Non-invasive prediction of mango quality using near-infrared spectroscopy: Assessment on spectral interferences of different packaging materials
Different packaging materials pose a challenging work for the non-invasive determination of contaminated food quality using near infrared (NIR) spectroscopy. This study investigated the effects of polyvinyl chloride (PVC), polyethylene (PE) and expandable polyethylene (EPE) packaging materials on th...
Saved in:
Published in | Journal of food engineering Vol. 357; p. 111653 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Different packaging materials pose a challenging work for the non-invasive determination of contaminated food quality using near infrared (NIR) spectroscopy. This study investigated the effects of polyvinyl chloride (PVC), polyethylene (PE) and expandable polyethylene (EPE) packaging materials on the prediction of mango firmness (FI), dry matter (DMC), soluble solids (SSC), and titratable acidity (TA) using NIR. Obvious spectral interferences resulting from the three packaging materials were particularly located at 1150–1250 nm and 2320–2400 nm, and significantly reduced NIR prediction accuracy. Spectral filtering methods had the potential to reduce the NIR spectral interferences of packaging materials for contaminated mangoes’ quality assessment. Besides, least squares support vector machine (LS-SVM) models with the combination of spectral filtering and variable selection method can further improve the FI, SSC, DMC and TA prediction of packaged mango, with RPD values from 2.31 to 3.05. Consequently, it is crucial to consider suitable spectral filtering and variable selection methods to improve NIR prediction of quality of packaged food.
•NIR spectral reflectance and shapes were affected by different packaging materials.•Spectral filtering can reduce the interferences of packaging materials on mango.•Variable selection can improve the NIR prediction of packaged mango quality.•Spectral filtering coupled with variable selection can improve the NIR prediction. |
---|---|
AbstractList | Different packaging materials pose a challenging work for the non-invasive determination of contaminated food quality using near infrared (NIR) spectroscopy. This study investigated the effects of polyvinyl chloride (PVC), polyethylene (PE) and expandable polyethylene (EPE) packaging materials on the prediction of mango firmness (FI), dry matter (DMC), soluble solids (SSC), and titratable acidity (TA) using NIR. Obvious spectral interferences resulting from the three packaging materials were particularly located at 1150–1250 nm and 2320–2400 nm, and significantly reduced NIR prediction accuracy. Spectral filtering methods had the potential to reduce the NIR spectral interferences of packaging materials for contaminated mangoes’ quality assessment. Besides, least squares support vector machine (LS-SVM) models with the combination of spectral filtering and variable selection method can further improve the FI, SSC, DMC and TA prediction of packaged mango, with RPD values from 2.31 to 3.05. Consequently, it is crucial to consider suitable spectral filtering and variable selection methods to improve NIR prediction of quality of packaged food. Different packaging materials pose a challenging work for the non-invasive determination of contaminated food quality using near infrared (NIR) spectroscopy. This study investigated the effects of polyvinyl chloride (PVC), polyethylene (PE) and expandable polyethylene (EPE) packaging materials on the prediction of mango firmness (FI), dry matter (DMC), soluble solids (SSC), and titratable acidity (TA) using NIR. Obvious spectral interferences resulting from the three packaging materials were particularly located at 1150–1250 nm and 2320–2400 nm, and significantly reduced NIR prediction accuracy. Spectral filtering methods had the potential to reduce the NIR spectral interferences of packaging materials for contaminated mangoes’ quality assessment. Besides, least squares support vector machine (LS-SVM) models with the combination of spectral filtering and variable selection method can further improve the FI, SSC, DMC and TA prediction of packaged mango, with RPD values from 2.31 to 3.05. Consequently, it is crucial to consider suitable spectral filtering and variable selection methods to improve NIR prediction of quality of packaged food. •NIR spectral reflectance and shapes were affected by different packaging materials.•Spectral filtering can reduce the interferences of packaging materials on mango.•Variable selection can improve the NIR prediction of packaged mango quality.•Spectral filtering coupled with variable selection can improve the NIR prediction. |
ArticleNumber | 111653 |
Author | Pan, Leiqing Tu, Kang Zuo, Changzhou Xiao, Hongmei García-Martín, Juan Francisco Lan, Weijie Ge, Yan Peng, Jing Ding, Fangchen |
Author_xml | – sequence: 1 givenname: Fangchen surname: Ding fullname: Ding, Fangchen email: 2021808101@stu.njau.edu.cn organization: Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572024, China – sequence: 2 givenname: Changzhou surname: Zuo fullname: Zuo, Changzhou email: 2021208019@stu.njau.edu.cn organization: Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572024, China – sequence: 3 givenname: Juan Francisco orcidid: 0000-0002-4582-560X surname: García-Martín fullname: García-Martín, Juan Francisco email: jfgarmar@us.es organization: Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012, Sevilla, Spain – sequence: 4 givenname: Yan surname: Ge fullname: Ge, Yan email: geyan@njau.edu.cn organization: College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China – sequence: 5 givenname: Kang surname: Tu fullname: Tu, Kang email: kangtu@njau.edu.cn organization: College of Food Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, Jiangsu, 210095, China – sequence: 6 givenname: Jing surname: Peng fullname: Peng, Jing email: jpeng@njau.edu.cn organization: College of Food Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, Jiangsu, 210095, China – sequence: 7 givenname: Hongmei surname: Xiao fullname: Xiao, Hongmei email: xhm@njau.edu.cn organization: Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572024, China – sequence: 8 givenname: Weijie surname: Lan fullname: Lan, Weijie email: weijie.lan@njau.edu.cn organization: College of Food Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, Jiangsu, 210095, China – sequence: 9 givenname: Leiqing surname: Pan fullname: Pan, Leiqing email: pan_leiqing@njau.edu.cn organization: Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572024, China |
BookMark | eNqFkLtu3DAQRVk4gB_xLxgs02gzJEWJG6SIYeQFGEmT1ASXHC24lkiZ5C6wf5FPDhUlTRpXg8Gce4E51-QixICE3DHYMGDd28PmMMToMOw3HLjYMMY6KS7IFfAOGtX37SW5zvkAABI4vyK_vsXQ-HAy2Z-Qzgmdt8XHQONAJxP2kT4fzejLmR6zD3sa0KTKD8lUlOYZbUkx2zif39H7nDHnCUOhtWC9mZH6UDANmDBYzEuv88OftdDZ2CezX3onUyFvxvyavBrqwNu_84b8_PTxx8OX5vH7568P94-NFa0sjeJWInCngFuzVZ3sYGsHt-uNlLudAHCu7wWXKIQCxUEZELyVbNe6LeeuEzfkzdo7p_h8xFz05LPFcTQB4zFrrtqtUkyotqLvV9TWV3PCQVtfzGKp_udHzUAv8vVB_5OvF_l6lV_j3X_xOfnJpPPLwQ9rEKuHk8eks_WLRedTdatd9C9V_AY5laqH |
CitedBy_id | crossref_primary_10_3390_foods13111698 crossref_primary_10_1016_j_saa_2025_125866 crossref_primary_10_1016_j_postharvbio_2024_112913 crossref_primary_10_1016_j_postharvbio_2024_113150 crossref_primary_10_1016_j_saa_2025_125823 crossref_primary_10_1039_D4AY01455C crossref_primary_10_1016_j_foodres_2025_115963 crossref_primary_10_1016_j_jfca_2024_106359 crossref_primary_10_3390_foods13233894 crossref_primary_10_1016_j_saa_2024_124816 |
Cites_doi | 10.3390/agriculture12091407 10.1016/j.jfoodeng.2021.110643 10.1016/j.infrared.2021.103701 10.1016/S0165-1684(99)00025-0 10.1007/s12161-011-9208-2 10.1016/j.foodchem.2017.05.064 10.1016/j.postharvbio.2016.04.011 10.1016/j.foodchem.2022.135298 10.1366/000370202321275015 10.1016/j.jfoodeng.2004.11.020 10.1016/j.postharvbio.2017.03.009 10.1007/s11694-017-9646-7 10.1255/jnirs.318 10.1016/j.jfoodeng.2020.109955 10.1016/j.infrared.2018.10.030 10.1016/j.foodchem.2015.11.080 10.1007/s00425-015-2456-4 10.1016/j.postharvbio.2020.111431 10.1016/j.jfoodeng.2017.05.009 10.1016/j.talanta.2016.12.035 10.1111/ijfs.12790 10.1016/j.meatsci.2016.02.042 10.1016/0308-8146(92)90256-2 10.1007/s11694-017-9710-3 10.1016/j.compag.2021.106657 10.1016/j.postharvbio.2020.111375 10.1556/066.2018.47.1.13 10.1016/j.postharvbio.2011.06.002 10.1016/j.compag.2016.03.005 10.1016/j.jfca.2022.104633 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jfoodeng.2023.111653 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
ExternalDocumentID | 10_1016_j_jfoodeng_2023_111653 S0260877423002510 |
GrantInformation_xml | – fundername: SSC – fundername: TA |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKC AAIKJ AAKOC AALCJ AALRI AAMNW AAOAW AAQFI AAQXK AATLK AAXKI AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABNUV ABTAH ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ADBBV ADEWK ADEZE ADMUD ADNMO ADQTV AEBSH AEFWE AEIPS AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W K-O KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SES SEW SPC SPCBC SSA SSG SSZ T5K VH1 WUQ Y6R ZY4 ~G- ~KM AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c345t-82c5e02d802ca9865609cfdb7a55bb300dd77325e33808208a032451b4d922d63 |
IEDL.DBID | .~1 |
ISSN | 0260-8774 |
IngestDate | Fri Jul 11 06:33:06 EDT 2025 Thu Apr 24 22:54:19 EDT 2025 Tue Jul 01 04:34:12 EDT 2025 Sat Jan 18 16:11:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Spectral filtering Packaging materials Mango quality NIR spectroscopy Non-destructive analysis Variable selection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c345t-82c5e02d802ca9865609cfdb7a55bb300dd77325e33808208a032451b4d922d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4582-560X |
PQID | 2849881384 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2849881384 crossref_citationtrail_10_1016_j_jfoodeng_2023_111653 crossref_primary_10_1016_j_jfoodeng_2023_111653 elsevier_sciencedirect_doi_10_1016_j_jfoodeng_2023_111653 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of food engineering |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Danalache, Carvalho, Brito, Mata, Moldão-Martins, Alves (bib4) 2017; 212 Prado, Fernández-Ibáñez, González, Soldado (bib23) 2011; 4 Sun, Wang, Xiao, Gu, Pan, Tu (bib28) 2017; 235 Yang, Tong, Yang, Wu (bib34) 2021; 173 Shahin, Kumar, Karuna, Mankar (bib25) 2020; 4 Jiang, You, Sha, Bai, Zhang, Tu, Pan (bib12) 2023; 409 Pissard, Marques, Dardenne, Lateur, Pasquini, Pimentel, Baeten (bib22) 2021; 172 Kucha, Liu, Ngadi, Gariépy (bib14) 2022; 111 Ong, Chen, Tsai, Chuang (bib20) 2021; 115 Marques, de Freitas, Pimentel, Pasquini (bib17) 2016; 197 Tian, Zhang, Li, Wang, Sheng, Liu, Wang (bib33) 2018; 95 Cortés, Ortiz, Aleixos, Blasco, Cubero, Talens (bib2) 2016; 118 García Martín (bib6) 2015; 50 Tam, Plataniotis, Hatzinakos (bib30) 1999; 77 Guo, Wang, Agyekum, Wu, Chen, Zuo, Zou (bib9) 2020; 279 Cruz-Tirado, Lucimar Da Silva Medeiros, Barbin (bib3) 2021; 306 Huang, Liu, Ngadi (bib10) 2016; 119 Slezsák, Szabó, Gergely, Salgó (bib26) 2018; 47 Joseph, Aworh (bib13) 1992; 44 Padda, Do Amarante, Garcia, Slaughter, Mitcham (bib21) 2011; 62 Szymańska-Chargot, Chylińska, Pieczywek, Rösch, Schmitt, Popp, Zdunek (bib29) 2016; 243 Munawar, Zulfahrizal Meilina, Pawelzik (bib19) 2022; 193 Dos Santos Neto, de Assis, Casagrande, Cunha Júnior, de Almeida Teixeira (bib5) 2017; 130 Tan, Sum, Brown (bib31) 2002; 56 Jha, Kingsly, Chopra (bib11) 2006; 72 Guo, Gu, Liu, Shang (bib8) 2016; 123 Sohrabi, Ahmadi, Monavar (bib27) 2018; 12 Lan, Jaillais, Renard, Leca, Chen, Le Bourvellec, Bureau (bib15) 2021; 175 Mohammadi-Moghaddam, Razavi, Sazgarnia, Taghizadeh (bib18) 2018; 12 Tangpao, Phuangsaujai, Kittiwachana, George, Krutmuang, Chuttong, Sommano (bib32) 2022; 12 Malegori, Nascimento Marques, de Freitas, Pimentel, Pasquini, Casiraghi (bib16) 2017; 165 Greensill, Walsh (bib7) 2002; 10 Lan (10.1016/j.jfoodeng.2023.111653_bib15) 2021; 175 Marques (10.1016/j.jfoodeng.2023.111653_bib17) 2016; 197 Ong (10.1016/j.jfoodeng.2023.111653_bib20) 2021; 115 Prado (10.1016/j.jfoodeng.2023.111653_bib23) 2011; 4 Kucha (10.1016/j.jfoodeng.2023.111653_bib14) 2022; 111 Tian (10.1016/j.jfoodeng.2023.111653_bib33) 2018; 95 Shahin (10.1016/j.jfoodeng.2023.111653_bib25) 2020; 4 Munawar (10.1016/j.jfoodeng.2023.111653_bib19) 2022; 193 Huang (10.1016/j.jfoodeng.2023.111653_bib10) 2016; 119 Yang (10.1016/j.jfoodeng.2023.111653_bib34) 2021; 173 Szymańska-Chargot (10.1016/j.jfoodeng.2023.111653_bib29) 2016; 243 Danalache (10.1016/j.jfoodeng.2023.111653_bib4) 2017; 212 Padda (10.1016/j.jfoodeng.2023.111653_bib21) 2011; 62 Cortés (10.1016/j.jfoodeng.2023.111653_bib2) 2016; 118 Guo (10.1016/j.jfoodeng.2023.111653_bib9) 2020; 279 Tangpao (10.1016/j.jfoodeng.2023.111653_bib32) 2022; 12 Dos Santos Neto (10.1016/j.jfoodeng.2023.111653_bib5) 2017; 130 Slezsák (10.1016/j.jfoodeng.2023.111653_bib26) 2018; 47 Joseph (10.1016/j.jfoodeng.2023.111653_bib13) 1992; 44 Pissard (10.1016/j.jfoodeng.2023.111653_bib22) 2021; 172 Cruz-Tirado (10.1016/j.jfoodeng.2023.111653_bib3) 2021; 306 Jha (10.1016/j.jfoodeng.2023.111653_bib11) 2006; 72 Jiang (10.1016/j.jfoodeng.2023.111653_bib12) 2023; 409 Greensill (10.1016/j.jfoodeng.2023.111653_bib7) 2002; 10 Malegori (10.1016/j.jfoodeng.2023.111653_bib16) 2017; 165 Tam (10.1016/j.jfoodeng.2023.111653_bib30) 1999; 77 Sohrabi (10.1016/j.jfoodeng.2023.111653_bib27) 2018; 12 Sun (10.1016/j.jfoodeng.2023.111653_bib28) 2017; 235 Guo (10.1016/j.jfoodeng.2023.111653_bib8) 2016; 123 Mohammadi-Moghaddam (10.1016/j.jfoodeng.2023.111653_bib18) 2018; 12 García Martín (10.1016/j.jfoodeng.2023.111653_bib6) 2015; 50 Tan (10.1016/j.jfoodeng.2023.111653_bib31) 2002; 56 |
References_xml | – volume: 119 start-page: 51 year: 2016 end-page: 61 ident: bib10 article-title: Prediction of pork fat attributes using NIR Images of frozen and thawed pork publication-title: Meat Sci. – volume: 212 start-page: 113 year: 2017 end-page: 120 ident: bib4 article-title: Effect of thermal and high hydrostatic pressure treatments on mango bars shelf-life under refrigeration publication-title: J. Food Eng. – volume: 44 start-page: 45 year: 1992 end-page: 48 ident: bib13 article-title: Post-harvest treatment of wild mango (Irvingia gabonensis) for improved shelf life publication-title: Food Chem. – volume: 193 year: 2022 ident: bib19 article-title: Near infrared spectroscopy as a fast and non-destructive technique for total acidity prediction of intact mango: comparison among regression approaches publication-title: Comput. Electron. Agric. – volume: 173 year: 2021 ident: bib34 article-title: Application of near-infrared spectroscopy and chemometrics for the rapid quality assessment of Sargassum fusiforme publication-title: Postharvest Biol. Technol. – volume: 77 start-page: 85 year: 1999 end-page: 104 ident: bib30 article-title: An adaptive Gaussian sum algorithm for radar tracking publication-title: Signal Process. – volume: 12 start-page: 346 year: 2018 end-page: 355 ident: bib18 article-title: Predicting the moisture content and textural characteristics of roasted pistachio kernels using Vis/NIR reflectance spectroscopy and PLSR analysis publication-title: J. Food Meas. Char. – volume: 4 start-page: 77 year: 2020 end-page: 85 ident: bib25 article-title: Postharvest application of calcium, packaging material and hot water treatment on quality of mango (Mangifera indica L.) cv. Zardalu publication-title: Journal of Postharvest Technology – volume: 118 start-page: 148 year: 2016 end-page: 158 ident: bib2 article-title: A new internal quality index for mango and its prediction by external visible and near-infrared reflection spectroscopy publication-title: Postharvest Biol. Technol. – volume: 130 start-page: 75 year: 2017 end-page: 80 ident: bib5 article-title: Determination of 'Palmer' mango maturity indices using portable near infrared (VIS-NIR) spectrometer publication-title: Postharvest Biol. Technol. – volume: 62 start-page: 267 year: 2011 end-page: 274 ident: bib21 article-title: Methods to analyze physico-chemical changes during mango ripening: a multivariate approach publication-title: Postharvest Biol. Technol. – volume: 279 year: 2020 ident: bib9 article-title: Quantitative detection of apple watercore and soluble solids content by near infrared transmittance spectroscopy publication-title: J. Food Eng. – volume: 235 start-page: 194 year: 2017 end-page: 202 ident: bib28 article-title: Hyperspectral imaging detection of decayed honey peaches based on their chlorophyll content publication-title: Food Chem. – volume: 306 year: 2021 ident: bib3 article-title: On-line monitoring of egg freshness using a portable NIR spectrometer in tandem with machine learning publication-title: J. Food Eng. – volume: 47 start-page: 104 year: 2018 end-page: 112 ident: bib26 article-title: Measuring of food additives via polyethylene foils by NIR spectrophotometers using different optical arrangements publication-title: Acta Aliment. – volume: 4 start-page: 582 year: 2011 end-page: 589 ident: bib23 article-title: On-site NIR spectroscopy to control the shelf life of pork meat publication-title: Food Anal. Methods – volume: 12 start-page: 949 year: 2018 end-page: 966 ident: bib27 article-title: Nondestructive analysis of packaged grape tomatoes quality using PCA and PLS regression by means of fiber optic spectroscopy during storage publication-title: J. Food Meas. Char. – volume: 172 year: 2021 ident: bib22 article-title: Evaluation of a handheld ultra-compact NIR spectrometer for rapid and non-destructive determination of apple fruit quality publication-title: Postharvest Biol. Technol. – volume: 10 start-page: 27 year: 2002 end-page: 35 ident: bib7 article-title: Calibration transfer between miniature photodiode array-based spectrometers in the near infrared assessment of Mandarin soluble solids content publication-title: J. Near Infrared Spectrosc. – volume: 95 start-page: 88 year: 2018 end-page: 92 ident: bib33 article-title: Weighted SPXY method for calibration set selection for composition analysis based on near-infrared spectroscopy publication-title: Infrared Phys. Technol. – volume: 175 year: 2021 ident: bib15 article-title: A new application of NIR spectroscopy to describe and predict purees quality from the non-destructive apple measurements publication-title: Food Chem. – volume: 56 start-page: 1098 year: 2002 end-page: 1106 ident: bib31 article-title: Improvement of a standard-free method for near-infrared calibration transfer publication-title: Appl. Spectrosc. – volume: 12 start-page: 1407 year: 2022 ident: bib32 article-title: Evaluation of markers associated with physiological and biochemical traits during storage of ‘nam dok mai Si thong’ mango fruits publication-title: Agriculture – volume: 165 start-page: 112 year: 2017 end-page: 116 ident: bib16 article-title: Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms publication-title: Talanta – volume: 50 start-page: 1461 year: 2015 end-page: 1467 ident: bib6 article-title: Optical path length and wavelength selection using Vis/NIR spectroscopy for olive oil's free acidity determination publication-title: Int. J. Food Sci. Technol. – volume: 72 start-page: 73 year: 2006 end-page: 76 ident: bib11 article-title: Physical and mechanical properties of mango during growth and storage for determination of maturity publication-title: J. Food Eng. – volume: 111 year: 2022 ident: bib14 article-title: Prediction and visualization of fat content in polythene-packed meat using near-infrared hyperspectral imaging and chemometrics publication-title: J. Food Compos. Anal. – volume: 115 year: 2021 ident: bib20 article-title: Optimal combination of band-pass filters for theanine content prediction using near-infrared spectroscopy publication-title: Infrared Phys. Technol. – volume: 243 start-page: 935 year: 2016 end-page: 945 ident: bib29 article-title: Raman imaging of changes in the polysaccharides distribution in the cell wall during apple fruit development and senescence publication-title: Planta – volume: 197 start-page: 1207 year: 2016 end-page: 1214 ident: bib17 article-title: Rapid and non-destructive determination of quality parameters in the 'Tommy Atkins' mango using a novel handheld near infrared spectrometer publication-title: Food Chem. – volume: 123 start-page: 297 year: 2016 end-page: 303 ident: bib8 article-title: Peach variety identification using near-infrared diffuse reflectance spectroscopy publication-title: Comput. Electron. Agric. – volume: 409 year: 2023 ident: bib12 article-title: Detection of Alternaria alternata infection in winter jujubes based on optical properties and their correlation with internal quality parameters during storage publication-title: Food Chem. – volume: 12 start-page: 1407 issue: 9 year: 2022 ident: 10.1016/j.jfoodeng.2023.111653_bib32 article-title: Evaluation of markers associated with physiological and biochemical traits during storage of ‘nam dok mai Si thong’ mango fruits publication-title: Agriculture doi: 10.3390/agriculture12091407 – volume: 306 year: 2021 ident: 10.1016/j.jfoodeng.2023.111653_bib3 article-title: On-line monitoring of egg freshness using a portable NIR spectrometer in tandem with machine learning publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2021.110643 – volume: 115 year: 2021 ident: 10.1016/j.jfoodeng.2023.111653_bib20 article-title: Optimal combination of band-pass filters for theanine content prediction using near-infrared spectroscopy publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2021.103701 – volume: 77 start-page: 85 issue: 1 year: 1999 ident: 10.1016/j.jfoodeng.2023.111653_bib30 article-title: An adaptive Gaussian sum algorithm for radar tracking publication-title: Signal Process. doi: 10.1016/S0165-1684(99)00025-0 – volume: 4 start-page: 582 issue: 4 year: 2011 ident: 10.1016/j.jfoodeng.2023.111653_bib23 article-title: On-site NIR spectroscopy to control the shelf life of pork meat publication-title: Food Anal. Methods doi: 10.1007/s12161-011-9208-2 – volume: 235 start-page: 194 year: 2017 ident: 10.1016/j.jfoodeng.2023.111653_bib28 article-title: Hyperspectral imaging detection of decayed honey peaches based on their chlorophyll content publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.05.064 – volume: 118 start-page: 148 year: 2016 ident: 10.1016/j.jfoodeng.2023.111653_bib2 article-title: A new internal quality index for mango and its prediction by external visible and near-infrared reflection spectroscopy publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2016.04.011 – volume: 409 year: 2023 ident: 10.1016/j.jfoodeng.2023.111653_bib12 article-title: Detection of Alternaria alternata infection in winter jujubes based on optical properties and their correlation with internal quality parameters during storage publication-title: Food Chem. doi: 10.1016/j.foodchem.2022.135298 – volume: 56 start-page: 1098 issue: 8 year: 2002 ident: 10.1016/j.jfoodeng.2023.111653_bib31 article-title: Improvement of a standard-free method for near-infrared calibration transfer publication-title: Appl. Spectrosc. doi: 10.1366/000370202321275015 – volume: 72 start-page: 73 issue: 1 year: 2006 ident: 10.1016/j.jfoodeng.2023.111653_bib11 article-title: Physical and mechanical properties of mango during growth and storage for determination of maturity publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2004.11.020 – volume: 130 start-page: 75 year: 2017 ident: 10.1016/j.jfoodeng.2023.111653_bib5 article-title: Determination of 'Palmer' mango maturity indices using portable near infrared (VIS-NIR) spectrometer publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2017.03.009 – volume: 12 start-page: 346 issue: 1 year: 2018 ident: 10.1016/j.jfoodeng.2023.111653_bib18 article-title: Predicting the moisture content and textural characteristics of roasted pistachio kernels using Vis/NIR reflectance spectroscopy and PLSR analysis publication-title: J. Food Meas. Char. doi: 10.1007/s11694-017-9646-7 – volume: 10 start-page: 27 issue: 1 year: 2002 ident: 10.1016/j.jfoodeng.2023.111653_bib7 article-title: Calibration transfer between miniature photodiode array-based spectrometers in the near infrared assessment of Mandarin soluble solids content publication-title: J. Near Infrared Spectrosc. doi: 10.1255/jnirs.318 – volume: 279 year: 2020 ident: 10.1016/j.jfoodeng.2023.111653_bib9 article-title: Quantitative detection of apple watercore and soluble solids content by near infrared transmittance spectroscopy publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2020.109955 – volume: 95 start-page: 88 year: 2018 ident: 10.1016/j.jfoodeng.2023.111653_bib33 article-title: Weighted SPXY method for calibration set selection for composition analysis based on near-infrared spectroscopy publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2018.10.030 – volume: 197 start-page: 1207 year: 2016 ident: 10.1016/j.jfoodeng.2023.111653_bib17 article-title: Rapid and non-destructive determination of quality parameters in the 'Tommy Atkins' mango using a novel handheld near infrared spectrometer publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.11.080 – volume: 243 start-page: 935 issue: 4 year: 2016 ident: 10.1016/j.jfoodeng.2023.111653_bib29 article-title: Raman imaging of changes in the polysaccharides distribution in the cell wall during apple fruit development and senescence publication-title: Planta doi: 10.1007/s00425-015-2456-4 – volume: 173 year: 2021 ident: 10.1016/j.jfoodeng.2023.111653_bib34 article-title: Application of near-infrared spectroscopy and chemometrics for the rapid quality assessment of Sargassum fusiforme publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2020.111431 – volume: 212 start-page: 113 year: 2017 ident: 10.1016/j.jfoodeng.2023.111653_bib4 article-title: Effect of thermal and high hydrostatic pressure treatments on mango bars shelf-life under refrigeration publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2017.05.009 – volume: 165 start-page: 112 year: 2017 ident: 10.1016/j.jfoodeng.2023.111653_bib16 article-title: Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms publication-title: Talanta doi: 10.1016/j.talanta.2016.12.035 – volume: 50 start-page: 1461 issue: 6 year: 2015 ident: 10.1016/j.jfoodeng.2023.111653_bib6 article-title: Optical path length and wavelength selection using Vis/NIR spectroscopy for olive oil's free acidity determination publication-title: Int. J. Food Sci. Technol. doi: 10.1111/ijfs.12790 – volume: 119 start-page: 51 year: 2016 ident: 10.1016/j.jfoodeng.2023.111653_bib10 article-title: Prediction of pork fat attributes using NIR Images of frozen and thawed pork publication-title: Meat Sci. doi: 10.1016/j.meatsci.2016.02.042 – volume: 4 start-page: 77 year: 2020 ident: 10.1016/j.jfoodeng.2023.111653_bib25 article-title: Postharvest application of calcium, packaging material and hot water treatment on quality of mango (Mangifera indica L.) cv. Zardalu publication-title: Journal of Postharvest Technology – volume: 44 start-page: 45 issue: 1 year: 1992 ident: 10.1016/j.jfoodeng.2023.111653_bib13 article-title: Post-harvest treatment of wild mango (Irvingia gabonensis) for improved shelf life publication-title: Food Chem. doi: 10.1016/0308-8146(92)90256-2 – volume: 175 year: 2021 ident: 10.1016/j.jfoodeng.2023.111653_bib15 article-title: A new application of NIR spectroscopy to describe and predict purees quality from the non-destructive apple measurements publication-title: Food Chem. – volume: 12 start-page: 949 issue: 2 year: 2018 ident: 10.1016/j.jfoodeng.2023.111653_bib27 article-title: Nondestructive analysis of packaged grape tomatoes quality using PCA and PLS regression by means of fiber optic spectroscopy during storage publication-title: J. Food Meas. Char. doi: 10.1007/s11694-017-9710-3 – volume: 193 year: 2022 ident: 10.1016/j.jfoodeng.2023.111653_bib19 article-title: Near infrared spectroscopy as a fast and non-destructive technique for total acidity prediction of intact mango: comparison among regression approaches publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106657 – volume: 172 year: 2021 ident: 10.1016/j.jfoodeng.2023.111653_bib22 article-title: Evaluation of a handheld ultra-compact NIR spectrometer for rapid and non-destructive determination of apple fruit quality publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2020.111375 – volume: 47 start-page: 104 issue: 1 year: 2018 ident: 10.1016/j.jfoodeng.2023.111653_bib26 article-title: Measuring of food additives via polyethylene foils by NIR spectrophotometers using different optical arrangements publication-title: Acta Aliment. doi: 10.1556/066.2018.47.1.13 – volume: 62 start-page: 267 issue: 3 year: 2011 ident: 10.1016/j.jfoodeng.2023.111653_bib21 article-title: Methods to analyze physico-chemical changes during mango ripening: a multivariate approach publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2011.06.002 – volume: 123 start-page: 297 year: 2016 ident: 10.1016/j.jfoodeng.2023.111653_bib8 article-title: Peach variety identification using near-infrared diffuse reflectance spectroscopy publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.03.005 – volume: 111 year: 2022 ident: 10.1016/j.jfoodeng.2023.111653_bib14 article-title: Prediction and visualization of fat content in polythene-packed meat using near-infrared hyperspectral imaging and chemometrics publication-title: J. Food Compos. Anal. doi: 10.1016/j.jfca.2022.104633 |
SSID | ssj0005022 |
Score | 2.4864001 |
Snippet | Different packaging materials pose a challenging work for the non-invasive determination of contaminated food quality using near infrared (NIR) spectroscopy.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111653 |
SubjectTerms | firmness food contamination food quality Mango quality mangoes near-infrared spectroscopy NIR spectroscopy Non-destructive analysis Packaging materials poly(vinyl chloride) polyethylene prediction Spectral filtering support vector machines titratable acidity Variable selection |
Title | Non-invasive prediction of mango quality using near-infrared spectroscopy: Assessment on spectral interferences of different packaging materials |
URI | https://dx.doi.org/10.1016/j.jfoodeng.2023.111653 https://www.proquest.com/docview/2849881384 |
Volume | 357 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-iB_UgOhW_ieC1W5c2TeptiDIVdlHBW0iadmxqO7YqePFv8E_2vaYdUxAPHtsmach7eR-8936PkDObBCw1vvAim1ovxEghWK3Sy1ikuRAWQcAw22IQ9R_Cm0f-uEQumloYTKusZb-T6ZW0rt906tPsTEajzh2iYUmBkcbKUEa_PQwFcnn7YyHNw3eRBBjs4eiFKuFxe5wVBVzvYRubiKP0iHjwm4L6Iaor_XO1STZqw5H23N62yFKat8hqU1c8a5H1BWjBbfI5KHJvlL9pTE-nkynGY5AGtMjoi86HBXXllO8UM9-HNAeOh_HZFBPSaVV_iTiXxeT9nPbm6J0UFnDfYCuINDGtywVnuG7TbKWk4Ig_Ve2P4F-l4_Ed8nB1eX_R9-ruC14ShLz0JEt46jMrfZboWCJIT5xk1gjNuTFw5tYKETCegpOLdoTUPhhnvGtCGzNmo2CXLOdFnu4RysF9D3TWjUwE3os12ufMgCABVyW0TIt9wpsjV0kNTY4dMp5Vk4M2Vg2pFJJKOVLtk8583sSBc_w5I24oqr6xmQIN8ufc04YFFNxBDKzoPC1eZwpUfCxlN5DhwT_WPyRr-OQKHY_Icjl9TY_B4inNScXSJ2Sld33bH3wBWZEDEg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V9lA4IFpAlJ_WSHDMbtaJEweJQ0VbbWnZC63Um7FjZ7ULJKvdFLQXnoF34QWZiZNqi1T1gHpN4ok1Y8-PZuYbgDc2j7gzYRok1tkgpkwheq0yKHiiRZpaAgGjaotRMjyPP16IizX40_XCUFllq_u9Tm-0dfuk33KzP5tM-p8JDUumlGlsHOWwraw8ccufGLct3h8foJDfcn50ePZhGLSjBYI8ikUdSJ4LF3IrQ57rTBICTZYX1qRaCGOQoLVpGnHhMIIjIyl1iJ6HGJjYZpzbJEK692AjRnVBYxN6v1bqSkKfusDdBbS9lbbkaW9aVBXqk3GPppaTukpEdJNF_Mc2NAbv6BE8bD1Vtu-ZsQVrrtyGza6RebEND1awDB_D71FVBpPyh6Z6eDabUwKIhM6qgn3X5bhivn9zyajUfsxKZCN-X8ypAp41DZ8ErFnNlu_Y_hVcKEMC_h1uhaAt5m1_4oLodtNdaoaR_9dm3hL-q_aX6gmc34lMnsJ6WZXuGTDhDI90MUhMguGSNToU3KDmwtgotlynOyA6lqu8xUKnkRzfVFf0NlWdqBSJSnlR7UD_at3Mo4HcuiLrJKqunWuFJuvWta-7I6Dw0lMmR5euulwo9CkyKQeRjJ__B_092ByefTpVp8ejkxdwn974LsuXsF7PL90rdLdqs9scbwZf7vo-_QVsQTx2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-invasive+prediction+of+mango+quality+using+near-infrared+spectroscopy%3A+Assessment+on+spectral+interferences+of+different+packaging+materials&rft.jtitle=Journal+of+food+engineering&rft.au=Ding%2C+Fangchen&rft.au=Zuo%2C+Changzhou&rft.au=Garc%C3%ADa+Mart%C3%ADn%2C+Juan+Francisco&rft.au=Ge%2C+Yan&rft.date=2023-11-01&rft.issn=0260-8774&rft.volume=357+p.111653-&rft_id=info:doi/10.1016%2Fj.jfoodeng.2023.111653&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0260-8774&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0260-8774&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0260-8774&client=summon |