Automated detection and classification of synoptic-scale fronts from atmospheric data grids
Automatic determination of fronts from atmospheric data is an important task for weather prediction as well as for research of synoptic-scale phenomena. In this paper we introduce a deep neural network to detect and classify fronts from multi-level ERA5 reanalysis data. Model training and prediction...
Saved in:
Published in | Weather and climate dynamics Vol. 3; no. 1; pp. 113 - 137 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Copernicus Publications
01.02.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | Automatic determination of fronts from atmospheric data is an important task for weather prediction as well as for research of synoptic-scale phenomena. In this paper we introduce a deep neural network to detect and classify fronts from multi-level ERA5 reanalysis data. Model training and prediction is evaluated using two different regions covering Europe and North America with data from two weather services. We apply label deformation within our loss function, which removes the need for skeleton operations or other complicated post-processing steps as used in other work, to create the final output. We obtain good prediction scores with a critical success index higher than 66.9 % and an object detection rate of more than 77.3 %. Frontal climatologies of our network are highly correlated (greater than 77.2 %) to climatologies created from weather service data. Comparison with a well-established baseline method based on thermodynamic criteria shows a better performance of our network classification. Evaluated cross sections further show that the surface front data of the weather services as well as our network classification are physically plausible. Finally, we investigate the link between fronts and extreme precipitation events to showcase possible applications of the proposed method. This demonstrates the usefulness of our new method for scientific investigations. |
---|---|
AbstractList | Automatic determination of fronts from atmospheric data is an important task for weather prediction as well as for research of synoptic-scale phenomena. In this paper we introduce a deep neural network to detect and classify fronts from multi-level ERA5 reanalysis data. Model training and prediction is evaluated using two different regions covering Europe and North America with data from two weather services. We apply label deformation within our loss function, which removes the need for skeleton operations or other complicated post-processing steps as used in other work, to create the final output. We obtain good prediction scores with a critical success index higher than 66.9 % and an object detection rate of more than 77.3 %. Frontal climatologies of our network are highly correlated (greater than 77.2 %) to climatologies created from weather service data. Comparison with a well-established baseline method based on thermodynamic criteria shows a better performance of our network classification. Evaluated cross sections further show that the surface front data of the weather services as well as our network classification are physically plausible. Finally, we investigate the link between fronts and extreme precipitation events to showcase possible applications of the proposed method. This demonstrates the usefulness of our new method for scientific investigations. |
Author | Spichtinger, Peter Miltenberger, Annette Niebler, Stefan Schmidt, Bertil |
Author_xml | – sequence: 1 givenname: Stefan surname: Niebler fullname: Niebler, Stefan – sequence: 2 givenname: Annette orcidid: 0000-0003-3320-4272 surname: Miltenberger fullname: Miltenberger, Annette – sequence: 3 givenname: Bertil surname: Schmidt fullname: Schmidt, Bertil – sequence: 4 givenname: Peter orcidid: 0000-0003-4008-4977 surname: Spichtinger fullname: Spichtinger, Peter |
BookMark | eNpNkEtLAzEYRYNUsNZuXecPTM1rZpJlKT4KBTe6chG-yaOmTCcliUj_vdNWxNW93MXhcm7RZIiDQ-iekkVNlXj4NrbiFaW8YoSxKzRljZKVILSZ_Os3aJ7zjhDCZMtFI6foY_lV4h6Ks9i64kwJccAwWGx6yDn4YOA8RY_zcYiHEkyVDfQO-xSHkk-xx1D2MR8-XQoGWyiAtynYfIeuPfTZzX9zht6fHt9WL9Xm9Xm9Wm4qw0VdKtko7q3oSMu8smNRvjaMthwYaa2y0tWdp1zWrRI1BQrOSyaJh453HTjCZ2h94doIO31IYQ_pqCMEfR5i2mpI4_HeadMw7qlQrOmc4KJVQDoPUAtmqFFUjqzFhWVSzDk5_8ejRJ9M69G05no0rU-m-Q-xEnSt |
CitedBy_id | crossref_primary_10_5194_gmd_16_4427_2023 crossref_primary_10_1126_sciadv_adh4195 |
Cites_doi | 10.3390/cli7110130 10.1175/JCLI-D-15-0171.1 10.1002/qj.3803 10.1175/BAMS-87-3-343 10.1175/BAMS-D-16-0261.1 10.2151/sola.2019-028 10.1109/TPAMI.2016.2572683 10.1175/MWR-D-18-0289.1 10.1002/joc.4373 10.1002/2017GL073662 10.1016/j.wace.2021.100313 10.1002/met.204 10.1007/s00382-020-05619-2 10.1029/2010GL046451 10.1002/jgrd.50852 10.1175/BAMS-D-18-0137.1 10.1175/MWR-D-12-00252.1 10.1175/1520-0493(1965)093<0547:EINOFA>2.3.CO;2 10.1175/JCLI-D-11-00100.1 10.1017/S1350482798000553 10.1175/WAF-D-18-0183.1 10.5194/ascmo-5-147-2019 10.3390/atmos12101312 10.1002/qj.2471 10.1007/978-3-319-24574-4_28 10.1002/2016GL070017 10.1175/1520-0493(1999)127<0945:APMOSM>2.0.CO;2 10.1109/CVPR.2019.01133 10.1175/JCLI-D-11-00705.1 10.3103/S1068373914010014 10.25080/Majora-92bf1922-011 10.1002/met.142 10.1175/BAMS-85-6-837 10.1002/joc.4945 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.5194/wcd-3-113-2022 |
DatabaseName | CrossRef Open Access: DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Open Access: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 2698-4016 |
EndPage | 137 |
ExternalDocumentID | oai_doaj_org_article_c623f14926be43479a0bfaa542c1c918 10_5194_wcd_3_113_2022 |
GroupedDBID | AAFWJ AAYXX AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ H13 M~E OK1 |
ID | FETCH-LOGICAL-c345t-8693fd4b072f9dd4b9f5c2173a207d9d8e5bf138579451a1aef8280fab3bbae03 |
IEDL.DBID | DOA |
ISSN | 2698-4016 |
IngestDate | Tue Oct 22 15:08:18 EDT 2024 Fri Aug 23 01:15:42 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-8693fd4b072f9dd4b9f5c2173a207d9d8e5bf138579451a1aef8280fab3bbae03 |
ORCID | 0000-0003-4008-4977 0000-0003-3320-4272 |
OpenAccessLink | https://doaj.org/article/c623f14926be43479a0bfaa542c1c918 |
PageCount | 25 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c623f14926be43479a0bfaa542c1c918 crossref_primary_10_5194_wcd_3_113_2022 |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Weather and climate dynamics |
PublicationYear | 2022 |
Publisher | Copernicus Publications |
Publisher_xml | – name: Copernicus Publications |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref4 doi: 10.3390/cli7110130 – ident: ref8 doi: 10.1175/JCLI-D-15-0171.1 – ident: ref13 doi: 10.1002/qj.3803 – ident: ref24 doi: 10.1175/BAMS-87-3-343 – ident: ref37 doi: 10.1175/BAMS-D-16-0261.1 – ident: ref22 doi: 10.2151/sola.2019-028 – ident: ref41 doi: 10.1109/TPAMI.2016.2572683 – ident: ref43 doi: 10.1175/MWR-D-18-0289.1 – ident: ref33 doi: 10.1002/joc.4373 – ident: ref45 – ident: ref29 doi: 10.1002/2017GL073662 – ident: ref7 doi: 10.1016/j.wace.2021.100313 – ident: ref15 doi: 10.1002/met.204 – ident: ref17 doi: 10.1007/s00382-020-05619-2 – ident: ref25 – ident: ref2 doi: 10.1029/2010GL046451 – ident: ref9 doi: 10.1002/jgrd.50852 – ident: ref44 doi: 10.1175/BAMS-D-18-0137.1 – ident: ref27 – ident: ref16 doi: 10.1175/MWR-D-12-00252.1 – ident: ref32 doi: 10.1175/1520-0493(1965)093<0547:EINOFA>2.3.CO;2 – ident: ref42 doi: 10.1175/JCLI-D-11-00100.1 – ident: ref11 – ident: ref14 doi: 10.1017/S1350482798000553 – ident: ref30 – ident: ref20 doi: 10.1175/WAF-D-18-0183.1 – ident: ref38 – ident: ref3 doi: 10.5194/ascmo-5-147-2019 – ident: ref5 doi: 10.3390/atmos12101312 – ident: ref36 doi: 10.1002/qj.2471 – ident: ref34 doi: 10.1007/978-3-319-24574-4_28 – ident: ref21 doi: 10.1002/2016GL070017 – ident: ref28 – ident: ref35 doi: 10.1175/1520-0493(1999)127<0945:APMOSM>2.0.CO;2 – ident: ref23 – ident: ref1 doi: 10.1109/CVPR.2019.01133 – ident: ref26 – ident: ref31 doi: 10.1175/JCLI-D-11-00705.1 – ident: ref40 doi: 10.3103/S1068373914010014 – ident: ref39 doi: 10.25080/Majora-92bf1922-011 – ident: ref19 doi: 10.1002/met.142 – ident: ref18 – ident: ref6 doi: 10.1175/BAMS-85-6-837 – ident: ref10 – ident: ref12 doi: 10.1002/joc.4945 |
SSID | ssj0002873468 |
Score | 2.26176 |
Snippet | Automatic determination of fronts from atmospheric data is an important task for weather prediction as well as for research of synoptic-scale phenomena. In... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 113 |
Title | Automated detection and classification of synoptic-scale fronts from atmospheric data grids |
URI | https://doaj.org/article/c623f14926be43479a0bfaa542c1c918 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYv4xPVFDqKnYPPatsdVXERYTy4IHsrkJSvayrYiXvztTtJV1pMXL21TQgnfZJpvkskXQk68Lo0CpdDFnWIKArBShMC8D14o7YS0Kcv3dng9VTf3-n7pqK-YE9bLA_fAnVscnwOPsnbGq7jtETITALQSltuS99t8uV4Kpp7SlFEu1bDoVRqRpKjzd-uYZJxL7BdC_BqFlsT606gy3iDrCzpIR30zNsmKr7fIYIJMtpmnCW96Si-fZ0grU2mbPIzeugaL3lHnu5RHVVOoHbWRBse8nwQ1bQJtP-oGfwiWtWgHT0OUKmjj7YVC99K0UVBgZmnMEaWP85lrd8h0fHV3ec0WByQwK5XuWDEsZXDKZLkIpcOHMmiLMYYEkeWudIXXJnBZaHQ6zYGDDxhgZQGMNAZ8JnfJat3Ufo9QBSaHPB-CS0unptAWvTV3DitC4HpAzr4Bq157HYwK44cIbYXQVhJDCVlFaAfkIuL5UyvqV6cXaNVqYdXqL6vu_8dHDshabFCfY31IVrv5mz9CCtGZ49Rb8Dr5vPoCBNPH5w |
link.rule.ids | 315,786,790,870,2115,27955,27956 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+detection+and+classification+of+synoptic-scale+fronts+from+atmospheric+data+grids&rft.jtitle=Weather+and+climate+dynamics&rft.au=Niebler%2C+Stefan&rft.au=Miltenberger%2C+Annette&rft.au=Schmidt%2C+Bertil&rft.au=Spichtinger%2C+Peter&rft.date=2022-02-01&rft.issn=2698-4016&rft.eissn=2698-4016&rft.volume=3&rft.issue=1&rft.spage=113&rft.epage=137&rft_id=info:doi/10.5194%2Fwcd-3-113-2022&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_wcd_3_113_2022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2698-4016&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2698-4016&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2698-4016&client=summon |