63
  year: 2001
  end-page: 71
  ident: b0515
  article-title: Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes and sediments from Zostera noltii and Spartina maritima meadows
  publication-title: Environ. Microbiol.
– volume: 38
  start-page: 23
  year: 2012
  end-page: 28
  ident: b0100
  article-title: Application of magnesium hydroxide and barium hydroxide for the removal of metals and sulphate from mine water
  publication-title: Water SA
– volume: 107
  start-page: 1
  year: 2011
  end-page: 7
  ident: b0455
  article-title: The impact of acid mine drainage in South Africa
  publication-title: S. Afr. J. Sci.
– volume: 34
  start-page: 659
  year: 1999
  end-page: 665
  ident: b0125
  article-title: Removal of organo-sulphur odour compounds by Thiobacillusnovellus SRM, sulphur-oxidizing microorganisms
  publication-title: Process Biochem.
– reference: Swanepoel, H., 2011. Sulphate removal from industrial effluents through barium sulphate precipitation. MSc Thesis, The Potchefstroom Campus of the North-West University, South Africa.
– ident: 10.1016/j.mineng.2017.12.004_b0405
– volume: 2003
  start-page: 345
  year: 2003
  ident: 10.1016/j.mineng.2017.12.004_b0225
  article-title: An integrated limestone/lime process for partial sulphate removal
  publication-title: J. South Afr. Inst. Min. Metall.
– volume: 22
  start-page: 93
  issue: 1–2
  year: 2003
  ident: 10.1016/j.mineng.2017.12.004_b0630
  article-title: Effects of plants and microorganisms in constructed wetlands for wastewater treatment
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2003.08.010
– volume: 56
  start-page: 15
  year: 2005
  ident: 10.1016/j.mineng.2017.12.004_b0545
  article-title: Phytoremediation
  publication-title: Ann. Rev.Plant Biol.
  doi: 10.1146/annurev.arplant.56.032604.144214
– volume: 3
  start-page: 63
  issue: 1
  year: 2001
  ident: 10.1016/j.mineng.2017.12.004_b0515
  article-title: Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes and sediments from Zostera noltii and Spartina maritima meadows
  publication-title: Environ. Microbiol.
  doi: 10.1046/j.1462-2920.2001.00160.x
– volume: 36
  start-page: 401
  issue: 3
  year: 2017
  ident: 10.1016/j.mineng.2017.12.004_b0005
  article-title: Characterization of two nanofiltration membranes for the separation of ions from acid mine water
  publication-title: Mine Water Environ.
  doi: 10.1007/s10230-016-0427-z
– volume: 149
  start-page: 1
  year: 2016
  ident: 10.1016/j.mineng.2017.12.004_b0035
  article-title: Removal of sulfate ions by dissolved air flotation (DAF) following precipitation and flocculation
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2016.01.012
– volume: 32
  start-page: 157
  issue: 3
  year: 1997
  ident: 10.1016/j.mineng.2017.12.004_b0065
  article-title: Mine-water chemistry: the good, the bad and the ugly
  publication-title: Environ. Geol.
  doi: 10.1007/s002540050204
– volume: 39
  start-page: 209
  issue: 2
  year: 2006
  ident: 10.1016/j.mineng.2017.12.004_b0250
  article-title: Selection of potential reactive materials for a permeable reactive barrier for remediating acidic groundwater in acid sulphate soil terrains
  publication-title: Q. J. Eng. Geol. Hydrogeol.
  doi: 10.1144/1470-9236/05-037
– volume: 221
  start-page: 45
  year: 2012
  ident: 10.1016/j.mineng.2017.12.004_b0600
  article-title: Mine water treatment with limestone for sulfate removal
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.03.066
– volume: 39
  start-page: 235
  year: 1997
  ident: 10.1016/j.mineng.2017.12.004_b0200
  article-title: Physiology and genetics of sulfur-oxidizing bacteria
  publication-title: Adv. Microbial Physiol.
  doi: 10.1016/S0065-2911(08)60018-1
– volume: 41
  start-page: 1729
  issue: 8
  year: 2006
  ident: 10.1016/j.mineng.2017.12.004_b0245
  article-title: Treatment of acid mine drainage with fly ash: removal of major contaminants and trace elements
  publication-title: J. Environ. Sci. Health. Part A, Toxic/Hazard. Substances Environ. Eng.
  doi: 10.1080/10934520600754425
– volume: 19
  start-page: 454
  issue: 5
  year: 2006
  ident: 10.1016/j.mineng.2017.12.004_b0550
  article-title: Comparison of limestone, dolomite and fly ash as pre-treatment agents for acid mine drainage
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2005.07.009
– volume: 219
  start-page: 1
  issue: 1–3
  year: 2008
  ident: 10.1016/j.mineng.2017.12.004_b0500
  article-title: Application of coconut coir pith for the removal of sulfate and other anions from water
  publication-title: Desalination
  doi: 10.1016/j.desal.2007.03.008
– volume: 85
  start-page: 571
  issue: 3
  year: 2011
  ident: 10.1016/j.mineng.2017.12.004_b0120
  article-title: Removal of sulphate from aqueous solution using modified rice straw: preparation, characterization and adsorption performance
  publication-title: Carbohydrate Polym.
  doi: 10.1016/j.carbpol.2011.03.016
– ident: 10.1016/j.mineng.2017.12.004_b0280
– volume: 280
  start-page: 209
  year: 2014
  ident: 10.1016/j.mineng.2017.12.004_b0265
  article-title: Batch and fixed-bed assessment of sulphate removal by the weak base ion exchange resin Amberlyst A21
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.07.071
– volume: 35
  start-page: 987
  issue: 6
  year: 2009
  ident: 10.1016/j.mineng.2017.12.004_b0185
  article-title: Microbial processes influencing performance of treatment wetlands: a review
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2008.12.030
– volume: 27
  start-page: 358
  issue: 4
  year: 1996
  ident: 10.1016/j.mineng.2017.12.004_b0260
  article-title: Field assessment of acid mine drainage contamination in surface and ground water
  publication-title: Environ. Geol.
  doi: 10.1007/BF00766705
– volume: 279
  start-page: 357
  issue: 2
  year: 2004
  ident: 10.1016/j.mineng.2017.12.004_b0650
  article-title: Phenol adsorption onto powdered and granular activated carbon, prepared from Eucalyptus wood
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.06.067
– volume: 109
  start-page: 37
  issue: 1–3
  year: 2004
  ident: 10.1016/j.mineng.2017.12.004_b0490
  article-title: Removal of sulfide, sulfate and sulfite ions by electro coagulation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2003.12.009
– volume: 202
  start-page: 383
  year: 2016
  ident: 10.1016/j.mineng.2017.12.004_b0525
  article-title: Removal of sulphates from acid mine drainage using desilicated fly ash slag
  publication-title: WIT Trans. Ecol. Environ.
  doi: 10.2495/WM160341
– volume: 9
  start-page: 710
  year: 2014
  ident: 10.1016/j.mineng.2017.12.004_b0140
  article-title: Removal of arsenic and sulfates from an abandoned mine drainage by electrocoagulation. Influence of hydrodynamic and current density
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)07751-9
– volume: 43
  start-page: 249
  issue: 3
  year: 1993
  ident: 10.1016/j.mineng.2017.12.004_b0025
  article-title: The effect of liquid upward velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a high sulphate content
  publication-title: Bioresource Technol.
  doi: 10.1016/0960-8524(93)90038-D
– year: 2006
  ident: 10.1016/j.mineng.2017.12.004_b0450
– volume: 4
  start-page: 13
  issue: 1
  year: 2005
  ident: 10.1016/j.mineng.2017.12.004_b0575
  article-title: Characteristics and adaptability of iron-and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates
  publication-title: Microbial Cell Factories
  doi: 10.1186/1475-2859-4-13
– volume: 154
  start-page: 337
  issue: 1–3
  year: 2008
  ident: 10.1016/j.mineng.2017.12.004_b0645
  article-title: Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.10.031
– volume: 5
  start-page: 270
  issue: 3
  year: 2009
  ident: 10.1016/j.mineng.2017.12.004_b0700
  article-title: Sulphur oxidizing bacteria and pulse nutrition – a review
  publication-title: World J. Agric. Sci.
– volume: 36
  start-page: 327
  issue: 3
  year: 2010
  ident: 10.1016/j.mineng.2017.12.004_b0010
  article-title: A review on the utilization of fly ash
  publication-title: Progr. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2009.11.003
– volume: 41
  start-page: 67
  issue: 1–2
  year: 1996
  ident: 10.1016/j.mineng.2017.12.004_b0385
  article-title: The environmental impact of mine wastes-Roles of microorganisms and their significance in treatment of mine wastes
  publication-title: Earth Sci. Rev.
  doi: 10.1016/0012-8252(96)00016-5
– volume: 8
  start-page: 197
  issue: 2
  year: 2014
  ident: 10.1016/j.mineng.2017.12.004_b0255
  article-title: Application of aluminium coagulants for the removal of sulphate from mine water
  publication-title: Chem. Chem. Technol.
  doi: 10.23939/chcht08.02.197
– ident: 10.1016/j.mineng.2017.12.004_b0380
– ident: 10.1016/j.mineng.2017.12.004_b0750
– ident: 10.1016/j.mineng.2017.12.004_b0045
– volume: 38
  start-page: 23
  issue: 1
  year: 2012
  ident: 10.1016/j.mineng.2017.12.004_b0100
  article-title: Application of magnesium hydroxide and barium hydroxide for the removal of metals and sulphate from mine water
  publication-title: Water SA
  doi: 10.4314/wsa.v38i1.4
– volume: 1
  start-page: 327
  issue: 4
  year: 2002
  ident: 10.1016/j.mineng.2017.12.004_b0230
  article-title: Treatment of acid mine drainage by sulphate-reducing bacteria using permeable reactive barriers: a review from laboratory to full-scale experiments
  publication-title: Rev. Environ. Sci. Biotechnol.
  doi: 10.1023/A:1023227616422
– volume: 41
  start-page: 131
  year: 2000
  ident: 10.1016/j.mineng.2017.12.004_b0610
  article-title: Acid mine drainage control and treatment
  publication-title: Agronomy Monograph, Reclamation Drastically Disturbed Lands
– ident: 10.1016/j.mineng.2017.12.004_b0565
  doi: 10.1007/s10230-007-0017-1
– volume: 23
  start-page: 2214
  issue: 8
  year: 2008
  ident: 10.1016/j.mineng.2017.12.004_b0390
  article-title: Zero-valent iron and organic carbon mixtures for remediation of acid mine drainage: batch experiments
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2008.03.005
– ident: 10.1016/j.mineng.2017.12.004_b0635
– ident: 10.1016/j.mineng.2017.12.004_b0505
– volume: 32
  start-page: 1888
  issue: 6
  year: 1998
  ident: 10.1016/j.mineng.2017.12.004_b0465
  article-title: Water quality, fate of metals, and predictive model validation of a constructed wetland treating acid mine drainage
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(97)00401-6
– ident: 10.1016/j.mineng.2017.12.004_b0295
– volume: 87
  start-page: 129
  issue: 1
  year: 2003
  ident: 10.1016/j.mineng.2017.12.004_b0350
  article-title: Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions
  publication-title: Bioresource Technol.
  doi: 10.1016/S0960-8524(02)00201-8
– volume: 49
  start-page: 437
  issue: 4
  year: 2007
  ident: 10.1016/j.mineng.2017.12.004_b0755
  article-title: Contaminant removal of domestic wastewater by constructed wetlands: effects of plant species
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/j.1744-7909.2007.00389.x
– volume: 3
  start-page: 76
  issue: 1
  year: 1987
  ident: 10.1016/j.mineng.2017.12.004_b0215
  article-title: Use of nitrogen vs. carbon dioxide in the characterization of activated carbons
  publication-title: Langmuir
  doi: 10.1021/la00073a013
– volume: 37
  start-page: 474
  issue: 3
  year: 2011
  ident: 10.1016/j.mineng.2017.12.004_b0655
  article-title: Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2010.12.012
– volume: 189
  start-page: 92
  issue: 1–3
  year: 2006
  ident: 10.1016/j.mineng.2017.12.004_b0660
  article-title: Nanofiltration of concentrated acidic copper sulphate solutions
  publication-title: Desalination
  doi: 10.1016/j.desal.2005.06.017
– volume: 273
  start-page: 231
  issue: 1–2
  year: 1989
  ident: 10.1016/j.mineng.2017.12.004_b0720
  article-title: Use of different electropolymerization conditions for controlling the size-exclusion selectivity at polyaniline, polypyrrole and polyphenol films
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
  doi: 10.1016/0022-0728(89)87016-0
– start-page: 187
  year: 1993
  ident: 10.1016/j.mineng.2017.12.004_b0285
– volume: 37
  start-page: 389
  issue: 4
  year: 2000
  ident: 10.1016/j.mineng.2017.12.004_b0050
  article-title: Assessing the acute gastrointestinal effects of ingesting naturally occurring, high levels of sulfate in drinking water
  publication-title: Crit. Rev. Clin. Lab. Sci.
  doi: 10.1080/10408360091174259
– volume: 132
  start-page: 185
  issue: 1
  year: 2001
  ident: 10.1016/j.mineng.2017.12.004_b0675
  article-title: Environmental impact of coal mining on water regime and its management
  publication-title: Water Air Soil Pollut.
  doi: 10.1023/A:1012083519667
– volume: 34
  start-page: 1
  issue: 1
  year: 1996
  ident: 10.1016/j.mineng.2017.12.004_b0605
  article-title: Activated carbon for gas separation and storage
  publication-title: Carbon
  doi: 10.1016/0008-6223(95)00128-X
– year: 1995
  ident: 10.1016/j.mineng.2017.12.004_b0170
– volume: 69
  start-page: 425
  issue: 3
  year: 1993
  ident: 10.1016/j.mineng.2017.12.004_b0705
  article-title: Alkalinity generation by Fe (III) reduction versus sulfate reduction in wetlands constructed for acid mine drainage treatment
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/BF00478175
– volume: 3
  start-page: 127
  year: 2012
  ident: 10.1016/j.mineng.2017.12.004_b0555
  article-title: Nanofiltration as an effective tool of reducing sulphate concentration in mine water
  publication-title: Arch. Civ. Eng. Environ.
– volume: 140
  start-page: 79
  issue: 1
  year: 2001
  ident: 10.1016/j.mineng.2017.12.004_b0715
  article-title: The removal of acid sulphate pollution by nanofiltration
  publication-title: Desalination
  doi: 10.1016/S0011-9164(01)00356-3
– volume: 17
  start-page: 99
  issue: 4
  year: 1997
  ident: 10.1016/j.mineng.2017.12.004_b0080
  article-title: A full-scale porous reactive wall for prevention of acid mine drainage
  publication-title: Groundwater Monit. Rem.
  doi: 10.1111/j.1745-6592.1997.tb01269.x
– volume: 77
  start-page: 73
  year: 1990
  ident: 10.1016/j.mineng.2017.12.004_b0570
  article-title: Separation potential of nanofiltration membranes
  publication-title: Desalination
  doi: 10.1016/0011-9164(90)85021-2
– ident: 10.1016/j.mineng.2017.12.004_b0460
– volume: 40
  start-page: 5514
  issue: 17
  year: 2006
  ident: 10.1016/j.mineng.2017.12.004_b0620
  article-title: Fe (0) nanoparticles for nitrate reduction: Stability, reactivity, and transformation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0525758
– volume: 191
  start-page: 287
  issue: 1–3
  year: 2011
  ident: 10.1016/j.mineng.2017.12.004_b0235
  article-title: In-situ remediation of acid mine drainage using a permeable reactive barrier in Aznalcollar (Sw Spain)
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.04.082
– volume: 23
  start-page: 1338
  year: 1994
  ident: 10.1016/j.mineng.2017.12.004_b0290
  article-title: Passive treatment of acid mine drainage with limestone
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1994.00472425002300060030x
– volume: 29
  start-page: 249
  issue: 4
  year: 1994
  ident: 10.1016/j.mineng.2017.12.004_b0160
  article-title: Wetland treatment for trace metal removal from mine drainage: the importance of aerobic and anaerobic processes
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.1994.0203
– volume: 20
  start-page: 1285
  issue: 4
  year: 2014
  ident: 10.1016/j.mineng.2017.12.004_b0180
  article-title: Removal of heavy metals and neutralisation of acid mine drainage with un-activated attapulgite
  publication-title: J. Indust. Eng. Chem.
  doi: 10.1016/j.jiec.2013.07.007
– volume: 19
  start-page: 105
  issue: 2
  year: 2006
  ident: 10.1016/j.mineng.2017.12.004_b0595
  article-title: Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2005.08.006
– volume: 92
  start-page: 407
  issue: 3
  year: 2011
  ident: 10.1016/j.mineng.2017.12.004_b0205
  article-title: Removal of heavy metal ions from wastewaters: a review
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2010.11.011
– ident: 10.1016/j.mineng.2017.12.004_b0695
– volume: 2
  start-page: 264
  issue: 36
  year: 2017
  ident: 10.1016/j.mineng.2017.12.004_b0020
  article-title: Using calcium carbonate/hydroxide and barium carbonate to remove sulphate from mine water
  publication-title: Mine Water Environ.
  doi: 10.1007/s10230-017-0451-7
– ident: 10.1016/j.mineng.2017.12.004_b0435
– volume: 91
  start-page: 117
  issue: 1–3
  year: 2003
  ident: 10.1016/j.mineng.2017.12.004_b0430
  article-title: Biosensors for clinical diagnostics industry
  publication-title: Sens. Actuators, B
  doi: 10.1016/S0925-4005(03)00075-3
– volume: 26
  start-page: 345
  issue: 1–2
  year: 1992
  ident: 10.1016/j.mineng.2017.12.004_b0440
  article-title: Treatment of acidic effluents with limestone instead of lime
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.1992.0414
– volume: 85
  start-page: 53
  issue: 1–2
  year: 2006
  ident: 10.1016/j.mineng.2017.12.004_b0345
  article-title: The co-treatment of sewage and mine waters in aerobic wetlands
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2005.09.026
– volume: 34
  start-page: 2062
  issue: 6
  year: 2005
  ident: 10.1016/j.mineng.2017.12.004_b0735
  article-title: Rapid removal of nitrate and sulfate in freshwater wetland sediments
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2004.0483
– volume: 338
  start-page: 3
  issue: 1–2
  year: 2005
  ident: 10.1016/j.mineng.2017.12.004_b0340
  article-title: Acid mine drainage remediation options: a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2004.09.002
– volume: 63
  start-page: 251
  issue: 2
  year: 2008
  ident: 10.1016/j.mineng.2017.12.004_b0685
  article-title: Drawbacks of applying nanofiltration and how to avoid them: A review
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2008.05.010
– volume: 145
  start-page: 199
  issue: 2
  year: 1998
  ident: 10.1016/j.mineng.2017.12.004_b0540
  article-title: Retention measurements of nanofiltration membranes with electrolyte solutions
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(98)00079-9
– volume: 13
  start-page: 623
  issue: 6
  year: 2000
  ident: 10.1016/j.mineng.2017.12.004_b0190
  article-title: Treatment of acid mine water by use of heavy metal precipitation and ion exchange
  publication-title: Miner. Eng.
  doi: 10.1016/S0892-6875(00)00045-5
– ident: 10.1016/j.mineng.2017.12.004_b0315
  doi: 10.1201/b11002-11
– ident: 10.1016/j.mineng.2017.12.004_b0360
  doi: 10.1180/MSS.9.7
– ident: 10.1016/j.mineng.2017.12.004_b0115
– volume: 38
  start-page: 1822
  issue: 7
  year: 2004
  ident: 10.1016/j.mineng.2017.12.004_b0400
  article-title: Stimulation of microbial sulphate reduction in a constructed wetland: microbiological and geochemical analysis
  publication-title: Water Res.
  doi: 10.1016/j.watres.2003.12.033
– volume: 28
  start-page: 2321
  issue: 11
  year: 1994
  ident: 10.1016/j.mineng.2017.12.004_b0275
  article-title: Treatment of water from an open-pit copper mine using biogenic sulfide and limestone: a feasibility study
  publication-title: Water Res.
  doi: 10.1016/0043-1354(94)90047-7
– ident: 10.1016/j.mineng.2017.12.004_b0375
– volume: 27
  start-page: 136
  year: 2008
  ident: 10.1016/j.mineng.2017.12.004_b0480
  article-title: Sustainability reporting and water resources: a preliminary assessment of embodied water and sustainable mining
  publication-title: Mine Water Environ.
  doi: 10.1007/s10230-008-0037-5
– volume: 35
  start-page: 1799
  issue: 12
  year: 1997
  ident: 10.1016/j.mineng.2017.12.004_b0090
  article-title: The characterization of activated carbons with oxygen and nitrogen surface groups
  publication-title: Carbon
  doi: 10.1016/S0008-6223(97)00096-1
– volume: 40
  start-page: 609
  issue: 5
  year: 1992
  ident: 10.1016/j.mineng.2017.12.004_b0155
  article-title: Treatment of metal-contaminated water using bacterial sulfate reduction: results from pilot-scale reactors
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260400508
– volume: 34
  start-page: 659
  issue: 6–7
  year: 1999
  ident: 10.1016/j.mineng.2017.12.004_b0125
  article-title: Removal of organo-sulphur odour compounds by Thiobacillusnovellus SRM, sulphur-oxidizing microorganisms
  publication-title: Process Biochem.
– ident: 10.1016/j.mineng.2017.12.004_b0535
  doi: 10.1007/978-1-4020-4999-4_5
– volume: 44
  start-page: 683
  issue: 4
  year: 2011
  ident: 10.1016/j.mineng.2017.12.004_b0760
  article-title: ATRP of methyl acrylate with metallic zinc, magnesium, and iron as reducing agents and supplemental activators
  publication-title: Macromolecules
  doi: 10.1021/ma102492c
– year: 1999
  ident: 10.1016/j.mineng.2017.12.004_b0670
– volume: 21
  start-page: 195
  issue: 3
  year: 1957
  ident: 10.1016/j.mineng.2017.12.004_b0710
  article-title: The thiobacilli
  publication-title: Bacteriol. Rev.
  doi: 10.1128/MMBR.21.3.195-213.1957
– volume: 24
  start-page: 1467
  issue: 13
  year: 2011
  ident: 10.1016/j.mineng.2017.12.004_b0415
  article-title: Fate of sulphate removed during the treatment of circumneutral mine water and acid mine drainage with coal fly ash: modelling and experimental approach
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2011.07.009
– volume: 4
  start-page: 403
  issue: 5
  year: 2004
  ident: 10.1016/j.mineng.2017.12.004_b0370
  article-title: Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands
  publication-title: Eng. Life Sci.
  doi: 10.1002/elsc.200420048
– volume: 7
  start-page: 58
  issue: 1
  year: 1988
  ident: 10.1016/j.mineng.2017.12.004_b0165
  article-title: Nanofiltration extends the range of membrane filtration
  publication-title: Environ. Prog. Sustain. Energy
– volume: 24
  start-page: 433
  issue: 3
  year: 2008
  ident: 10.1016/j.mineng.2017.12.004_b0475
  article-title: Recovery of drinking water and by-products from gold mine effluents
  publication-title: Int. J. Water Resour. Dev.
  doi: 10.1080/07900620802150475
– volume: 154
  start-page: 466
  issue: 7
  year: 2003
  ident: 10.1016/j.mineng.2017.12.004_b0335
  article-title: The microbiology of acidic mine waters
  publication-title: Res. Microbiol.
  doi: 10.1016/S0923-2508(03)00114-1
– volume: 26
  start-page: 1017
  issue: 4
  year: 1997
  ident: 10.1016/j.mineng.2017.12.004_b0765
  article-title: Acid mine drainage treatment with armored limestone in open limestone channels
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1997.00472425002600040013x
– volume: 23
  start-page: 195
  issue: 4
  year: 2004
  ident: 10.1016/j.mineng.2017.12.004_b0445
  article-title: Treatment of mine water for sulphate and metal removal using barium sulphide
  publication-title: Mine Water Environ.
  doi: 10.1007/s10230-004-0062-y
– volume: 56
  start-page: 249
  issue: 3
  year: 2007
  ident: 10.1016/j.mineng.2017.12.004_b0210
  article-title: Influence of macrophyte species on microbial density and activity in constructed wetlands
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2007.510
– volume: 73
  start-page: 51
  year: 2014
  ident: 10.1016/j.mineng.2017.12.004_b0310
  article-title: Sulfate removal from acid mine drainage using polypyrrole-grafted granular activated carbon
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.02.036
– volume: 111
  start-page: 79
  year: 2017
  ident: 10.1016/j.mineng.2017.12.004_b0560
  article-title: Comparative column testing of three reactive mixtures for the bio-chemical treatment of iron-rich acid mine drainage
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2017.06.002
– ident: 10.1016/j.mineng.2017.12.004_b0680
– volume: 83
  start-page: 153
  issue: 1–4
  year: 2006
  ident: 10.1016/j.mineng.2017.12.004_b0330
  article-title: Biohydrometallurgy and the environment: intimate and important interplay
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2006.03.051
– volume: 141
  start-page: 819
  issue: 3
  year: 2007
  ident: 10.1016/j.mineng.2017.12.004_b0270
  article-title: Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.07.049
– ident: 10.1016/j.mineng.2017.12.004_b0485
– volume: 14
  start-page: 1139
  issue: 12–13
  year: 2006
  ident: 10.1016/j.mineng.2017.12.004_b0015
  article-title: Acid mine drainage (AMD): causes, treatment and case studies
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2004.09.006
– volume: 97
  start-page: 401
  issue: 4
  year: 2010
  ident: 10.1016/j.mineng.2017.12.004_b0640
  article-title: Diversity and identification of methanogenic archaea and sulphate-reducing bacteria in sediments from a pristine tropical mangrove
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/s10482-010-9422-8
– volume: 65
  start-page: 175
  issue: 1–4
  year: 1999
  ident: 10.1016/j.mineng.2017.12.004_b0665
  article-title: Are seagrass growth and survival constrained by the reducing conditions of the sediment?
  publication-title: Aquat. Bot.
  doi: 10.1016/S0304-3770(99)00039-X
– volume: 73
  start-page: 1051
  issue: 7
  year: 1994
  ident: 10.1016/j.mineng.2017.12.004_b0625
  article-title: Pyrite in UK coals: its environmental significance
  publication-title: Fuel
  doi: 10.1016/0016-2361(94)90236-4
– volume: 23
  start-page: 252
  issue: 3
  year: 2010
  ident: 10.1016/j.mineng.2017.12.004_b0420
  article-title: Application of coal fly ash to circumneutral mine waters for the removal of sulphates as gypsum and ettringite
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2009.12.004
– volume: 85
  start-page: 833
  issue: 4
  year: 2007
  ident: 10.1016/j.mineng.2017.12.004_b0150
  article-title: Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2007.07.031
– volume: 17
  start-page: 301
  issue: 3
  year: 2002
  ident: 10.1016/j.mineng.2017.12.004_b0085
  article-title: Rates of sulfate reduction and metal sulfide precipitation in a permeable reactive barrier
  publication-title: Appl. Geochem.
  doi: 10.1016/S0883-2927(01)00084-1
– volume: 25
  start-page: 141
  issue: 2
  year: 1995
  ident: 10.1016/j.mineng.2017.12.004_b0175
  article-title: A review: pyrite oxidation mechanisms and acid mine drainage prevention
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389509388477
– ident: 10.1016/j.mineng.2017.12.004_b0580
– volume: 369
  start-page: 307
  issue: 1–3
  year: 2006
  ident: 10.1016/j.mineng.2017.12.004_b0095
  article-title: A review of acidity generation and consumption in acidic coal mine lakes and their watersheds
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2006.05.004
– volume: 39
  start-page: 4643
  issue: 19
  year: 2005
  ident: 10.1016/j.mineng.2017.12.004_b0740
  article-title: Sulphate reduction and the removal of carbon and ammonia in a laboratory-scale constructed wetland
  publication-title: Water Res.
  doi: 10.1016/j.watres.2005.09.017
– volume: 305
  start-page: 200
  year: 2016
  ident: 10.1016/j.mineng.2017.12.004_b0145
  article-title: Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.11.041
– volume: 5
  start-page: 3206
  issue: 21
  year: 2010
  ident: 10.1016/j.mineng.2017.12.004_b0030
  article-title: A short review on the surficial impacts of underground mining
  publication-title: Sci. Res. Essays
– volume: 211
  start-page: 233
  issue: 2–3
  year: 2002
  ident: 10.1016/j.mineng.2017.12.004_b0305
  article-title: A quantitative comparison between chemical dosing and electrocoagulation
  publication-title: Colloids Surf., A
  doi: 10.1016/S0927-7757(02)00285-6
– volume: 158
  start-page: 1533
  issue: 2
  year: 2006
  ident: 10.1016/j.mineng.2017.12.004_b0495
  article-title: Electrochemical deposition of polypyrrole for symmetric supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.10.013
– volume: 20
  start-page: 591
  issue: 3–4
  year: 1997
  ident: 10.1016/j.mineng.2017.12.004_b0110
  article-title: Bioleaching: metal solubilization by microorganisms
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.1997.tb00340.x
– year: 2008
  ident: 10.1016/j.mineng.2017.12.004_b0355
– ident: 10.1016/j.mineng.2017.12.004_b0105
– volume: 26
  start-page: 14
  issue: 1
  year: 2007
  ident: 10.1016/j.mineng.2017.12.004_b0300
  article-title: Barium carbonate process for sulphate and metal removal from mine water
  publication-title: Mine Water Environ.
  doi: 10.1007/s10230-007-0145-7
– volume: 259
  start-page: 364
  year: 2015
  ident: 10.1016/j.mineng.2017.12.004_b0325
  article-title: Industrial products and wastes as adsorbents for sulphate and chloride removal from synthetic alkaline solution and mine process water
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.07.091
– volume: 32
  start-page: 1212
  issue: 4
  year: 2003
  ident: 10.1016/j.mineng.2017.12.004_b0745
  article-title: pH, dissolved oxygen, and adsorption effects on metal removal in anaerobic bioreactors
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2003.1212
– volume: 15
  start-page: 139
  issue: 3
  year: 2002
  ident: 10.1016/j.mineng.2017.12.004_b0585
  article-title: Overview of flotation as a wastewater treatment technique
  publication-title: Miner. Eng.
  doi: 10.1016/S0892-6875(01)00216-3
– volume: 107
  start-page: 1
  issue: 5–6
  year: 2011
  ident: 10.1016/j.mineng.2017.12.004_b0455
  article-title: The impact of acid mine drainage in South Africa
  publication-title: S. Afr. J. Sci.
– ident: 10.1016/j.mineng.2017.12.004_b0040
– volume: 142
  start-page: 775
  issue: 4
  year: 1996
  ident: 10.1016/j.mineng.2017.12.004_b0520
  article-title: Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria
  publication-title: Microbiology
  doi: 10.1099/00221287-142-4-775
– volume: 84
  start-page: 240
  issue: 2
  year: 1998
  ident: 10.1016/j.mineng.2017.12.004_b0725
  article-title: Metal removal by sulphate-reducing bacteria from natural and constructed wetlands
  publication-title: J. Appl. Microbiol.
  doi: 10.1046/j.1365-2672.1998.00337.x
– volume: 84
  start-page: 1032
  issue: 8
  year: 2011
  ident: 10.1016/j.mineng.2017.12.004_b0395
  article-title: Removal processes for arsenic in constructed wetlands
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.04.022
– volume: 30
  start-page: 216
  issue: 3
  year: 2011
  ident: 10.1016/j.mineng.2017.12.004_b0365
  article-title: Lime treatment of mine drainage at the Sarcheshmeh porphyry copper mine Iran
  publication-title: Mine Water Environ.
  doi: 10.1007/s10230-011-0142-8
– ident: 10.1016/j.mineng.2017.12.004_b9000
– volume: 38
  start-page: 18
  issue: 6
  year: 2001
  ident: 10.1016/j.mineng.2017.12.004_b0070
  article-title: Sulphate removal by nanofiltration
  publication-title: Filtr. Sep.
  doi: 10.1016/S0015-1882(01)80376-1
– volume: 30
  start-page: 685
  issue: 5
  year: 2004
  ident: 10.1016/j.mineng.2017.12.004_b0730
  article-title: Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2003.11.002
– volume: 56
  start-page: 1639
  issue: 4
  year: 2001
  ident: 10.1016/j.mineng.2017.12.004_b0195
  article-title: Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recovery
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(00)00392-4
– volume: 183
  start-page: 301
  issue: 1
  year: 2010
  ident: 10.1016/j.mineng.2017.12.004_b0075
  article-title: Solid phase studies and geochemical modelling of low-cost permeable reactive barriers
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.07.024
– ident: 10.1016/j.mineng.2017.12.004_b0615
– volume: 23
  start-page: 107
  issue: 2
  year: 2004
  ident: 10.1016/j.mineng.2017.12.004_b0135
  article-title: Plant effects on microbial assemblages and remediation of acidic coal pile runoff in mesocosm treatment wetlands
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2004.07.005
– ident: 10.1016/j.mineng.2017.12.004_b0060
  doi: 10.1201/b19249-43
– volume: 26
  start-page: 341
  issue: 4
  year: 2006
  ident: 10.1016/j.mineng.2017.12.004_b0425
  article-title: Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2005.12.004
– volume: 79
  start-page: 46
  year: 2014
  ident: 10.1016/j.mineng.2017.12.004_b0320
  article-title: Electrochemical regeneration of polypyrrole-tailored activated carbons that have removed sulfate
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.07.033
– volume: 36
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.mineng.2017.12.004_b0510
  article-title: Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2006.0066
– volume: 9
  start-page: 23
  issue: 1
  year: 1996
  ident: 10.1016/j.mineng.2017.12.004_b0220
  article-title: A review of passive systems for the treatment of acid mine drainage
  publication-title: Miner. Eng.
  doi: 10.1016/0892-6875(95)00129-8
– volume: 13
  start-page: 468
  issue: 5
  year: 1995
  ident: 10.1016/j.mineng.2017.12.004_b0590
  article-title: Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants
  publication-title: Biotechnology
– volume: 37
  start-page: 3098
  issue: 13
  year: 2003
  ident: 10.1016/j.mineng.2017.12.004_b0690
  article-title: The contribution of biotic and abiotic processes during azo dye reduction in anaerobic sludge
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(03)00166-0
– volume: 114
  start-page: 199
  issue: 1–3
  year: 2004
  ident: 10.1016/j.mineng.2017.12.004_b0470
  article-title: Fundamentals, present and future perspectives of electrocoagulation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2004.08.009
– volume: 1
  start-page: 989
  issue: 4
  year: 2013
  ident: 10.1016/j.mineng.2017.12.004_b0530
  article-title: A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2013.08.008
– volume: 35
  start-page: 567
  issue: 2
  year: 2001
  ident: 10.1016/j.mineng.2017.12.004_b0130
  article-title: The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(00)00286-4
– volume: 83
  start-page: 724
  issue: 3
  year: 2013
  ident: 10.1016/j.mineng.2017.12.004_b0240
  article-title: Three-year survey of sulfate-reducing bacteria community structure in Carnoules acid mine drainage (France), highly contaminated by arsenic
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/1574-6941.12028
– volume: 84
  start-page: 27
  issue: 1–3
  year: 1997
  ident: 10.1016/j.mineng.2017.12.004_b0410
  article-title: Polyaniline and polypyrrole: where are we headed?
  publication-title: Synth. Met.
  doi: 10.1016/S0379-6779(97)80658-3
– volume: 128
  start-page: 818
  year: 2013
  ident: 10.1016/j.mineng.2017.12.004_b0055
  article-title: Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2012.10.070
SSID ssj0005789
Score 2.5727625
SecondaryResourceType review_article
Snippet [Display omitted] •Mining activities greatly increase acid mine drainage and sulphate ions in water.•Water pollution threat due to AMD needs to be addressed in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 74
SubjectTerms Acid mine drainage
Mine water
Sulphate ions
Sustainability
Water contamination
Water treatment
Title Challenges and opportunities in the removal of sulphate ions in contaminated mine water: A review
URI https://dx.doi.org/10.1016/j.mineng.2017.12.004
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14jU2ym-zGWymWqtiLFnpbNtldqdik1BZv_nZn8pCKoOAtjxnYzE5mvoRvZgi55JGLpIH3W7I48biInKejWHtpGiQugIzDDBY4P4zj0YTfTaNpiwyaWhikVdaxv4rpZbSur_Rqa_YWs1nv0ZdJGAPcDsBJw0RiT1DOBXr51ccGzUOUY_BQ2EPppnyu5HjNAcnlz0jwEuVPwXpc24_0tJFyhntkt8aKtF8tZ5-0bH5AdjY6CB4SPWiGobxRnRtaLBBPr_OyTyqd5RTwHV3aeQEORQtHSzI6wEuK3ob3kaqukQ4DyJPiQuk7HC6vaZ9WVS1HZDK8eRqMvHpqgpcxHq0gvAWpz43PtQmlNNoZ4Xxhuc24MDKRmvl-apyTzphUMgfPDghbOx5akzAXsGPSzovcnhDqIu4cfALK0GINa6hNlqWw6QLSPgek0CGsMZbK6pbiONniVTXcsRdVmVihiVUQKjBxh3hfWouqpcYf8qLZB_XNNRRE_V81T_-teUa24UxWZLNz0l4t1_YC0Mcq7Zbu1SVb_dv70fgTfTvbQQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOiKcYzxy4VusjbVJu08S0sceFTdotSpsGDbF2Gpv4-zh9wBASSNyqJJZSx7W_VJ9tgDvqa58r_L65F4QWZb62pB9IK4qcUDsYcTxlEpxH46A3pY8zf1aDTpULY2iVpe8vfHrurcuRVqnN1nI-bz3ZPHQDhNsOGqkbcroDDVOdyq9Do90f9MZfTA-Wd8Iz6y0jUGXQ5TSvBYK59NlwvFj-X7Ds2PYjQm1Fne4hHJRwkbSLHR1BLUmPYX-riOAJyE7VD-WNyFSRbGkg9SbNS6WSeUoQ4pFVssjQpkimSc5HR4RJjMGZecNWl4YRg-CTmI2Sd3xc3ZM2KRJbTmHafZh0elbZOMGKPeqv0cM5kU2VTaVyOVdSK6ZtltAkpkzxkEvPtiOlNddKRdzT-O4IsqWmbqJCTzveGdTTLE3OgWifao23QO4mJo3VlSqOIzx3hpGfIlhoglcpS8RlVXHT3OJVVPSxF1GoWBgVC8cVqOImWJ9Sy6Kqxh_rWXUO4pt1CHT8v0pe_FvyFnZ7k9FQDPvjwSXs4QwvuGdXUF-vNsk1gpF1dFMa2wcHid3y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Challenges+and+opportunities+in+the+removal+of+sulphate+ions+in+contaminated+mine+water%3A+A+review&rft.jtitle=Minerals+engineering&rft.au=Fernando%2C+W.+Ashane+M.&rft.au=Ilankoon%2C+I.M.S.K.&rft.au=Syed%2C+Tauqir+H.&rft.au=Yellishetty%2C+Mohan&rft.date=2018-03-01&rft.issn=0892-6875&rft.volume=117&rft.spage=74&rft.epage=90&rft_id=info:doi/10.1016%2Fj.mineng.2017.12.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mineng_2017_12_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon