Non-invasive prediction of mango quality using near-infrared spectroscopy: Assessment on spectral interferences of different packaging materials

Different packaging materials pose a challenging work for the non-invasive determination of contaminated food quality using near infrared (NIR) spectroscopy. This study investigated the effects of polyvinyl chloride (PVC), polyethylene (PE) and expandable polyethylene (EPE) packaging materials on th...

Full description

Saved in:
Bibliographic Details
Published inJournal of food engineering Vol. 357; p. 111653
Main Authors Ding, Fangchen, Zuo, Changzhou, García-Martín, Juan Francisco, Ge, Yan, Tu, Kang, Peng, Jing, Xiao, Hongmei, Lan, Weijie, Pan, Leiqing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Different packaging materials pose a challenging work for the non-invasive determination of contaminated food quality using near infrared (NIR) spectroscopy. This study investigated the effects of polyvinyl chloride (PVC), polyethylene (PE) and expandable polyethylene (EPE) packaging materials on the prediction of mango firmness (FI), dry matter (DMC), soluble solids (SSC), and titratable acidity (TA) using NIR. Obvious spectral interferences resulting from the three packaging materials were particularly located at 1150–1250 nm and 2320–2400 nm, and significantly reduced NIR prediction accuracy. Spectral filtering methods had the potential to reduce the NIR spectral interferences of packaging materials for contaminated mangoes’ quality assessment. Besides, least squares support vector machine (LS-SVM) models with the combination of spectral filtering and variable selection method can further improve the FI, SSC, DMC and TA prediction of packaged mango, with RPD values from 2.31 to 3.05. Consequently, it is crucial to consider suitable spectral filtering and variable selection methods to improve NIR prediction of quality of packaged food. •NIR spectral reflectance and shapes were affected by different packaging materials.•Spectral filtering can reduce the interferences of packaging materials on mango.•Variable selection can improve the NIR prediction of packaged mango quality.•Spectral filtering coupled with variable selection can improve the NIR prediction.
AbstractList Different packaging materials pose a challenging work for the non-invasive determination of contaminated food quality using near infrared (NIR) spectroscopy. This study investigated the effects of polyvinyl chloride (PVC), polyethylene (PE) and expandable polyethylene (EPE) packaging materials on the prediction of mango firmness (FI), dry matter (DMC), soluble solids (SSC), and titratable acidity (TA) using NIR. Obvious spectral interferences resulting from the three packaging materials were particularly located at 1150–1250 nm and 2320–2400 nm, and significantly reduced NIR prediction accuracy. Spectral filtering methods had the potential to reduce the NIR spectral interferences of packaging materials for contaminated mangoes’ quality assessment. Besides, least squares support vector machine (LS-SVM) models with the combination of spectral filtering and variable selection method can further improve the FI, SSC, DMC and TA prediction of packaged mango, with RPD values from 2.31 to 3.05. Consequently, it is crucial to consider suitable spectral filtering and variable selection methods to improve NIR prediction of quality of packaged food.
Different packaging materials pose a challenging work for the non-invasive determination of contaminated food quality using near infrared (NIR) spectroscopy. This study investigated the effects of polyvinyl chloride (PVC), polyethylene (PE) and expandable polyethylene (EPE) packaging materials on the prediction of mango firmness (FI), dry matter (DMC), soluble solids (SSC), and titratable acidity (TA) using NIR. Obvious spectral interferences resulting from the three packaging materials were particularly located at 1150–1250 nm and 2320–2400 nm, and significantly reduced NIR prediction accuracy. Spectral filtering methods had the potential to reduce the NIR spectral interferences of packaging materials for contaminated mangoes’ quality assessment. Besides, least squares support vector machine (LS-SVM) models with the combination of spectral filtering and variable selection method can further improve the FI, SSC, DMC and TA prediction of packaged mango, with RPD values from 2.31 to 3.05. Consequently, it is crucial to consider suitable spectral filtering and variable selection methods to improve NIR prediction of quality of packaged food. •NIR spectral reflectance and shapes were affected by different packaging materials.•Spectral filtering can reduce the interferences of packaging materials on mango.•Variable selection can improve the NIR prediction of packaged mango quality.•Spectral filtering coupled with variable selection can improve the NIR prediction.
ArticleNumber 111653
Author Pan, Leiqing
Tu, Kang
Zuo, Changzhou
Xiao, Hongmei
García-Martín, Juan Francisco
Lan, Weijie
Ge, Yan
Peng, Jing
Ding, Fangchen
Author_xml – sequence: 1
  givenname: Fangchen
  surname: Ding
  fullname: Ding, Fangchen
  email: 2021808101@stu.njau.edu.cn
  organization: Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572024, China
– sequence: 2
  givenname: Changzhou
  surname: Zuo
  fullname: Zuo, Changzhou
  email: 2021208019@stu.njau.edu.cn
  organization: Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572024, China
– sequence: 3
  givenname: Juan Francisco
  orcidid: 0000-0002-4582-560X
  surname: García-Martín
  fullname: García-Martín, Juan Francisco
  email: jfgarmar@us.es
  organization: Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012, Sevilla, Spain
– sequence: 4
  givenname: Yan
  surname: Ge
  fullname: Ge, Yan
  email: geyan@njau.edu.cn
  organization: College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
– sequence: 5
  givenname: Kang
  surname: Tu
  fullname: Tu, Kang
  email: kangtu@njau.edu.cn
  organization: College of Food Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, Jiangsu, 210095, China
– sequence: 6
  givenname: Jing
  surname: Peng
  fullname: Peng, Jing
  email: jpeng@njau.edu.cn
  organization: College of Food Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, Jiangsu, 210095, China
– sequence: 7
  givenname: Hongmei
  surname: Xiao
  fullname: Xiao, Hongmei
  email: xhm@njau.edu.cn
  organization: Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572024, China
– sequence: 8
  givenname: Weijie
  surname: Lan
  fullname: Lan, Weijie
  email: weijie.lan@njau.edu.cn
  organization: College of Food Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, Jiangsu, 210095, China
– sequence: 9
  givenname: Leiqing
  surname: Pan
  fullname: Pan, Leiqing
  email: pan_leiqing@njau.edu.cn
  organization: Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572024, China
BookMark eNqFkLtu3DAQRVk4gB_xLxgs02gzJEWJG6SIYeQFGEmT1ASXHC24lkiZ5C6wf5FPDhUlTRpXg8Gce4E51-QixICE3DHYMGDd28PmMMToMOw3HLjYMMY6KS7IFfAOGtX37SW5zvkAABI4vyK_vsXQ-HAy2Z-Qzgmdt8XHQONAJxP2kT4fzejLmR6zD3sa0KTKD8lUlOYZbUkx2zif39H7nDHnCUOhtWC9mZH6UDANmDBYzEuv88OftdDZ2CezX3onUyFvxvyavBrqwNu_84b8_PTxx8OX5vH7568P94-NFa0sjeJWInCngFuzVZ3sYGsHt-uNlLudAHCu7wWXKIQCxUEZELyVbNe6LeeuEzfkzdo7p_h8xFz05LPFcTQB4zFrrtqtUkyotqLvV9TWV3PCQVtfzGKp_udHzUAv8vVB_5OvF_l6lV_j3X_xOfnJpPPLwQ9rEKuHk8eks_WLRedTdatd9C9V_AY5laqH
CitedBy_id crossref_primary_10_3390_foods13111698
crossref_primary_10_1016_j_saa_2025_125866
crossref_primary_10_1016_j_postharvbio_2024_112913
crossref_primary_10_1016_j_postharvbio_2024_113150
crossref_primary_10_1016_j_saa_2025_125823
crossref_primary_10_1039_D4AY01455C
crossref_primary_10_1016_j_foodres_2025_115963
crossref_primary_10_1016_j_jfca_2024_106359
crossref_primary_10_3390_foods13233894
crossref_primary_10_1016_j_saa_2024_124816
Cites_doi 10.3390/agriculture12091407
10.1016/j.jfoodeng.2021.110643
10.1016/j.infrared.2021.103701
10.1016/S0165-1684(99)00025-0
10.1007/s12161-011-9208-2
10.1016/j.foodchem.2017.05.064
10.1016/j.postharvbio.2016.04.011
10.1016/j.foodchem.2022.135298
10.1366/000370202321275015
10.1016/j.jfoodeng.2004.11.020
10.1016/j.postharvbio.2017.03.009
10.1007/s11694-017-9646-7
10.1255/jnirs.318
10.1016/j.jfoodeng.2020.109955
10.1016/j.infrared.2018.10.030
10.1016/j.foodchem.2015.11.080
10.1007/s00425-015-2456-4
10.1016/j.postharvbio.2020.111431
10.1016/j.jfoodeng.2017.05.009
10.1016/j.talanta.2016.12.035
10.1111/ijfs.12790
10.1016/j.meatsci.2016.02.042
10.1016/0308-8146(92)90256-2
10.1007/s11694-017-9710-3
10.1016/j.compag.2021.106657
10.1016/j.postharvbio.2020.111375
10.1556/066.2018.47.1.13
10.1016/j.postharvbio.2011.06.002
10.1016/j.compag.2016.03.005
10.1016/j.jfca.2022.104633
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jfoodeng.2023.111653
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
ExternalDocumentID 10_1016_j_jfoodeng_2023_111653
S0260877423002510
GrantInformation_xml – fundername: SSC
– fundername: TA
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKC
AAIKJ
AAKOC
AALCJ
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AATLK
AAXKI
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABNUV
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACRPL
ADBBV
ADEWK
ADEZE
ADMUD
ADNMO
ADQTV
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SEW
SPC
SPCBC
SSA
SSG
SSZ
T5K
VH1
WUQ
Y6R
ZY4
~G-
~KM
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c345t-82c5e02d802ca9865609cfdb7a55bb300dd77325e33808208a032451b4d922d63
IEDL.DBID .~1
ISSN 0260-8774
IngestDate Fri Jul 11 06:33:06 EDT 2025
Thu Apr 24 22:54:19 EDT 2025
Tue Jul 01 04:34:12 EDT 2025
Sat Jan 18 16:11:02 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Spectral filtering
Packaging materials
Mango quality
NIR spectroscopy
Non-destructive analysis
Variable selection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-82c5e02d802ca9865609cfdb7a55bb300dd77325e33808208a032451b4d922d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4582-560X
PQID 2849881384
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2849881384
crossref_citationtrail_10_1016_j_jfoodeng_2023_111653
crossref_primary_10_1016_j_jfoodeng_2023_111653
elsevier_sciencedirect_doi_10_1016_j_jfoodeng_2023_111653
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of food engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Danalache, Carvalho, Brito, Mata, Moldão-Martins, Alves (bib4) 2017; 212
Prado, Fernández-Ibáñez, González, Soldado (bib23) 2011; 4
Sun, Wang, Xiao, Gu, Pan, Tu (bib28) 2017; 235
Yang, Tong, Yang, Wu (bib34) 2021; 173
Shahin, Kumar, Karuna, Mankar (bib25) 2020; 4
Jiang, You, Sha, Bai, Zhang, Tu, Pan (bib12) 2023; 409
Pissard, Marques, Dardenne, Lateur, Pasquini, Pimentel, Baeten (bib22) 2021; 172
Kucha, Liu, Ngadi, Gariépy (bib14) 2022; 111
Ong, Chen, Tsai, Chuang (bib20) 2021; 115
Marques, de Freitas, Pimentel, Pasquini (bib17) 2016; 197
Tian, Zhang, Li, Wang, Sheng, Liu, Wang (bib33) 2018; 95
Cortés, Ortiz, Aleixos, Blasco, Cubero, Talens (bib2) 2016; 118
García Martín (bib6) 2015; 50
Tam, Plataniotis, Hatzinakos (bib30) 1999; 77
Guo, Wang, Agyekum, Wu, Chen, Zuo, Zou (bib9) 2020; 279
Cruz-Tirado, Lucimar Da Silva Medeiros, Barbin (bib3) 2021; 306
Huang, Liu, Ngadi (bib10) 2016; 119
Slezsák, Szabó, Gergely, Salgó (bib26) 2018; 47
Joseph, Aworh (bib13) 1992; 44
Padda, Do Amarante, Garcia, Slaughter, Mitcham (bib21) 2011; 62
Szymańska-Chargot, Chylińska, Pieczywek, Rösch, Schmitt, Popp, Zdunek (bib29) 2016; 243
Munawar, Zulfahrizal Meilina, Pawelzik (bib19) 2022; 193
Dos Santos Neto, de Assis, Casagrande, Cunha Júnior, de Almeida Teixeira (bib5) 2017; 130
Tan, Sum, Brown (bib31) 2002; 56
Jha, Kingsly, Chopra (bib11) 2006; 72
Guo, Gu, Liu, Shang (bib8) 2016; 123
Sohrabi, Ahmadi, Monavar (bib27) 2018; 12
Lan, Jaillais, Renard, Leca, Chen, Le Bourvellec, Bureau (bib15) 2021; 175
Mohammadi-Moghaddam, Razavi, Sazgarnia, Taghizadeh (bib18) 2018; 12
Tangpao, Phuangsaujai, Kittiwachana, George, Krutmuang, Chuttong, Sommano (bib32) 2022; 12
Malegori, Nascimento Marques, de Freitas, Pimentel, Pasquini, Casiraghi (bib16) 2017; 165
Greensill, Walsh (bib7) 2002; 10
Lan (10.1016/j.jfoodeng.2023.111653_bib15) 2021; 175
Marques (10.1016/j.jfoodeng.2023.111653_bib17) 2016; 197
Ong (10.1016/j.jfoodeng.2023.111653_bib20) 2021; 115
Prado (10.1016/j.jfoodeng.2023.111653_bib23) 2011; 4
Kucha (10.1016/j.jfoodeng.2023.111653_bib14) 2022; 111
Tian (10.1016/j.jfoodeng.2023.111653_bib33) 2018; 95
Shahin (10.1016/j.jfoodeng.2023.111653_bib25) 2020; 4
Munawar (10.1016/j.jfoodeng.2023.111653_bib19) 2022; 193
Huang (10.1016/j.jfoodeng.2023.111653_bib10) 2016; 119
Yang (10.1016/j.jfoodeng.2023.111653_bib34) 2021; 173
Szymańska-Chargot (10.1016/j.jfoodeng.2023.111653_bib29) 2016; 243
Danalache (10.1016/j.jfoodeng.2023.111653_bib4) 2017; 212
Padda (10.1016/j.jfoodeng.2023.111653_bib21) 2011; 62
Cortés (10.1016/j.jfoodeng.2023.111653_bib2) 2016; 118
Guo (10.1016/j.jfoodeng.2023.111653_bib9) 2020; 279
Tangpao (10.1016/j.jfoodeng.2023.111653_bib32) 2022; 12
Dos Santos Neto (10.1016/j.jfoodeng.2023.111653_bib5) 2017; 130
Slezsák (10.1016/j.jfoodeng.2023.111653_bib26) 2018; 47
Joseph (10.1016/j.jfoodeng.2023.111653_bib13) 1992; 44
Pissard (10.1016/j.jfoodeng.2023.111653_bib22) 2021; 172
Cruz-Tirado (10.1016/j.jfoodeng.2023.111653_bib3) 2021; 306
Jha (10.1016/j.jfoodeng.2023.111653_bib11) 2006; 72
Jiang (10.1016/j.jfoodeng.2023.111653_bib12) 2023; 409
Greensill (10.1016/j.jfoodeng.2023.111653_bib7) 2002; 10
Malegori (10.1016/j.jfoodeng.2023.111653_bib16) 2017; 165
Tam (10.1016/j.jfoodeng.2023.111653_bib30) 1999; 77
Sohrabi (10.1016/j.jfoodeng.2023.111653_bib27) 2018; 12
Sun (10.1016/j.jfoodeng.2023.111653_bib28) 2017; 235
Guo (10.1016/j.jfoodeng.2023.111653_bib8) 2016; 123
Mohammadi-Moghaddam (10.1016/j.jfoodeng.2023.111653_bib18) 2018; 12
García Martín (10.1016/j.jfoodeng.2023.111653_bib6) 2015; 50
Tan (10.1016/j.jfoodeng.2023.111653_bib31) 2002; 56
References_xml – volume: 119
  start-page: 51
  year: 2016
  end-page: 61
  ident: bib10
  article-title: Prediction of pork fat attributes using NIR Images of frozen and thawed pork
  publication-title: Meat Sci.
– volume: 212
  start-page: 113
  year: 2017
  end-page: 120
  ident: bib4
  article-title: Effect of thermal and high hydrostatic pressure treatments on mango bars shelf-life under refrigeration
  publication-title: J. Food Eng.
– volume: 44
  start-page: 45
  year: 1992
  end-page: 48
  ident: bib13
  article-title: Post-harvest treatment of wild mango (Irvingia gabonensis) for improved shelf life
  publication-title: Food Chem.
– volume: 193
  year: 2022
  ident: bib19
  article-title: Near infrared spectroscopy as a fast and non-destructive technique for total acidity prediction of intact mango: comparison among regression approaches
  publication-title: Comput. Electron. Agric.
– volume: 173
  year: 2021
  ident: bib34
  article-title: Application of near-infrared spectroscopy and chemometrics for the rapid quality assessment of Sargassum fusiforme
  publication-title: Postharvest Biol. Technol.
– volume: 77
  start-page: 85
  year: 1999
  end-page: 104
  ident: bib30
  article-title: An adaptive Gaussian sum algorithm for radar tracking
  publication-title: Signal Process.
– volume: 12
  start-page: 346
  year: 2018
  end-page: 355
  ident: bib18
  article-title: Predicting the moisture content and textural characteristics of roasted pistachio kernels using Vis/NIR reflectance spectroscopy and PLSR analysis
  publication-title: J. Food Meas. Char.
– volume: 4
  start-page: 77
  year: 2020
  end-page: 85
  ident: bib25
  article-title: Postharvest application of calcium, packaging material and hot water treatment on quality of mango (Mangifera indica L.) cv. Zardalu
  publication-title: Journal of Postharvest Technology
– volume: 118
  start-page: 148
  year: 2016
  end-page: 158
  ident: bib2
  article-title: A new internal quality index for mango and its prediction by external visible and near-infrared reflection spectroscopy
  publication-title: Postharvest Biol. Technol.
– volume: 130
  start-page: 75
  year: 2017
  end-page: 80
  ident: bib5
  article-title: Determination of 'Palmer' mango maturity indices using portable near infrared (VIS-NIR) spectrometer
  publication-title: Postharvest Biol. Technol.
– volume: 62
  start-page: 267
  year: 2011
  end-page: 274
  ident: bib21
  article-title: Methods to analyze physico-chemical changes during mango ripening: a multivariate approach
  publication-title: Postharvest Biol. Technol.
– volume: 279
  year: 2020
  ident: bib9
  article-title: Quantitative detection of apple watercore and soluble solids content by near infrared transmittance spectroscopy
  publication-title: J. Food Eng.
– volume: 235
  start-page: 194
  year: 2017
  end-page: 202
  ident: bib28
  article-title: Hyperspectral imaging detection of decayed honey peaches based on their chlorophyll content
  publication-title: Food Chem.
– volume: 306
  year: 2021
  ident: bib3
  article-title: On-line monitoring of egg freshness using a portable NIR spectrometer in tandem with machine learning
  publication-title: J. Food Eng.
– volume: 47
  start-page: 104
  year: 2018
  end-page: 112
  ident: bib26
  article-title: Measuring of food additives via polyethylene foils by NIR spectrophotometers using different optical arrangements
  publication-title: Acta Aliment.
– volume: 4
  start-page: 582
  year: 2011
  end-page: 589
  ident: bib23
  article-title: On-site NIR spectroscopy to control the shelf life of pork meat
  publication-title: Food Anal. Methods
– volume: 12
  start-page: 949
  year: 2018
  end-page: 966
  ident: bib27
  article-title: Nondestructive analysis of packaged grape tomatoes quality using PCA and PLS regression by means of fiber optic spectroscopy during storage
  publication-title: J. Food Meas. Char.
– volume: 172
  year: 2021
  ident: bib22
  article-title: Evaluation of a handheld ultra-compact NIR spectrometer for rapid and non-destructive determination of apple fruit quality
  publication-title: Postharvest Biol. Technol.
– volume: 10
  start-page: 27
  year: 2002
  end-page: 35
  ident: bib7
  article-title: Calibration transfer between miniature photodiode array-based spectrometers in the near infrared assessment of Mandarin soluble solids content
  publication-title: J. Near Infrared Spectrosc.
– volume: 95
  start-page: 88
  year: 2018
  end-page: 92
  ident: bib33
  article-title: Weighted SPXY method for calibration set selection for composition analysis based on near-infrared spectroscopy
  publication-title: Infrared Phys. Technol.
– volume: 175
  year: 2021
  ident: bib15
  article-title: A new application of NIR spectroscopy to describe and predict purees quality from the non-destructive apple measurements
  publication-title: Food Chem.
– volume: 56
  start-page: 1098
  year: 2002
  end-page: 1106
  ident: bib31
  article-title: Improvement of a standard-free method for near-infrared calibration transfer
  publication-title: Appl. Spectrosc.
– volume: 12
  start-page: 1407
  year: 2022
  ident: bib32
  article-title: Evaluation of markers associated with physiological and biochemical traits during storage of ‘nam dok mai Si thong’ mango fruits
  publication-title: Agriculture
– volume: 165
  start-page: 112
  year: 2017
  end-page: 116
  ident: bib16
  article-title: Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms
  publication-title: Talanta
– volume: 50
  start-page: 1461
  year: 2015
  end-page: 1467
  ident: bib6
  article-title: Optical path length and wavelength selection using Vis/NIR spectroscopy for olive oil's free acidity determination
  publication-title: Int. J. Food Sci. Technol.
– volume: 72
  start-page: 73
  year: 2006
  end-page: 76
  ident: bib11
  article-title: Physical and mechanical properties of mango during growth and storage for determination of maturity
  publication-title: J. Food Eng.
– volume: 111
  year: 2022
  ident: bib14
  article-title: Prediction and visualization of fat content in polythene-packed meat using near-infrared hyperspectral imaging and chemometrics
  publication-title: J. Food Compos. Anal.
– volume: 115
  year: 2021
  ident: bib20
  article-title: Optimal combination of band-pass filters for theanine content prediction using near-infrared spectroscopy
  publication-title: Infrared Phys. Technol.
– volume: 243
  start-page: 935
  year: 2016
  end-page: 945
  ident: bib29
  article-title: Raman imaging of changes in the polysaccharides distribution in the cell wall during apple fruit development and senescence
  publication-title: Planta
– volume: 197
  start-page: 1207
  year: 2016
  end-page: 1214
  ident: bib17
  article-title: Rapid and non-destructive determination of quality parameters in the 'Tommy Atkins' mango using a novel handheld near infrared spectrometer
  publication-title: Food Chem.
– volume: 123
  start-page: 297
  year: 2016
  end-page: 303
  ident: bib8
  article-title: Peach variety identification using near-infrared diffuse reflectance spectroscopy
  publication-title: Comput. Electron. Agric.
– volume: 409
  year: 2023
  ident: bib12
  article-title: Detection of Alternaria alternata infection in winter jujubes based on optical properties and their correlation with internal quality parameters during storage
  publication-title: Food Chem.
– volume: 12
  start-page: 1407
  issue: 9
  year: 2022
  ident: 10.1016/j.jfoodeng.2023.111653_bib32
  article-title: Evaluation of markers associated with physiological and biochemical traits during storage of ‘nam dok mai Si thong’ mango fruits
  publication-title: Agriculture
  doi: 10.3390/agriculture12091407
– volume: 306
  year: 2021
  ident: 10.1016/j.jfoodeng.2023.111653_bib3
  article-title: On-line monitoring of egg freshness using a portable NIR spectrometer in tandem with machine learning
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2021.110643
– volume: 115
  year: 2021
  ident: 10.1016/j.jfoodeng.2023.111653_bib20
  article-title: Optimal combination of band-pass filters for theanine content prediction using near-infrared spectroscopy
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2021.103701
– volume: 77
  start-page: 85
  issue: 1
  year: 1999
  ident: 10.1016/j.jfoodeng.2023.111653_bib30
  article-title: An adaptive Gaussian sum algorithm for radar tracking
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(99)00025-0
– volume: 4
  start-page: 582
  issue: 4
  year: 2011
  ident: 10.1016/j.jfoodeng.2023.111653_bib23
  article-title: On-site NIR spectroscopy to control the shelf life of pork meat
  publication-title: Food Anal. Methods
  doi: 10.1007/s12161-011-9208-2
– volume: 235
  start-page: 194
  year: 2017
  ident: 10.1016/j.jfoodeng.2023.111653_bib28
  article-title: Hyperspectral imaging detection of decayed honey peaches based on their chlorophyll content
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2017.05.064
– volume: 118
  start-page: 148
  year: 2016
  ident: 10.1016/j.jfoodeng.2023.111653_bib2
  article-title: A new internal quality index for mango and its prediction by external visible and near-infrared reflection spectroscopy
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2016.04.011
– volume: 409
  year: 2023
  ident: 10.1016/j.jfoodeng.2023.111653_bib12
  article-title: Detection of Alternaria alternata infection in winter jujubes based on optical properties and their correlation with internal quality parameters during storage
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2022.135298
– volume: 56
  start-page: 1098
  issue: 8
  year: 2002
  ident: 10.1016/j.jfoodeng.2023.111653_bib31
  article-title: Improvement of a standard-free method for near-infrared calibration transfer
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370202321275015
– volume: 72
  start-page: 73
  issue: 1
  year: 2006
  ident: 10.1016/j.jfoodeng.2023.111653_bib11
  article-title: Physical and mechanical properties of mango during growth and storage for determination of maturity
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2004.11.020
– volume: 130
  start-page: 75
  year: 2017
  ident: 10.1016/j.jfoodeng.2023.111653_bib5
  article-title: Determination of 'Palmer' mango maturity indices using portable near infrared (VIS-NIR) spectrometer
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2017.03.009
– volume: 12
  start-page: 346
  issue: 1
  year: 2018
  ident: 10.1016/j.jfoodeng.2023.111653_bib18
  article-title: Predicting the moisture content and textural characteristics of roasted pistachio kernels using Vis/NIR reflectance spectroscopy and PLSR analysis
  publication-title: J. Food Meas. Char.
  doi: 10.1007/s11694-017-9646-7
– volume: 10
  start-page: 27
  issue: 1
  year: 2002
  ident: 10.1016/j.jfoodeng.2023.111653_bib7
  article-title: Calibration transfer between miniature photodiode array-based spectrometers in the near infrared assessment of Mandarin soluble solids content
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1255/jnirs.318
– volume: 279
  year: 2020
  ident: 10.1016/j.jfoodeng.2023.111653_bib9
  article-title: Quantitative detection of apple watercore and soluble solids content by near infrared transmittance spectroscopy
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2020.109955
– volume: 95
  start-page: 88
  year: 2018
  ident: 10.1016/j.jfoodeng.2023.111653_bib33
  article-title: Weighted SPXY method for calibration set selection for composition analysis based on near-infrared spectroscopy
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2018.10.030
– volume: 197
  start-page: 1207
  year: 2016
  ident: 10.1016/j.jfoodeng.2023.111653_bib17
  article-title: Rapid and non-destructive determination of quality parameters in the 'Tommy Atkins' mango using a novel handheld near infrared spectrometer
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2015.11.080
– volume: 243
  start-page: 935
  issue: 4
  year: 2016
  ident: 10.1016/j.jfoodeng.2023.111653_bib29
  article-title: Raman imaging of changes in the polysaccharides distribution in the cell wall during apple fruit development and senescence
  publication-title: Planta
  doi: 10.1007/s00425-015-2456-4
– volume: 173
  year: 2021
  ident: 10.1016/j.jfoodeng.2023.111653_bib34
  article-title: Application of near-infrared spectroscopy and chemometrics for the rapid quality assessment of Sargassum fusiforme
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2020.111431
– volume: 212
  start-page: 113
  year: 2017
  ident: 10.1016/j.jfoodeng.2023.111653_bib4
  article-title: Effect of thermal and high hydrostatic pressure treatments on mango bars shelf-life under refrigeration
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2017.05.009
– volume: 165
  start-page: 112
  year: 2017
  ident: 10.1016/j.jfoodeng.2023.111653_bib16
  article-title: Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms
  publication-title: Talanta
  doi: 10.1016/j.talanta.2016.12.035
– volume: 50
  start-page: 1461
  issue: 6
  year: 2015
  ident: 10.1016/j.jfoodeng.2023.111653_bib6
  article-title: Optical path length and wavelength selection using Vis/NIR spectroscopy for olive oil's free acidity determination
  publication-title: Int. J. Food Sci. Technol.
  doi: 10.1111/ijfs.12790
– volume: 119
  start-page: 51
  year: 2016
  ident: 10.1016/j.jfoodeng.2023.111653_bib10
  article-title: Prediction of pork fat attributes using NIR Images of frozen and thawed pork
  publication-title: Meat Sci.
  doi: 10.1016/j.meatsci.2016.02.042
– volume: 4
  start-page: 77
  year: 2020
  ident: 10.1016/j.jfoodeng.2023.111653_bib25
  article-title: Postharvest application of calcium, packaging material and hot water treatment on quality of mango (Mangifera indica L.) cv. Zardalu
  publication-title: Journal of Postharvest Technology
– volume: 44
  start-page: 45
  issue: 1
  year: 1992
  ident: 10.1016/j.jfoodeng.2023.111653_bib13
  article-title: Post-harvest treatment of wild mango (Irvingia gabonensis) for improved shelf life
  publication-title: Food Chem.
  doi: 10.1016/0308-8146(92)90256-2
– volume: 175
  year: 2021
  ident: 10.1016/j.jfoodeng.2023.111653_bib15
  article-title: A new application of NIR spectroscopy to describe and predict purees quality from the non-destructive apple measurements
  publication-title: Food Chem.
– volume: 12
  start-page: 949
  issue: 2
  year: 2018
  ident: 10.1016/j.jfoodeng.2023.111653_bib27
  article-title: Nondestructive analysis of packaged grape tomatoes quality using PCA and PLS regression by means of fiber optic spectroscopy during storage
  publication-title: J. Food Meas. Char.
  doi: 10.1007/s11694-017-9710-3
– volume: 193
  year: 2022
  ident: 10.1016/j.jfoodeng.2023.111653_bib19
  article-title: Near infrared spectroscopy as a fast and non-destructive technique for total acidity prediction of intact mango: comparison among regression approaches
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106657
– volume: 172
  year: 2021
  ident: 10.1016/j.jfoodeng.2023.111653_bib22
  article-title: Evaluation of a handheld ultra-compact NIR spectrometer for rapid and non-destructive determination of apple fruit quality
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2020.111375
– volume: 47
  start-page: 104
  issue: 1
  year: 2018
  ident: 10.1016/j.jfoodeng.2023.111653_bib26
  article-title: Measuring of food additives via polyethylene foils by NIR spectrophotometers using different optical arrangements
  publication-title: Acta Aliment.
  doi: 10.1556/066.2018.47.1.13
– volume: 62
  start-page: 267
  issue: 3
  year: 2011
  ident: 10.1016/j.jfoodeng.2023.111653_bib21
  article-title: Methods to analyze physico-chemical changes during mango ripening: a multivariate approach
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2011.06.002
– volume: 123
  start-page: 297
  year: 2016
  ident: 10.1016/j.jfoodeng.2023.111653_bib8
  article-title: Peach variety identification using near-infrared diffuse reflectance spectroscopy
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.03.005
– volume: 111
  year: 2022
  ident: 10.1016/j.jfoodeng.2023.111653_bib14
  article-title: Prediction and visualization of fat content in polythene-packed meat using near-infrared hyperspectral imaging and chemometrics
  publication-title: J. Food Compos. Anal.
  doi: 10.1016/j.jfca.2022.104633
SSID ssj0005022
Score 2.4864001
Snippet Different packaging materials pose a challenging work for the non-invasive determination of contaminated food quality using near infrared (NIR) spectroscopy....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111653
SubjectTerms firmness
food contamination
food quality
Mango quality
mangoes
near-infrared spectroscopy
NIR spectroscopy
Non-destructive analysis
Packaging materials
poly(vinyl chloride)
polyethylene
prediction
Spectral filtering
support vector machines
titratable acidity
Variable selection
Title Non-invasive prediction of mango quality using near-infrared spectroscopy: Assessment on spectral interferences of different packaging materials
URI https://dx.doi.org/10.1016/j.jfoodeng.2023.111653
https://www.proquest.com/docview/2849881384
Volume 357
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-iB_UgOhW_ieC1W5c2TeptiDIVdlHBW0iadmxqO7YqePFv8E_2vaYdUxAPHtsmach7eR-8936PkDObBCw1vvAim1ovxEghWK3Sy1ikuRAWQcAw22IQ9R_Cm0f-uEQumloYTKusZb-T6ZW0rt906tPsTEajzh2iYUmBkcbKUEa_PQwFcnn7YyHNw3eRBBjs4eiFKuFxe5wVBVzvYRubiKP0iHjwm4L6Iaor_XO1STZqw5H23N62yFKat8hqU1c8a5H1BWjBbfI5KHJvlL9pTE-nkynGY5AGtMjoi86HBXXllO8UM9-HNAeOh_HZFBPSaVV_iTiXxeT9nPbm6J0UFnDfYCuINDGtywVnuG7TbKWk4Ig_Ve2P4F-l4_Ed8nB1eX_R9-ruC14ShLz0JEt46jMrfZboWCJIT5xk1gjNuTFw5tYKETCegpOLdoTUPhhnvGtCGzNmo2CXLOdFnu4RysF9D3TWjUwE3os12ufMgCABVyW0TIt9wpsjV0kNTY4dMp5Vk4M2Vg2pFJJKOVLtk8583sSBc_w5I24oqr6xmQIN8ufc04YFFNxBDKzoPC1eZwpUfCxlN5DhwT_WPyRr-OQKHY_Icjl9TY_B4inNScXSJ2Sld33bH3wBWZEDEg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V9lA4IFpAlJ_WSHDMbtaJEweJQ0VbbWnZC63Um7FjZ7ULJKvdFLQXnoF34QWZiZNqi1T1gHpN4ok1Y8-PZuYbgDc2j7gzYRok1tkgpkwheq0yKHiiRZpaAgGjaotRMjyPP16IizX40_XCUFllq_u9Tm-0dfuk33KzP5tM-p8JDUumlGlsHOWwraw8ccufGLct3h8foJDfcn50ePZhGLSjBYI8ikUdSJ4LF3IrQ57rTBICTZYX1qRaCGOQoLVpGnHhMIIjIyl1iJ6HGJjYZpzbJEK692AjRnVBYxN6v1bqSkKfusDdBbS9lbbkaW9aVBXqk3GPppaTukpEdJNF_Mc2NAbv6BE8bD1Vtu-ZsQVrrtyGza6RebEND1awDB_D71FVBpPyh6Z6eDabUwKIhM6qgn3X5bhivn9zyajUfsxKZCN-X8ypAp41DZ8ErFnNlu_Y_hVcKEMC_h1uhaAt5m1_4oLodtNdaoaR_9dm3hL-q_aX6gmc34lMnsJ6WZXuGTDhDI90MUhMguGSNToU3KDmwtgotlynOyA6lqu8xUKnkRzfVFf0NlWdqBSJSnlR7UD_at3Mo4HcuiLrJKqunWuFJuvWta-7I6Dw0lMmR5euulwo9CkyKQeRjJ__B_092ByefTpVp8ejkxdwn974LsuXsF7PL90rdLdqs9scbwZf7vo-_QVsQTx2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-invasive+prediction+of+mango+quality+using+near-infrared+spectroscopy%3A+Assessment+on+spectral+interferences+of+different+packaging+materials&rft.jtitle=Journal+of+food+engineering&rft.au=Ding%2C+Fangchen&rft.au=Zuo%2C+Changzhou&rft.au=Garc%C3%ADa+Mart%C3%ADn%2C+Juan+Francisco&rft.au=Ge%2C+Yan&rft.date=2023-11-01&rft.issn=0260-8774&rft.volume=357+p.111653-&rft_id=info:doi/10.1016%2Fj.jfoodeng.2023.111653&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0260-8774&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0260-8774&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0260-8774&client=summon